[go: up one dir, main page]

EP2048220B1 - Procédé de fabrication de produits de lavage liquides - Google Patents

Procédé de fabrication de produits de lavage liquides Download PDF

Info

Publication number
EP2048220B1
EP2048220B1 EP07019766A EP07019766A EP2048220B1 EP 2048220 B1 EP2048220 B1 EP 2048220B1 EP 07019766 A EP07019766 A EP 07019766A EP 07019766 A EP07019766 A EP 07019766A EP 2048220 B1 EP2048220 B1 EP 2048220B1
Authority
EP
European Patent Office
Prior art keywords
acid
process according
weight
carbon atoms
acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07019766A
Other languages
German (de)
English (en)
Other versions
EP2048220A1 (fr
Inventor
Agustin Sanchez
Antonio Burgo
Cesare Fumagalli
Davide Franzi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Priority to DE502007006683T priority Critical patent/DE502007006683D1/de
Priority to EP07019766A priority patent/EP2048220B1/fr
Priority to AT07019766T priority patent/ATE501242T1/de
Priority to ES07019766T priority patent/ES2362307T3/es
Publication of EP2048220A1 publication Critical patent/EP2048220A1/fr
Application granted granted Critical
Publication of EP2048220B1 publication Critical patent/EP2048220B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/04Special methods for preparing compositions containing mixtures of detergents by chemical means, e.g. by sulfonating in the presence of other compounding ingredients followed by neutralising
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D10/00Compositions of detergents, not provided for by one single preceding group
    • C11D10/04Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0094Process for making liquid detergent compositions, e.g. slurries, pastes or gels
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives

Definitions

  • the invention is in the field of detergents and relates to a novel process for the cold production of liquid detergents, to special surfactant mixtures which are used in this process, and to their use.
  • Liquid detergents have acquired a solid market share in the field of detergents in recent years, as they are characterized by a particularly simple dosage and especially in the field of low-temperature washing for only slightly dirty laundry compared to solid detergents have advantages. Due to their inverse solubility behavior, that is, the increasing solubility with decreasing temperature, non-ingenic surfactants, e.g. ethoxylated fatty alcohols in a special way for the preparation of such products. Other typical ingredients are anionic surfactants, especially alkylbenzenesulfonates and soaps which aid in foaming power and are indispensable for the removal of certain types of stains.
  • aqueous alkali metal hydroxide (component a) is understood to mean the solution of sodium or potassium hydroxide in water, but also amines, such as, for example, methylethanolamine or triethanolamine, the pH of these preparations being in the range from 8 to 14 and preferably between 10 and 10 12 can lie.
  • Alkylbenzenesulfonic acids which form component (b) are known anionic surfactants which preferably follow formula ( I ), R 1 -Ph-SO 3 H (I) in which R 1 is a branched, but preferably linear, alkyl radical having 10 to 18 carbon atoms, Ph is a phenyl radical.
  • Alkyl and alkenyl oligoglycosides which form component (b) are known nonionic surfactants which follow formula (II), R 2 O- [G] p (II) in which R 2 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G is a sugar radical having 5 or 6 carbon atoms and p is a number from 1 to 10. They can be obtained by the relevant methods of preparative organic chemistry.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses having 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • alkyl and / or alkenyl oligoglycosides having an average degree of oligomerization p of from 1.1 to 3.0. From an application point of view, those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4 are preferred.
  • the alkyl or alkenyl radical R 2 can be derived from primary alcohols having 4 to 11, preferably 8 to 10 carbon atoms. Typical examples are butanol, caproic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and technical mixtures thereof, as obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical 0R 2 can furthermore also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol, and technical mixtures thereof which can be obtained as described above.
  • Preference is given to alkyl oligoglucosides based on hydrogenated C 12/14 coconut alcohol having a DP of 1 to 3.
  • fatty acids which form component (c2) are aliphatic carboxylic acids of the formula (III) to understand R 3 CO-OH (III) in which R 3 CO is an aliphatic, linear or branched acyl radical having 6 to 22 carbon atoms and 0 and / or 1, 2 or 3 double bonds.
  • Typical examples are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid, and technical mixtures thereof , which occur, for example, in the pressure splitting of natural fats and oils, in the reduction of aldehydes from the Roelen oxo synthesis or the dimerization of unsaturated fatty acids.
  • Preferred are technical fatty acids having 12 to 18 carbon atoms such as coconut, palm, palm kernel or tallow.
  • the components (c1) and (c2) are used in a weight ratio of 1:99 to 99: 1, preferably about 25:75 to about 75:25 and in particular about 50:50 to about 70:30.
  • liquid detergents obtainable by the process according to the invention, it is basically sufficient to mix the components (a) to (d) either successively or together. This is preferably done without supply of heat energy at temperatures in the range of 18 to 23 ° C.
  • the liquid detergents obtainable by the process according to the invention may contain components (b) and (c) in amounts of from 5 to 15, preferably from 7 to 10,% by weight, based on the final preparations.
  • the agents may for this purpose have a water content in the range of 60 to 80 and preferably 70 to 75 wt .-%.
  • the preparations may contain further typical auxiliaries and additives, such as, for example, additional anionic, nonionic, cationic, amphoteric or zwitterionic cosurfactants, water-soluble builders and co-builders, oil and grease-dissolving substances, bleaches, bleach activators, grayness inhibitors, enzymes, Enzyme stabilizers, optical brighteners, polymers, defoamers, fragrances, inorganic salts and the like, as they are explained in more detail below.
  • auxiliaries and additives such as, for example, additional anionic, nonionic, cationic, amphoteric or zwitterionic cosurfactants, water-soluble builders and co-builders, oil and grease-dissolving substances, bleaches, bleach activators, grayness inhibitors, enzymes, Enzyme stabilizers, optical brighteners, polymers, defoamers, fragrances, inorganic salts and the like, as they are explained in more detail below.
  • anionic surfactants are alkanesulfonates, olefinsulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates , Sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, N-acyl amino acids such as acyl lactylates, acyl amino acids
  • anionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution. Preference is given to using alkylbenzenesulfonates, alkyl sulfates, soaps, alkanesulfonates, olefinsulfonates, methyl ester sulfonates and mixtures thereof.
  • nonionic surfactants are alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers, alk (en) yloligoglycosides, fatty acid N-alkylglucamides, protein hydrolysates (especially wheat-based vegetable products), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • the nonionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution. Preference is given to using fatty alcohol polyglycol ethers, alkoxylated fatty acid lower alkyl esters or alkyl oligoglucosides.
  • cationic surfactants are, in particular, tetraalkylammonium compounds, such as, for example, dimethyl distearyl ammonium chloride or hydroxyethyl hydroxycetyl dimmonium chloride (Dehyquart E) or esterquats.
  • suitable amphoteric or zwitterionic surfactants are alkylbetaines, alkylamidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • Useful organic builders which are suitable as builders or co-builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such an insert is suitable ecological reasons, as well as mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof. The acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • an acidifying component typically also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures of these may be mentioned here.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes. Preference is given to hydrolysis products having average molecular weights in the range from 400 to 500,000.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a customary measure for the reducing effect of a polysaccharide compared to dextrose, which has a DE of 100.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Suitable co-builders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate. Glycerol disuccinates and glycerol trisuccinates are also particularly preferred in this context. Suitable amounts are in zeolith City City and / or silicate-containing formulations at 3 to 15 wt .-%.
  • Other useful organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrenesulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their molecular weight relative to free Acids is generally from 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000 (each measured against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually added later to one or more basic granules. Also particularly preferred are biodegradable polymers of more than two different monomer units.
  • polymeric aminodicarboxylic acids, their salts or their precursors Particular preference is given to polyaspartic acids or their salts and derivatives.
  • polyacetals which are prepared by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • compositions may also contain components that positively affect oil and grease washability from fabrics.
  • the preferred oil and fat dissolving components include, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a proportion of methoxyl groups of 15 to 30 wt .-% and hydroxypropoxyl groups of 1 to 15 wt .-%, each based on the nonionic Cellulose ethers, as well as known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof. Particularly preferred of these are the sulfonated derivatives of phthalic and terephthalic acid polymers.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • the content of the bleaching agents is preferably from 5 to 35% by weight and in particular up to 30% by weight, it being advantageous to use perborate monohydrate or percarbonate.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran, Enol esters and
  • Such bleach activators are contained in the customary amount range, preferably in amounts of from 1% by weight to 10% by weight, in particular from 2% by weight to 8% by weight, based on the total agent.
  • sulfone imines and / or bleach-enhancing transition metal salts or transition metal complexes can also be present as so-called bleach catalysts.
  • Suitable transition metal compounds include in particular manganese, iron, cobalt, ruthenium or molybdenum-salene complexes and their N-analogues, manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, manganese, iron, , Cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogen-containing tripod ligands, as well as cobalt, iron, copper and ruthenium amine complexes.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25 wt .-% and particularly preferably from 0.01 wt .-% to 0.1 wt .-%, each based on the total agent used.
  • Suitable enzymes are, in particular, those from the class of the hydrolases, such as the proteases, esterases, lipases or lipolytic enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases in the wash contribute to the removal of stains such as proteinaceous, greasy or starchy stains, and graying. Cellulases and other glycosyl hydrolases can contribute to color retention and increase the softness of the fabric by removing pilling and microfibrils. It is also possible to use oxidoreductases for bleaching or inhibiting color transfer.
  • subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic enzymes or protease and cellulase or from cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytic enzymes of particular interest.
  • lipolytic enzymes are the known cutinases. Peroxidases or O-xidases have proven to be suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • As cellulases are preferably cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures thereof used. Since the different cellulase types differ by their CMCase and avicelase activities, targeted mixtures of the cellulases can be used to set the desired activities.
  • the agents may contain other enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1 wt .-% sodium formate can be used.
  • proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyroboric acid (tetraboric acid H 2 B 4 O 7 ).
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • soluble starch preparations and other than the above-mentioned starch products can be used, e.g. degraded starch, aldehyde levels, etc. Also polyvinylpyrrolidone is useful.
  • cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, and polyvinylpyrrolidone, for example, in amounts of from 0.1 to 5% by weight, based on the compositions, used.
  • the agents may contain as optical brighteners derivatives of Diaminostilbendisulfonklare or their alkali metal salts.
  • Suitable salts are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or compounds of similar construction which are used in place of the morpholino Group a Diethanolaminooeuvre, a methylamino group, an anilino group or a 2-Methoxyethylaminoxx carry.
  • brighteners of the type of substituted diphenylstyrene may be present, for example the alkali metal salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyls, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) -diphenyls. Mixtures of the aforementioned brightener can be used.
  • Uniformly white granules are obtained when the means except the usual brighteners in conventional amounts, for example between 0.1 and 0.5 wt .-%, preferably between 0.1 and 0.3 wt .-%, even small amounts, for example 10 -6 to 10 -3 wt .-%, preferably by 10 -5 wt .-%, of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product of Ciba-Geigy).
  • Suitable soil repellants are those which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate being in the range of 50:50 to 90:10.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5,000, ie the degree of ethoxylation of the polymers containing polyethylene glycol groups may be about 15 to 100.
  • the polymers are characterized by an average molecular weight of about 5000 to 200,000 and may have a block, but preferably a random structure.
  • Preferred polymers are those having molar ratios of ethylene terephthalate / polyethylene glycol terephthalate of from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Further preferred are those polymers having linking polyethylene glycol units having a molecular weight of from 750 to 5,000, preferably from 1,000 to about 3,000, and a molecular weight of the polymer from about 10,000 to about 50,000. Examples of commercially available polymers are the products Milease® T (ICI) or Repelotex ® SRP 3 (Rhone-Poulenc).
  • waxy compounds can be used as defoamers.
  • "Waxy” is understood as meaning those compounds which have a melting point at atmospheric pressure above 25 ° C. (room temperature), preferably above 50 ° C. and in particular above 70 ° C.
  • the waxy defoamer substances are practically insoluble in water, i. at 20 ° C in 100 g of water they have a solubility below 0.1 wt .-%.
  • Suitable waxy compounds are, for example, bisamides, fatty alcohols, fatty acids, carboxylic esters of monohydric and polyhydric alcohols and paraffin waxes or mixtures thereof.
  • Suitable silicones are customary organopolysiloxanes which may have a finely divided silica content, which in turn may also be silanated. Particularly preferred are polydiorganosiloxanes and especially polydimethylsiloxanes known in the art. Suitable polydiorganosiloxanes have a nearly linear chain and have a degree of oligomerization of 40 to 1500. Examples of suitable substituents are methyl, ethyl, propyl, isobutyl, tert. Butyl and phenyl.
  • silicones which may be both liquid and resinous at room temperature.
  • simethicones which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units and hydrogenated silicates.
  • the silicones in general and the polydiorganosiloxanes in particular contain finely divided silica, which may also be silanated.
  • siliceous dimethyl polysiloxanes are particularly suitable for the purposes of the present invention.
  • the polydiorganosiloxanes have a Brookfield viscosity at 25 ° C (spindle 1, 10 rpm) in the range from 5000 mPas to 30,000 mPas, in particular from 15,000 to 25,000 mPas.
  • the silicones are used in the form of their aqueous emulsions. In general, the silicone is added to the initially charged water with stirring.
  • thickening agents known in the art may be added to increase the viscosity of the aqueous silicone emulsions.
  • These may be inorganic and / or organic in nature, particular preference is given to nonionic cellulose ethers such as methylcellulose, ethylcellulose and mixed ethers such as methylhydoxyethylcellulose, methylhydroxypropylcellulose, methylhydroxybutylcellulose and anionic carboxycellulose types such as the carboxymethylcellulose sodium salt (abbreviation CMC).
  • Particularly suitable thickeners are mixtures of CMC to nonionic cellulose ethers in a weight ratio of 80:20 to 40:60, in particular 75:25 to 60:40.
  • aqueous silicone solutions obtain thickener starch, which is accessible from natural sources, such as rice, potatoes, corn and wheat.
  • the starch is advantageously present in amounts of from 0.1 to 50% by weight, based on the silicone emulsion, and in particular in a mixture with the already described thickener mixtures of sodium carboxymethylcellulose and a nonionic cellulose ether in the quantities already mentioned.
  • aqueous silicone emulsions it is expedient to proceed in such a way that the thickeners, if present, are allowed to pre-swell in water before the addition of the silicones takes place.
  • the incorporation of the silicones is expediently carried out with the aid of effective stirring and mixing devices.
  • perfume oils or fragrances individual perfume compounds, for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, Phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenyl glycinate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals with 8-18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones such as the ionone, ⁇ -isomethylionone and Methylcedrylketon to the alcohols include anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol; the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures as are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • the fragrances can be incorporated directly into the compositions of the invention, but it may also be advantageous to apply the fragrances on carriers, which enhance the adhesion of the perfume on the laundry and provide a slower fragrance release for long-lasting fragrance of the textiles.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • compositions are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates, or mixtures of these;
  • alkali metal carbonate and / or amorphous alkali silicate especially sodium silicate with a molar ratio of Na 2 O: SiO 2 of 1: 1 to 1: 4.5, preferably from 1: 2 to 1: 3.5, are used.
  • the content of sodium carbonate in the final preparations is preferably up to 40 wt .-%, advantageously between 2 and 35 wt .-%.
  • the content of the sodium silicate (without any special builder properties) is generally up to 10% by weight and preferably between 1 and 8% by weight.
  • Sodium sulfate in amounts of from 0 to 10, in particular from 1 to 5,% by weight, based on the composition can furthermore be contained as fillers or leveling agents
  • the following examples illustrate the process according to the invention for the cold production of liquid detergents.
  • the starting materials were mixed according to Table 1 at different temperatures (30, 23, 5 ° C based on the water in the template) with vigorous stirring and made up the approaches with water of 23 or 5 ° C to 100 parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (10)

  1. Procédé de fabrication d'agents de lavage liquides, selon lequel
    (a) une base alcaline aqueuse,
    (b) un acide alkylbenzènesulfonique et
    (c) un mélange de (c1) des alkyl(alcényl)oligoglycosides et (c2) des acides gras, ainsi qu'éventuellement
    (d) des tensioactifs, adjuvants et additifs supplémentaires
    sont mélangés à des températures dans la plage allant de 5 à 30 °C.
  2. Procédé selon la revendication 1, caractérisé en ce que des acides alkylbenzènesulfoniques de formule (I) sont utilisés en tant que composant (b)

            R1-Ph-SO3H     (I)

    dans laquelle R1 représente un radical alkyle ramifié, mais toutefois de préférence linéaire, de 10 à 18 atomes de carbone et Ph un radical phényle.
  3. Procédé selon les revendications 1 et/ou 2, caractérisé en ce que des alkyl(alcényl)oligoglycosides de formule (II) sont utilisés en tant que composant (c1)

            R2O-[G]p     (II)

    dans laquelle R2 représente un radical alkyle et/ou alcényle de 4 à 22 atomes de carbone, G un radical de sucre de 5 ou 6 atomes de carbone et p des nombres de 1 à 10.
  4. Procédé selon au moins l'une quelconque des revendications 1 à 3, caractérisé en ce que des acides gras de formule (III) sont utilisés en tant que composant (c2)

            R3CO-OH     (III)

    dans laquelle R3CO représente un radical acyle aliphatique, linéaire ou ramifié, de 6 à 22 atomes de carbone et contenant 0 et/ou 1, 2 ou 3 doubles liaisons.
  5. Procédé selon au moins l'une quelconque des revendications 1 à 4, caractérisé en ce que les composants (c1) et (c2) sont utilisés en un rapport en poids de 1:99 à 99:1.
  6. Procédé selon au moins l'une quelconque des revendications 1 à 5, caractérisé en ce que les composants (a) à (d) sont mélangés les uns après les autres.
  7. Procédé selon au moins l'une quelconque des revendications 1 à 5, caractérisé en ce que les composants (a) à (d) sont mélangés ensemble.
  8. Procédé selon au moins l'une quelconque des revendications 1 à 7, caractérisé en ce que les composants (a) à (d) sont mélangés sans apport d'énergie thermique à des températures dans la plage allant de 18 à 23 °C.
  9. Mélange constitué par
    (a) 1 à 99 % en poids d'alkyl(alcényl)oligoglycosides et
    (b) 99 à 1 % en poids d'acides gras.
  10. Utilisation de mélanges selon la revendication 9 pour la fabrication à froid d'agents de lavage liquides contenant des savons et des alkylbenzènesulfonates.
EP07019766A 2007-10-10 2007-10-10 Procédé de fabrication de produits de lavage liquides Not-in-force EP2048220B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502007006683T DE502007006683D1 (de) 2007-10-10 2007-10-10 Verfahren zur Herstellung von Flüssigwaschmitteln
EP07019766A EP2048220B1 (fr) 2007-10-10 2007-10-10 Procédé de fabrication de produits de lavage liquides
AT07019766T ATE501242T1 (de) 2007-10-10 2007-10-10 Verfahren zur herstellung von flüssigwaschmitteln
ES07019766T ES2362307T3 (es) 2007-10-10 2007-10-10 Procedimiento para la obtención de agentes líquidos de lavado.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07019766A EP2048220B1 (fr) 2007-10-10 2007-10-10 Procédé de fabrication de produits de lavage liquides

Publications (2)

Publication Number Publication Date
EP2048220A1 EP2048220A1 (fr) 2009-04-15
EP2048220B1 true EP2048220B1 (fr) 2011-03-09

Family

ID=39060248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07019766A Not-in-force EP2048220B1 (fr) 2007-10-10 2007-10-10 Procédé de fabrication de produits de lavage liquides

Country Status (4)

Country Link
EP (1) EP2048220B1 (fr)
AT (1) ATE501242T1 (fr)
DE (1) DE502007006683D1 (fr)
ES (1) ES2362307T3 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093498A (ja) * 1995-06-20 1997-01-07 Th Goldschmidt Ag 貯蔵安定性の濃縮水性界面活性剤組成物
US6060808A (en) * 1998-05-13 2000-05-09 Henkel Corporation Translucent personal cleansing bars
EP1702976A1 (fr) * 2005-03-16 2006-09-20 Cognis IP Management GmbH Procédé pour la production des compositions détergentes liquides comprenant de savon et alkylbenzènesulfonate

Also Published As

Publication number Publication date
ATE501242T1 (de) 2011-03-15
DE502007006683D1 (de) 2011-04-21
ES2362307T3 (es) 2011-07-01
EP2048220A1 (fr) 2009-04-15

Similar Documents

Publication Publication Date Title
EP1240290B1 (fr) Granulats de tensioactifs presentant une plus grande vitesse de dissolution
EP1106675B1 (fr) Utilisation de polyglycolethers de glycerides partiels
WO2001048133A1 (fr) Detergent solide
EP1188817A2 (fr) Composition Detergente
EP1167499B1 (fr) Compositions détergentes liquides contenant des hydroxyéthers mélangés
DE19953796A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
EP1191094A2 (fr) Composition Detergente
WO2001057170A1 (fr) Melange tensioactif contenant des alcoxylats d'alcools gras a base de matieres vegetales
EP1250412B1 (fr) Procede de production de granules tensioactifs
WO2001018164A1 (fr) Detergents
EP2048220B1 (fr) Procédé de fabrication de produits de lavage liquides
EP1702976A1 (fr) Procédé pour la production des compositions détergentes liquides comprenant de savon et alkylbenzènesulfonate
EP1212400B1 (fr) Detergent en pastilles
EP1212401B1 (fr) Detergent en pastilles
EP1375633B1 (fr) Compositions détergentes contenant des polymères
DE19953797A1 (de) Entschäumergranulate
EP1310550B1 (fr) Composition démoussante et son utilisation
WO2001000763A1 (fr) Detergent solide a mousse controlee
EP1090979A1 (fr) Granulés anti-mousse
EP1090982A1 (fr) Article moulé ayant une solubilité dans l'eau améliorée
EP1090978A1 (fr) Agent de lavage, de rinçage et nettoyage solide contenant des granulats antimousse
WO2001027231A1 (fr) Detergents
DE19953794A1 (de) Formkörper mit verbesserter Wasserlöslichkeit
EP1083215A1 (fr) Composition détergente
WO2001027230A1 (fr) Detergents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090930

17Q First examination report despatched

Effective date: 20091026

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007006683

Country of ref document: DE

Date of ref document: 20110421

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006683

Country of ref document: DE

Effective date: 20110421

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2362307

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110701

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110609

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110711

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110709

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111103

Year of fee payment: 5

Ref country code: ES

Payment date: 20111115

Year of fee payment: 5

26N No opposition filed

Effective date: 20111212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007006683

Country of ref document: DE

Effective date: 20111212

BERE Be: lapsed

Owner name: COGNIS IP MANAGEMENT G.M.B.H.

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111010

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121010

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007006683

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121010

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 501242

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110309