EP2007404A2 - Méthodes et systèmes de traitement de lésions du tissu cardiaque - Google Patents
Méthodes et systèmes de traitement de lésions du tissu cardiaqueInfo
- Publication number
- EP2007404A2 EP2007404A2 EP07756277A EP07756277A EP2007404A2 EP 2007404 A2 EP2007404 A2 EP 2007404A2 EP 07756277 A EP07756277 A EP 07756277A EP 07756277 A EP07756277 A EP 07756277A EP 2007404 A2 EP2007404 A2 EP 2007404A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- tissue
- platelet
- cardiac tissue
- composition
- cardiac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 210000005003 heart tissue Anatomy 0.000 title claims abstract description 154
- 238000000034 method Methods 0.000 title claims abstract description 102
- 239000000203 mixture Substances 0.000 claims abstract description 249
- 210000001519 tissue Anatomy 0.000 claims abstract description 193
- 238000002360 preparation method Methods 0.000 claims abstract description 66
- 206010029113 Neovascularisation Diseases 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 21
- 230000008929 regeneration Effects 0.000 claims abstract description 15
- 238000011069 regeneration method Methods 0.000 claims abstract description 15
- 239000012867 bioactive agent Substances 0.000 claims abstract description 12
- 239000007924 injection Substances 0.000 claims description 175
- 238000002347 injection Methods 0.000 claims description 175
- 210000004027 cell Anatomy 0.000 claims description 140
- 238000012384 transportation and delivery Methods 0.000 claims description 138
- 210000002216 heart Anatomy 0.000 claims description 75
- 210000004623 platelet-rich plasma Anatomy 0.000 claims description 69
- 238000011282 treatment Methods 0.000 claims description 60
- 108090000190 Thrombin Proteins 0.000 claims description 54
- 229960004072 thrombin Drugs 0.000 claims description 54
- 239000000499 gel Substances 0.000 claims description 43
- 208000014674 injury Diseases 0.000 claims description 33
- 208000027418 Wounds and injury Diseases 0.000 claims description 32
- 210000004369 blood Anatomy 0.000 claims description 30
- 239000008280 blood Substances 0.000 claims description 30
- 230000006378 damage Effects 0.000 claims description 26
- 239000003795 chemical substances by application Substances 0.000 claims description 23
- 210000004204 blood vessel Anatomy 0.000 claims description 22
- 239000003102 growth factor Substances 0.000 claims description 19
- 210000002381 plasma Anatomy 0.000 claims description 12
- 108010049003 Fibrinogen Proteins 0.000 claims description 11
- 102000008946 Fibrinogen Human genes 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 11
- 229940012952 fibrinogen Drugs 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 11
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- 239000002872 contrast media Substances 0.000 claims description 9
- 108010035532 Collagen Proteins 0.000 claims description 8
- 102000008186 Collagen Human genes 0.000 claims description 8
- 229920001436 collagen Polymers 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 8
- 230000003213 activating effect Effects 0.000 claims description 6
- 230000003511 endothelial effect Effects 0.000 claims description 6
- 108090000790 Enzymes Proteins 0.000 claims description 5
- 102000004190 Enzymes Human genes 0.000 claims description 5
- 229940088598 enzyme Drugs 0.000 claims description 5
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 4
- 108020004414 DNA Proteins 0.000 claims description 4
- 108020004459 Small interfering RNA Proteins 0.000 claims description 4
- 241000700605 Viruses Species 0.000 claims description 4
- 239000003242 anti bacterial agent Substances 0.000 claims description 4
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 4
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 4
- 230000000692 anti-sense effect Effects 0.000 claims description 4
- 229940088710 antibiotic agent Drugs 0.000 claims description 4
- 239000011350 dental composite resin Substances 0.000 claims description 4
- 229920002549 elastin Polymers 0.000 claims description 4
- 229940088597 hormone Drugs 0.000 claims description 4
- 239000005556 hormone Substances 0.000 claims description 4
- 229920002674 hyaluronan Polymers 0.000 claims description 4
- 229960003160 hyaluronic acid Drugs 0.000 claims description 4
- 239000000017 hydrogel Substances 0.000 claims description 4
- 238000002513 implantation Methods 0.000 claims description 4
- 150000002632 lipids Chemical class 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 108020004707 nucleic acids Proteins 0.000 claims description 4
- 102000039446 nucleic acids Human genes 0.000 claims description 4
- 150000007523 nucleic acids Chemical class 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 230000001131 transforming effect Effects 0.000 claims description 4
- 102000005755 Intercellular Signaling Peptides and Proteins Human genes 0.000 claims description 3
- 108010070716 Intercellular Signaling Peptides and Proteins Proteins 0.000 claims description 3
- 210000001185 bone marrow Anatomy 0.000 claims description 3
- 210000004556 brain Anatomy 0.000 claims description 3
- 239000002975 chemoattractant Substances 0.000 claims description 3
- 230000001605 fetal effect Effects 0.000 claims description 3
- 102000005962 receptors Human genes 0.000 claims description 3
- 108020003175 receptors Proteins 0.000 claims description 3
- 230000000250 revascularization Effects 0.000 claims description 3
- 229920000615 alginic acid Polymers 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 claims description 2
- 229920000249 biocompatible polymer Polymers 0.000 claims description 2
- 238000010353 genetic engineering Methods 0.000 claims description 2
- 210000004602 germ cell Anatomy 0.000 claims description 2
- 210000003205 muscle Anatomy 0.000 claims description 2
- 229930014626 natural product Natural products 0.000 claims description 2
- 210000001672 ovary Anatomy 0.000 claims description 2
- 230000000392 somatic effect Effects 0.000 claims description 2
- 210000001550 testis Anatomy 0.000 claims description 2
- 230000000747 cardiac effect Effects 0.000 description 60
- 206010061216 Infarction Diseases 0.000 description 59
- 239000000306 component Substances 0.000 description 59
- 238000007634 remodeling Methods 0.000 description 54
- 230000007574 infarction Effects 0.000 description 45
- 208000010125 myocardial infarction Diseases 0.000 description 35
- 210000004165 myocardium Anatomy 0.000 description 34
- 230000000302 ischemic effect Effects 0.000 description 23
- 238000013459 approach Methods 0.000 description 21
- 239000000126 substance Substances 0.000 description 20
- 241001465754 Metazoa Species 0.000 description 18
- 210000005240 left ventricle Anatomy 0.000 description 18
- 230000017531 blood circulation Effects 0.000 description 17
- 230000006870 function Effects 0.000 description 17
- 230000000266 injurious effect Effects 0.000 description 17
- 230000035882 stress Effects 0.000 description 16
- 230000002861 ventricular Effects 0.000 description 16
- 210000003516 pericardium Anatomy 0.000 description 15
- 230000036770 blood supply Effects 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 14
- 241000283690 Bos taurus Species 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 230000002787 reinforcement Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 206010019280 Heart failures Diseases 0.000 description 10
- 230000033115 angiogenesis Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 238000009826 distribution Methods 0.000 description 9
- 230000002107 myocardial effect Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000035602 clotting Effects 0.000 description 8
- 210000004351 coronary vessel Anatomy 0.000 description 8
- 230000001976 improved effect Effects 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 206010053567 Coagulopathies Diseases 0.000 description 7
- 206010003119 arrhythmia Diseases 0.000 description 7
- 230000006793 arrhythmia Effects 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- 210000005241 right ventricle Anatomy 0.000 description 7
- 241001494479 Pecora Species 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 230000001154 acute effect Effects 0.000 description 6
- 210000005242 cardiac chamber Anatomy 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 208000019622 heart disease Diseases 0.000 description 6
- 230000004217 heart function Effects 0.000 description 6
- 208000028867 ischemia Diseases 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- 208000037816 tissue injury Diseases 0.000 description 6
- 208000013875 Heart injury Diseases 0.000 description 5
- 241000282414 Homo sapiens Species 0.000 description 5
- 238000002659 cell therapy Methods 0.000 description 5
- 238000002716 delivery method Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000002592 echocardiography Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000002595 magnetic resonance imaging Methods 0.000 description 5
- 239000011859 microparticle Substances 0.000 description 5
- 230000001575 pathological effect Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 210000000130 stem cell Anatomy 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- 210000000107 myocyte Anatomy 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 230000004862 vasculogenesis Effects 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 3
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 206010048858 Ischaemic cardiomyopathy Diseases 0.000 description 3
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 3
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000010009 beating Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 210000003748 coronary sinus Anatomy 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000004064 dysfunction Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000003743 erythrocyte Anatomy 0.000 description 3
- 210000002837 heart atrium Anatomy 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000002608 intravascular ultrasound Methods 0.000 description 3
- 210000005246 left atrium Anatomy 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 231100000241 scar Toxicity 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229950003937 tolonium Drugs 0.000 description 3
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 2
- UUUHXMGGBIUAPW-UHFFFAOYSA-N 1-[1-[2-[[5-amino-2-[[1-[5-(diaminomethylideneamino)-2-[[1-[3-(1h-indol-3-yl)-2-[(5-oxopyrrolidine-2-carbonyl)amino]propanoyl]pyrrolidine-2-carbonyl]amino]pentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-methylpentanoyl]pyrrolidine-2-carbon Chemical compound C1CCC(C(=O)N2C(CCC2)C(O)=O)N1C(=O)C(C(C)CC)NC(=O)C(CCC(N)=O)NC(=O)C1CCCN1C(=O)C(CCCN=C(N)N)NC(=O)C1CCCN1C(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C1CCC(=O)N1 UUUHXMGGBIUAPW-UHFFFAOYSA-N 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 2
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 2
- 206010013975 Dyspnoeas Diseases 0.000 description 2
- 102000016942 Elastin Human genes 0.000 description 2
- 108010014258 Elastin Proteins 0.000 description 2
- 108050009340 Endothelin Proteins 0.000 description 2
- 102000002045 Endothelin Human genes 0.000 description 2
- 101800003838 Epidermal growth factor Proteins 0.000 description 2
- 102400001368 Epidermal growth factor Human genes 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 2
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- 102000014429 Insulin-like growth factor Human genes 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 206010067482 No adverse event Diseases 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 102000004270 Peptidyl-Dipeptidase A Human genes 0.000 description 2
- 108090000882 Peptidyl-Dipeptidase A Proteins 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 238000001815 biotherapy Methods 0.000 description 2
- 239000012503 blood component Substances 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 210000004413 cardiac myocyte Anatomy 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 210000000038 chest Anatomy 0.000 description 2
- 230000001447 compensatory effect Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003205 diastolic effect Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 210000001174 endocardium Anatomy 0.000 description 2
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229940116977 epidermal growth factor Drugs 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 230000023597 hemostasis Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 2
- 208000037891 myocardial injury Diseases 0.000 description 2
- 208000031225 myocardial ischemia Diseases 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 229960002748 norepinephrine Drugs 0.000 description 2
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000006213 oxygenation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 238000013310 pig model Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000008263 repair mechanism Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000003356 suture material Substances 0.000 description 2
- 238000012385 systemic delivery Methods 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 230000007838 tissue remodeling Effects 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 210000001631 vena cava inferior Anatomy 0.000 description 2
- 210000002620 vena cava superior Anatomy 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 1
- IJRKANNOPXMZSG-SSPAHAAFSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O IJRKANNOPXMZSG-SSPAHAAFSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 1
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 108010064733 Angiotensins Proteins 0.000 description 1
- 102000015427 Angiotensins Human genes 0.000 description 1
- 241000258957 Asteroidea Species 0.000 description 1
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 1
- 102400001282 Atrial natriuretic peptide Human genes 0.000 description 1
- 101800001890 Atrial natriuretic peptide Proteins 0.000 description 1
- 101710155856 C-C motif chemokine 3 Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 208000020446 Cardiac disease Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 102000000013 Chemokine CCL3 Human genes 0.000 description 1
- 108010008951 Chemokine CXCL12 Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 208000020401 Depressive disease Diseases 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 108010061435 Enalapril Proteins 0.000 description 1
- 102100036448 Endothelial PAS domain-containing protein 1 Human genes 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 102000003972 Fibroblast growth factor 7 Human genes 0.000 description 1
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 206010016803 Fluid overload Diseases 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 102100032742 Histone-lysine N-methyltransferase SETD2 Human genes 0.000 description 1
- 101000851937 Homo sapiens Endothelial PAS domain-containing protein 1 Proteins 0.000 description 1
- 101000654725 Homo sapiens Histone-lysine N-methyltransferase SETD2 Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101000871708 Homo sapiens Proheparin-binding EGF-like growth factor Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102000003815 Interleukin-11 Human genes 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 102100021592 Interleukin-7 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 102100020880 Kit ligand Human genes 0.000 description 1
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 1
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 1
- 208000035967 Long Term Adverse Effects Diseases 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 102000004140 Oncostatin M Human genes 0.000 description 1
- 108090000630 Oncostatin M Proteins 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 208000005228 Pericardial Effusion Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102100033762 Proheparin-binding EGF-like growth factor Human genes 0.000 description 1
- 206010067171 Regurgitation Diseases 0.000 description 1
- 102100028255 Renin Human genes 0.000 description 1
- 108090000783 Renin Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108010039445 Stem Cell Factor Proteins 0.000 description 1
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 1
- 206010049418 Sudden Cardiac Death Diseases 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 208000001435 Thromboembolism Diseases 0.000 description 1
- 102000036693 Thrombopoietin Human genes 0.000 description 1
- 108010041111 Thrombopoietin Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 230000009692 acute damage Effects 0.000 description 1
- 206010000891 acute myocardial infarction Diseases 0.000 description 1
- 230000037328 acute stress Effects 0.000 description 1
- 230000008649 adaptation response Effects 0.000 description 1
- 238000011374 additional therapy Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 210000004504 adult stem cell Anatomy 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229960002478 aldosterone Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 206010002906 aortic stenosis Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- -1 but not limited to Substances 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000003683 cardiac damage Effects 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- NPAKNKYSJIDKMW-UHFFFAOYSA-N carvedilol Chemical compound COC1=CC=CC=C1OCCNCC(O)COC1=CC=CC2=NC3=CC=C[CH]C3=C12 NPAKNKYSJIDKMW-UHFFFAOYSA-N 0.000 description 1
- 229960004195 carvedilol Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010236 cell based technology Methods 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008709 cellular rearrangement Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 230000009693 chronic damage Effects 0.000 description 1
- 230000037326 chronic stress Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002586 coronary angiography Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000011304 dilated cardiomyopathy 1A Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000142 dyskinetic effect Effects 0.000 description 1
- 230000010102 embolization Effects 0.000 description 1
- 229960000873 enalapril Drugs 0.000 description 1
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 238000002481 ethanol extraction Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 210000002149 gonad Anatomy 0.000 description 1
- 210000004013 groin Anatomy 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 208000018875 hypoxemia Diseases 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 210000004971 interatrial septum Anatomy 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- XQZXYNRDCRIARQ-LURJTMIESA-N iopamidol Chemical compound C[C@H](O)C(=O)NC1=C(I)C(C(=O)NC(CO)CO)=C(I)C(C(=O)NC(CO)CO)=C1I XQZXYNRDCRIARQ-LURJTMIESA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000001370 mediastinum Anatomy 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 1
- 229960002237 metoprolol Drugs 0.000 description 1
- 230000001483 mobilizing effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000002644 neurohormonal effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000001936 parietal effect Effects 0.000 description 1
- 231100000435 percutaneous penetration Toxicity 0.000 description 1
- 210000004912 pericardial fluid Anatomy 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 108010017843 platelet-derived growth factor A Proteins 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000026341 positive regulation of angiogenesis Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 208000002815 pulmonary hypertension Diseases 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 210000005245 right atrium Anatomy 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 210000005123 simple squamous epithelium Anatomy 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000004683 skeletal myoblast Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000001032 spinal nerve Anatomy 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000003839 sprouting angiogenesis Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 210000001562 sternum Anatomy 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 208000037905 systemic hypertension Diseases 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 229960003766 thrombin (human) Drugs 0.000 description 1
- 230000009424 thromboembolic effect Effects 0.000 description 1
- 230000002537 thrombolytic effect Effects 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 229960004605 timolol Drugs 0.000 description 1
- 230000019432 tissue death Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 208000003663 ventricular fibrillation Diseases 0.000 description 1
- 210000000264 venule Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/16—Blood plasma; Blood serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/19—Platelets; Megacaryocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/482—Serine endopeptidases (3.4.21)
- A61K38/4833—Thrombin (3.4.21.5)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/19—Syringes having more than one chamber, e.g. including a manifold coupling two parallelly aligned syringes through separate channels to a common discharge assembly
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/20—Applying electric currents by contact electrodes continuous direct currents
- A61N1/30—Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
- A61N1/303—Constructional details
- A61N1/306—Arrangements where at least part of the apparatus is introduced into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/325—Applying electric currents by contact electrodes alternating or intermittent currents for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body
Definitions
- the present invention relates generally to systems and methods for treating injured cardiac tissue. Specifically, the present invention discloses compositions, systems and methods for inducing regeneration in the injured tissue.
- the human heart wall consists of an inner layer of simple squamous epithelium, referred to as the endocardium, overlying a variably thick heart muscle or myocardium and is enveloped within a multi-layer tissue structure referred to as the pericardium.
- the innermost layer of the pericardium referred to as the visceral pericardium or epicardium, covers the myocardium.
- the epicardium reflects outward at the origin of the aortic arch to form an outer tissue layer, referred to as the parietal pericardium, which is spaced from and forms an enclosed sac extending around the visceral pericardium of the ventricles and atria.
- pericardium An outermost layer of the pericardium, referred to as the fibrous pericardium, attaches the parietal pericardium to the sternum, the great vessels and the diaphragm so that the heart is confined within the middle mediastinum.
- the visceral pericardium and parietal pericardium lie in close contact with each other and are separated only by a thin layer of a serous pericardial fluid that enables friction free movement of the heart within the sac.
- the space between the visceral and parietal pericardia is referred to as the pericardial space.
- the visceral pericardium is usually referred to as the epicardium, and epicardium will be used hereafter.
- the parietal pericardium is usually referred to as the pericardium, and pericardium will be used hereafter in reference to parietal pericardium.
- Heart disease including myocardial infarction (Ml)
- Ml myocardial infarction
- a variety of heart diseases can progress to heart failure by a common mechanism called remodeling. With remodeling, cardiac function progressively deteriorates, often leading to clinical heart failure and associated symptoms. Heart disease can in turn impair other physiological systems.
- Ml myocardial infarction
- Myocardial infarction can result in an acute depression in ventricular function and expansion of the infarcted tissue under stress. This triggers a cascading sequence of myocellular events known as remodeling.
- ischemic cardiomyopathy is the leading cause of heart failure in the United States. It is the objective of the present invention to improve vascular supply to patients who have or are at high-risk of developing cardiac disease (such as cardiac ischemia). Acutely or chronically diseased cardiac tissue would benefit from increased blood supply. Studies have shown that even in the adult, normal repair mechanisms are elicited (e.g. those involving the recruitment of endogenous regenerative cells) following cardiac injury. Inadequate blood supply limits the survival of such cells and may prevent healing. Blood supply is required to bring necessary oxygen, nutrients, and blood components (cells, chemokines, etc.) to the injured region and to clear metabolic products. A treatment that improves blood supply to such a region is very likely to benefit the patient by facilitating greater recovery.
- cardiac disease such as cardiac ischemia
- Cardiac tissue can be acutely or chronically ischemic. Severe ischemia resulting in cardiac cell death is referred to as infarction. Acute or chronic recovery may be improved by increasing vascular supply to or around the affected injured region.
- a stenosed or blocked coronary artery is one example of heart disease.
- a completely or substantially blocked coronary artery can cause immediate, intermediate term, and/or long-term adverse effects.
- a myocardial infarction can occur when a coronary artery becomes occluded and can no longer supply blood to the myocardial tissue, thereby resulting in myocardial cell death.
- the myocardial tissue that is no longer receiving adequate blood flow dies and is eventually replaced by scar tissue.
- infarcted heart tissue In addition to immediate hemodynamic effects, the infarcted heart tissue and undergoes three major processes: infarct expansion, infarct extension, and chamber remodeling. These factors individually and in combination contribute to the eventual dysfunction observed in the cardiac tissue remote from the site of the infarction
- Infarct expansion is a fixed, permanent, disproportionate regional thinning and dilatation of tissue within the infarct zone. Infarct expansion occurs early after a myocardial infarction. The mechanism is slippage of the tissue layers.
- Infarct extension is additional myocardial necrosis following myocardial infarction. Infarct extension results in an increase in total mass of infarcted tissue and the additional infarcted tissue may also undergo infarct expansion. Infarct extension occurs days after a myocardial infarction. The mechanism for infarct extension appears to be an imbalance in the blood supply to the peri-infarct tissue versus the increased oxygen demands on the tissue.
- Remodeling is usually the progressive enlargement of the ventricle accompanied by a depression of ventricular function. Myocyte function in the cardiac tissue remote from the initial myocardial infarction becomes depressed. Remodeling occurs weeks to years after myocardial infarction. Such remodeling usually occurs on the left side of the heart. Where remodeling does occur on the right side of the heart, it can generally be linked to remodeling (or some other negative event) on the left side of the heart. Remodeling can occur independently in the right heart, albeit less often than the left. There are many potential mechanisms for remodeling, but it is generally believed that the high stress on peri-infarct tissue plays an important role. Due to variety of factors such as altered geometry, wall stresses are much higher than normal in the cardiac tissue surrounding the infarction.
- Ischemic heart disease can be acute or chronic. Mild disease results in inadequate blood supply during increased demand (e.g. during exertion). Severe disease results in inadequate blood supply even at rest. Both conditions would benefit from increased blood supply, as this would be expected to result in positive clinical sequellae. This may include any or all of increased exertional capacity, reduced symptoms, increased organ blood perfusion, improved cardiac output, and/or improved cardiac contractility.
- Newer approaches include more aggressive efforts to restore patency to occluded vessels. This is accomplished through thrombolytic therapy or angioplasty and stents. Reopening the occluded artery (i.e. revascularization) within hours of initial occlusion can decrease tissue death, and thereby decrease the total magnitude of infarct expansion, extension, and thereby limit the stimulus for remodeling.
- Re-establishing blood flow may be accomplished through stimulation of angiogenesis in which the body generates or expands blood supply to a particular region.
- Prior methods for re-establishing blood flow and rehabilitating the heart frequently involved invasive surgery such as bypass surgery or angioplasty.
- Other methods have used lasers to bore holes through the infarctions and ischemic zones to promote blood flow. These surgeries are complicated and dangerous. Therefore, a need exists for a safer less-invasive method for reestablishing blood flow.
- the direct or selective delivery of agents to cardiac tissue is often preferred over the systemic delivery of such agents for several reasons.
- One mode of delivering medical agents to cardiac tissue is by epicardial, direct injection into cardiac tissue during an open chest procedure.
- Another approach taken to delivery medical agents into cardiac tissue has been an intravascular approach.
- Catheters may be advanced through the vasculature and into the heart to inject materials into cardiac tissue from within the heart.
- Another approach is deliver materials into cardiac wall from within the chamber of the heart, an endocardial approach.
- additional therapies being developed for treating injured cardiac tissue include the injection of cells and/or other biologic agents into ischemic cardiac tissue or placement of cells and/or agents onto the ischemic tissue.
- One therapy for treating infarcted cardiac tissue includes the delivery of cells that are capable of maturing into actively contracting cardiac muscle cells or regenerating cardiac tissue.
- the present invention provides methods and compositions for inducing neovascularization and treating cardiac tissue by administering a platelet composition and a cellular therapy. Induction of neovascularization in the injured cardiac tissue prior to implantation of a cell preparation increases the survival, incorporation and maintenance of the implanted cells in the injured tissue.
- a method for treating cardiac tissue comprising providing a platelet composition into a treatment site in the cardiac tissue wherein the composition induces neovascularization of the cardiac tissue; and injecting a cell preparation into the re-vascularized cardiac tissue.
- the cardiac tissue is injured tissue or healthy tissue in an injured heart.
- the method causes the regeneration of said cardiac tissue.
- the target cardiac tissue is healthy tissue in an un-injured heart.
- the platelet composition is selected from the group consisting of platelet gel, platelet rich plasma and platelet poor plasma.
- the platelet composition is autologous.
- the platelet gel is formed from platelet poor plasma or platelet rich plasma and an activating agent.
- the activating agent is thrombin.
- the thrombin is selected from the group consisting of recombinant thrombin, human thrombin, animal thrombin, engineered thrombin and autologous thrombin.
- the platelet gel comprises platelet rich plasma or platelet poor plasma and thrombin at a ratio of between about 5:1 and about 25:1. In another embodiment, the ratio of platelet rich plasma or platelet poor plasma to thrombin is about 10:1.
- the platelet composition comprises platelet rich plasma.
- the platelet composition is delivered to the treatment site and forms a solid or a gel within said cardiac tissue at the treatment site.
- the platelet composition further comprises a structural material selected from the group consisting of collagen, biocompatible polymers, alginates, synthetic/natural compounds, fibrinogen, silk-elastin polymers, hydrogels, and dental composite material.
- the structural material forms a solid or a gel as a result of physical or chemical cross-linking or activation, wherein the activation is selected from the group consisting of enzymatic, chemical, thermal or light activation of said composition.
- the platelet composition further comprises a bioactive agent.
- the bioactive agent is selected from the group consisting of pharmaceutically active compounds, hormones, growth factors, enzymes, DNA, RNA, siRNA, viruses, proteins, lipids, polymers, hyaluronic acid, antibodies, antibiotics, anti-inflammatory agents, anti-sense nucleotides and transforming nucleic acids, and combinations thereof.
- the platelet composition is provided to the injured cardiac tissue between about 1 hour and about 1 year after injury occurs to the cardiac tissue.
- either of the platelet composition or the cell preparation is provided by injection at approximately 1 to 20 sites.
- the injections are provided sequentially.
- the injections are provided approximately simultaneously.
- the injection comprises a total injection volume up to 15 mL.
- the injection comprises an injection volume up to 1100 microliters per injection.
- the platelet composition or said cell preparation is injected into said cardiac tissue at an angle orthogonal or oblique to the tissue surface.
- the cell preparation is provided to the cardiac tissue between about 1 hour and about 1 year after injury occurs to the cardiac tissue. In another embodiment, the cell preparation is provided to the cardiac tissue between about 1 hour and about 1 year after administration of the platelet composition. In another embodiment, the cell preparation is provided to the cardiac tissue after neovascularization is initiated in the injured cardiac tissue. In another embodiment, the platelet composition and the cell preparation are provided to the cardiac tissue approximately simultaneously.
- the treatment site in the cardiac tissue is selected from the group consisting of sub-endocardial, sub-epicardial and intra-myocardial sites.
- the platelet composition or cell preparation is injected into the cardiac tissue at a depth midway through the thickness of the myocardium.
- the method further comprises a delivery device adapted to deliver the platelet composition or cell preparation into the injured cardiac tissue.
- the delivery device is an injection catheter selected from the group consisting of an endocardial injection catheter, a transvascular injection catheter and an epicardial injection catheter.
- the treatment site is selected from the group consisting of the injured area, the peri-injury area and the healthy tissue surrounding the injured area.
- the platelet composition and cell preparation are injected into the same treatment site.
- the platelet composition and cell preparation are injected into different treatment sites.
- the cell preparation is injected adjacent to the site of injection of the platelet gel composition.
- a method for treating cardiac tissue comprising providing a platelet composition into a treatment site in cardiac tissue; and recruiting blood vessel forming cells from tissues or blood to the treatment site and wherein the cardiac tissue is revascularized by said blood vessel forming cells.
- the platelet composition further comprises molecules which attract blood vessel forming cells to the treatment site.
- the molecules are selected from the group consisting of growth factors, growth factor receptors and chemoattractants.
- a system for regeneration of cardiac tissue comprising a platelet composition; a cell preparation; and a least one delivery device for introducing the platelet composition into the cardiac tissue; wherein the platelet composition induces revascularization of the cardiac tissue such that regeneration of the cardiac tissue by the cell preparation is facilitated.
- FIG. 1 is a drawing of a normal, healthy heart.
- FIG. 2 is a drawing of a heart with a region of injured myocardium.
- FIG. 3 is an enlarged view of the injured myocardium depicted in FIG. 2.
- FIG. 4 is a cross-sectional depiction of the heart shown in FIG. 1.
- FIG. 5 is a cross-sectional depiction of a heart showing a region of injured and remodeled cardiac tissue on the wall of the left ventricle.
- Eligible injured cardiac tissue can be of different thicknesses and geometries. One example is shown with a mildly thinned and dilated (aneurismal) wall.
- FIG. 6 depicts a needle being used to deliver a composition to the cardiac wall according to an embodiment of the current invention
- FIG. 10 schematically depicts a detailed view of delivery of a composition into cardiac tissue according to another embodiment of the present invention.
- FIG. 11 schematically depicts the migration of a composition within the myocardial tissue after delivery according to an embodiment of the present invention.
- FIG. 12 schematically depicts an epicardial approach to delivery of compositions to cardiac tissue according to the teachings of the present invention.
- FIG. 13A-B schematically depicts an endocardial approach to delivery of compositions to cardiac tissue according to the teachings of the present invention.
- FIG. 13A depicts an anterograde endocardial approach through the venous system and
- FIG. 13B depicts a retrograde endocardial approach through the arterial system.
- FIG. 15 depicts a flow diagram of the system of the present invention.
- FIG. 16 depicts a photomicrograph of infarcted myocardium eight weeks after injection with autologous platelet gel (platelet rich plasma and bovine thrombin at 10:1 ratio) one hour after infarction according to the teachings of the present invention.
- platelet gel platelet rich plasma and bovine thrombin at 10:1 ratio
- Many blood vessels are observed within a region of infarcted tissue (arrow C). These vessels are carrying red blood cells (arrow B).
- angiogenesis refers to a physiologic process involving the growth of new blood vessels from pre-existing blood vessels.
- Bioactive agent includes therapeutic agents and drugs and includes pharmaceutically active compounds, hormones, growth factors, enzymes, DNA, RNA, siRNA, viruses, proteins, lipids, polymers, hyaluronic acid, antibodies, antibiotics, anti-inflammatory agents, anti-sense nucleotides and transforming nucleic acids, inhibitors of compounds implicated in remodeling (e.g., inhibitors of angiotensin II, angiotensin converting enzyme, atrial natriuretic peptide, aldosterone, renin, norepinephrine, epinephrine, endothelin, etc.) and combinations thereof.
- remodeling e.g., inhibitors of angiotensin II, angiotensin converting enzyme, atrial natriuretic peptide, aldosterone, renin, norepinephrine, epinephrine, endothelin, etc.
- Chamber remodeling refers to remodeling of the atria or ventricles.
- Remodeling refers to a series of events (which may include changes in gene expression, molecular, cellular and interstitial changes) that result in changes in size, shape and function of cardiac tissue following stress or injury. Remodeling may occur after myocardial infarction (Ml), pressure overload (e.g., aortic stenosis, hypertension), volume overload (e.g., valvular regurgitation), inflammatory heart disease (e.g., myocarditis), or in idiopathic cases (e.g., idiopathic dilated cardiomyopathy). Remodeling is often pathologic, resulting in progressively worsening cardiac function and ultimately a failing heart. Pathologic remodeling as described above will be referred to as remodeling in this disclosure.
- Cardiac tissue injury refers to any area of abnormal tissue in the heart caused by a disease, disorder or injury and includes damage to the epicardium, endocardium, and/ or myocardium.
- Non-limiting examples of causes of cardiac tissue injury include acute or chronic stress (systemic hypertension, pulmonary hypertension, valve dysfunction, etc.), coronary artery disease, ischemia or infarction, inflammatory disease and cardiomyopathies.
- Cardiac tissue injury most often involves injury to the myocardium and therefore, for the purposes of this disclosure, myocardial injury is equivalent to cardiac tissue injury.
- Injured cardiac tissue includes tissue that is ischemic, infarcted or otherwise focally or diffusely diseased.
- composition refers to an injectate, substance or a combination of substances which can be delivered into a tissue and are used interchangeably herein.
- exemplary compositions include, but are not limited to, platelet gel, autologous platelet gel, platelet rich plasma, and platelet poor plasma, with and without addition of bioactive agents, structural materials, etc.
- Delivery refers to providing a composition to a treatment site in an injured tissue through any method appropriate to deliver the functional composition to the treatment site.
- Non-limiting examples of delivery methods include direct injection at the treatment site, direct topical application at the treatment site, percutaneous delivery for injection, percutaneous delivery for topical application, and other delivery methods well known to persons of ordinary skill in the art.
- injury area refers to the injured tissue.
- the "peri-injury area” refers to the tissue immediately adjacent to the injured tissue. That is, the tissue at the junction between the injured tissue and the normal tissue.
- injured tissue refers to tissue injured by trauma, ischemic tissue, infarcted tissue or tissue damaged by any means which results in interruption of normal blood flow to the tissue.
- injured tissue includes tissue undergoing any of the changes described under “cardiac tissue injury.”
- Neovascularization refers to the formation of functional vascular networks that may be perfused by blood or blood components. Neovascularization includes angiogenesis, budding angiogenesis, intussuceptive angiogenesis, sprouting angiogenesis, therapeutic angiogenesis and vasculogenesis.
- Percutaneous refers to any penetration through the skin of the patient, whether in the form of a small cut, incision, hole, cannula, tubular access sleeve or port or the like. A percutaneous penetration may be made in an interstitial space between the ribs of the patient or it may be made elsewhere, such as the groin area of a patient.
- Structural support As used herein, the term “structural support” refers to mechanical reinforcement providing resistance against the stresses and maladaptive processes of remodeling.
- Vasculogenesis refers to blood vessels formation by de novo production of endothelial cells, a process that occurs during development and also in adulthood (e.g. after trauma or after cardiac injury).
- the present invention provides methods and compositions for inducing neovascularization and treating cardiac tissue by administering a platelet composition followed after a period of time by cellular therapy. Induction of neovascularization in the injured cardiac tissue prior to implantation of a cell preparation increases the survival, incorporation and maintenance of the implanted cells in the injured tissue.
- methods are provided for inducing angiogenesis in cardiac tissue by injecting a platelet composition directly into the injured or surrounding heart tissue and, subsequently, providing cellular therapy to promote regeneration of the injured tissue.
- Neovascularization refers to the development of new blood vessels from endothelial precursor cells by any means, such as by vasculogenesis, angiogenesis, or the formation of new blood vessels from endothelial precursor cells that link to existing blood vessels.
- Angiogenesis is the process by which new blood vessels grow from the endothelium of existing blood vessels in a developed animal. Endothelial precursor cells circulate in the blood and selectively migrate, or "home,” to sites of active neovascularization (see U.S. Pat. No. 5,980,887, lsner et al., the contents of which are incorporated herein by reference in their entirety).
- a method comprising providing a platelet composition to a treatment site in cardiac tissue wherein the composition induces neovascularization of the cardiac tissue, injecting a cell preparation into the neovascularized cardiac tissue and wherein the cell preparation causes regeneration of said cardiac tissue.
- FIGS. 1 and 4 there can be seen depictions of a normal heart 10.
- the cross-sectional view in FIG. 4 shows the right ventricle 44 and the left ventricle 42 of a normal heart that has not undergone chamber remodeling.
- FIG. 2 depicts a heart 20 having an ischemic or infarcted region 24, and a peri-infarct region 26 that is surrounded by healthy non-ischemic myocardium 28.
- an infarction occurs, the cardiac tissue that is no longer receiving adequate blood flow dies and is replaced with scar tissue.
- a cascade of events cause the walls to thin, dilate, and ultimately fail.
- Inadequate blood flow in injured tissue prevents healing, in which endogenous cells and mechanisms may lead otherwise to repopulation and repair of the injured tissue.
- FIG. 3 is an enlarged view of the area bordered by dotted lines in FIG. 2.
- FIGS. 2 and 3 depict an area of myocardium 24 that has undergone some kind of ischemic insult such as an Ml or other injury. If necrosis has occurred, that portion of myocardium that has experienced necrosis will be totally infarcted.
- the area immediately surrounding the ischemic/infarcted area 26 is known as the peri-infarct area and is surrounded by healthy myocardium 28.
- the peri-infarct area 26 may have experienced some level of ischemic activity but the blood supply has not yet been interrupted to the same extent as that of the ischemic/infarcted area 24.
- FIG. 5 is a cross sectional view of the heart shown in FIG. 2.
- FIG. 5 shows a right ventricle 54 and a left ventricle 52 having an area 50 of a left ventricle that has undergone remodeling. As can be seen in the figure, the heart walls are thinner in the expanded area 50.
- a limited amount of remodeling can be beneficial for the patient and occurs mainly in two contexts.
- the first is termed "physiologic remodeling" which occurs in some high-performance athletes as an adaptive response to above-normal demands on the heart.
- the compensatory changes in cardiac geometry and function in the physiologically remodeled heart render it better able to perform in a high-performance environment.
- the second context is during the earliest stages of post-injury remodeling.
- the initial phase of this remodeling can actually be adaptive and protective. If to a limited degree, some cellular rearrangement within the cardiac wall and increased chamber volume, can preserve or even augment cardiac output. These changes can be beneficial.
- endogenous repair mechanisms are not able to restore cardiac tissue or function. Endogenous cells have been demonstrated to "home” to injured tissue, even in the adult heart, but blood flow limitations may prevent them from taking residence and promoting healing.
- Measures to assess cardiac remodeling include cardiac size, cardiac shape, cardiac mass, ejection fraction, end-diastolic and end-systolic volumes, and peak force of contraction.
- Left ventricular volume (especially left ventricular end systolic volume) is the best predictor of mortality in humans after myocardial infarction.
- compositions which provide angiotensin-converting-enzyme inhibition (e.g., captopril, enalapril) and beta-adrenergic blockade (e.g., carvedilol, metoprolol, propranolol, timolol) have been shown to slow certain parameters of cardiac remodeling.
- These therapies are intended to reduce the body's remodeling response to injurious or mechanically stressful stimuli and have been shown in clinical trials to reduce mortality and morbidity in myocardial infarction and heart failure patients.
- Other therapies such as anti-hypertensive agents, have been used to reduce chronic loads placed on the heart which can trigger or worsen pathologic remodeling.
- remodeling remains at best, a process that is partially treatable.
- none of these agents induce neovascularization in the injured tissue as a means of preventing further cardiac damage or restoring cardiac tissue or function.
- embodiments of the present invention address cardiac injury and remodeling by injecting a composition into the cardiac wall to induce neovascularization and thus prevent remodeling.
- the injected composition may occupy some of the interstitial space between the cells of an area of the cardiac wall and provide structural reinforcement of the tissue in addition to inducing neovascularization.
- the present invention contemplates providing neovascularization to any cardiac wall site and includes both the atria and ventricles.
- the injected platelet composition may be a substance that can provide some level of structural support as well as the desired neovascularization in the tissue. Substances that can provide both structural reinforcement of the tissue and stimulate neovascularization are included in the platelet compositions disclosed herein.
- the term "platelet gel" refers to platelet compositions which are administered with an activating agent and may provide both structural reinforcement of the tissue and biological therapy such as neovascularization.
- the platelet composition can refer to platelet rich or platelet poor plasma that is administered without an activating agent. Platelet compositions such as platelet rich and platelet poor plasma can additionally be activated by tissue thrombin in situ to provide both structural support and neovascularization.
- Exemplary, non-limiting platelet compositions include platelet gel, autologous platelet gel, platelet rich plasma, and platelet poor plasma.
- Cell retention into target tissue has posed a significant challenge to cell-based technologies currently being developed. If delivered approximately simultaneously with cells, platelet compositions providing structural support will further act to increase tissue retention of delivered cells.
- compositions of the present invention can be administered with other compositions capable of providing structural support including, but not limited to, collagen, cyanoacrylate, adhesives that cure with injection into tissue, liquids that solidify or gel after injection into tissue, suture material, agar, gelatin, light-activated dental composite, other dental composites, silk-elastin polymers, Matrigel ® (BD Biosciences), hydrogels and other suitable biopolymers.
- Such compositions can include single or multi-component compounds. These compositions can include agents that are delivered as a liquid and then gel or harden to a solid after delivery.
- the hardening/gelling can be triggered by temperature, pH, proteins, or other environmental factors inherent in or created within the target tissue.
- These platelet compositions can be injected separately or in combination with each other and/or platelet compositions. Additionally the compositions or combinations thereof can include other additives. Some of these compositions and/or additives are further described below.
- the platelet compositions of the current invention can be fortified with a biocompatible liquid that solidifies and/or cross-links in situ to render a structurally supportive structure on delivery into the cardiac wall.
- Other embodiments of the platelet composition of the current invention may include synthetic or naturally-occurring materials and/or non-degradable or biodegradable materials to provide strength, for example.
- the structural material includes cyanoacrylate or silk- elastin protein polymers.
- the platelet compositions of various embodiments of the current invention can include additives, such as fibrinogen, to increase the structural strength of the cardiac wall.
- the fibrinogen can be autologous, allogeneic, recombinant, human, engineered, or purified from animal sources.
- At least one embodiment includes elastin to increase the elasticity of the treated cardiac wall.
- the compositions may be delivered as a liquid (without cross-linking or solidifying components) such that the key soluble factors are trapped in the target tissue (physically or by binding to sites in the tissue) without providing an inherent structural component.
- the compositions may be delivered with one or more structural materials to provide additional structural support to the tissue.
- the present invention may be practiced using substances containing synthetic biodegradable materials that provide strength for a specified time interval after delivery, and then resorb.
- Such materials include genetically-engineered or modified compounds such as collagen or fibrin.
- Naturally-occurring materials such as, but not limited to, cartilage, bone or bone components, gelatin, collagen, glycosaminoglycans, starches, polysaccharides, or any other material that provide strength for a specified time interval after delivery, and then resorbs, may also be used.
- Other embodiments of the present invention may include a combination of any of a variety of compounds that can create the desired local effect of tissue bulking.
- Components that cause local edema, thickening of the tissue, structural reinforcement of the tissue, or any other effect that prevents remodeling are included in this invention.
- Such compounds include ground-up suture material to create edema and hydrogels for structural reinforcement of the tissue. These materials may be added to PRP or PRP + thrombin.
- biodegradable micro-particles between 50-100 ⁇ m in size (at the widest point of the particle), such that they are small enough for needle injection but too large to fit into capillaries and venules, may be added to the platelet composition.
- the micro-particles may be impregnated with a drug that elutes as the particles degrade.
- micro-particles alone are delivered to the cardiac tissue by injection into the coronary sinus. Based on their size characteristics, they are expected to lodge in the tissue and provide structural reinforcement of the tissue.
- the micro-particles used may have a glass transition temperature (Tg) > 37 0 C, so they would gel over days after insertion. The injected micro-particles would provide "mass" and volume for immediate structural reinforcement of the tissue, but soften to gel to become a single member over time.
- Embodiments of the platelet compositions of the present invention may include polymers that can covalently bind directly to one or more proteins located on the surface of one or more cell types so as to retain the polymers at the local site of injection.
- polymers that can covalently bind to the primary amine groups (-NH 3 ) of proteins may be used.
- the cell used in the cell preparation of the present invention includes cells that proliferate and engraft into the myocardium of the patient and a physiologic carrier solution.
- the cells may be derived from a single individual or multiple individuals and may be of the same species or a different species than the recipient. In one embodiment, the cells are autologous.
- Suitable physiologic carrier solutions include solvents or dispersing mediums including, for example, water, ethanol, polyols (such as, but not limited to, glycerol, polyethylene glycol and propylene glycol) and mixtures thereof.
- solvents or dispersing mediums including, for example, water, ethanol, polyols (such as, but not limited to, glycerol, polyethylene glycol and propylene glycol) and mixtures thereof.
- the platelet composition after injection at a treatment site, attracts blood vessel-forming cells to the treatment site, and wherein the blood vessel-forming cells induce the neovascularization of the cardiac tissue.
- the platelet composition further comprises molecules which attract blood vessel-forming cells to the treatment site. Non-limiting examples of such molecules include growth factors, growth factor receptors and chemoattractants.
- either or both of the platelet composition and cell preparation can include one or more bioactive agents to induce healing or regeneration of damaged cardiac tissue.
- bioactive agents include, but are not limited to, pharmaceutically active compounds, hormones, growth factors, enzymes, DNA, RNA, siRNA, viruses, proteins, lipids, polymers, hyaluronic acid, pro-inflammatory molecules, antibodies, antibiotics, anti-inflammatory agents, anti-sense nucleotides and transforming nucleic acids or combinations thereof.
- the cells may naturally secrete one or more biologically active molecules or they may be genetically engineered to secrete a therapeutically effective amount of one or more biologically active proteins.
- Suitable biologically active proteins include, but are not limited to, growth factors and cytokines.
- the secretion may be controlled by the presence of an inducible promoter or the secretion may be constitutive.
- any composition is injected into a heart having a region of injured tissue, to induce neovascularization or to provide structural reinforcement of the tissue to the cardiac wall, the location and extent of the injured region is identified.
- Multiple technologies and approaches are available for the clinician to identify and assess normal, injured-non-viable, and injured-viable cardiac tissue. These include, but are not limited to, visual inspection during open chest surgical procedures, localized blood flow determinations, local electrical and structural activity, nuclear cardiology, echocardiography, echocardiographic stress test, coronary angiography, magnetic resonance imaging (MRI), computerized tomography (CT) scans, and ventriculography.
- the platelet compositions are prepared using the Medtronic Magellan ® Platelet Separator.
- Anticoagulated whole blood is prepared by combining an anticoagulant with whole blood freshly removed from the subject.
- the Magellan ® device is used to then extract platelet rich plasma (PRP) and platelet poor plastma (PPP) from the sample of anticoagulated whole blood.
- Platelet gel is prepared by combining the resulting PRP or PPP with an activator.
- the activator is bovine thrombin which has been reconstituted to 1000 Units/milliliter in 10% calcium chloride solution.
- PRP is combined in an approximately 10:1 ratio with bovine thrombin.
- the platelet gel composition is made using a PRP to thrombin ratio of about 10:1.
- Another embodiment uses a PRP to thrombin ratio of about 11 :1.
- Other embodiments of the present invention have ratios of PRP to thrombin of about 5:1 to about 25:1.
- the ratio of PRP to thrombin is about 7:1 to about 20:1.
- the ratio of PRP to thrombin is about 9:1 to about 15:1.
- the ration of PRP to thrombin is about 10:1 to about 12:1.
- no thrombin is included and PRP is injected into the cardiac tissue alone.
- Other embodiments of the present invention include multiple components of the composition in ratios needed to achieve or optimize the desired effect.
- the PRP and thrombin When the PRP and thrombin are injected such that they mix to form platelet gel in the cardiac tissue (see description of delivery devices below) they will gel in the tissue.
- Several embodiments of the present invention provide accelerated gel times.
- the gelling time in situ can be accelerated by applying local heat to the injection site via a delivery catheter or other instrument, increasing the thrombin concentration, or combining the PRP and thrombin in a mixing chamber and injecting the mixture into the cardiac tissue after the mixture has begun gelling.
- This description also applies for other multi-component compositions, where the components gel, cross-link and/or polymerize after being mixed together.
- the PRP contains a high concentration of platelets that can aggregate during gelling, as well as release cytokines, growth factors or enzymes following activation.
- Some of the many factors released by the platelets and the white blood cells that constitute the PRP include platelet-derived growth factor (PDGF), platelet-derived epidermal growth factor (PDEGF), fibroblast growth factor (FGF), transforming growth factor-beta (TGF- ⁇ ) and platelet-derived angiogenesis growth factor (PDAF).
- PDGF platelet-derived growth factor
- PEGF platelet-derived epidermal growth factor
- FGF fibroblast growth factor
- TGF- ⁇ transforming growth factor-beta
- PDAF platelet-derived angiogenesis growth factor
- the clinician can access and begin injecting the cardiac wall with the platelet composition.
- the platelet composition comprises PRP and thrombin.
- the platelet composition comprises PRP alone.
- the platelet composition comprises PPP and thrombin.
- the platelet composition comprises PPP alone.
- the components of the platelet composition may be derived from humans, and/or animals, and/or recombinant sources. The components may also be artificially produced.
- the components for platelet composition can be categorized as autologous, or non-autologous, and the non-autologous components can be further categorized as described above (i.e., animal, recombinant, engineered, allogeneic human, etc.).
- Autologous platelet gel refers to a composition made from autologous PRP or autologous PPP and an autologous or non- autologous activator.
- either or both of the platelet compositions and the cell prepraration of the present invention can include a contrast agent for detection by X- rays, magnetic resonance imaging (MRI) or ultrasound.
- MRI magnetic resonance imaging
- Suitable contrast agents are known to persons of ordinary skill in the art and include, but are not limited to, radiopaque agents, echogenic agents and paramagnetic agents.
- a contrast agent may be used in the composition of some embodiments for visual confirmation of injection success.
- contrast agents include, but are not limited to, X-ray contrast (e.g., IsoVue or other contrast agents having a high X-ray attenuation coefficient), MRI contrast (e.g., gadolinium or other contrast agents detectable as signal or signal-void by MRI) 1 and ultrasound contrast (echogenic or echo-opaque compounds).
- X-ray contrast e.g., IsoVue or other contrast agents having a high X-ray attenuation coefficient
- MRI contrast e.g., gadolinium or other contrast agents detectable as signal or signal-void by MRI
- ultrasound contrast echogenic or echo-opaque compounds
- Controlled injections were possible with or without a cardiac stabilization device, and it was possible to make the injections without exogenous cardiac pacing. Injections were made both orthogonally and obliquely to the cardiac surface at intervals of 0.5 to 2.5 cm. A plurality of injections can be made per heart without safety problems.
- the total injectate volume can be as high as 15.0 ml_, and the volume of individual injections can be as high as 1100 ⁇ l per injection site.
- autologous platelet gel administration following cardiac injury partially or fully reverses detrimental acute effects of infarction on the ejection fraction (EF), and can augment EF towards or above pre-infarct levels.
- EF ejection fraction
- autologous platelet gel administration following myocardial injury into ischemic tissue stimulated neovascularization in the injured tissue (FIG. 16-17). This vascularization was not observed in infarcted animals not receiving platelet gel therapy. All or a subset of the components of platelet gel (PRP or PPP components with or without thrombin) may be used to generate such an effect.
- a clinician may use one of a variety of access techniques. These include surgical (sternotomy, thoracotomy, mini- thoracotomy, sub-xiphoid) approaches and percutaneous (transvascular and endocardial) approaches. Once access has been obtained, the composition(s) may be delivered via epicardial, endocardial, or transvascular approaches.
- the platelet composition(s) may be delivered to the cardiac wall tissue in one or more locations. This includes intra-myocardial, sub-endocardial, and/or sub-epicardial administration.
- the platelet composition is delivered more than one week after the injury, including up to months or years after injury. Other times for injecting platelet compositions into cardiac tissue are also contemplated, including prior to any injurious event, and immediately upon finding an area of injured cardiac tissue (for preventing additional remodeling in older injuries).
- platelet compositions can be injected into the cardiac tissue years after an injurious event.
- the platelet composition is injected into the cardiac tissue from about 1 hour to about 2 years after an injurious event.
- the platelet composition is injected into the cardiac tissue from about 6 hours to about 1 year after an injurious event.
- Target Tissue Injections were performed in the left ventricle (LV, at its base, mid-position, and apex) and right ventricle (RV, at its base, mid-position, and apex). Injections into the LV were targeted to a 5 mm depth. Injections into the RV were targeted to a 3 mm depth.
- Results Hemostasis after APG injections was excellent. Specifically, multiple left ventricular injections of up to 1000 ⁇ l/each of APG (PRP:thrombin at 10:1 ) into healthy porcine myocardium were feasible and clinically safe. No adverse events were observed for up to 3 days of follow-up. Multiple right ventricular injections of up to 200 ⁇ il/each of APG (PRP:thrombin at 10:1 ) into healthy porcine myocardium were feasible and clinically safe. No adverse events were observed over a 2 hour follow-up period.
- APG injection into myocardium demonstrated a protective effect against arrhythmia.
- injection of 5600 ⁇ l of APG in divided left ventricle (LV) injections rendered the heart relatively resistant to fatal arrhythmia caused by an intravascular dose of potassium chloride (KCI).
- KCI potassium chloride
- Platelet gel can be formed from PRP alone without the addition of exogenous thrombin. Platelet rich plasma injected into myocardium alone (without thrombin) surprisingly gels in situ. The present inventor has formulated the non-binding hypothesis that tissue thrombin may be present in sufficient quantities to trigger this gelling reaction. Therefore, PRP may be used to create APG within the tissue when injected alone into myocardium in vivo.
- APG injection also had a beneficial effect on post-MI EF, as it was restored from 62.1 % to 70.3% of the pre-MI level.
- APG delivery resulted in an EF that was 111.1 % of pre-MI levels. That is, in this animal, EF was 45% at baseline, 35% immediately post-infarction, and 50% following administration of APG.
- APG administration following cardiac injury can partially or fully reverse detrimental acute effects of infarction on EF, and in some situations may augment EF to above pre-infarct levels.
- the injected compositions can be visualized by intra-operative ECHO (echocardiography), which can be used to confirm adequate needle placement and retention.
- ECHO echocardiography
- the ECHO can be used as a separate device or can be included within the delivery system (e.g. similar to intravascular ultrasound [IVUS]).
- Such a device may have at least one sensor include, but not limited to, a pressure sensor, a color detector, an oxygen sensor, a carbon dioxide sensor or a lumen to express backflowing blood under pressure that generates a unique signal when the delivery system is positioned such that its target is in a blood space. Once alerted, the user can re-position the device before delivering the composition.
- the system of the current invention comprises identification of the injured area of cardiac tissue and the treatment site, accessing the treatment site with a delivery device, injecting the composition at one or more locations at the treatment site in the cardiac tissue and removing the delivery device from the patient.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Biology (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Heart & Thoracic Surgery (AREA)
- Virology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Vascular Medicine (AREA)
- Urology & Nephrology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Materials For Medical Uses (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
La présente invention concerne des méthodes et des systèmes de traitement du tissu cardiaque par administration d'une composition de plaquettes induisant une néovascularisation dans le tissu cardiaque puis d'une préparation de cellules induisant une régénération dans le tissu revascularisé. La composition de plaquettes peut également contenir des matières structurelles et/ou des agents bioactifs.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US74368606P | 2006-03-23 | 2006-03-23 | |
| US11/426,211 US20070042016A1 (en) | 2005-06-23 | 2006-06-23 | Methods and Systems for Treating Injured Cardiac Tissue |
| US11/426,219 US20070014784A1 (en) | 2005-06-23 | 2006-06-23 | Methods and Systems for Treating Injured Cardiac Tissue |
| PCT/US2007/060060 WO2007112136A2 (fr) | 2006-03-23 | 2007-01-03 | Méthodes et systèmes de traitement de lésions du tissu cardiaque |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2007404A2 true EP2007404A2 (fr) | 2008-12-31 |
Family
ID=56290896
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP07756277A Withdrawn EP2007404A2 (fr) | 2006-03-23 | 2007-01-03 | Méthodes et systèmes de traitement de lésions du tissu cardiaque |
| EP07756276A Withdrawn EP2007403A2 (fr) | 2006-03-23 | 2007-01-03 | Méthodes et systèmes de traitement de lésions du tissu cardiaque |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP07756276A Withdrawn EP2007403A2 (fr) | 2006-03-23 | 2007-01-03 | Méthodes et systèmes de traitement de lésions du tissu cardiaque |
Country Status (3)
| Country | Link |
|---|---|
| EP (2) | EP2007404A2 (fr) |
| JP (2) | JP2009530412A (fr) |
| WO (2) | WO2007112135A2 (fr) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6811777B2 (en) | 2002-04-13 | 2004-11-02 | Allan Mishra | Compositions and minimally invasive methods for treating incomplete connective tissue repair |
| US8057426B2 (en) | 2007-01-03 | 2011-11-15 | Medtronic Vascular, Inc. | Devices and methods for injection of multiple-component therapies |
| US20100112081A1 (en) | 2008-10-07 | 2010-05-06 | Bioparadox, Llc | Use of platelet rich plasma composition in the treatment of cardiac conduction abnormalities |
| JP2012505239A (ja) * | 2008-10-09 | 2012-03-01 | バイオパラドックス,リミテッド ライアビリティー カンパニー | 心臓治療用の多血小板血漿製剤 |
| IL210162A0 (en) * | 2010-12-21 | 2011-03-31 | Omrix Biopharmaceuticals | Viral inactivated platelet extract, use and preparation thereof |
| US20140356893A1 (en) | 2013-06-04 | 2014-12-04 | Allan Mishra | Compositions and methods for using platelet-rich plasma for drug discovery, cell nuclear reprogramming, proliferation or differentiation |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7628780B2 (en) * | 2001-01-13 | 2009-12-08 | Medtronic, Inc. | Devices and methods for interstitial injection of biologic agents into tissue |
| US7740623B2 (en) * | 2001-01-13 | 2010-06-22 | Medtronic, Inc. | Devices and methods for interstitial injection of biologic agents into tissue |
| US20030007957A1 (en) * | 2001-07-03 | 2003-01-09 | Calvin Britton | Novel wound healing composition not containing bovine-derived activating reagents |
| US20040197319A1 (en) * | 2003-03-24 | 2004-10-07 | Paul Harch | Wound healing composition derived from low platelet concentration plasma |
-
2007
- 2007-01-03 JP JP2009501617A patent/JP2009530412A/ja active Pending
- 2007-01-03 EP EP07756277A patent/EP2007404A2/fr not_active Withdrawn
- 2007-01-03 JP JP2009501616A patent/JP2009530411A/ja active Pending
- 2007-01-03 WO PCT/US2007/060059 patent/WO2007112135A2/fr not_active Ceased
- 2007-01-03 WO PCT/US2007/060060 patent/WO2007112136A2/fr not_active Ceased
- 2007-01-03 EP EP07756276A patent/EP2007403A2/fr not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2007112136A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2007112135A3 (fr) | 2007-11-22 |
| WO2007112136A2 (fr) | 2007-10-04 |
| WO2007112136A3 (fr) | 2007-11-29 |
| EP2007403A2 (fr) | 2008-12-31 |
| JP2009530411A (ja) | 2009-08-27 |
| WO2007112135A2 (fr) | 2007-10-04 |
| JP2009530412A (ja) | 2009-08-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070172472A1 (en) | Methods and Systems for Treating Injured Cardiac Tissue | |
| US20100280493A1 (en) | Methods and Systems for Treating Injured Cardiac Tissue | |
| US20070042016A1 (en) | Methods and Systems for Treating Injured Cardiac Tissue | |
| US20070093748A1 (en) | Methods and systems for treating injured cardiac tissue | |
| US20090053208A1 (en) | Methods and Systems for Improving Tissue Perfusion | |
| AU2003237824B9 (en) | System and method for treating cardiac arrhythmias with fibroblast cells | |
| US9504642B2 (en) | Treatment for chronic myocardial infarct | |
| US20040106896A1 (en) | System and method for forming a non-ablative cardiac conduction block | |
| US20050119704A1 (en) | Control of cardiac arrhythmias by modification of neuronal conduction within fat pads of the heart | |
| US20040002740A1 (en) | System and method for forming a non-ablative cardiac conduction block | |
| US6932804B2 (en) | System and method for forming a non-ablative cardiac conduction block | |
| JP2007520259A (ja) | 心房細動患者における心室速度を制御するための方法 | |
| WO2007112136A2 (fr) | Méthodes et systèmes de traitement de lésions du tissu cardiaque | |
| von Wattenwyl et al. | Scaffold-Based Transplantation of Vascular Endothelial Growth Factor—Overexpressing Stem Cells Leads to Neovascularization in Ischemic Myocardium but Did Not Show a Functional Regenerative Effect | |
| US20100137976A1 (en) | Systems and Methods for Treating Heart Tissue Via Localized Delivery of Parp Inhibitors | |
| EP1912594A2 (fr) | Methodes et systemes destines au traitement d'un tissu cardiaque endommage | |
| US20220288369A1 (en) | Targeted drug delivery devices and methods |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20081023 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: NAYAK, ASHA |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20121108 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20130319 |