EP1907257A2 - Commutation magnetique de vehicules commandee par rail de guidage - Google Patents
Commutation magnetique de vehicules commandee par rail de guidageInfo
- Publication number
- EP1907257A2 EP1907257A2 EP06788033A EP06788033A EP1907257A2 EP 1907257 A2 EP1907257 A2 EP 1907257A2 EP 06788033 A EP06788033 A EP 06788033A EP 06788033 A EP06788033 A EP 06788033A EP 1907257 A2 EP1907257 A2 EP 1907257A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- vehicle
- guideway
- electromagnet
- switching
- switching structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 53
- 230000005294 ferromagnetic effect Effects 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 14
- 239000003302 ferromagnetic material Substances 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 2
- 239000002907 paramagnetic material Substances 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims 9
- 230000003247 decreasing effect Effects 0.000 claims 1
- 239000000725 suspension Substances 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 5
- 230000007246 mechanism Effects 0.000 description 11
- 238000013461 design Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000005520 electrodynamics Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001846 repelling effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/04—Monorail systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/003—Crossings; Points
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B10/00—Power and free systems
- B61B10/001—Arrangements for routing vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/08—Sliding or levitation systems
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B25/00—Tracks for special kinds of railways
- E01B25/08—Tracks for mono-rails with centre of gravity of vehicle above the load-bearing rail
- E01B25/12—Switches; Crossings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
Definitions
- This invention pertains to vehicular transport and, more particularly, to methods and apparatus for the switching of vehicles on a guideway.
- ElectroDynamic Suspension For the special case when ElectroDynamic Suspension (EDS) is used for magnetically suspended vehicles, it is possible to create magnetic switching by shorting coils in one path and opening them on the other path. This creates either a repulsive force or no force on a moving magnet and variations on this idea are covered in U.S. Patents 3,994,236, 5,503,083, 5,517,924, 5,865,123 and 6,784,572. These techniques have the advantage of being guideway activated and having no moving parts, but they do not work with most types of suspension in use today.
- an object of the invention is to provide improved methods and apparatus for vehicle switching.
- a more particular object of the invention is to provide such methods and apparatus as are applicable to vehicles on guideway.
- a further object of the invention is to provide such methods and apparatus as work with a variety of vehicle suspension and guidance mechanisms.
- a further object of the invention is to provide such methods and apparatus as can be used, by way of non-limiting example, with wheeled "road” vehicles, such as automobiles, buses and trucks, as well as with (by way of further non-limiting example) "track” vehicles, such as trains, trolleys, personal rapid transit vehicles and baggage- carrying vehicles.
- wheeled "road” vehicles such as automobiles, buses and trucks
- track vehicles such as trains, trolleys, personal rapid transit vehicles and baggage- carrying vehicles.
- a still further object of the invention is to provide such methods and apparatus as require fewer, if any, moveable mechanical guidance components and that can be applied in applications requiring relatively small headway.
- the invention provides, in some aspects, transportation and other conveyance systems having magnets, e.g., electromagnets, on a guideway to create forces, e.g., lateral forces, on a vehicle so as to control the direction of vehicle travel at guideway switch points, e.g., merge and/or diverge locations.
- the magnets can be controlled, e.g., by a guideway-based controller that monitors the position of the vehicle (and, for example, others on the guideway) and controls the switching without the need to transmit control signals to the moving vehicle itself.
- the aforementioned vehicle can have a normal guidance system, e.g., using either wheels, magnets, air pressure or other force producing means.
- switching is initiated by the guideway-based electromagnets.
- the electromagnets are excited with DC or a low frequency AC so as to create attractive forces to a ferromagnetic plate or wheel or other switching structure, e.g., on the vehicle itself, or they can be excited with higher frequency AC so as to create repulsive forces to a conducting plate or wheel or other switching structure. It is also possible to use both attractive and repulsive forces working on opposite sides of the guideway to move the vehicle in the desired direction.
- the switching is initiated by an electromagnet but once the vehicle moves a short distance the switching is completed by means of one or more permanent magnets located on the guideway.
- a permanent magnet can keep the vehicle on the desired path until the normal guidance mechanism is effective.
- Methods and apparatus according to the invention are suited for, among other things, guiding vehicles that are propelled by a linear motor. With this propulsion scheme and guideway-based magnetic switching the entire propulsion and control system can be located on the guideway so the vehicle can be passive and there is no need to transmit control signals to a moving vehicle.
- Fig. 1 depicts a vehicle moving on a branching path with motion that can be in either direction.
- normal guidance is by wheels and both electromagnets and permanent magnets attract ferromagnetic wheels to achieve switching and guidance through the switch area.
- Fig. 2 depicts the same system as Fig. 1 except that the vehicle is moving on the straight path.
- Figs. 3 A and 3B shows a top view and side view, respectively, of a suitable electromagnetic design for creating attractive forces to a ferromagnetic wheel.
- Figs. 4A and 4B are the same as Figs. 3A and 3B except that the force is on a plate acting as the switching structure on the vehicle.
- Figs. 5A and 5B show how permanent magnets can provide attractive guidance forces when there is a break in the normal guidance but the vehicle is already on the correct path.
- Figure 5A uses 3 magnets with different orientations
- Figure 5B shows a single magnet with ferromagnetic pole pieces used to focus the flux.
- the 3-magnet configuration produces more guidance force but may have a higher cost.
- Fig. 6 A shows field lines for an alternate magnet design in which permanent magnets are used to augment the field produced by the electromagnetic coils.
- Fig. 6B shows field lines when the coil current is reversed and there is very little force produced by the magnet design of Fig. 6A.
- the illustrated embodiment of the invention utilize magnetic forces for diverting or merging vehicles at switch points on a guideway.
- the switching is achieved by the interaction of a magnetic field produced by one or more magnets on the guideway interacting with one or more wheels or plates or other types of switching structures on the vehicle to produce forces (e.g., lateral forces) on the vehicle in the vicinity of merge or diverge locations, i.e., "switch points.”
- the magnetic field can create either an attractive force or a repulsive force and in some cases an attractive force on one side can be augmented by a repulsive force on the other side.
- switching structure is used herein to refer to a one or more structures capable of interacting with the magnetic field to create a force that can influence the trajectory of a vehicle to which that structure is coupled (e.g., physically).
- Such switching structures such as one or more wheels of a vehicle or any combination of one or more wheels and/or plates and/or other structures, can include the use of ferromagnetic or paramagnetic materials, i.e., a material that attains magnetic properties in the presence of a magnetic field.
- the switching mechanisms discussed herein can work with any of a number of known suspension schemes, including wheels and magnetic levitation (maglev), and can work with any lateral guidance scheme, including horizontal guide wheels and magnetic guidance.
- the vehicle can be either above or suspended from the guideway.
- the activation mechanism on the guideway, it is possible for the vehicle to be passive and without the need to transmit control information to a moving vehicle.
- the magnetic fields can be turned on and off in a fraction of a second so the system is usable with very closely spaced vehicles, such as with Personal Rapid Transit, material handling, and elevators with multiple cabs in the same shaft. Such systems are potentially more reliable and safe relative to systems requiring active vehicle control.
- FIGS 1 and 2 depict top views of one implementation of the invention.
- the vehicle 4 uses horizontal wheels 5L, 5R (i.e., vertical axle wheels) as a switching structure to provide lateral guidance by interacting with guide rails 3 A, 3B, 3 C, 3D.
- Vehicle 4 has eight guide wheels 5L, 5R.
- the suspension and propulsion mechanisms are not shown.
- the horizontal wheels 5L, 5R guide the vehicle 4. In the vicinity of a switch point 7, however, there is a break in the guidance rails and the guidance is done by a combination of electromagnets ID, IS and permanent magnets 2D, 2S. Following is a more detailed discussion of operational aspects of this embodiment.
- the vehicle 4 is moving from left to right and it is desired to switch the vehicle 4 so that the vehicle 4 is diverted to the right branch 8.
- the electromagnet ID is activated and electromagnet IS is not activated.
- the activated magnet ID attracts the right steel wheels 5R of the vehicle 4, located adjacent to the activated magnet ID, so that the vehicle 4 moves toward the right branch 8.
- the use of permanent magnets can reduce cost and complexity and can ensure that once the vehicle has started to divert it will continue on the path even if there is a power failure.
- Figure 2 depicts the same system as Fig. 1 except that in this operational instance it is desired that the vehicle 4 continue straight along branch 9.
- electromagnet IS is activated and electromagnet ID is not activated.
- the activated magnet IS attracts the left steel wheels 5L of the vehicle 4 so that the vehicle 4 stays on the straight path of the branch 9.
- permanent magnets 2S Shortly after the vehicle 4 encounters the electromagnet IS, it will encounter permanent magnets 2S, which continue to attract the vehicle 4 and keep it moving down the straight path of the branch 9.
- the use of permanent magnets can reduce cost and complexity and can ensure that once the vehicle has started on the straight path it will continue on the path even if there is a power failure.
- the field from permanent magnets 2D falls off fast enough so that it does not produce a significant attractive force on the vehicle 4.
- the vehicle 4 moves far enough so that the right guide wheels 5R engage the right guide rail 3 C.
- the left guide-wheels 5L which engage guide rail 3A, the vehicle 4 continues along the branch 9 with wheel guidance.
- the vehicle 4 is moving in the opposite direction, i.e., from right to left in Figures 1 and 2, then the vehicle 4 is merging with another branch.
- the electromagnet adjacent to the appropriate side of a switching structure of the vehicle 4 e.g., a wheel as embodied in Figures 1 and 2 is activated to insure that the vehicle 4 is guided through the region in which some of the guide wheels are not in contact with a guide rail. If, for any reason, the electromagnets are not activated the merging vehicle will tend to continue in a safe manner but there may be more lateral motion than if the appropriate electromagnet is excited.
- a vehicle can use one or more ferromagnetic plates as a switching structure on the vehicle in order to achieve attractive forces. Conducting plates can also be used in order to achieve repulsive forces when such an interaction is desired.
- a way of implementing ferromagnetic plates is shown in Figure 1 with ferromagnetic plates 6 located in close proximity to, but not touching the electromagnets ID or permanent magnets 2D.
- the magnetic forces can be used to steer the suspension wheels so that they perform the guidance, or the forces can be used to drag the suspension wheels into the turn.
- the wheels can have low friction contact surfaces (e.g., be very smooth) so dragging the suspension wheels a short distance to the side may not take too much force.
- Creating a steering action on the suspension wheels may be more complex but will require less guidance force.
- Figures 3 A and 3B show top and cross section views, respectively, of possible ways to use a U-shape electromagnet to create an attractive force on a guide wheel in accord with an embodiment of the invention.
- Guide wheel 14 has a thin rim of resilient material to reduce noise and wear on the guideway, and includes a ferromagnetic core so that the electromagnets can create an attractive force on the wheel.
- the wheel 14 contacts a running surface 13 made of stainless steel or other non ferromagnetic material with relatively high resistivity.
- the electromagnet IS, ID has a core 10, legs 12, and windings 11 forming a coil on the legs 12 that are excited with current so as to create a strong magnetic field in the vicinity of the wheel 14 where it rolls on the running surface 13.
- &e guideway and magnets can vary over a wide range depending on the size of the vehicles. For example, it can be desirable to choose guideway and magnet configurations to use as small a gap as possible in the magnetic structure, and/or to get enough force to ensure the vehicle will move in the desired direction.
- Figures 4A and 4B depict another embodiment of a system similar to that shown in Figs. 3 A and 3B except that the attractive force is applied to ferromagnetic plate 16, acting as the switching structure, instead of to the wheels.
- a cover 17 may be used to protect the coils and laminations, though such cover is not required.
- the ferromagnetic plate 16 in Figs. 4A and 4B is replaced by a non-ferromagnetic but conducting plate, and the coil formed by the windings 11 is excited with a suitable AC frequency, then a repulsive force acts on the plate. This can be used to push the vehicle in a desired direction. In some cases it is possible to repel a ferromagnetic plate by using a high enough electrical frequency.
- the AC frequency is typically in the range of 50 to 500 Hz for repelling a non ferromagnetic plate, and higher for repelling a ferromagnetic plate.
- Figures 5A and 5B show how permanent magnets can create a force as used in embodiments of the invention.
- the use of permanent magnets is effective once the vehicle has started moving in the desired direction at a switch point but is in a region where there is a break in the normal guidance mechanism.
- Fig. 5A shows a cross- sectional view of the use of 3 permanent magnets 21, 22, 23 with different field orientations as indicated by the arrows 41, 42, 43.
- Fig. 5B shows magnets 21 and 23 of Fig. 5 A replaced by wedge-shaped steel poles 25, 26 that convey the magnetic flux to the air gap. In both cases there is a strong attractive force as indicated schematically by the field arrows 20 in the air gap.
- magnets will give a stronger force, though the cost may be somewhat higher. Either of these, or still other, configurations of permanent magnets can be used to hold the vehicle to the correct side of the guideway when other guidance forces are unavailable.
- the magnets can be almost any length in the direction perpendicular to the cross-sectional plane, and the surface of a magnet can be chosen to follow the contours of the guide rail.
- Figures 6A and 6B show magnetic field lines for a U-shaped magnet similar to the ones in Figures. 3A, 3B, 4A, and 4B except that the electromagnet legs 34 have permanent magnets 32 attached to them. Coils 33 are wound around both the magnets 32 and the legs 34. In order to attract the vehicle ferromagnetic structure 31, the winding 33 is excited so as to aid the field of the permanent magnet, as shown in Fig. 6A. In order to not attract the vehicle, the current is reversed so that it cancels most of the field, as shown in Fig. 6B. In some cases, this design can produce significantly more force for a given coil dissipation, particularly if the magnetic gap is large.
- the switching scheme described in the present application can be used for motion up inclines or for vertical motion in an elevator shaft.
- vehicles can be propelled via linear motors up one shaft and down another, the shafts serving as guideways.
- Magnetic switching within the shaft can then used to move the vehicles (i.e., cabs) from one shaft to the other.
- Such a system can resemble the system of Figs. 1-2 modified such that the straight guideway 9 is vertical, and the branching guideway 8 is horizontal to the ground.
- the electromagnets IS, ID and/or permanent magnets 2S, 2D can provide appropriate lateral force to move the vehicle 4 from one elevator shaft (i.e., the guideway 9) laterally on the branching guideway 8 to another elevator shaft (another straight guideway).
- the branching guideway 8 can be oriented such that the vehicle 4 always remain upright.
- the straight guideway 9 can be perpendicular to the branching guideway 8, such that when the vehicle 4 reaches the intersection of guideways 8, 9, electromagnet IS can be activated to push the vehicle 4 laterally into the branching guideway 8.
- electromagnet ID can be activated to pull the vehicle 4 into the branching guideway 8, or possibly both electromagnets IS, ID can work in complementary fashion.
- An advantage of using magnetic switching as disclosed herein for elevators from one shaft to another is the ability to work reliably with short headway.
- embodiments of the invention can allow the use of at least 4 cabs per shaft and operation with headways of only 10 to 15 seconds. This allows a factor of 4 or more reduction in the number of shafts required to achieve a given capacity and the reduced elevator area creates significantly more usable space on all floors.
- the number of wheels that act as a switching structure e.g., one or more
- the number, size, and strength of any magnets positioned with respect to a guideway e.g., wheels need not be horizontally-oriented, but can be vertically-oriented or any other angle
- the types of vehicle suspensions e.g., wheeled, magnetic, air-cushioned, etc.
- the configuration of the guideway e.g., having a portion extending laterally toward a vehicle moving thereon to orient a magnet adjacent to a switching structure of the vehicle, such as a U-shaped guideway
- the number of branches in a switching point e.g., 3 or more branches
- the number of vehicles in a train that utilize any embodiments of the invention described herein can all be varied.
- the normal vehicle guidance is magnetic, such as described in U.S. Patent 6,101,952 (which is hereby incorporated by reference herein in its entirety), then the magnetic switching forces may be so large as to cause the vehicle plate to touch the magnet. In this case, it is desirable to use gap sensors and feedback to control the force so contact does not occur.
- the vehicle may be supported by two or more bogies, as with typical railroad cars. In this case each bogie can have either ferromagnetic wheels or plates or other switching structure(s) so that the magnetic switching forces can direct the bogies in the desired direction.
- Figure 1 shows a vehicle with 8 guide wheels. It is definitely possible to operate with only 4 guide wheels and, in some cases, only 2 may be sufficient.
- a vehicle will be supported by wheels, but it also possible to switch a vehicle that is supported by other mechanisms such as magnetic forces.
- EDS ElectroDynamic Suspension
- EMS ElectroMagnetic Suspension
- the magnetic switching can be used to move the vehicles laterally at a switch.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Architecture (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
- Platform Screen Doors And Railroad Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Types And Forms Of Lifts (AREA)
Abstract
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US70177705P | 2005-07-22 | 2005-07-22 | |
| PCT/US2006/028266 WO2007013991A2 (fr) | 2005-07-22 | 2006-07-19 | Commutation magnetique de vehicules commandee par rail de guidage |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1907257A2 true EP1907257A2 (fr) | 2008-04-09 |
Family
ID=37683806
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP06788033A Withdrawn EP1907257A2 (fr) | 2005-07-22 | 2006-07-19 | Commutation magnetique de vehicules commandee par rail de guidage |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20070044676A1 (fr) |
| EP (1) | EP1907257A2 (fr) |
| JP (1) | JP2009514716A (fr) |
| KR (1) | KR20080033440A (fr) |
| CN (1) | CN101489849A (fr) |
| TW (1) | TW200736103A (fr) |
| WO (1) | WO2007013991A2 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022268280A1 (fr) | 2021-06-23 | 2022-12-29 | Ecco Sko A/S | Système de robot de fabrication d'article chaussant |
| WO2022268281A1 (fr) | 2021-06-23 | 2022-12-29 | Ecco Sko A/S | Système de fabrication d'article chaussant |
Families Citing this family (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080148988A1 (en) * | 2006-12-20 | 2008-06-26 | John Lee Wamble | Guideway switch apparatus for magnetically levitated vehicles |
| US9032880B2 (en) | 2009-01-23 | 2015-05-19 | Magnemotion, Inc. | Transport system powered by short block linear synchronous motors and switching mechanism |
| US8967051B2 (en) | 2009-01-23 | 2015-03-03 | Magnemotion, Inc. | Transport system powered by short block linear synchronous motors and switching mechanism |
| US8616134B2 (en) | 2009-01-23 | 2013-12-31 | Magnemotion, Inc. | Transport system powered by short block linear synchronous motors |
| WO2010085670A1 (fr) * | 2009-01-23 | 2010-07-29 | Magnemotion, Inc. | Système de transport amélioré entraîné par des moteurs linéaires synchrones à bloc court, et mécanisme d'aiguillage |
| IT1398608B1 (it) | 2010-03-09 | 2013-03-08 | Ima Life S R L Unipersonale | Apparato di trasporto |
| CN103543282A (zh) | 2010-07-23 | 2014-01-29 | 贝克曼考尔特公司 | 用于处理化验盒的系统 |
| EP2707725B1 (fr) | 2011-05-13 | 2018-07-11 | Beckman Coulter, Inc. | Élément de transport de produits de laboratoire et agencement pour trajet |
| ES2689169T3 (es) | 2011-05-13 | 2018-11-08 | Beckman Coulter, Inc. | Sistema y método que incluye elemento de transporte de producto de laboratorio |
| US8863669B2 (en) | 2011-06-07 | 2014-10-21 | Magnemotion, Inc. | Versatile control of a linear synchronous motor propulsion system |
| ES2778054T3 (es) | 2011-11-07 | 2020-08-07 | Beckman Coulter Inc | Sistema y método para transportar recipientes de muestras |
| CN104105969B (zh) | 2011-11-07 | 2016-10-12 | 贝克曼考尔特公司 | 离心机系统和工作流程 |
| WO2013070754A1 (fr) | 2011-11-07 | 2013-05-16 | Beckman Coulter, Inc. | Bras robotique |
| KR20140091032A (ko) | 2011-11-07 | 2014-07-18 | 베크만 컬터, 인코포레이티드 | 검체 수송 시스템의 자기 감쇠 |
| BR112014011035A2 (pt) | 2011-11-07 | 2017-06-13 | Beckman Coulter, Inc. | sistema de aliquotagem e fluxo de trabalho |
| WO2013070744A2 (fr) | 2011-11-07 | 2013-05-16 | Beckman Coulter, Inc. | Détection de récipient d'échantillon |
| KR101410344B1 (ko) * | 2012-08-20 | 2014-06-24 | 남 영 김 | 웜 구동부를 이용한 승강장치 |
| KR101540554B1 (ko) | 2012-09-14 | 2015-07-29 | 베크만 컬터, 인코포레이티드 | 모세관 운반부를 갖는 분석 시스템 |
| EP2897835B1 (fr) * | 2012-09-20 | 2019-05-22 | Magnemotion, Inc. | Moteurs synchrones linéaires à bloc embiellé, et mécanismes de commutation |
| CN102910173B (zh) * | 2012-11-20 | 2016-06-15 | 葛大力 | 一种悬挂式单轨快速公交系统的道岔转向机构 |
| DE102012024693B3 (de) | 2012-12-18 | 2014-03-27 | Sew-Eurodrive Gmbh & Co Kg | Schienenanlage, umfassend ein entlang einer Schienenstrecke bewegbares Schienenfahrzeug |
| US9802507B2 (en) | 2013-09-21 | 2017-10-31 | Magnemotion, Inc. | Linear motor transport for packaging and other uses |
| WO2016060888A1 (fr) * | 2014-10-16 | 2016-04-21 | Otis Elevator Company | Station de transfert latérale pour ascenseur comportant un système de propulsion à vis magnétique |
| EP3028965B1 (fr) * | 2014-12-01 | 2019-02-13 | UHLMANN PAC-SYSTEME GmbH & Co. KG | Convoyeur destiné au transport de produits |
| CN109661624B (zh) | 2016-09-09 | 2022-10-25 | 宝洁公司 | 用于独立地引导装载容器的载具以创建不同成品的系统和方法 |
| US10558201B2 (en) | 2016-09-09 | 2020-02-11 | The Procter & Gamble Company | System and method for producing products based upon demand |
| EP3509970A1 (fr) | 2016-09-09 | 2019-07-17 | The Procter and Gamble Company | Système et procédé de balance de pesée en marche destinés à un transporteur à moteur synchrone linéaire |
| WO2018049104A1 (fr) | 2016-09-09 | 2018-03-15 | The Procter & Gamble Company | Système et procédé de remplissage simultané de récipients de formes et/ou de tailles différentes |
| MX2019002782A (es) | 2016-09-09 | 2019-09-04 | Procter & Gamble | Sistema y método para llenar simultáneamente recipientes con diferentes composiciones de fluidos. |
| WO2018049143A1 (fr) | 2016-09-09 | 2018-03-15 | The Procter & Gamble Company | Système et procédé pour diriger indépendamment des véhicules et livrer des réceptacles et des fermetures à des postes fonctionnels individuels |
| EP3510457A1 (fr) | 2016-09-09 | 2019-07-17 | The Procter and Gamble Company | Procédés de production simultanée de produits différents sur une seule ligne de production |
| US10427162B2 (en) | 2016-12-21 | 2019-10-01 | Quandx Inc. | Systems and methods for molecular diagnostics |
| EP3458390A4 (fr) * | 2017-03-06 | 2020-07-29 | ATS Automation Tooling Systems Inc. | Système convoyeur à moteur linéaire avec dérouteur et procédé de conception et de configuration de celui-ci |
| DE102017208455A1 (de) | 2017-05-18 | 2018-11-22 | Krones Ag | Magnetweiche für ein Transportsystem |
| CN109532850B (zh) * | 2018-11-05 | 2024-03-22 | 中铁二院工程集团有限责任公司 | 一种用于真空管道磁悬浮车辆的旅客上下车通道 |
| PL238864B1 (pl) * | 2018-12-18 | 2021-10-11 | Hyper Poland Spolka Z Ograniczona Odpowiedzialnoscia | Mechanizm stabilizacyjno-lewitacyjny dla pojazdu dedykowanego |
| NL2022276B1 (en) * | 2018-12-21 | 2020-07-15 | Stichting Katholieke Univ | National Individual Floating Transport Infrastructure |
| EP4103781A1 (fr) * | 2020-02-13 | 2022-12-21 | Hyperloop Technologies, Inc. | Système et procédé pour traverser un aiguillage non mobile à l'aide de moteurs électromagnétiques |
| CN114312859B (zh) * | 2021-12-16 | 2023-01-06 | 杭州申昊科技股份有限公司 | 一种悬挂式巡检机器人的走行装置 |
| TWI831424B (zh) * | 2022-10-20 | 2024-02-01 | 財團法人車輛研究測試中心 | 磁導式轉轍系統及磁導式轉轍方法 |
| US12292293B2 (en) * | 2022-11-30 | 2025-05-06 | Automotive Research & Testing Center | Magnet-guiding switching system and magnet-guiding switching method |
Family Cites Families (97)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1667A (en) * | 1840-07-01 | Improvement in the mode of arranging the cylinders in double-cylinder engines for | ||
| US3029893A (en) * | 1958-08-25 | 1962-04-17 | Gen Motors Corp | Automatic vehicle control system |
| US3440600A (en) * | 1966-05-05 | 1969-04-22 | Int Standard Electric Corp | Method for control supervision and protection of vehicles |
| CH473623A (de) * | 1968-01-03 | 1969-06-15 | Bbc Brown Boveri & Cie | Giesseinrichtung |
| GB1242343A (en) * | 1969-02-21 | 1971-08-11 | British Railways Board | Improvements relating to systems for transmitting information between a trackway and a moving vehicle |
| US3860843A (en) * | 1970-06-26 | 1975-01-14 | Matsushita Electric Industrial Co Ltd | Rotating electric machine with reduced cogging |
| US3679874A (en) * | 1970-07-06 | 1972-07-25 | Bendix Corp | Automatic baggage handling system |
| JPS5112882B1 (fr) * | 1970-11-26 | 1976-04-23 | ||
| BE788486Q (fr) * | 1971-04-19 | 1973-01-02 | Rohr Industries Inc | Systeme magnetique de suspension et de propulsion |
| US3860300A (en) * | 1971-07-07 | 1975-01-14 | Cambridge Thermionic Corp | Virtually zero powered magnetic suspension |
| BE794073A (fr) * | 1972-01-15 | 1973-05-02 | Maschf Augsburg Nuernberg Ag | Vehicule suspendu et/ou "flottant" actionne electromagnetiquement |
| US3871301A (en) * | 1972-06-05 | 1975-03-18 | Massachusetts Inst Technology | Stabilization and ride control of suspended vehicles propelled by a linear motor |
| US3874299A (en) * | 1972-10-27 | 1975-04-01 | Aerospace Corp | Electromagnetic switching |
| US3937148A (en) * | 1973-01-02 | 1976-02-10 | Cambridge Thermionic Corporation | Virtually zero power linear magnetic bearing |
| US3858521A (en) * | 1973-03-26 | 1975-01-07 | Canadian Patents Dev | Magnetic levitation guidance system |
| DE2411434A1 (de) * | 1974-03-09 | 1975-09-11 | Krauss Maffei Ag | Verkehrssystem mit einer eine vielzahl von weichen aufweisenden fahrbahn |
| US4088379A (en) * | 1974-09-18 | 1978-05-09 | Perper Lloyd J | Variable permanent magnet suspension system |
| US4023753A (en) * | 1974-11-22 | 1977-05-17 | International Standard Electric Corporation | Vehicle control system |
| US4132175A (en) * | 1977-02-23 | 1979-01-02 | Westinghouse Electric Corp. | Switching apparatus for mass transit vehicle |
| JPS5810921B2 (ja) * | 1977-02-26 | 1983-02-28 | 日本航空株式会社 | 浮上式走行体の電磁浮上案内制御装置 |
| HU184962B (en) * | 1981-08-03 | 1984-11-28 | Karoly Duelk | Loop-sensor of eddy current |
| US4638192A (en) * | 1981-12-11 | 1987-01-20 | Papst-Motoren Gmbh & Co. Kg | Linear DC motor |
| US4441604A (en) * | 1982-06-24 | 1984-04-10 | Bae Automated Systems, Inc. | Pusher mechanism |
| US4444550A (en) * | 1982-10-20 | 1984-04-24 | Loubier Robert J | Permanent magnet mold apparatus for injection molding plastic bonded magnets |
| US4592034A (en) * | 1982-11-15 | 1986-05-27 | Cornell Research Foundation, Inc. | Acoustic emission source location on plate-like structures using a small array of transducers |
| US4522128A (en) * | 1983-01-10 | 1985-06-11 | Regents Of The University Of Minnesota | Switch mechanism |
| US4671185A (en) * | 1983-01-10 | 1987-06-09 | Regents Of The University Of Minnesota | Switch mechanism |
| US4665830A (en) * | 1983-02-04 | 1987-05-19 | Regents Of The University Of Minnesota | Guide construction and method of installation |
| US4665829A (en) * | 1983-02-04 | 1987-05-19 | Regents Of The University Of Minnesota | Guideway construction and method of installation |
| US4646651A (en) * | 1983-11-04 | 1987-03-03 | Fuji Electric Corporate Research And Development Limited | Floating apparatus for attractive magnetic floater |
| US4666829A (en) * | 1985-05-15 | 1987-05-19 | University Of California | Polypeptide marker for Alzheimer's disease and its use for diagnosis |
| JPH088723B2 (ja) * | 1985-11-02 | 1996-01-29 | 日立機電工業株式会社 | リニアモ−タを用いた搬送装置 |
| US4726299A (en) * | 1986-02-20 | 1988-02-23 | Regents Of The University Of Minnesota | Method and apparatus for controlling a vehicle |
| US4800328A (en) * | 1986-07-18 | 1989-01-24 | Inductran Inc. | Inductive power coupling with constant voltage output |
| US4836344A (en) * | 1987-05-08 | 1989-06-06 | Inductran Corporation | Roadway power and control system for inductively coupled transportation system |
| US4794865A (en) * | 1987-05-18 | 1989-01-03 | The Walt Disney Company | Amusement ride vehicle |
| US4826344A (en) * | 1988-02-17 | 1989-05-02 | Harry Major Machine And Tool Co. | Corner plate for access panel |
| US5214323A (en) * | 1988-03-22 | 1993-05-25 | Sharp Kabushiki Kaisha | Linear motor with reduced cogging |
| US5032746A (en) * | 1988-03-22 | 1991-07-16 | Sharp Kabushiki Kaisha | Linear motor with driving device |
| US4914539A (en) * | 1989-03-15 | 1990-04-03 | The Boeing Company | Regulator for inductively coupled power distribution system |
| US5021778A (en) * | 1989-09-11 | 1991-06-04 | Walton Charles A | Capacitance coupled proximity identification system |
| DE3935682A1 (de) * | 1989-10-26 | 1991-05-02 | Messerschmitt Boelkow Blohm | Elektrischer antriebsmotor, insbesondere fuer steuer- und regelzwecke |
| JP3187034B2 (ja) * | 1990-03-15 | 2001-07-11 | 日本サーボ株式会社 | ステッピングモータ |
| JPH04111801A (ja) * | 1990-08-31 | 1992-04-13 | H S S T:Kk | 桁式軌道用転てつ装置 |
| US5225726A (en) * | 1990-09-17 | 1993-07-06 | Maglev Technology, Inc. | Linear synchronous motor having enhanced levitational forces |
| JP2942335B2 (ja) * | 1990-09-26 | 1999-08-30 | 中部エイチ・エス・エス・ティ開発株式会社 | 多関節型転てつ装置 |
| JPH04156263A (ja) * | 1990-10-16 | 1992-05-28 | Nippon Thompson Co Ltd | 小形リニアモータ駆動装置 |
| JPH04155002A (ja) * | 1990-10-19 | 1992-05-28 | H S S T:Kk | 移動体の芯出し固定装置 |
| US6044770A (en) * | 1990-10-23 | 2000-04-04 | Park Square Technology, Ltd. | Integrated high speed MAGLEV system |
| JPH04193003A (ja) * | 1990-11-27 | 1992-07-13 | H S S T:Kk | 走行体用集電装置 |
| US5293308A (en) * | 1991-03-26 | 1994-03-08 | Auckland Uniservices Limited | Inductive power distribution system |
| US5289088A (en) * | 1991-04-03 | 1994-02-22 | Ricoh Company, Ltd. | DC linear motor |
| US5108052A (en) * | 1991-05-17 | 1992-04-28 | Malewicki Douglas J | Passenger transportation system for self-guided vehicles |
| FR2677507B1 (fr) * | 1991-06-06 | 1993-10-15 | Moving Magnet Technologie Sa | Moteur pas-a-pas ou synchrone economique. |
| US5214981A (en) * | 1991-07-26 | 1993-06-01 | Arch Development Corporation | Flywheel energy storage with superconductor magnetic bearings |
| US5619078A (en) * | 1992-05-10 | 1997-04-08 | Boys; John T. | Primary inductive pathway |
| EP0640254B1 (fr) * | 1992-05-10 | 2001-08-01 | Auckland Uniservices Limited | Systeme de distribution d'energie depourvu de contact |
| WO1993024343A1 (fr) * | 1992-05-22 | 1993-12-09 | Daifuku Co., Ltd. | Appareil permettant de fournir, sans contact du courant electrique a un objet mobile |
| US5409095A (en) * | 1992-07-30 | 1995-04-25 | Toyokanetsu Kabushiki Kaisha | Sorting apparatus |
| US5277124A (en) * | 1992-10-28 | 1994-01-11 | Bae Automated Systems, Inc. | Direction control assembly for a material handling car having pivoted divert aims engaging tracks for guidance in switch area |
| US5277125A (en) * | 1992-10-28 | 1994-01-11 | Bae Automated Systems, Inc. | Material handling car and track assembly having opposed magnet linear motor drive and opposed permanent magnet brake assembly |
| US5325974A (en) * | 1993-04-26 | 1994-07-05 | Bae Automated Systems, Inc. | Display device for elongated objects |
| NL9300908A (nl) * | 1993-05-27 | 1994-12-16 | Vanderlande Ind Nederland | Transportinrichting. |
| US5519266A (en) * | 1993-06-01 | 1996-05-21 | Anorad Corporation | High efficiency linear motor |
| US5821638A (en) * | 1993-10-21 | 1998-10-13 | Auckland Uniservices Limited | Flux concentrator for an inductive power transfer system |
| FR2712863B1 (fr) * | 1993-11-23 | 1996-01-05 | Gec Alsthom Transport Sa | Balise d'initialisation d'un véhicule à l'arrêt. |
| NL9302211A (nl) * | 1993-12-20 | 1995-07-17 | Vanderlande Ind Nederland | Transportinstallatie. |
| US5595121A (en) * | 1994-04-15 | 1997-01-21 | The Walt Disney Company | Amusement ride and self-propelled vehicle therefor |
| US5523637A (en) * | 1994-04-28 | 1996-06-04 | Ford Motor Company | Permanent magnet electrical machine with low reluctance torque |
| US5778796A (en) * | 1994-06-21 | 1998-07-14 | Kim; In Ki | Switch system for personal rapid transit |
| US5503083A (en) * | 1994-06-23 | 1996-04-02 | Powell; James R. | Electromagnetic induction suspension and horizontal switching system for a vehicle on a planar guideway |
| US5517924A (en) * | 1994-07-27 | 1996-05-21 | The United States Of America As Represented By The United States Department Of Energy | Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching |
| US5722326A (en) * | 1994-08-01 | 1998-03-03 | The Regents Of The University Of California | Magnetic levitation system for moving objects |
| US5723917A (en) * | 1994-11-30 | 1998-03-03 | Anorad Corporation | Flat linear motor |
| US5910691A (en) * | 1995-03-20 | 1999-06-08 | Wavre; Nicolas | Permanent-magnet linear synchronous motor |
| US5590604A (en) * | 1995-06-07 | 1997-01-07 | Autran Corp. | Transportation system with high speed vehicles and automatic control |
| JP3376373B2 (ja) * | 1995-06-07 | 2003-02-10 | ミネベア株式会社 | モータ構造 |
| DE19633209A1 (de) * | 1995-08-28 | 1997-03-06 | Papst Motoren Gmbh & Co Kg | Verfahren und Vorrichtung zur Reduzierung des sogenannten Nutruckens bei einem Elektromotor |
| IT1281830B1 (it) * | 1995-10-27 | 1998-03-03 | Sasib Railway S P A | Circuito di binario ad audiofrequenza con trasmissione di dati (c.d.b..digitale): interfaccia di ricetrasmissione. |
| WO1997027663A1 (fr) * | 1996-01-22 | 1997-07-31 | Illinois Tool Works Inc. | Moteur a poles axiaux |
| US5708427A (en) * | 1996-04-18 | 1998-01-13 | Bush; E. William | Vehicle in-lane positional indication/control by phase detection of RF signals induced in completely-passive resonant-loop circuits buried along a road lane |
| US5757288A (en) * | 1996-05-02 | 1998-05-26 | Mitron Systems Corporation | Vehicle detector system and method |
| US5927657A (en) * | 1996-07-17 | 1999-07-27 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Antenna mounting structure for movable member conveying system |
| US5906647A (en) * | 1996-09-03 | 1999-05-25 | Chrysler Corporation | Vehicle mounted guidance antenna for automated durability road (ADR) facility |
| US5900728A (en) * | 1997-03-20 | 1999-05-04 | International Business Machines Corporation | Alternating current magnetic force microscopy system with probe having integrated coil |
| US6034499A (en) * | 1997-04-01 | 2000-03-07 | Tranovich; Stephen J. | Method of controlling rotary position of a torque motor |
| US5904101A (en) * | 1997-04-22 | 1999-05-18 | Power Superconductor Applications Co., Inc. | Auxiliary propulsion for magnetically levitated vehicle |
| JPH1173600A (ja) * | 1997-08-28 | 1999-03-16 | Nippon Soken Inc | 走行体の幅方向位置検出装置 |
| US6011508A (en) * | 1997-10-31 | 2000-01-04 | Magnemotion, Inc. | Accurate position-sensing and communications for guideway operated vehicles |
| JPH11232585A (ja) * | 1998-02-10 | 1999-08-27 | Oki Electric Ind Co Ltd | 車両の路側逸脱防止システム |
| US6225919B1 (en) * | 1998-11-03 | 2001-05-01 | New York Air Brake Corporation | Method of identifying and locating trainline power supplies |
| WO2001038124A1 (fr) * | 1999-11-23 | 2001-05-31 | Magnemotion, Inc. | Voies modulaires a moteur lineaire et leurs procedes de fabrication |
| US6983701B2 (en) * | 2001-10-01 | 2006-01-10 | Magnemotion, Inc. | Suspending, guiding and propelling vehicles using magnetic forces |
| EP1375287B1 (fr) * | 2001-12-20 | 2008-08-20 | Milan Novacek | Voie de guidage et vehicule pour un système de transport |
| US6684794B2 (en) * | 2002-05-07 | 2004-02-03 | Magtube, Inc. | Magnetically levitated transportation system and method |
| US20070089636A1 (en) * | 2003-05-20 | 2007-04-26 | Guardo Jose L Jr | Magnetic levitation transport system |
| US20060201376A1 (en) * | 2005-03-04 | 2006-09-14 | Georges Brigham | Transportation system with increased capacity |
-
2006
- 2006-07-19 JP JP2008522976A patent/JP2009514716A/ja not_active Withdrawn
- 2006-07-19 KR KR1020087004316A patent/KR20080033440A/ko not_active Ceased
- 2006-07-19 EP EP06788033A patent/EP1907257A2/fr not_active Withdrawn
- 2006-07-19 WO PCT/US2006/028266 patent/WO2007013991A2/fr not_active Ceased
- 2006-07-19 CN CNA2006800326495A patent/CN101489849A/zh active Pending
- 2006-07-19 US US11/490,516 patent/US20070044676A1/en not_active Abandoned
- 2006-07-21 TW TW095126720A patent/TW200736103A/zh unknown
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2007013991A2 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022268280A1 (fr) | 2021-06-23 | 2022-12-29 | Ecco Sko A/S | Système de robot de fabrication d'article chaussant |
| WO2022268281A1 (fr) | 2021-06-23 | 2022-12-29 | Ecco Sko A/S | Système de fabrication d'article chaussant |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2009514716A (ja) | 2009-04-09 |
| KR20080033440A (ko) | 2008-04-16 |
| WO2007013991A3 (fr) | 2008-12-11 |
| CN101489849A (zh) | 2009-07-22 |
| WO2007013991A2 (fr) | 2007-02-01 |
| US20070044676A1 (en) | 2007-03-01 |
| TW200736103A (en) | 2007-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070044676A1 (en) | Guideway activated magnetic switching of vehicles | |
| EP1042152B1 (fr) | Guidage et aiguillage de vehicules par des forces magnetiques | |
| US8505463B2 (en) | Wheel-type ultra high speed railway system | |
| KR100583677B1 (ko) | 자기부상 차량이 설치된 운송시스템의 구동용 장치 | |
| US10208431B1 (en) | Permanent magnet maglev using passive, low-frequency electromagnetic stabilization | |
| WO1994023965A1 (fr) | Systeme de levitation et de propulsion utilisant des aimants permanents et du fer ou de l'acier intercales | |
| US20100199876A1 (en) | Guideway switch apparatus for magnetically levitated vehicles | |
| KR20100090406A (ko) | 추진 및 안내 일체형 튜브 운송 시스템 | |
| KR102434518B1 (ko) | 차량용 자기 서스펜션 | |
| NL2022175B1 (en) | Brake module for a magnetically suspendable vehicle | |
| KR20120059933A (ko) | 정지 성능이 향상된 자기부상 이송 시스템 | |
| KR101034345B1 (ko) | 반발 부상 및 안내 식 튜브 운송 장치 | |
| US4941406A (en) | Magnetic and aerodynamic levitation vehicle | |
| KR101182354B1 (ko) | 스프링을 갖는 자기부상 이송 시스템 | |
| CN113400950A (zh) | 用于运输系统的悬浮控制系统 | |
| CN101668655A (zh) | 用于磁悬浮车轮的导轨道岔装置 | |
| CN211075552U (zh) | 一种无人驾驶的模块化高速磁悬浮轨道交通系统 | |
| CN117242683A (zh) | 线性驱动器 | |
| Murty et al. | Conventional Indian railways and the advanced transportation systems: A comparative review | |
| WO2010058454A1 (fr) | Système de transport par véhicule magnétique | |
| HK40060132A (en) | Brake module for a magnetically suspendable vehicle | |
| HK40017247A (en) | Switch for a track for guiding transportation of a vehicle | |
| HK40017247B (en) | Switch for a track for guiding transportation of a vehicle | |
| JPH04347201A (ja) | 磁気浮上式鉄道の軌道分岐装置 | |
| JPS6356361B2 (fr) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20080128 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: THORNTON, RICHARD, D. Inventor name: MENDENHALL, JESSE Inventor name: CLARK, TRACY, M. |
|
| R17D | Deferred search report published (corrected) |
Effective date: 20081211 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20110201 |