[go: up one dir, main page]

EP1991583B1 - Thymic stromal lymphopoietin (tslp) antibodies and uses thereof - Google Patents

Thymic stromal lymphopoietin (tslp) antibodies and uses thereof Download PDF

Info

Publication number
EP1991583B1
EP1991583B1 EP07722882A EP07722882A EP1991583B1 EP 1991583 B1 EP1991583 B1 EP 1991583B1 EP 07722882 A EP07722882 A EP 07722882A EP 07722882 A EP07722882 A EP 07722882A EP 1991583 B1 EP1991583 B1 EP 1991583B1
Authority
EP
European Patent Office
Prior art keywords
antibody
antibodies
human
seq
tslp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07722882A
Other languages
German (de)
French (fr)
Other versions
EP1991583A1 (en
Inventor
Michael Bardroff
Matthew Edwards
Mehmet Tur
Olaf Ratsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis AG filed Critical Novartis AG
Priority to EP10183229A priority Critical patent/EP2341076A3/en
Publication of EP1991583A1 publication Critical patent/EP1991583A1/en
Application granted granted Critical
Publication of EP1991583B1 publication Critical patent/EP1991583B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present invention relates to human thymic stromal lymphopoietin (hTSLP) antibodies and especially those which neutralize hTSLP activity. It further relates to methods for using anti- hTSLP antibody molecules in diagnosis or treatment of hTSLP related disorders, such as asthma, atopic dermatitis, allergic rhinitis, fibrosis, inflammatory bowel disease and Hodgkin's lymphoma.
  • hTSLP human thymic stromal lymphopoietin
  • hTSLP Human thymic stromal lymphopoietin
  • IL-7 interleukin-7
  • DC dendritic cells
  • hTSLP Native Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis showed expression of a 23 kilo Dalton (kDa) protein, whereas the calculated molecular mass of the mature protein is 14,9 kDa, suggesting that hTSLP is glycosylated.
  • hTSLP contains 7 basic C-terminal amino acids (aa) N-Lysine-Lysine-Arginine-Arginine-Lysine-Arginine-Lysine-C (KKRRKRK) and 6 cysteins probably involved in disulfide bond formation.
  • hTSLP is highly expressed by epithelial cells of inflamed tonsils and keratinocytes of atopic dermatitis and its expression is associated with Langerhans cell migration and activation 2 .
  • the TSLP receptor complex is a heterodimer comprised of the TSLP receptor (TSLPR) and IL-7 receptor alpha (IL-7Ra) chain.
  • TSLPR TSLP receptor
  • IL-7Ra IL-7 receptor alpha
  • the receptor is expressed primarily on monocytes and myeloid-derived DC, as well as on B lymphocytes 3 .
  • Allergy is the result of a complex immune cascade leading to the dysregulated production of the Thymus-derived helper cell type 2 (Th2) subset lymphocyte cytokines, the generation of allergen-specific IgE-producing B lymphocytes and the subsequent activation and degranulation of mast cells upon allergen challenge.
  • Th2 Thymus-derived helper cell type 2
  • TSLP-activated human DC produce Th2-attracting chemokines but no IL-12, and induce naive CD4-and CD8- antigen-positive T lymphocyte differentiation into effector cells with a typical pro-allergic phenotype.
  • Atopic dermatitis represents a chronic, relapsing inflammatory skin disease with characteristic clinical features 4 .
  • Genetic background, environmental exposures such as food allergens, aeroallergens, microbial antigens, or stress, and distinct immunological predispositions all contribute to the development of periodic, itchy eczematous skin lesions in afflicted patients.
  • Several soluble factors have been shown to be increased in the peripheral blood of patients with AD. These cytokines and chemokines play an important role in regulating DC differentiation, activation and migration and are important in coordinating the trafficking of immune cells.
  • hTSLP which is produced by human epithelial stroma and mast cells, initiates the allergic response by the stimulation of DC.
  • TSLP activated DC produce the CC chemokines that induce the chemotaxis and polarization of allergen-specific effector lymphocytes 5 .
  • epithelial- and stromal-cell-derived TSLP might represent one of the factors initiating the allergic responses, and could be a target for a curative therapeutic approach to allergy.
  • TSLP polyclonal antibody In recent studies, one anti-human TSLP polyclonal antibody was described (R&D Systems, AF1398). This antibody was produced in sheep immunized with purified E . coli- derived recombinant TSLP. Human TSLP specific sheep IgG was purified by hTSLP affinity chromatography. This polyclonal antibody was selected for its ability to neutralize hTSLP bioactivity and showed less than 1% cross-reactivity with recombinant murine TSLP.
  • the Neutralization Dose 50 (ND 50 ) for this antibody was defined as that concentration of antibody required to yield one-half maximal inhibition of the recombinant hTSLP activity on the responsive cell line mouse BaF/3 cells co-transfected with IL-7Ra and hTSLPR chains, as an assay.
  • the ND 50 was determined to be approximately 0.05 - 0.25 ⁇ g/ml in the presence of 0.5 ng/ml recombinant hTSLP.
  • the disadvantage of polyclonal antibodies is that they are in a limited supply as there is a restricted supply of serum from the same treated animal.
  • polyclonal antibodies recognize multiple epitopes on the same antigen and may have undesired cross-reactivity. While polyclonal serum contains a mixture of both high and low affinity binders, targeting also a range of epitopes, a monoclonal antibody approach make sure to select the most useful candidate for a therapeutic use.
  • Soumelis et al. teaches the possible role of TSLP in allergic inflammation (asthma, atopic dermatitis and allergic rhinitis) wherein TSLP was blocked by commercially available neutralizing rat anti-human TSLP mAbs 5E5 and 12F3.
  • WO03065985 discloses antagonists, such as an antibody or a fragment there, against TSLP (therein called ILB50) for the treatment of allergic inflammations like asthma, atopic dermatitis.
  • TSLP TSLP
  • ILB50 TSLP
  • WO03065985 which refers to Soumelis et al and the antibodies disclosed therein, describes what regions of TSLP could provide increased antigenicity for generating an antibody.
  • the invention provides an isolated human or humanized antibody or functional fragment thereof according to claim 1.
  • the isolated antibody is an IgG1, IgG2 or an IgG4.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising an antibodies or functional fragments as described herein and a pharmaceutically acceptable carrier or excipient therefor.
  • the antibody is an IgG1 having light chain lambda sequence selected from SEQ ID NO:99 or SEQ ID NO:101 and a heavy chain sequence selected from SEQ ID NO:103, SEQ ID NO:105, SEQ ID NO:107, SEQ ID NO:109, SEQ ID NO:111 and SEQ ID NO:113.
  • an isolated or recombinant polynucleotide which encodes a polypeptide comprising an antigen-binding region of an antibody or a functional fragment thereof described above.
  • the polynucleotide is a DNA.
  • a host cell comprising a first and a second recombinant DNA segment encoding a heavy and a light chain, respectively, of the antibody described above, wherein the DNA segment are respectively operably linked to a first and a second promoter and are capable of being expressed in said host cell.
  • the present invention relates to isolated antibodies, particularly human antibodies, that bind specifically to hTSLP and that inhibit functional properties of hTSLP.
  • the antibodies of the invention are derived from particular heavy and light chain sequences and/or comprise particular structural features such as CDR regions comprising particular amino acid sequences.
  • the invention provides isolated antibodies, methods of making such antibodies, immunoconjugates and bispecific molecules comprising such antibodies and pharmaceutical compositions containing the antibodies, immunconjugates or bispecific molecules of the invention.
  • the invention also relates to methods of using the antibodies to inhibit a disorder or condition associated with the presence of cell receptor target hTSLP, for example, in the treatment of an inflammatory or allergic condition, particularly an inflammatory or obstructive airways disease.
  • the term 'hTSLP' is a reference to human TSLP.
  • the present invention provides antibodies to human TSLP, especially human antibodies, that are cross-reactive with non-human primate TSLP, including cynomolgus and rhesus monkey TSLP.
  • Antibodies in accordance with some embodiments of the present invention may recognise a variant truncated isoform of TSLP in which the protein terminates at the alanine at residue 99 resulting in the last 60 amino acids of the C-terminus being deleted and also an single nucleotide polymorphism (SNP) of TSLP in which the cysteine residue at amino acid position 90 is replaced by tyrosine.
  • SNP single nucleotide polymorphism
  • immune response refers to the action of, for example, lymphocytes, antigen presenting cells, phagocytic cells, granulocytes, and soluble macromolecules produced by the above cells or the liver (including antibodies, cytokines, and complement) that results in selective damage to, destruction of, or elimination from the human body of invading pathogens, cells or tissues infected with pathogens, cancerous cells, or, in cases of autoimmunity or pathological inflammation, normal human cells or tissues.
  • a “signal transduction pathway” refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of a cell.
  • the phrase "cell surface receptor” includes, for example, molecules and complexes of molecules capable of receiving a signal and capable of the transmission of such a signal across the plasma membrane of a cell.
  • An example of a “cell surface receptor” of the present invention is the hTSLP receptor to which the hTSLP protein molecule binds.
  • antibody as referred to herein includes whole antibodies and any antigen binding fragment (i. e., "antigen-binding portion") or single chains thereof.
  • a naturally occurring "antibody” is a glycoprotein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds.
  • Each heavy chain is comprised of a heavy chain variable region (abbrebyted herein as V H ) and a heavy chain constant region.
  • the heavy chain constant region is comprised of three domains, CH1, CH2 and CH3.
  • Each light chain is comprised of a light chain variable region (abbrebyted herein as V L ) and a light chain constant region.
  • the light chain constant region is comprised of one domain, C L .
  • V H and V L regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR).
  • CDR complementarity determining regions
  • FR framework regions
  • Each V H and V L is, composed of three CDRs and four FRs arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
  • the variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
  • the constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.
  • antigen-binding portion of an antibody refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., hTSLP). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody.
  • binding fragments encompassed within the term "antigen-binding portion" of an antibody include a Fab fragment, a monovalent fragment consisting of the V L , V H , C L and CH1 domains; a F(ab) 2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment consisting of the V H and CH1 domains; a Fv fragment consisting of the V L and V H domains of a single arm of an antibody; a dAb fragment ( Ward et al., 1989 Nature 341:544-546 ), which consists of a V H domain; and an isolated complementarity determining region (CDR).
  • Fab fragment a monovalent fragment consisting of the V L , V H , C L and CH1 domains
  • F(ab) 2 fragment a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region
  • a Fd fragment consisting of the V H and
  • the two domains of the Fv fragment, V L and V H are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the V L and V H regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al., 1988 Science 242:423-426 ; and Huston et al., 1988 Proc. Natl. Acad. Sci. 85:5879-5883 ).
  • single chain Fv single chain Fv
  • Such single chain antibodies are also intended to be encompassed within the term "antigen-binding portion" of an antibody.
  • an “isolated antibody”, as used herein, refers to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds hTSLP is substantially free of antibodies that specifically bind antigens other than hTSLP).
  • An isolated antibody that specifically binds hTSLP may, however, have cross-reactivity to other antigens, such as TSLP molecules from other species.
  • an isolated antibody may be substantially free of other cellular material and/or chemicals.
  • isolated antibody also refers to an antibody to the target that cross-reacts with known homologs/orthologs, as well as antibodies to the target that do not cross react with known homologs/orthologs.
  • monoclonal antibody or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of single molecular composition.
  • a monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.
  • human antibody is intended to include antibodies having variable regions in which both the framework and CDR regions are derived from sequences of human origin. Furthermore, if the antibody contains a constant region, the constant region also is derived from such human sequences, e.g., human germline sequences, or mutated versions of human germline sequences.
  • the human antibodies of the invention may include amino acid residues not encoded by human sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo).
  • human antibody is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
  • CDR grafted antibodies or alternative technology designed to minimize the Human Anti-murine Antibody response (humaneering technology of Kalobios, or humanization technology of PDL).
  • Xoma also has "human engineering" technology; see e.g., US patent 5766886 .
  • human monoclonal antibody refers to refers to an antibody obtained from a substantially homogeneous population of antibodies that recognizes and binds to a determinant (or epitope) on the antigen.
  • Monoclonal antibodies displaying a single binding specificity which have variable regions in which both the framework and CDR regions are derived from human sequences.
  • the human monoclonal antibodies are produced by a hybridoma which includes a B cell obtained from a transgenic nonhuman animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a light chain transgene fused to an immortalized cell.
  • recombinant human antibody includes all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom, antibodies isolated from a host cell transformed to express the human antibody, e.g., from a transfectoma, antibodies isolated from a recombinant, combinatorial human antibody library, and antibodies prepared, expressed, created or isolated by any other means that involve splicing of all or a portion of a human immunoglobulin gene, sequences to other DNA sequences.
  • Such recombinant human antibodies have variable regions in which the framework and CDR regions are derived from human germline immunoglobulin sequences.
  • such recombinant human antibodies can be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the V H and V L regions of the recombinant antibodies are sequences that, while derived from and related to human germline V H and V L sequences, may not naturally exist within the human antibody germline repertoire in vivo.
  • isotype refers to the antibody class (e.g., IgM, IgE, IgG such as IgG1, IgG2 or IgG4) that is encoded by the heavy chain constant region genes.
  • an antibody recognizing an antigen and "an antibody specific for an antigen” are used interchangeably herein with the term “an antibody which binds specifically to an antigen.”
  • an antibody that "specifically binds to hTSLP" is intended to refer to an antibody that binds to human TSLP with a K D of 1 x 10 -9 M or less.
  • An antibody that "cross-reacts with an antigen other than hTSLP” is intended to refer to an antibody that binds that antigen with a 1 x 10 -9 M or less.
  • An antibody that "does not cross-react with a particular antigen” is intended to refer to an antibody that binds to that antigen, with a K D of 1.5 x 10 -8 M or greater, or a K D of 5-10 x 10 -8 M or 1 x 10 -7 M or greater.
  • such antibodies that do not cross-react with the antigen exhibit essentially undetectable binding against these proteins in standard binding assays.
  • an antibody that "inhibits binding of hTSLP to the hTSLP receptor" refers to an antibody that inhibits hTSLP binding to the receptor with a KD of 5 nM or less.
  • an antibody that "inhibits inflammatory mediator release” is intended to refer to an antibody that inhibits hTSLP induced luciferase expression from a Baf-3 cell line transfected with the TSLP-receptor and a luciferase reporter system and hTSLP induced TARC secretion from human primary monocytes isolated from PBMCs with an IC 50 less than 1.0 nM.
  • K assoc or "K a ", as used herein, is intended to refer to the association rate of a particular antibody-antigen interaction
  • K dis or “K D ,” as used herein, is intended to refer to the dissociation rate of a particular antibody-antigen interaction
  • K D is intended to refer to the dissociation constant, which is obtained from the ratio of K d to K a (i.e. K d /K a ) and is expressed as a molar concentration (M).
  • K D values for antibodies can be determined using methods well established in the art. A method for determining the K D of an antibody is by using surface plasmon resonance, or using a biosensor system such as a Biacore ® system.
  • high affinity for an IgG antibody refers to an antibody having a K D of 10 -9 M or less for a target antigen.
  • the term "subject” includes any human or nonhuman animal.
  • nonhuman animal includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows chickens, amphibians, reptiles, etc.
  • Standard assays to evaluate the binding ability of the antibodies toward hTSLP of various species are known in the art, including for example, ELISAs, western blots and RIAs. Suitable assays are described in detail in the Examples.
  • the binding kinetics (e.g., binding affinity) of the antibodies also can be assessed by standard assays known in the art, such as by Biacore analysis. Assays to evaluate the effects of the antibodies on functional properties of hTSLP are described in further detail in the Examples.
  • an antibody that "inhibits" one or more of these hTSLP functional properties e.g., biochemical, immunochemical, cellular, physiological or other biological activities, or the like
  • these hTSLP functional properties e.g., biochemical, immunochemical, cellular, physiological or other biological activities, or the like
  • An antibody that inhibits hTSLP activity effects such a statistically significant decrease by at least 10% of the measured parameter, by at least 50%, 80% or 90%, and in certain embodiments an antibody of the invention may inhibit greater than 95%, 98% or 99% of hTSLP functional activity.
  • Antibodies of the invention are the human monoclonal antibodies, isolated and structurally characterized as described, in Examples 1-5.
  • the V H amino acid sequences of the antibodies are shown in SEQ ID NOs: 84-86 respectively.
  • the V L amino acid sequences of the antibodies are shown in SEQ ID NO: 88.
  • V H and V L sequences can be "mixed and matched" to create other anti- hTSLP binding molecules of the invention. hTSLP binding of such "mixed and matched" antibodies can be tested using the binding assays described above and in the Examples (e.g., ELISAs).
  • V H and V L chains are mixed and matched, a V H sequence from a particular V H /V L pairing should be replaced with a structurally similar V H sequence.
  • a V L sequence from a particular V H /V L pairing should be replaced with a structurally similar V L sequence.
  • the V H and V L sequences of the antibodies of the present invention are particularly amenable for mixing and matching, since these antibodies use V H and V L sequences derived from the same germline sequences and thus exhibit structural similarity.
  • the invention provides antibodies that comprise the heavy chain and light chain CDR1s, CDR2s and CDR3s of the antibodies, or combinations thereof.
  • the amino acid sequence of the V H CDR1 of the antibodies are shown in SEQ ID NO: 3.
  • the amino acid sequence of the V H CDR2s of the antibodies and are shown in SEQ ID NOs:18-20 25.
  • the amino acid sequence of the V H CDR3 of the antibodies are shown in SEQ ID NO: 28 .
  • the amino acid sequence of the V L CDR1 of the antibodies are shown in SEQ ID NOs:38.
  • the amino acid sequence of the V L CDR2 of the antibodies are shown in SEQ ID NO: 47.
  • the amino acid sequences of the V L CDR3s of the antibodies are shown in SEQ ID NOs: 60-61
  • the CDR regions are delineated using the Kabat system ( Kabat, E. A., et al., 1991 Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242 ).
  • V H CDR1, 2 and 3 sequences and V L CDR1, 2 and 3 sequences can be "mixed and matched" (i.e., CDRs from different antibodies can be mixed and match, although each antibody must contain a V H CDR1, 2 and 3 and a V L CDR1, 2 and 3) to create other anti-hTSLP binding molecules of the invention.
  • hTSLP binding of such "mixed and matched" antibodies can be tested using the binding assays described above and in the Examples (e.g., ELISAs).
  • V H CDR sequences When V H CDR sequences are mixed and matched, the CDR1, CDR2 and/or CDR3 sequence from a particular V H sequence should be replaced with a structurally similar CDR sequence(s).
  • V L CDR sequences when V L CDR sequences are mixed and matched, the CDR1, CDR2 and/or CDR3 sequence from a particular V L sequence should be replaced with a structurally similar CDR sequence(s). It will be readily apparent to the ordinarily skilled artisan that novel V H and V L sequences can be created by substituting one or more V H and/or V L CDR region sequences with structurally similar sequences from the CDR sequences shown herein for monoclonal antibodies of the present invention.
  • the antibody consists of: a heavy chain variable region CDR1 comprising SEQ ID NO: 3; a heavy chain variable region CDR2 comprising SEQ ID NO: 18; a heavy chain variable region CDR3 comprising SEQ ID NO: 28; a light chain variable region CDR1 comprising SEQ ID NO: 38; a light chain variable region CDR2 comprising SEQ ID NO: 47; and a light chain variable region CDR3 comprising SEQ ID NO: 60.
  • the antibody consists of: a heavy chain variable region CDR1 comprising SEQ ID NO: 3; a heavy chain variable region CDR2 comprising SEQ ID NO: 19; a heavy chain variable region CDR3 comprising SEQ ID NO: 28; a light chain variable region CDR1 comprising SEQ ID NO: 38; a light chain variable region CDR2 comprising SEQ ID NO: 47; and a light chain variable region CDR3 comprising SEQ ID NO: 60.
  • the antibody consists of: a heavy chain variable region CDR1 comprising SEQ ID NO: 3; a heavy chain variable region CDR2 comprising SEQ ID NO: 20; a heavy chain variable region CDR3 comprising SEQ ID NO: 28; a light chain variable region CDR1 comprising SEQ ID NO: 38; a light chain variable region CDR2 comprising SEQ ID NO: 47; and a light chain variable region CDR3 comprising SEQ ID NO: 60.
  • a human antibody comprises heavy or light chain variable regions that is "the product of” or “derived from” a particular germline sequence if the variable regions of the antibody are obtained from a system that uses human germline immunoglobulin genes.
  • Such systems include immunizing a transgenic mouse carrying human immunoglobulin genes with the antigen of interest or screening a human immunoglobulin gene library displayed on phage with the antigen of interest.
  • a human antibody that is "the product of” or “derived from” a human germline immunoglobulin sequence can be identified as such by comparing the amino acid sequence of the human antibody to the amino acid sequences of human germline immunoglobulins and selecting the human germline immunoglobulin sequence that is closest in sequence (i.e., greatest % identity) to the sequence of the human antibody.
  • a human antibody that is "the product of” or “derived from” a particular human germline immunoglobulin sequence may contain amino acid differences as compared to the germline sequence, due to, for example, naturally occurring somatic mutations or intentional introduction of site-directed mutation.
  • a selected human antibody typically is at least 90% identical in amino acids sequence to an amino acid sequence encoded by a human germline immunoglobulin gene and contains amino acid residues that identify the human antibody as being human when compared to the germline immunoglobulin amino acid sequences of other species (e.g., murine germline sequences).
  • a human antibody may be at least 60%, 70%, 80%, 90%, or at least 95%, or even at least 96%, 97%, 98%, or 99% identical in amino acid sequence to the amino acid sequence encoded by the germline immunoglobulin gene.
  • a human antibody derived from a particular human germline sequence will display no more than 10 amino acid differences from the amino acid sequence encoded by the human germline immunoglobulin gene.
  • the human antibody may display no more than 5, or even no more than 4, 3, 2, or 1 amino acid difference from the amino acid sequence encoded by the germline immunoglobulin gene.
  • the antibodies of the invention may be engineered to include modifications within the Fc region, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity.
  • an antibody of the invention may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be modified to alter its glycosylation, again to alter one or more functional properties of the antibody.
  • the numbering of residues in the Fc region is that of the EU index of Kabat.
  • the hinge region of CH1 is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased.
  • This approach is described further in U.S. Patent No. 5,677,425 by Bodmer et al.
  • the number of cysteine residues in the hinge region of CH1 is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the antibody.
  • the Fc hinge region of an antibody is mutated to decrease the biological half-life of the antibody. More specifically, one or more amino acid mutations are introduced into the CH2-CH3 domain interface region of the Fc-hinge fragment such that the antibody has impaired Staphylococcyl protein A (SpA) binding relative to native Fc-hinge domain SpA binding.
  • SpA Staphylococcyl protein A
  • the antibody is modified to increase its biological half-life.
  • Various approaches are possible. For example, one or more of the following mutations can be introduced: T252L, T254S, T256F, as described in U.S. Patent No. 6,277,375 to Ward .
  • the antibody can be altered within the CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Patent Nos. 5,869,046 and 6,121,022 by Presta et al.
  • the Fc constant region of an antibody is critical for determining serum half-life and effector functions, i.e., antibody dependent cell cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC) activities.
  • ADCC antibody dependent cell cytotoxicity
  • CDC complement dependent cytotoxicity
  • One method to alter effector function and serum half-life of an antibody is to graft the variable region of an antibody fragment with an Fc fragment having the appropriate effector function.
  • IgG1 or IgG4 isotypes can be selected for cell killing activity, whereas IgG2 isotype can be used for silent antibodies (with no cell killing activity).
  • Silent antibodies with long serum half-life can be obtained by making chimeric fusion of variable regions of an antibody with a serum protein such as HSA or a protein binding to such serum protein, such HSA - binding protein.
  • the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector functions of the antibody.
  • one or more amino acids can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody.
  • the effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Patent Nos. 5,624,821 and 5,648,260, both by Winter et al.
  • one or more amino acids selected from amino acid residues can be replaced with a different amino acid residue such that the antibody has altered C1q binding and/or reduced or abolished complement dependent cytotoxicity (CDC).
  • CDC complement dependent cytotoxicity
  • one or more amino acid residues are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in PCT Publication WO 94/29351 by Bodmer et al.
  • the Fc region is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or to increase the affinity of the antibody for an Fc ⁇ receptor by modifying one or more amino acids.
  • ADCC antibody dependent cellular cytotoxicity
  • This approach is described further in PCT Publication WO 00/42072 by Presta .
  • the binding sites on human IgG1 for Fc ⁇ RI, Fc ⁇ RII, Fc ⁇ RIII and FcRn have been mapped and variants with improved binding have been described (see Shields, R.L. et al., 2001 J. Biol. Chen. 276:6591-6604 ):
  • the glycosylation of an antibody is modified.
  • an aglycoslated antibody can be made (i.e., the antibody lacks glycosylation).
  • Glycosylation can be altered to, for example, increase the affinity of the antibody for
  • Such carbohydrate modifications can be accomplished by; for example, altering one or more sites of glycosylation within the antibody sequence. For example, one or more amino acid substitutions can be made that result in elimination of one or more variable region framework glycosylation sites to thereby eliminate glycosylation at that site. Such aglycosylation may increase the affinity of the antibody for antigen.
  • Such an approach is described in further detail in U.S. Patent Nos. 5,714,350 and 6,350,861 by Co et al.
  • an antibody can be made that has an altered type of glycosylation, such as a hypofucosylated antibody having reduced amounts of fucosyl residues or an antibody having increased bisecting GlcNac structures.
  • altered glycosylation patterns have been demonstrated to increase the ADCC ability of antibodies.
  • carbohydrate modifications can be accomplished by, for example, expressing the antibody in a host cell with altered glycosylation machinery. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express recombinant antibodies of the invention to thereby produce an antibody with altered glycosylation.
  • PCT Publication WO 03/035835 by Presta describes a variant CHO cell line, Lecl3 cells, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell (see also Shields, R.L. et al., 2002 J. Biol. Chem. 277:26733-26740 ).
  • PCT Publication WO 99/54342 by Umana et al.
  • glycoprotein-modifying glycosyl transferases e.g., beta(1,4)-N acetylglucosaminyltransferase III (GnTIII)
  • GnTIII glycoprotein-modifying glycosyl transferases
  • An antibody can be pegylated to, for example, increase the biological (e.g., serum) half-life of the antibody.
  • the antibody, or fragment thereof typically is reacted with polyethylene glycol (PEG), such as a reactive ester or aldehyde derivative of PEG, under conditions in which one or more PEG groups become attached to the antibody or antibody fragment.
  • PEG polyethylene glycol
  • the pegylation can be carried out by an acylation reaction or an alkylation reaction with a reactive PEG molecule (or an analogous reactive watersoluble polymer).
  • polyethylene glycol is intended to encompass any of the forms of PEG that have been used to derivatize other proteins, such as mono (C1-C10) alkoxy- or aryloxy-polyethylene glycol or polyethylene glycol-maleimide.
  • the antibody to be pegylated is an aglycosylated antibody. Methods for pegylating proteins are known in the art and can be applied to the antibodies of the invention. See for example, EP 0 154 316 by Nishimura et al. and EP 0 401 384 by Ishikawa et al.
  • Effector functions can also be altered by modulating the glycosylation pattern of the antibody.
  • Glycart e.g., US6,602,684
  • Biowa e.g., US6,946,292
  • Genentech e.g WO03/035835
  • yeast cell lines capable of producing specific glycoforms of antibodies.
  • Kyowa Hakka/Biowa technology to reduce fucose. See, e.g., WO 03/085102 .
  • antibody/ immunoglobulin frameworks or scaffolds can be employed so long as the resulting polypeptide includes one or more binding region which is specific for the hTSLP protein.
  • Such frameworks or scaffolds include the 5 main idiotypes of human immunoglobulins, or fragments thereof (such as those disclosed elsewhere herein), and include immunoglobulins of other animal species, preferably having humanized aspects. Single heavy-chain antibodies such as those identified in camelids are of particular interest in this regard. Novel frameworks, scaffolds and fragments continue to be discovered and developed by those skilled in the art.
  • non-immunoglobulin frameworks and scaffolds may be employed, as long as they comprise a binding region specific for the hTSLP protein.
  • Such compounds are known herein as "polypeptides comprising a cMAC-specific binding region”.
  • Non-immunoglobulin frameworks or scaffolds include Adnectins (fibronectin) (Compound Therapeutics, Inc., Waltham, MA), ankyrin (Molecular Partners AG, Zurich, Switzerland), domain antibodies (Domantis, Ltd (Cambridge, MA) and Ablynx nv (Zwijnaarde, Belgium)), lipocalin (Anticalin) (Pieris Proteolab AG, Freising, Germany), small modular immuno-pharmaceuticals (Trubion Pharmaceuticals Inc., Seattle, WA), maxybodies (Avidia, Inc. (Mountain View, CA)), Protein A (Affibody AG, Sweden) and affilin (gamma-crystallin or ubiquitin) (Scil Proteins GmbH, Halle, Germany).
  • Adnectins fibronectin
  • ankyrin Molecular Partners AG, Zurich, Switzerland
  • domain antibodies Domantis, Ltd (Cambridge, MA) and Ablynx nv (Zwijn
  • the anti-hTSLP antibody or fragment thereof, or the polypeptide comprising a hTSLP-specific binding region may be bound, either covalently or non-covalently, to an additional moiety.
  • the additional moiety may be a polypeptide, an inert polymer such as PEG, small molecule, radioisotope, metal, ion, nucleic acid or other type of biologically relevant molecule.
  • Such a construct which may be known as an immunoconjugate, immunotoxin, or the like, is also included in the meaning of antibody, antibody fragment or polypeptide comprising ahTSLP-specific binding region, as used herein.
  • the anti- hTSLP antibodies having V H and V L sequences shown herein can be used to create new anti- hTSLP antibodies by modifying the V H and/or V L sequences, or the constant region(s) attached thereto.
  • the structural features of an anti- hTSLP antibody of the invention are used to create structurally related anti- hTSLP antibodies that retain at least one functional property of the antibodies of the invention, such as binding to hTSLP and also inhibiting one or more functional properties of hTSLP (e.g., receptor binding, inhibition of mediator release).
  • one or more CDR regions of the antibodies of the present invention, or mutations thereof can be combined recombinantly with known framework regions and/or other CDRs to create additional, recombinantly-engineered, anti- hTSLP antibodies of the invention, as discussed above.
  • the starting material for the engineering method is one or more of the V H and/or V L sequences provided herein, or one or more CDR regions thereof.
  • To create the engineered antibody it is not necessary to actually prepare (i.e., express as a protein) an antibody having one or more of the V H and/or V L sequences provided herein, or one or more CDR regions thereof. Rather, the information contained in the sequence(s) is used as the starting material to create a "second generation" sequence(s) derived from the original sequence(s) and then the "second generation" sequence(s) is prepared and expressed as a protein.
  • the invention provides a method for preparing an anti- hTSLP antibody consisting of: a heavy chain variable region antibody sequence having a CDR1 sequence selected from SEQ ID NO: 3, a CDR2 sequence selected from the group consisting of SEQ ID NOs: 18-20 and a CDR3 sequence selected from SEQ ID NO: 28 and a light chain variable region antibody sequence having a CDR1 sequence selected from SEQ ID NO: 8, a CDR2 sequence selected from SEQ ID NO: 47 and a CDR3 sequence selected from the group consisting of SEQ ID NOs: 60-61 altering at least one amino acid residue within the heavy chain variable region antibody sequence and/or the light chain variable region antibody sequence to create at least one altered antibody sequence; and expressing the altered antibody sequence as a protein.
  • the antibody encoded by the altered antibody sequence(s) is one that retains one, some or all of the functional properties of the anti- hTSLP antibodies described herein, which functional properties include, but are not limited to, specifically binding to hTSLP; and the antibody exhibits at least one of the following functional properties: the antibody inhibits binding of hTSLP protein to the hTSLP receptor, or the antibody inhibits hTSLP receptor binding preventing or ameliorating an inflammatory, fibrotic or allergic condition, particularly an inflammatory or obstructive airways disease, or the antibody inhibits hTSLP receptor binding thereby preventing or ameliorating asthma.
  • the altered antibody may exhibit one or more, two or more, or three or more of the functional properties discussed above.
  • the functional properties of the altered antibodies can be assessed using standard assays available in the art and/or described herein, such as those set forth in the Examples (e.g., ELISAs).
  • mutations can be introduced randomly or selectively along all or part of an anti- hTSLP antibody coding sequence and the resulting modified anti- hTSLP antibodies can be screened for binding activity and/or other functional properties as described herein.
  • Mutational methods have been described in the art.
  • PCT Publication WO 02/092780 by Short describes methods for creating and screening antibody mutations using saturation mutagenesis, synthetic ligation assembly, or a combination thereof.
  • PCT Publication WO 03/074679 by Lazar et al. describes methods of using computational screening methods to optimize physiochemical properties of antibodies.
  • nucleic acid molecules that encode the antibodies of the invention.
  • the nucleic acids may be present in whole cells, in a cell lysate, or may be nucleic acids in a partially purified or substantially pure form.
  • a nucleic acid is "isolated” or “rendered substantially pure” when purified away from other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis and others well known in the art. See, F. Ausubel, et al., ed. 1987 Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York .
  • a nucleic acid of the invention can be, for example, DNA or RNA and may or may not contain intronic sequences.
  • the nucleic acid is a cDNA molecule.
  • the nucleic acid may be present in a vector such as a phage display vector, or in a recombinant plasmid vector.
  • Nucleic acids of the invention can be obtained using standard molecular biology techniques.
  • hybridomas e.g., hybridomas prepared from transgenic mice carrying human immunoglobulin genes as described further below
  • cDNAs encoding the light and heavy chains of the antibody made by the hybridoma can be obtained by standard PCR amplification or cDNA cloning techniques.
  • nucleic acid encoding the antibody can be recovered from various phage clones that are members of the library.
  • V H and V L segments are obtained, these DNA fragments can be further manipulated by standard recombinant DNA techniques, for example to convert the variable region genes to full-length antibody chain genes, to Fab fragment genes or to an scFv gene.
  • a V L - or V H -encoding DNA fragment is operatively linked to another DNA molecule, or to a fragment encoding another protein, such as an antibody constant region or a flexible linker.
  • the term "operatively linked”, as used in this context, is intended to mean that the two DNA fragments are joined in a functional manner, for example, such that the amino acid sequences encoded by the two DNA fragments remain in-frame, or such that the protein is expressed under control of a desired promoter.
  • the isolated DNA encoding the V H region can be converted to a full-length heavy chain gene by operatively linking the V H -encoding DNA to another DNA molecule encoding heavy chain constant regions (CH1, CH2 and CH3).
  • heavy chain constant regions CH1, CH2 and CH3
  • the sequences of human heavy chain constant region genes are known in the art (see e.g., Kabat, E. A., el al., 1991 Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242 ) and DNA fragments encompassing these regions can be obtained by standard PCR amplification.
  • the heavy chain constant region can be an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region.
  • the V H -encoding DNA can be operatively linked to another DNA molecule encoding only the heavy chain CH1 constant region.
  • the isolated DNA encoding the V L region can be converted to a full-length light chain gene (as well as to a Fab light chain gene) by operatively linking the V L -encoding DNA to another DNA molecule encoding the light chain constant region, CL.
  • the sequences of human light chain constant region genes are known in the art (see e.g., Kabat, E. A., et al., 1991 Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242 ) and DNA fragments encompassing these regions can be obtained by standard PCR amplification.
  • the light chain constant region can be a kappa or a lambda constant region.
  • the V H - and V L -encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly4 -Ser) 3 , such that the V H and V L sequences can be expressed as a contiguous single-chain protein, with the V L and V H regions joined by the flexible linker (see e.g., Bird et al., 1988 Science 242:423-426 ; Huston et at., 1988 Proc. Natl. Acad. Sci. USA 85:5879-5883 ; McCafferty et al., 1990 Nature 348:552-554 ).
  • a flexible linker e.g., encoding the amino acid sequence (Gly4 -Ser) 3
  • Monoclonal antibodies can be produced by a variety of techniques, including conventional monoclonal antibody methodology e.g., the standard somatic cell hybridization technique of Kohler and Milstein, 1975 Nature 256: 495 . Many techniques for producing monoclonal antibody can be employed e.g., viral or oncogenic transformation of B lymphocytes.
  • hybridomas An animal system for preparing hybridomas is the murine system.
  • Hybridoma production in the mouse is a well established procedure. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. Fusion partners (e.g., murine myeloma cells) and fusion procedures are also known. Monolconal antibodies can also be produced using a specific hybridoma, which has been deposited in a strain collection.
  • Chimeric or humanized antibodies of the present invention can be prepared based on the sequence of a murine monoclonal antibody prepared as described above.
  • DNA encoding the heavy and light chain immunoglobulins can be obtained from the murine hybridoma of interest and engineered to contain non-murine (e.g.,. human) immunoglobulin sequences using standard molecular biology techniques.
  • the murine variable regions can be linked to human constant regions using methods known in the art (see e.g., U.S. Patent No. 4,816,567 to Cabilly et al. ).
  • the murine CDR regions can be inserted into a human framework using methods known in the art (see e.g., U.S. Patent No. 5,225,539 to Winter , and U.S. Patent Nos. 5,530,101 ; 5,585,089 ; 5,693,762 and , 6;180;370 to.Queen.et al.
  • the antibodies of the invention are human monoclonal antibodies.
  • Such human monoclonal antibodies directed against hTSLP can be generated using transgenic or transchromosomic mice carrying parts of the human immune system rather than the mouse system.
  • transgenic and transchromosomic mice include mice referred to herein as HuMAb mice and KM mice, respectively, and are collectively referred to herein as "human Ig mice.”
  • the HuMAb mouse ® (Medarex, Inc.) contains human immunoglobulin gene miniloci that encode un-rearranged human heavy ( ⁇ and ⁇ ) and ⁇ light chain immunoglobulin sequences, together with targeted mutations that inactivate the endogenous ⁇ and ⁇ chain loci (see e.g., Lonberg, et al., 1994 Nature 368(6474): 856-859 ). Accordingly, the mice exhibit reduced expression of mouse IgM or ⁇ , and in response to immunization, the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human IgG ⁇ monoclonal (Lonberg, N.
  • human antibodies of the invention can be raised using a mouse that carries human immunoglobulin sequences on transgenes and transchomosomes such as a mouse that carries a human heavy chain transgene and a human light chain transchromosome.
  • KM mice a mouse that carries a human heavy chain transgene and a human light chain transchromosome.
  • transgenic animal systems expressing human immunoglobulin genes are available in the art and can be used to raise anti- hTSLP antibodies of the invention.
  • an alternative transgenic system referred to as the Xenomouse can be used; such mice are described in, for example, U.S. Patent Nos. 5,939,598 ; 6,075,181 ; 6,114,598 ; 6, 150,584 and 6,162,963 to Kucherlapati et al.
  • mice carrying both a human heavy chain transchromosome and a human light chain tranchromosome referred to as "TC mice” can be used; such mice are described in Tomizuka et al., 2000 Proc. Natl. Acad. Sci. USA 97:722-727 .
  • cows carrying human heavy and light chain transchromosomes have been described in the art ( Kuroiwa et al., 2002 Nature Biotechnology 20:889-894 ) and can be used to raise anti - hTSLP antibodies of the invention.
  • Human monoclonal antibodies of the invention can also be prepared using phage display methods for screening libraries of human immunoglobulin genes. Such phage display methods for isolating human antibodies are established in the art. See for example: U.S. Patent Nos. 5,223,409 ; 5,403,484 ; and 5,571,698 to Ladner et al. ; U.S. Patent Nos. 5,427,908 and 5,580,717 to Dower et al. ; U.S. Patent Nos. 5,969,108 and 6,172,197 to McCafferty et al. ; and U.S. Patent Nos. 5,885,793 ; 6,521;404 ; 6,544,731 ; 6,555,313 ; 6,582,915 and 6,593,081 to Griffiths et al.
  • Human monoclonal antibodies of the invention can also be prepared using SCID mice into which human immune cells have been reconstituted such that a human antibody response can be generated upon immunization.
  • SCID mice into which human immune cells have been reconstituted such that a human antibody response can be generated upon immunization.
  • Such mice are described in, for example, U.S. Patent Nos. 5,476,996 and 5,698,767 to Wilson et al.
  • Antibodies obtained from screening of antibody human libraries (e.g. phage display with Morphosys), from libraries such as HuCal library from Morphosys, affinity maturation technology and further codon optimization sequence technologies can also be used. Affinity maturation can also be used on antibodies made in other ways (e.g., hybridomas).
  • Antibodies of the invention also can be produced in a host cell transfectoma using, for example, a combination of recombinant DNA techniques and gene transfection methods as is well known in the art (e.g., Morrison, S. (1985) Science 229:1202 ).
  • DNAs encoding partial or full-length light and heavy chains can be obtained by standard molecular biology techniques (e.g., PCR amplification or cDNA cloning using a hybridoma that expresses the antibody of interest) and the DNAs can be inserted into expression vectors such that the genes are operatively linked to transcriptional and translational control sequences.
  • operatively linked is intended to mean that an antibody gene is ligated into a vector such that transcriptional and translational control sequences within the vector serve their intended function of regulating the transcription and translation of the antibody gene.
  • the expression vector and expression control sequences are chosen to be compatible with the expression host cell used.
  • the antibody light chain gene and the antibody heavy chain gene can be inserted into separate vector or, more typically, both genes are inserted into the same expression vector.
  • the antibody genes are inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present).
  • the light and heavy chain variable regions of the antibodies described herein can be used to create full-length antibody genes of any antibody isotype by inserting them into expression vectors already encoding heavy chain constant and light chain constant regions of the desired isotype such that the V H segment is operatively linked to the CH segment(s) within the vector and the V L segment is operatively linked to the CL segment within the vector.
  • the recombinant expression vector can encode a signal peptide that facilitates secretion of the antibody chain from a host cell.
  • the antibody chain gene can be cloned into the vector such that the signal peptide is linked in frame to the amino terminus of the antibody chain gene.
  • the signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (i.e., a signal peptide from a non-immunoglobulin protein).
  • the recombinant expression vectors of the invention carry regulatory sequences that control the expression of the antibody chain genes in a host cell.
  • the term "regulatory sequence” is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals) that control the transcription or translation of the antibody chain genes.
  • Such regulatory sequences are described, for example, in Goeddel (Gene Expression Technology. Methods in Enzymology 185, Academic Press, San Diego, CA 1990 ). It will be appreciated by those skilled in the art that the design of the expression vector, including the selection of regulatory sequences, may depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
  • Regulatory sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from cytomegalovirus (CMV), Simian Virus 40 (SV40), adenovirus (e.g., the adenovirus major late promoter (AdMLP)), and polyoma.
  • CMV cytomegalovirus
  • SV40 Simian Virus 40
  • AdMLP adenovirus major late promoter
  • polyoma e.g., the adenovirus major late promoter (AdMLP)
  • nonviral regulatory sequences may be used, such as the ubiquitin promoter or P-globin promoter.
  • regulatory elements composed of sequences from different sources such as the SRa promoter system, which contains sequences from the SV40 early promoter and the long terminal repeat of human T cell leukemia virus type I ( Takebe, Y. et al., 1988 Mol. Cell
  • the recombinant expression vectors of the invention may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes.
  • the selectable marker gene facilitates selection of host cells into which the vector has been introduced (see, e.g., U.S. Pat. Nos. 4,399,216 , 4,634,665 and 5; 179,017 , all by Axel et al.).
  • the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced.
  • Selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr- host cells with methotrexate selection/amplification) and the neo gene (for G418 selection).
  • DHFR dihydrofolate reductase
  • the expression vector(s) encoding the heavy and light chains is transfected into a host cell by standard techniques.
  • the various forms of the term "transfection" are intended to encompass a wide variety of techniques commonly used for the introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, e.g., electroporation, calcium-phosphate precipitation, DEAE-dextran transfection and the like. It is theoretically possible to express the antibodies of the invention in either prokaryotic or eukaryotic host cells.
  • Mammalian host cells for expressing the recombinant antibodies of the invention include Chinese Hamster Ovary (CHO cells) (including dhfr- CHO cells, described Urlaub and Chasin, 1980 Proc. Natl. Acad. Sci. USA 77:4216-4220 used with a DH FR selectable marker, e.g., as described in R.J. Kaufman and P.A. Sharp, 1982 Mol. Biol. 159:601-621 , NSO myeloma cells, COS cells and SP2 cells.
  • Chinese Hamster Ovary CHO cells
  • dhfr- CHO cells described Urlaub and Chasin, 1980 Proc. Natl. Acad. Sci. USA 77:4216-4220 used with a DH FR selectable marker, e.g., as described in R.J. Kaufman and P.A. Sharp, 1982 Mol. Biol. 159:601-621
  • NSO myeloma cells COS cells and SP2 cells.
  • the antibodies When recombinant expression vectors encoding antibody genes are introduced into mammalian host cells, the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods.
  • Sequences encoding partial or full-length light and heavy chains are expressed by transfecting the expression vector(s) carrying such sequences into a host cell by standard transfection techniques.
  • eukaryotic host cells are used for expressing antibodies, as antibodies are generally glycoproteins and prokaryotic cells are therefore not appropriate.
  • Mammalian host cells which can be used for expressing the recombinant antibodies include Chinese Hamster Ovary (CHO cells) (including dhfr- CHO cells), NSO myeloma cells, COS cells and SP2 cells.
  • CHO cells Chinese Hamster Ovary (CHO cells) (including dhfr- CHO cells), NSO myeloma cells, COS cells and SP2 cells.
  • CHO cells Chinese Hamster Ovary (CHO cells) (including dhfr- CHO cells), NSO myeloma cells, COS cells and SP2 cells.
  • CHO cells Chinese Hamster Ovary (CHO cells) (including dhfr- CHO
  • the antibodies can be produced for example in glycoengineered yeast cell lines, including Pichia, Saccharomyces or Kluyveromyces species, and preferably, Pichia pastoris or Saccharomyces cerevisae or Kluyveromyces lactis, see for example EP1297172B1 (Glycofi).
  • the antibodies can also be produced in glycoengineered plant cell lines, and preferably bryophyte cell lines as described in WO2004057002 (Greenovation).
  • Antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or secretion of the antibody into the culture medium. Antibodies are recovered from the culture medium using standard protein purification methods.
  • the present invention features an anti- hTSLP antibody, or a fragment thereof, conjugated to a therapeutic moiety, such as a cytotoxin, a drug (e.g., an immunosuppressant) or a radiotoxin.
  • a therapeutic moiety such as a cytotoxin, a drug (e.g., an immunosuppressant) or a radiotoxin.
  • conjugates are referred to herein as “immunoconjugates”.
  • Immunoconjugates that include one or more cytotoxins are referred to as "immunotoxins.”
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to (e.g., kills) cells.
  • Examples include taxon, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, t. colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 - dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Therapeutic agents also include, for example, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), ablating agents (e.g., mechlorethamine, thioepa chloraxnbucil, meiphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin, anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.,
  • An example of a calicheamicin antibody conjugate is commercially available (MylotargTm; Wyeth-Ayerst).
  • Cytotoxins can be conjugated to antibodies of the invention using linker technology available in the art.
  • linker types that have been used to conjugate a cytotoxin to an antibody include, but are not limited to, hydrazones, thioethers, esters, disulfides and peptide-containing linkers.
  • a linker can be chosen that is, for example, susceptible to cleavage by low pH within the lysosomal compartment or susceptible to cleavage by proteases, such as proteases preferentially expressed in tumor tissue such as cathepsins (e.g., cathepsins B, C, D).
  • Antibodies of the present invention also can be conjugated to a radioactive isotope to generate cytotoxic radiopharmaceuticals, also referred to as radioimmunoconjugates.
  • radioactive isotopes that can be conjugated to antibodies for use diagnostically or therapeutically include, but are not limited to, iodine 131 , indium 111 , yttrium 90 , and lutetium 177 . Method for preparing radioimmunconjugates are established in the art.
  • radioimmunoconjugates are commercially available, including Zevalin TM (DEC Pharmaceuticals) and Bexxar TM (Corixa Pharmaceuticals), and similar methods can be used to prepare radioimmunoconjugates using the antibodies of the invention.
  • the antibody conjugates of the invention can be used to modify a given biological response, and the drug moiety is not to be construed as limited to classical chemical therapeutic agents.
  • the drug moiety may be a protein or polypeptide possessing a desired biological activity.
  • proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon- ⁇ ; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
  • IL-1 interleukin-1
  • IL-2 interleukin-2
  • IL-6 interleukin-6
  • the present invention features bispecific molecules comprising an anti- hTSLP antibody, or a fragment thereof, of the invention.
  • An antibody of the invention, or antigen-binding portions thereof can be derivatized or linked to another functional molecule, e.g., another peptide or protein (e.g., another antibody or ligand for a receptor) to generate a bispecific molecule that binds to at least two different binding sites or target molecules.
  • the antibody of the invention may in fact be derivatized or linked to more than one other functional molecule to generate multi-specific molecules that bind to more than two different binding sites and/or target molecules; such multi-specific molecules are also intended to be encompassed by the term "bispecific molecule" as used herein.
  • an antibody of the invention can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other binding molecules, such as another antibody, antibody fragment, peptide or binding mimetic, such that a bispecific molecule results.
  • the present invention includes bispecific molecules comprising at least one first binding specificity for hTSLP and a second binding specificity for a second target epitope.
  • the second target epitope is an Fc receptor, e.g., human Fc ⁇ RI (CD64) or a human Fc ⁇ receptor (CD89). Therefore, the invention includes bispecific molecules capable of binding both to Fc ⁇ R, Fc ⁇ R or Fc ⁇ R expressing effector cells (e.g., monocytes, macrophages or polymorphonuclear cells (PMNs), and to target cells expressing hTSLP.
  • effector cells e.g., monocytes, macrophages or polymorphonuclear cells (PMNs
  • bispecific molecules target hTSLP expressing cells to effector cell and trigger Fc receptor-mediated effector cell activities, such as phagocytosis of an hTSLP expressing cells, antibody dependent cell-mediated cytotoxicity (ADCC), cytokine release, or generation of superoxide anion.
  • Fc receptor-mediated effector cell activities such as phagocytosis of an hTSLP expressing cells, antibody dependent cell-mediated cytotoxicity (ADCC), cytokine release, or generation of superoxide anion.
  • the molecule can further include a third binding specificity, in addition to an anti-Fc binding specificity and an anti- hTSLP binding specificity.
  • the third binding specificity could be an anti-enhancement factor (EF) portion, e.g., a molecule which binds to a surface protein involved in cytotoxic activity and thereby increases the immune response against the target cell.
  • EF anti-enhancement factor
  • the "anti-enhancement factor portion” could be an antibody, functional antibody fragment or a ligand that binds to a given molecule, e.g., an antigen or a receptor, and thereby results in an enhancement of the effect of the binding determinants for the Fc receptor or target cell antigen.
  • the "anti-enhancement factor portion” can bind an Fc receptor or a target cell antigen.
  • the anti-enhancement factor portion could bind to an entity that is different from the entity to which the first and second binding specificities bind.
  • the anti-enhancement factor portion can bind a cytotoxic T-cell (e.g. by CD2, CD3, CD8, CD28, CD4, CD44, ICAM-1 or other immune cell that results in an increased immune response against the target cell).
  • the bispecific molecules of the invention comprise as a binding specificity at least one antibody, or an antibody fragment thereof, including, e.g., an Fab, Fab', F(ab') 2 , Fv, or a single chain Fv.
  • the antibody may also be a light chain or heavy chain dimer, or any minimal fragment thereof such as a Fv or a single chain construct as described in Ladner et al. U.S. Patent No. 4,946,778 .
  • the binding specificity for an Fc ⁇ receptor is provided by a monoclonal antibody, the binding of which is not blocked by human immunoglobulin G (IgG).
  • IgG receptor refers to any of the eight ⁇ -chain genes located on chromosome 1. These genes encode a total of twelve transmembrane or soluble receptor isoforms which are grouped into three F ⁇ receptor classes: Fc ⁇ RI (CD64), Fc ⁇ RII(CD32), and Fc ⁇ RIII (CD 16).
  • the Fc ⁇ receptor is a human high affinity Fc ⁇ RI.
  • the human Fc ⁇ RI is a 72 kDa molecule, which shows high affinity for monomeric IgG (10 8 - 10 9 M -1 ).
  • anti-Fc ⁇ monoclonal antibodies are described by Fanger et at. in PCT Publication WO 88/00052 and in U.S. Patent No. 4,954,617 . These antibodies bind to an epitope of Fc ⁇ RI, Fc ⁇ RII or Fc ⁇ RIII at a site which is distinct from the Fc ⁇ binding site of the receptor and, thus, their binding is not blocked substantially by physiological levels of IgG.
  • Specific anti-Fc ⁇ RI antibodies useful in this invention are mAb 22, mAb 32, mAb 44, mAb 62 and mAb 197.
  • the hybridoma producing mAb 32 is available from the American Type Culture Collection, ATCC Accession No. HB9469.
  • the anti-Fc ⁇ receptor antibody is a humanized form of monoclonal antibody 22 (H22).
  • H22 monoclonal antibody 22
  • the production and characterization of the H22 antibody is described in Graziano, R.F. et al., 1995 J. Immunol 155 (10): 4996-5002 and PCT Publication WO 94/10332 .
  • the 1122 antibody producing cell line was deposited at the American Type Culture Collection under the designation HA022CL1 and has the accession no. CRL 11177.
  • the binding specificity for an Fc receptor is provided by an antibody that binds to a human IgA receptor, e.g., an Fc-alpha receptor (Fc ⁇ RI (CD89), the binding of which does not have to be blocked by human immunoglobulin A (IgA).
  • a human IgA receptor e.g., an Fc-alpha receptor (Fc ⁇ RI (CD89)
  • Fc ⁇ RI Fc-alpha receptor
  • IgA receptor is intended to include the gene product of one a gene (Fc ⁇ RI) located on chromosome 19. This gene is known to encode several alternatively spliced transmembrane isoforms of 55 to 110 kDa.
  • Fc ⁇ RI (CD89) is constitutively expressed on monocytes/macrophages, eosinophilic and neutrophilic granulocytes, but not on non-effector cell populations.
  • Fc ⁇ RI has medium affinity (5 x 10 7 M -1 ) for both IgA1 and IgA2, which is increased upon exposure to cytokines such as G-CSF or GM-CSF ( Morton, H.C. et al., 1996 Critical Reviews in Immunology 116:423-440 ).
  • cytokines such as G-CSF or GM-CSF
  • A3, A59, A62 and A77 which bind Fc ⁇ RI outside the IgA ligand binding domain, have been described ( Monteiro, R.C. et al., 1992 J. Immunol. 148:1764 ).
  • Fc ⁇ RI and Fc ⁇ RI are trigger receptors for use in the bispecific molecules of the invention because they are expressed primarily on immune effector cells, e.g., monocytes, PMNs, macrophages and dendritic cells; expressed at high levels (e.g., 5,000-100,000 per cell); mediators of cytotoxic activities (e.g., ADCC, phagocytosis); mediate enhanced antigen presentation of antigens, including self-antigens, targeted to them.
  • immune effector cells e.g., monocytes, PMNs, macrophages and dendritic cells
  • mediators of cytotoxic activities e.g., ADCC, phagocytosis
  • antibodies which can be employed in the bispecific molecules of the invention are murine, chimeric and humanized monoclonal antibodies.
  • the bispecific molecules of the present invention can be prepared by conjugating the constituent binding specificities, e.g., the anti-FcR and anti- hTSLP binding specificities, using methods known in the art. For example, each binding specificity of the bispecific molecule can be generated separately and then conjugated to one another. When the binding specificities are proteins or peptides, a variety of coupling or cross-linking agents can be used for covalent conjugation.
  • cross-linking agents examples include protein A, carbodiimide, N-succinimidyl-S-acetyl-thioacetate (SATA), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), o-phenylenedimaleimide (oPDM), N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP), and sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohaxane-1-carboxylate (sulfo-SMCC) (see e.g., Karpovsky et al., 1984 J. Exp. Med.
  • Conjugating agents are SATA and sulfo-SMCC, both available from Pierce Chemical Co. (Rockford, IL).
  • the binding specificities are antibodies, they can be conjugated by sulfhydryl bonding of the C-terminus hinge regions of the two heavy chains.
  • the hinge region is modified to contain an odd number of sulfhydryl residues, for example one, prior to conjugation.
  • both binding specificities can be encoded in the same vector and expressed and assembled in the same host cell. This method is particularly useful where the bispecific molecule is a mAb x mAb, mAb x Fab, Fab x F(ab') 2 or ligand x Fab
  • a bispecific molecule of the invention can be a single chain molecule comprising one single chain antibody and a binding determinant, or a single chain bispecific molecule comprising two binding determinants. Bispecific molecules may comprise at least two single chain molecules. Methods for preparing bispecific molecules are described for example in U.S. Patent Number 5,260,203 ; U.S. Patent Number 5,455,030 ; U.S. Patent Number 4,881,175 ; U.S. Patent Number 5,132,405 ; U.S. Patent Number 5,091,513 ; U.S. Patent Number 5,476,786 ; U.S. Patent Number 5,013,653 ; U.S. Patent Number 5,258,498 ; and U.S. Patent Number 5,482,858 .
  • Binding of the bispecific molecules to their specific targets can be confirmed by, for example, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (REA), FACS analysis, bioassay (e.g., growth inhibition), or Western Blot assay.
  • ELISA enzyme-linked immunosorbent assay
  • REA radioimmunoassay
  • FACS fluorescence-activated cell sorting
  • bioassay e.g., growth inhibition
  • Western Blot assay Western Blot assay.
  • Each of these assays generally detects the presence of protein-antibody complexes of particular interest by employing a labeled reagent (e.g., an antibody) specific for the complex of interest.
  • a labeled reagent e.g., an antibody
  • the FcR-antibody complexes can be detected using e.g., an enzyme-linked antibody or antibody fragment which recognizes and specifically binds to the antibody-FcR complexes.
  • the antibody can be radioactively 4 labeled and used in a radioimmunoassay (RIA) (see, for example, Weintraub; B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986 .
  • RIA radioimmunoassay
  • the radioactive isotope can be detected by such means as the use of a ⁇ counter or a scintillation counter or by autoradiography.
  • the present invention provides a composition, e.g., a pharmaceutical composition, containing one or a combination of monoclonal antibodies, or antigen-binding portion(s) thereof, of the present invention, formulated together with a pharmaceutically acceptable carrier.
  • a pharmaceutical composition of the invention can comprise a combination of antibodies (or immunoconjugates or bispecifics) that bind to different epitopes on the target antigen or that have complementary activities.
  • compositions of the invention also can be administered in combination therapy, i.e., combined with other agents.
  • the combination therapy can include an anti- hTSLP antibody of the present invention combined with at least one other anti-inflammatory agent.
  • therapeutic agents that can be used in combination therapy are described in greater detail below in the section on uses of the antibodies of the invention.
  • pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.
  • the carrier should be suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion).
  • the active compound i.e., antibody, immunoconjuage, or bispecific molecule, may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.
  • the pharmaceutical compounds of the invention may include one or more pharmaceutically acceptable salts.
  • a "pharmaceutically acceptable salt” refers to a salt that retains the desired biological activity of the parent compound and does not impart any undesired toxicological effects (see e.g., Berge, S.M., et al., 1977 J. Pharm. Sci. 66:1-19 ). Examples of such salts include acid addition salts and base addition salts.
  • Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like; as well as from nontoxic organic acids such as aliphatic mono- and di-carboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like.
  • nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like
  • nontoxic organic acids such as aliphatic mono- and di-carboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like.
  • Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as N,N'-dibenzylethylenediamine, N-methylglucamine, chloroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.
  • a pharmaceutical composition of the invention also may include a pharmaceutically acceptable anti-oxidant.
  • pharmaceutically acceptable antioxidants include: water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
  • oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole
  • aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
  • polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as, aluminum monostearate and gelatin.
  • Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • the use of such media and agents for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • compositions typically must be sterile and stable under the conditions of manufacture and storage.
  • the composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example; by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent that delays absorption for example, monostearate salts and gelatin.
  • Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by sterilization microfiltration.
  • dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • the methods of preparation are vacuum drying and freeze-drying (lyophilization) that yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the subject being treated, and the particular mode of administration.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the composition which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 0.01 per cent to about ninety-nine percent of active ingredient, from about 0.1 per cent to about 70 per cent, or from about 1 percent to about 30 percent of active ingredient in combination with a pharmaceutically acceptable carrier.
  • Dosage regimens are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
  • Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
  • the dosage ranges from about 0.0001 to 100 mg/kg, and more usually 0.01 to 5 mg/kg, of the host body weight.
  • dosages can be 0.3 mg/kg body weight, 1 mg/kg body weight, 3 mg/kg body weight, 5 mg/kg body weight or 10 mg/kg body weight or within the range of 1-10 mg/kg.
  • An exemplary treatment regime entails administration once per week, once every two weeks, once every three weeks, once every four weeks, once a month, once every 3 months or once every three to 6 months.
  • Dosage regimens for an anti- hTSLP antibody of the invention include 1 mg/kg body weight or 3 mg/kg body weight by intravenous administration, with the antibody being given using one of the following dosing schedules: every four weeks for six dosages, then every three months; every three weeks; 3 mg/kg body weight once followed by I mg/kg body weight every three weeks.
  • two or more monoclonal antibodies with different binding specificities are administered simultaneously, in which case the dosage of each antibody administered falls within the ranges indicated.
  • Antibody is usually administered on multiple occasions. Intervals between single dosages can be, for example, weekly, monthly, every three months or yearly. Intervals can also be irregular as indicated by measuring blood levels of antibody to the target antigen in the patient. In some methods, dosage is adjusted to achieve a plasma antibody concentration of about 1-1000 ⁇ g/ml and in some methods about 25-300 ⁇ g/ml.
  • antibody can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. In general, human antibodies show the longest half-life, followed by humanized antibodies, chimeric antibodies, and nonhuman antibodies. The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated or until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patient can be administered a prophylactic regime.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • a "therapeutically effective dosage" of an anti- hTSLP antibody of the invention can results in a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction.
  • a composition of the present invention can be administered by one or more routes of administration using one or more of a variety of methods known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. Routes of administration for antibodies of the invention include intravenous, intramuscular, intradermal, intraperitoneal, subcutaneous, spinal or other parenteral routes of administration, for example by injection or infusion.
  • parenteral administration means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrastemal injection and infusion.
  • an antibody of the invention can be administered by a nonparenteral route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically.
  • a nonparenteral route such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically.
  • the active compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems.
  • a controlled release formulation including implants, transdermal patches, and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J.R. Robinson, ed., Marcel Dekker, Inc., New York, 1978 .
  • compositions can be administered with medical devices known in the art.
  • a therapeutic composition of the invention can be administered with a needleless hypodermic injection device, such as the devices shown in U.S. Patent Nos. 5,399,163 ; 5,383,851 ; 5,312,335 ; 5,064,413 ; 4,941,880 ; 4,790,824 or 4,596,556 .
  • Examples of well known implants and modules useful in the present invention include: U.S. Patent No. 4,487,603 , which shows an implantable micro-infusion pump for dispensing medication at a controlled rate; U.S. Patent No. 4,486,194 , which shows a therapeutic device for administering medicants through the skin; U.S.
  • Patent No. 4,447,233 which shows a medication infusion pump for delivering medication at a precise infusion rate
  • U.S. Patent No. 4,447,224 which shows a variable flow implantable infusion apparatus for continuous drug delivery
  • U.S. Patent No. 4,439,196 which shows an osmotic drug delivery system having multi-chamber compartments
  • U.S. Patent No. 4,475,196 which shows an osmotic drug delivery system.
  • Many other such implants, delivery systems, and modules are known to those skilled in the art.
  • the human monoclonal antibodies of the invention can be formulated to ensure proper distribution in vivo.
  • the blood-brain barrier excludes many highly hydrophilic compounds.
  • the therapeutic compounds of the invention cross the BBB (if desired)
  • they can be formulated, for example, in liposomes.
  • liposomes For methods of manufacturing liposomes, see, e.g., U.S. Patents 4,522,811 ; 5,374,548 ; and 5,399,331 .
  • the liposomes may comprise one or more moieties which are selectively transported into specific cells or organs, thus enhance targeted drug delivery (see, e.g., V.V. Ranade, 1989 J. Cline Pharmacol. 29:685 ).
  • Exemplary targeting moieties include folate or biotin (see, e.g., U.S. Patent 5,416,016 to Low et al .); mannosides ( Umezawa et al., 1988 Biochem. Biophys. Res. Commun. 153:1038 ); antibodies ( P.G. Bloeman et al., 1995 FEBS Lett. 357:140 ; M. Owais et al., 1995 Antimicrob. Agents Chemother. 39:180 ); surfactant protein A receptor ( Briscoe et al., 1995 Am. J. Physiol.1233:134 ); p120 ( Schreier et al., 1994 J. Biol. Chem.
  • the antibodies (and immunoconjugates and bispecific molecules) of the present invention have in vitro and in vivo diagnostic and therapeutic utilities.
  • these molecules can be administered to cells in culture, e.g. in vitro or in vivo, or in a subject, e.g., in vivo, to treat, prevent or diagnose a variety of disorders.
  • Non-human animals includes all vertebrates, e.g., mammals and non-mammals, such as non-human primates, sheep, dogs, cats, cows, horses, chickens, amphibians, and reptiles.
  • the methods are particularly suitable for treating human patients having a disorder associated with aberrant hTSLP expression.
  • the two can be administered in either order or simultaneously.
  • the antibodies (and immunoconjugates and bispecific molecules) of the invention can be used to detect levels of hTSLP, or levels of cells that contain hTSLP. This can be achieved, for example, by contacting a sample (such as an in vitro sample) and a control sample with the anti- hTSLP antibody under conditions that allow for the formation of a complex between the antibody and hTSLP. Any complexes formed between the antibody and hTSLP are detected and compared in the sample and the control. For example, standard detection methods, well known in the art, such as ELISA and flow cytometic assays, can be performed using the compositions of the invention.
  • the invention further provides methods for detecting the presence of hTSLP (e.g., hTSLP antigen) in a sample, or measuring the amount of hTSLP, comprising contacting the sample, and a control sample, with an antibody of the invention, or an antigen binding portion thereof, which specifically binds to hTSLP, under conditions that allow for formation of a complex between the antibody or portion thereof and hTSLP. The formation of a complex is then detected, wherein a difference in complex formation between the sample compared to the control sample is indicative of the presence of hTSLP in the sample.
  • hTSLP e.g., hTSLP antigen
  • kits consisting of the compositions (e.g., antibodies, human antibodies, immunoconjugates and bispecific molecules) of the invention and instructions for use.
  • the kit can further contain a least one additional reagent, or one or more additional antibodies of the invention (e.g., an antibody having a complementary activity which binds to an epitope on the target antigen distinct from the first antibody).
  • Kits typically include a label indicating the intended use of the contents of the kit.
  • the term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit.
  • the following examples describe monoclonal, in particular human monoclonal, anti-human TSLP antibody that specifically binds to human TSLP and neutralized its biological activity in different cell based assays, including primary human cell assays.
  • the developed antibodies showed extremely high affinity in the low pM range.
  • HuCAL GOLD ® is a Fab library based on the HuCAL ® concept 6-8 9 , in which all six CDRs are diversified, and which employs the CysDisplay TM technology for linking Fab fragments to the phage surface 10 .
  • the HuCAL GOLD ® library was amplified in 2xYT medium containing 34 ⁇ g/ml chloramphenicol and 1% glucose (2xYT-CG). After infection with VCSM13 helper phages at an OD 600nm of 0.5 (30 min at 37°C without shaking; 30 min at 37°C shaking at 250 rpm), cells were spun down (4120 g; 5 min; 4°C), resuspended in 2xYT/34 ⁇ g/ml chloramphenicol/ 50 ⁇ g/ml kanamycin/ 0.25 mM IPTG and grown overnight at 22°C. Phages were PEG-precipitated twice from the supernatant, resuspended in PBS/ 20% glycerol and stored at -80°C.
  • Phage amplification between two panning rounds was conducted as follows: mid-log phase E. coli TG1 I cells were infected with eluted phages and plated onto LB-agar supplemented with 1% of glucose and 34 ⁇ g/ml of chloramphenicol (LB-CG plates). After overnight incubation at 30°C, the TG1 colonies were scraped off the agar plates and used to inoculate 2xYT-CG until an OD 600nm of 0.5 was reached and VCSM13 helper phages added for infection as described above.
  • HuCAL GOLD ® phage-antibodies were divided into four pools comprising different combinations of VH master genes (pool 1: VH1/5 ⁇ , pool 2: VH3 ⁇ , pool 3: VH2/4/6 ⁇ , pool 4: VH1-6 ⁇ ). These pools were individually subjected to three rounds of solid phase panning on human TSLP directly coated to Maxisorp plates and in addition three of solution pannings on biotinylated TSLP.
  • the first panning variant was solid phase panning against human TSLP:
  • the bacterial pellets were each resuspended in 500 ⁇ l 2xYT medium, plated on 2xYT-CG agar plates and incubated overnight at 30°C. Colonies were then scraped from the plates and phages were rescued and amplified as described above.
  • the second and third rounds of the solid phase panning on directly coated TSLP was performed according to the protocol of the first round except for increasing the stringency of the washing procedure.
  • the second panning variant was solution panning against biotinylated human TSLP:
  • Phages diluted in 500 ⁇ l PBS for each panning condition were mixed with 500 ⁇ l 2xChemiblocker / 0.1% Tween 1 h at RT (rotator).
  • Pre-adsorption of phages was performed twice: 50 ⁇ l of blocked Streptavidin magnetic beads were added to the blocked phages and incubated for 30 min at RT on a rotator. After separation of beads via a magnetic device (Dynal MPC-E) the phage supernatant ( ⁇ 1ml) was transferred to a new blocked tube and pre-adsorption was repeated on 50 ⁇ l blocked beads for 30 min.
  • biotinylated hTSLP was added to blocked phages in a new blocked 1.5 ml tube and incubated for I h at RT on a rotator.
  • 100 ⁇ l of blocked streptavidin magnetic beads were added to each panning phage pool and incubated 10 min at RT on a rotator.
  • Phages bound to biotinylated TSLP were immobilized to the magnetic beads and collected with a magnetic particle separator (Dynal MPC-E). Beads were then washed 7x in PBS/0.05% Tween using a rotator, followed by washing another three times with PBS.
  • Elution of phage from the Dynabeads was performed adding 300 ⁇ l 20 mM DTT in 10 mM Tris/HCl pH 8 to each tube for 10 min. Dynabeads were removed by the magnetic particle separator and the supernatant was added to 14ml of an E.coli TG-1 culture grown to OD 600nm of 0.6-0.8. Beads were then washed once with 200 ⁇ l PBS and together with additionally removed phages the PBS was added to the 14 ml E.coli TG-1 culture. For phage infection, the culture was incubated in 50 ml plastic tubes for 45 min at 37°C without shaking.
  • the bacterial pellets were each resuspended in 500 ⁇ l 2xYT medium, plated on 2xYT-CG agar plates and incubated overnight at 30°C. Colonies were then scraped from the plates and phages were rescued and amplified as described above.
  • the second and third rounds of the solution panning on biotinylated TSLP was performed according to the protocol of the first round except for increasing the stringency of the washing procedure.
  • the Fab-encoding inserts of the selected HuCAL GOLD ® phagemids were sub-cloned into the expression vector pMORPH ® X9_Fab_FH ( Fig 1 ) in order to facilitate rapid and efficient expression of soluble Fabs.
  • the plasmid DNA of the selected clones was digested with Xba I and Eco RI, thereby excising the Fab-encoding insert (ompA-VLCL and phoA-Fd), and cloned into the Xba I/ Eco RI-digested expression vector pMORPH ® X9_Fab_FH.
  • Fabs expressed from this vector carry two C-terminal tags (FLAGTM and 6xHis, respectively) for both, detection and purification.
  • Chloramphenicol-resistant single colonies obtained after subcloning of the selected Fabs into the pMORPH ® X9_Fab_FH expression vector were used to inoculate the wells of a sterile 96-well microtiter plate containing 100 ⁇ l 2xYT-CG medium per well and grown overnight at 37°C. 5 ⁇ l of each E . coli TG-1 culture was transferred to a fresh, sterile 96-well microtiter plate pre-filled with 100 ⁇ l 2xYT medium supplemented with 34 ⁇ g/ml chloramphenicol and 0.1% glucose per well. The microtiter plates were incubated at 30°C shaking at 400 rpm on a microplate shaker until the cultures were slightly turbid ( ⁇ 2-4 hrs) with an OD 600nm of ⁇ 0.5.
  • BEL extracts whole cell lysates
  • 40 ⁇ l BEL buffer (2xBBS/ EDTA: 24.7 g/l boric acid, 18.7 g NaCl/l, 1.49 g EDTA/I, pH 8.0
  • the BEL extracts were used for binding analysis by ELISA or a BioVeris M-series ® 384 analyzer (see Example 2).
  • the blocked Maxisorp plated were washed 3x with PBS-T before 10 ⁇ l of the blocked BEL extracts were added to the wells and incubated for 1 h at RT.
  • the primary Fab antibodies the following secondary antibodies were applied: alkaline phospatase (AP)-conjugated AffiniPure F(ab') 2 fragment, goat anti-human, - anti-mouse or -anti-sheep IgG (Jackson Immuno Research).
  • AP-conjugates fluorogenic substrates like AttoPhos (Roche) were used according to the instructions by the manufacturer. Between all incubation steps, the wells of the microtiter plate were washed with PBS-T three times and three times after the final incubation with secondary antibody. Fluorescence was measured in a TECAN Spectrafluor plate reader.
  • Fab fragments encoded by pMORPH ® X9_Fab_FH in TG-1 cells was carried out in shaker flask cultures using 750 ml of 2xYT medium supplemented with 34 ⁇ g/ml chloramphenicol. Cultures were shaken at 30°C until the OD 600nm reached 0.5. Expression was induced by addition of 0.75 mM IPTG for 20 h at 30°C. Cells were disrupted using lysozyme and Fab fragments isolated by Ni-NTA chromatography (Qiagen, Hilden, Germany). Protein concentrations were determined by UV-spectrophotometry 11 .
  • Example 2 Identification of neutralizing anti-human TSLP Fab candidates that inhibit TSLP induced signaling of the TSLP receptor
  • Binding inhibition of biotinylated TSLP to Ba/F3 cells, expressing hTSLPR, hIL7R ⁇ was analyzed by FACS.
  • the Fab antibodies were diluted in FACS buffer (cellwash (B&D) /3%FCS).
  • 50 ⁇ l biotinylated TSLP at 100 ng/ml was incubated with 50 ⁇ l of 100 ⁇ g/ml Fab for I h at RT.
  • To avoid internalization of the TSLP receptor all further steps with cells were carried out at 4 °C or on ice.
  • 100 ⁇ l Ba/F3 cells at 2x 10 6 cells/ml were transferred to each well of a 96 well plate (NUNC) and centrifuged at 2000 rpm; 4°C.
  • Ba/F3 cells expressing hTSLPR, hIL7R ⁇ and a Stat5-Luc reporter gene, were grown in the presence of 5 ng/ml TSLP.
  • 10 ⁇ l of 1x10 6 cells/ml in assay buffer (RPMI-1640 w/o phenol red, 10 % FCS, penicillin 10 Uml -1 /streptomycin 10 ⁇ gml -1 , 1 % puromycin) were added to Costar 96-well white plate (Coming).
  • Isolation of human blood moncytes - 150 mL of blood was collected from healthy adult volunteers on the NHRC donor panel. Blood was collected with tubes containing 1mL of anti-coagulant (20 mg/mL EDTA in PBS) per 10 mL blood and then diluted with 12.5 mL PBS per 20 mL blood. Red blood cells were then sedimented by mixing the diluted blood with 12.5 mL 4 % Dextran (in PBS) per tube and incubating for 40 minutes on ice. PBMCs were isolated by density centrifugation using Ficoll and the 'buffy coat' containing PBMCs was recovered using a plastic pastete. The cells were washed once (300xg for 7 minutes) in PBS and counted.
  • anti-coagulant 20 mg/mL EDTA in PBS
  • Red blood cells were then sedimented by mixing the diluted blood with 12.5 mL 4 % Dextran (in PBS) per tube and incubating for 40 minutes on ice.
  • MACS isolation of cells was carried out according to the manufacturers instructions using the Monocyte Isolation kit II (Miltenyi Biotec). All buffer additions and washes were with MACS buffer at 4°C (PBS, 0.5 % BSA, 2mM EDTA, pH 7.2) unless otherwise stated. Briefly, to 10 7 cells, 30 ⁇ L of buffer and 10 ⁇ L each of FcR Blocking Reagent and Biotin-Antibody Cocktail were added, mixed well and incubated for 10 minutes. A further 30 ⁇ L of buffer and 20 ⁇ L of Anti-Biotin Microbeads were then added to the cells and incubated for 15 minutes.
  • TARC production by monocytes treated with TSLP and blocking the response with anti-TSLP antibodies Freshly isolated monocytes were resuspended at 1 x 10 6 cells per mL of assay buffer (RPMI 1640, 10 % FCS, penicillin 10 U/mL / streptomycin 10 ⁇ g/mL). 100 ⁇ L of cells were added to each well of a 96-well flat-bottomed plate to give a concentration of 100,000 cells per well. 80 ⁇ L of assay buffer was added to wells that were used for the TSLP dose response curve and 60 ⁇ L was added to wells in which anti-TSLP antibodies were to be tested.
  • assay buffer RPMI 1640, 10 % FCS, penicillin 10 U/mL / streptomycin 10 ⁇ g/mL
  • TSLP antibody testing 20 ⁇ L of a 10x stock solution of each anti-TSLP antibody was added to the cells and incubated at 37°C, 5 % CO 2 for 20 minutes. rhTSLP was then added at 0.5 ng/mL to each well (20 ⁇ L of 10x stock solution per well) containing anti-TSLP antibody. A TSLP dose response curve was included on each plate. Plates were incubated for 24 hours at 37°C, 5 % CO 2 after which supernatants were harvested and stored at -20°C for future analysis.
  • ELISA of monocyte supernatants to measure TARC - Measurements of TARC production in culture supernatants was carried out using a human TARC duoset ELISA kit (R+D Systems) according to manufacturer's instructions. Briefly monocyte supernatants were diluted 1:2 in assay buffer (RPMI 1640, 10 % FCS, penicillin 10 U/mL / streptomycin 10 pg/mL) and added in triplicate to 96-well half-area plates previously coated with TARC capture antibody. Plates were incubated for 2 hours at RT then washed again. 50 ⁇ L of biotinylated detection mAb was then added to each well and incubated for a further 2 hours at RT.
  • assay buffer RPMI 1640, 10 % FCS, penicillin 10 U/mL / streptomycin 10 pg/mL
  • Human natural TSLP was generated by treating primary human fibroblast cells (Clonetics), with a cytokine cocktail containing IL-1 ⁇ (1 ng/ml), TNF-a (1 ng/ml) and IL-13 (10 ng/ml) for 24 hours at 37°C in phenol-red free RPMI containing 10% FBS.
  • the cell culture supernatant containing induced natural TSLP was shown to be active in the RGA described above.
  • a I in 10 dilution of the natural TSLP containing TSLP corresponded to approximately the same level of activity in the RGA as 0.5 ng/ml of rhTSLP and hence was used as the final dilution when testing the activity of candidate antibodies.
  • TSLP binding inhibition assay recombinant human TSLP (R&D-Systems) was directly coupled (NHS/EDC coupling) to carboxylic acid M-270 Dynal magnetic beads. 50 ⁇ l Fab antibodies per well (10 ⁇ M stock , 1:5 dilution steps) were incubated for 2 h with 25 ⁇ l TSLP coated beads in 96 well plates (Nunc). 50 ⁇ l of 100 pM TSLP-receptor/Fc fusion and 1:1000 diluted anti-human Fc detection antibody labeled with BV-tag TM according to instructions of supplier (BioVeris, Europe, Witney, Oxforfshire, UK) were added to each well and incubated for 1 h.
  • Example 3 Affinity maturation of selected anti-TSLP Fabs by parallel exchange of LCDR3 and HCDR2 cassettes
  • phage antibody Fab libraries were generated where the LCDR3 of six parental clones was replaced by a repertoire of individual light chain CDR3 sequences.
  • the HCDR2 region of each parental clone was replaced by a repertoire of individual heavy chain CDR2 sequences.
  • Affinity maturation libraries were generated by standard cloning procedures and transformation of the diversified clones into electro-competent E . coli TOP10F' cells (Invitrogen). Fab-presenting phages were prepared as described in Example 1A. Four maturation pools were built and kept separate during the subsequent selection process:
  • Pannings using the four antibody pools were performed on biotinylated recombinant human TSLP (R&D Systems) in solution for three rounds, respectively as described in Example 1B, solution panning against biotinylated human TSLP.
  • the selection stringency was increased by reduction of biotinylated antigen from panning round to panning round, by prolonged washing steps and by addition of non-biotinylated antigen for off-rate selection.
  • Biotinylated human TSLP coupled to paramagnetic beads (M-280 Streptavidin, Dynal), and BV-tag TM (BioVeris Europe, Witney, Oxfordshire, UK) labeled anti-human (Fab)' 2 (Dianova) was added and the mixture incubated for 30 min. Subsequently, the concentration of unbound Fab was quantified via ECL detection using the M-SERIES ® 384 analyzer (BioVeris Europe).
  • VH- /VL pairs for IgG IgG rh TSLP cyno TSLP-APP Parental binder VH VL MOR0# KD [pM] KD [pM] 1 5008 10 1438 MOR04493 2 5009 5 10861 3 4494 > 200 20857 MOR04494 4 5010 2 1099 5 5011 31 4951 6 5012 25 1535 7 5013 34 1367 8 5014 8 3711 9 5015 26 2959 10 5016 7 98 11 5017 4 111 12 5018 14 358 13 5010 5016 5154 13 18 14 5010 5017 5155 1 9 15 5010 5018 5156 16 58 16 5011 5016 5157 1 34 17 5011 5017 5158 9 21 18 5011 5018 5159 12 87 19 5012 5016 5160 27 28 20 5012 5017 5161 11 11 21 5012 5018 5162 21 81 22 5013 5016 5163 22 17 23 5013 5017 5164 14 8 24 5013 5018 5165, 19 45 25 50
  • the LC Lamda amino acid sequence is shown in SEQ ID NO: 99: and is encoded by the nucleotide sequence of SEQ ID NO: 100:
  • the LC Lamda amino acid sequence is shown in SEQ ID NO: 101: and is encoded by the nucleotide sequence of SEQ ID NO: 102:
  • the HC Lamda amino acid sequence is shown in SEQ ID NO: 103 and is encoded by the nucleotide sequence of SEQ ID NO: 104
  • the HC Lamda amino acid sequence is shown in SEQ ID NO: 105 and is encoded by the nucleotide sequence of SEQ ID NO: 106
  • the HC Lamda amino acid sequence is shown in SEQ ID NO: 107 and is encoded by the nucleotide sequence of SEQ ID NO: 108 GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTC CCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGA GGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA GCCGCGGGAGGAGCAGTACAACAGCACGTACCGGGTGGTCAGCGTCCTCACCGT CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA AGCCCTCCCAGCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCATCCCGGGAGGAGATGACCAAGAACCA GGTCAGCCTGACCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCATCCCGGGAG
  • the HC Lamda amino acid sequence is shown in SEQ ID NO: 109 and is encoded by the nucleotide sequence of SEQ ID NO: 110
  • the HC Lamda amino acid sequence is shown in SEQ ID NO: 1 I I and is encoded by the nucleotide sequence of SEQ ID NO: 112
  • the HC Lamda amino acid sequence is shown in SEQ ID NO: 113 and is encoded by the nucleotide sequence of SEQ ID NO: 114

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Pulmonology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Transplantation (AREA)
  • Plant Pathology (AREA)
  • Dermatology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

    Field of Use
  • The present invention relates to human thymic stromal lymphopoietin (hTSLP) antibodies and especially those which neutralize hTSLP activity. It further relates to methods for using anti- hTSLP antibody molecules in diagnosis or treatment of hTSLP related disorders, such as asthma, atopic dermatitis, allergic rhinitis, fibrosis, inflammatory bowel disease and Hodgkin's lymphoma.
  • Background of the invention
  • Human thymic stromal lymphopoietin (hTSLP) (GenBank accession number: NM_033035), an interleukin-7 (IL-7) like cytokine, which is produced by human epithelial stroma and mast cells, initiates the allergic response by the stimulation of dendritic cells (DC)1. The deduced 159-amino acid protein is 43% identical to mouse TSLP, contains a 28-residue signal sequence, 6 cysteines, and 2 putative N-glycosylation sites. Native Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis showed expression of a 23 kilo Dalton (kDa) protein, whereas the calculated molecular mass of the mature protein is 14,9 kDa, suggesting that hTSLP is glycosylated. hTSLP contains 7 basic C-terminal amino acids (aa) N-Lysine-Lysine-Arginine-Arginine-Lysine-Arginine-Lysine-C (KKRRKRK) and 6 cysteins probably involved in disulfide bond formation.
  • hTSLP is highly expressed by epithelial cells of inflamed tonsils and keratinocytes of atopic dermatitis and its expression is associated with Langerhans cell migration and activation2.
  • The TSLP receptor complex is a heterodimer comprised of the TSLP receptor (TSLPR) and IL-7 receptor alpha (IL-7Ra) chain. The receptor is expressed primarily on monocytes and myeloid-derived DC, as well as on B lymphocytes3.
  • Allergy is the result of a complex immune cascade leading to the dysregulated production of the Thymus-derived helper cell type 2 (Th2) subset lymphocyte cytokines, the generation of allergen-specific IgE-producing B lymphocytes and the subsequent activation and degranulation of mast cells upon allergen challenge.
  • DC play an important role in several models of allergy whereby TSLP-activated human DC produce Th2-attracting chemokines but no IL-12, and induce naive CD4-and CD8- antigen-positive T lymphocyte differentiation into effector cells with a typical pro-allergic phenotype.
  • Atopic dermatitis (AD) represents a chronic, relapsing inflammatory skin disease with characteristic clinical features4. Genetic background, environmental exposures such as food allergens, aeroallergens, microbial antigens, or stress, and distinct immunological predispositions all contribute to the development of periodic, itchy eczematous skin lesions in afflicted patients. Several soluble factors have been shown to be increased in the peripheral blood of patients with AD. These cytokines and chemokines play an important role in regulating DC differentiation, activation and migration and are important in coordinating the trafficking of immune cells. hTSLP, which is produced by human epithelial stroma and mast cells, initiates the allergic response by the stimulation of DC. TSLP activated DC produce the CC chemokines that induce the chemotaxis and polarization of allergen-specific effector lymphocytes5. Thus, epithelial- and stromal-cell-derived TSLP might represent one of the factors initiating the allergic responses, and could be a target for a curative therapeutic approach to allergy.
  • In recent studies, one anti-human TSLP polyclonal antibody was described (R&D Systems, AF1398). This antibody was produced in sheep immunized with purified E. coli-derived recombinant TSLP. Human TSLP specific sheep IgG was purified by hTSLP affinity chromatography. This polyclonal antibody was selected for its ability to neutralize hTSLP bioactivity and showed less than 1% cross-reactivity with recombinant murine TSLP. The Neutralization Dose50 (ND50) for this antibody was defined as that concentration of antibody required to yield one-half maximal inhibition of the recombinant hTSLP activity on the responsive cell line mouse BaF/3 cells co-transfected with IL-7Ra and hTSLPR chains, as an assay. The ND50 was determined to be approximately 0.05 - 0.25 µg/ml in the presence of 0.5 ng/ml recombinant hTSLP. The disadvantage of polyclonal antibodies is that they are in a limited supply as there is a restricted supply of serum from the same treated animal. In addition, polyclonal antibodies recognize multiple epitopes on the same antigen and may have undesired cross-reactivity. While polyclonal serum contains a mixture of both high and low affinity binders, targeting also a range of epitopes, a monoclonal antibody approach make sure to select the most useful candidate for a therapeutic use.
  • Animal-derived polyclonal antibodies when injected in humans constitute a foreign protein in a human host, they often elicit an antiglobulin response due to their immunogenicity in human. This antiglobulin response, which is predominantly directed against the constant domains of the animal antibodies, usually precludes treatment after repeated administration.
  • Soumelis et al. teaches the possible role of TSLP in allergic inflammation (asthma, atopic dermatitis and allergic rhinitis) wherein TSLP was blocked by commercially available neutralizing rat anti-human TSLP mAbs 5E5 and 12F3.
  • Finally, WO03065985 discloses antagonists, such as an antibody or a fragment there, against TSLP (therein called ILB50) for the treatment of allergic inflammations like asthma, atopic dermatitis. WO03065985 . which refers to Soumelis et al and the antibodies disclosed therein, describes what regions of TSLP could provide increased antigenicity for generating an antibody.
  • Summary of the invention
  • The invention provides an isolated human or humanized antibody or functional fragment thereof according to claim 1.
  • In one embodiment, the isolated antibody is an IgG1, IgG2 or an IgG4.
  • In another embodiment, the invention provides a pharmaceutical composition comprising an antibodies or functional fragments as described herein and a pharmaceutically acceptable carrier or excipient therefor.
  • In one embodiment of the present invention, the antibody is an IgG1 having light chain lambda sequence selected from SEQ ID NO:99 or SEQ ID NO:101 and a heavy chain sequence selected from SEQ ID NO:103, SEQ ID NO:105, SEQ ID NO:107, SEQ ID NO:109, SEQ ID NO:111 and SEQ ID NO:113.
  • In another aspect of the present invention there is provided an isolated or recombinant polynucleotide which encodes a polypeptide comprising an antigen-binding region of an antibody or a functional fragment thereof described above.
  • In one embodiment the polynucleotide is a DNA.
  • In another aspect of the present invention there is provided a host cell comprising a first and a second recombinant DNA segment encoding a heavy and a light chain, respectively, of the antibody described above, wherein the DNA segment are respectively operably linked to a first and a second promoter and are capable of being expressed in said host cell.
  • Brief Description of the figures
    • Figure 1 describes the HuCAL® Fab expression vector pMORPH®X9_Fab_FH (carrying anti-TSLP Fab MOR04494)F
    Detailed description of the invention
  • The present invention relates to isolated antibodies, particularly human antibodies, that bind specifically to hTSLP and that inhibit functional properties of hTSLP. In certain embodiments, the antibodies of the invention are derived from particular heavy and light chain sequences and/or comprise particular structural features such as CDR regions comprising particular amino acid sequences. The invention provides isolated antibodies, methods of making such antibodies, immunoconjugates and bispecific molecules comprising such antibodies and pharmaceutical compositions containing the antibodies, immunconjugates or bispecific molecules of the invention. The invention also relates to methods of using the antibodies to inhibit a disorder or condition associated with the presence of cell receptor target hTSLP, for example, in the treatment of an inflammatory or allergic condition, particularly an inflammatory or obstructive airways disease.
  • In order that the present invention may be more readily understood, certain terms are first defined. Additional definitions are set forth throughout the detailed description.
  • The term 'hTSLP' is a reference to human TSLP. The present invention provides antibodies to human TSLP, especially human antibodies, that are cross-reactive with non-human primate TSLP, including cynomolgus and rhesus monkey TSLP. Antibodies in accordance with some embodiments of the present invention may recognise a variant truncated isoform of TSLP in which the protein terminates at the alanine at residue 99 resulting in the last 60 amino acids of the C-terminus being deleted and also an single nucleotide polymorphism (SNP) of TSLP in which the cysteine residue at amino acid position 90 is replaced by tyrosine. The term "immune response" refers to the action of, for example, lymphocytes, antigen presenting cells, phagocytic cells, granulocytes, and soluble macromolecules produced by the above cells or the liver (including antibodies, cytokines, and complement) that results in selective damage to, destruction of, or elimination from the human body of invading pathogens, cells or tissues infected with pathogens, cancerous cells, or, in cases of autoimmunity or pathological inflammation, normal human cells or tissues.
  • A "signal transduction pathway" refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of a cell. As used herein, the phrase "cell surface receptor" includes, for example, molecules and complexes of molecules capable of receiving a signal and capable of the transmission of such a signal across the plasma membrane of a cell. An example of a "cell surface receptor" of the present invention is the hTSLP receptor to which the hTSLP protein molecule binds.
  • The term "antibody" as referred to herein includes whole antibodies and any antigen binding fragment (i. e., "antigen-binding portion") or single chains thereof. A naturally occurring "antibody" is a glycoprotein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbrebyted herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbrebyted herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is, composed of three CDRs and four FRs arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.
  • The term "antigen-binding portion" of an antibody (or simply "antigen portion"), as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., hTSLP). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term "antigen-binding portion" of an antibody include a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; a F(ab)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment consisting of the VH and CH1 domains; a Fv fragment consisting of the VL and VH domains of a single arm of an antibody; a dAb fragment (Ward et al., 1989 Nature 341:544-546), which consists of a VH domain; and an isolated complementarity determining region (CDR).
  • Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al., 1988 Science 242:423-426; and Huston et al., 1988 Proc. Natl. Acad. Sci. 85:5879-5883). Such single chain antibodies are also intended to be encompassed within the term "antigen-binding portion" of an antibody. These antibody fragments are obtained using conventional techniques known to those of skill in the art, and the fragments are screened for utility in the same manner as are intact antibodies.
  • An "isolated antibody", as used herein, refers to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds hTSLP is substantially free of antibodies that specifically bind antigens other than hTSLP). An isolated antibody that specifically binds hTSLP may, however, have cross-reactivity to other antigens, such as TSLP molecules from other species. Moreover, an isolated antibody may be substantially free of other cellular material and/or chemicals. "Isolated antibody" also refers to an antibody to the target that cross-reacts with known homologs/orthologs, as well as antibodies to the target that do not cross react with known homologs/orthologs.
  • The terms "monoclonal antibody" or "monoclonal antibody composition" as used herein refer to a preparation of antibody molecules of single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.
  • The term "human antibody", as used herein, is intended to include antibodies having variable regions in which both the framework and CDR regions are derived from sequences of human origin. Furthermore, if the antibody contains a constant region, the constant region also is derived from such human sequences, e.g., human germline sequences, or mutated versions of human germline sequences. The human antibodies of the invention may include amino acid residues not encoded by human sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo). However, the term "human antibody", as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences. CDR grafted antibodies, or alternative technology designed to minimize the Human Anti-murine Antibody response (humaneering technology of Kalobios, or humanization technology of PDL). Xoma also has "human engineering" technology; see e.g., US patent 5766886 .
  • The term "human monoclonal antibody" refers to refers to an antibody obtained from a substantially homogeneous population of antibodies that recognizes and binds to a determinant (or epitope) on the antigen. Monoclonal antibodies displaying a single binding specificity which have variable regions in which both the framework and CDR regions are derived from human sequences. In one embodiment, the human monoclonal antibodies are produced by a hybridoma which includes a B cell obtained from a transgenic nonhuman animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a light chain transgene fused to an immortalized cell.
  • The term "recombinant human antibody", as used herein, includes all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom, antibodies isolated from a host cell transformed to express the human antibody, e.g., from a transfectoma, antibodies isolated from a recombinant, combinatorial human antibody library, and antibodies prepared, expressed, created or isolated by any other means that involve splicing of all or a portion of a human immunoglobulin gene, sequences to other DNA sequences. Such recombinant human antibodies have variable regions in which the framework and CDR regions are derived from human germline immunoglobulin sequences. In certain embodiments, however, such recombinant human antibodies can be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.
  • As used herein, "isotype" refers to the antibody class (e.g., IgM, IgE, IgG such as IgG1, IgG2 or IgG4) that is encoded by the heavy chain constant region genes.
  • The phrases "an antibody recognizing an antigen" and " an antibody specific for an antigen" are used interchangeably herein with the term "an antibody which binds specifically to an antigen."
  • As used herein, an antibody that "specifically binds to hTSLP " is intended to refer to an antibody that binds to human TSLP with a KD of 1 x 10-9 M or less. An antibody that "cross-reacts with an antigen other than hTSLP" is intended to refer to an antibody that binds that antigen with a 1 x 10-9 M or less. An antibody that "does not cross-react with a particular antigen" is intended to refer to an antibody that binds to that antigen, with a KD of 1.5 x 10-8 M or greater, or a KD of 5-10 x 10-8 M or 1 x 10-7 M or greater. In certain embodiments, such antibodies that do not cross-react with the antigen exhibit essentially undetectable binding against these proteins in standard binding assays.
  • As used herein, an antibody that "inhibits binding of hTSLP to the hTSLP receptor" refers to an antibody that inhibits hTSLP binding to the receptor with a KD of 5 nM or less.
  • As used herein, an antibody that "inhibits inflammatory mediator release" is intended to refer to an antibody that inhibits hTSLP induced luciferase expression from a Baf-3 cell line transfected with the TSLP-receptor and a luciferase reporter system and hTSLP induced TARC secretion from human primary monocytes isolated from PBMCs with an IC50 less than 1.0 nM.
  • The term "Kassoc" or "Ka", as used herein, is intended to refer to the association rate of a particular antibody-antigen interaction, whereas the term "Kdis" or "KD," as used herein, is intended to refer to the dissociation rate of a particular antibody-antigen interaction. The term "KD", as used herein, is intended to refer to the dissociation constant, which is obtained from the ratio of Kd to Ka (i.e. Kd/Ka) and is expressed as a molar concentration (M). KD values for antibodies can be determined using methods well established in the art. A method for determining the KD of an antibody is by using surface plasmon resonance, or using a biosensor system such as a Biacore® system.
  • As used herein, the term "high affinity" for an IgG antibody refers to an antibody having a KD of 10-9 M or less for a target antigen.
  • As used herein, the term "subject" includes any human or nonhuman animal.
  • The term "nonhuman animal" includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows chickens, amphibians, reptiles, etc.
  • Various aspects of the invention are described in further detail in the following subsections.
  • Standard assays to evaluate the binding ability of the antibodies toward hTSLP of various species are known in the art, including for example, ELISAs, western blots and RIAs. Suitable assays are described in detail in the Examples. The binding kinetics (e.g., binding affinity) of the antibodies also can be assessed by standard assays known in the art, such as by Biacore analysis. Assays to evaluate the effects of the antibodies on functional properties of hTSLP are described in further detail in the Examples.
  • Accordingly, an antibody that "inhibits" one or more of these hTSLP functional properties (e.g., biochemical, immunochemical, cellular, physiological or other biological activities, or the like) as determined according to methodologies known to the art and described herein, will be understood to relate to a statistically significant decrease in the particular activity relative to that seen in the absence of the antibody (e.g., or when a control antibody of irrelevant specificity is present). An antibody that inhibits hTSLP activity effects such a statistically significant decrease by at least 10% of the measured parameter, by at least 50%, 80% or 90%, and in certain embodiments an antibody of the invention may inhibit greater than 95%, 98% or 99% of hTSLP functional activity.
  • Monoclonal antibodies
  • Antibodies of the invention are the human monoclonal antibodies, isolated and structurally characterized as described, in Examples 1-5. The VH amino acid sequences of the antibodies are shown in SEQ ID NOs: 84-86 respectively. The VL amino acid sequences of the antibodies are shown in SEQ ID NO: 88.
  • Since each of these antibodies can bind to hTSLP, the VH and VL sequences can be "mixed and matched" to create other anti- hTSLP binding molecules of the invention. hTSLP binding of such "mixed and matched" antibodies can be tested using the binding assays described above and in the Examples (e.g., ELISAs). When VH and VL chains are mixed and matched, a VH sequence from a particular VH/VL pairing should be replaced with a structurally similar VH sequence. Likewise, a VL sequence from a particular VH/VL pairing should be replaced with a structurally similar VL sequence. The VH and VL sequences of the antibodies of the present invention are particularly amenable for mixing and matching, since these antibodies use VH and VL sequences derived from the same germline sequences and thus exhibit structural similarity.
  • In another aspect, the invention provides antibodies that comprise the heavy chain and light chain CDR1s, CDR2s and CDR3s of the antibodies, or combinations thereof. The amino acid sequence of the VH CDR1 of the antibodies are shown in SEQ ID NO: 3. The amino acid sequence of the VH CDR2s of the antibodies and are shown in SEQ ID NOs:18-20 25. The amino acid sequence of the VH CDR3 of the antibodies are shown in SEQ ID NO: 28 . The amino acid sequence of the VL CDR1 of the antibodies are shown in SEQ ID NOs:38. The amino acid sequence of the VL CDR2 of the antibodies are shown in SEQ ID NO: 47. The amino acid sequences of the VL CDR3s of the antibodies are shown in SEQ ID NOs: 60-61 The CDR regions are delineated using the Kabat system (Kabat, E. A., et al., 1991 Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242).
  • Given that each of these antibodies can bind to hTSLP and that antigen-binding specificity is provided primarily by the CDR1, 2 and 3 regions, the VH CDR1, 2 and 3 sequences and VL CDR1, 2 and 3 sequences can be "mixed and matched" (i.e., CDRs from different antibodies can be mixed and match, although each antibody must contain a VH CDR1, 2 and 3 and a VL CDR1, 2 and 3) to create other anti-hTSLP binding molecules of the invention. hTSLP binding of such "mixed and matched" antibodies can be tested using the binding assays described above and in the Examples (e.g., ELISAs). When VH CDR sequences are mixed and matched, the CDR1, CDR2 and/or CDR3 sequence from a particular VH sequence should be replaced with a structurally similar CDR sequence(s). Likewise, when VL CDR sequences are mixed and matched, the CDR1, CDR2 and/or CDR3 sequence from a particular VL sequence should be replaced with a structurally similar CDR sequence(s). It will be readily apparent to the ordinarily skilled artisan that novel VH and VL sequences can be created by substituting one or more VH and/or VL CDR region sequences with structurally similar sequences from the CDR sequences shown herein for monoclonal antibodies of the present invention.
  • In one embodiment, the antibody consists of: a heavy chain variable region CDR1 comprising SEQ ID NO: 3; a heavy chain variable region CDR2 comprising SEQ ID NO: 18; a heavy chain variable region CDR3 comprising SEQ ID NO: 28; a light chain variable region CDR1 comprising SEQ ID NO: 38; a light chain variable region CDR2 comprising SEQ ID NO: 47; and a light chain variable region CDR3 comprising SEQ ID NO: 60.
  • In another embodiment, the antibody consists of: a heavy chain variable region CDR1 comprising SEQ ID NO: 3; a heavy chain variable region CDR2 comprising SEQ ID NO: 19; a heavy chain variable region CDR3 comprising SEQ ID NO: 28; a light chain variable region CDR1 comprising SEQ ID NO: 38; a light chain variable region CDR2 comprising SEQ ID NO: 47; and a light chain variable region CDR3 comprising SEQ ID NO: 60.
  • In another embodiment, the antibody consists of: a heavy chain variable region CDR1 comprising SEQ ID NO: 3; a heavy chain variable region CDR2 comprising SEQ ID NO: 20; a heavy chain variable region CDR3 comprising SEQ ID NO: 28; a light chain variable region CDR1 comprising SEQ ID NO: 38; a light chain variable region CDR2 comprising SEQ ID NO: 47; and a light chain variable region CDR3 comprising SEQ ID NO: 60.
  • As used herein, a human antibody comprises heavy or light chain variable regions that is "the product of" or "derived from" a particular germline sequence if the variable regions of the antibody are obtained from a system that uses human germline immunoglobulin genes. Such systems include immunizing a transgenic mouse carrying human immunoglobulin genes with the antigen of interest or screening a human immunoglobulin gene library displayed on phage with the antigen of interest. A human antibody that is "the product of" or "derived from" a human germline immunoglobulin sequence can be identified as such by comparing the amino acid sequence of the human antibody to the amino acid sequences of human germline immunoglobulins and selecting the human germline immunoglobulin sequence that is closest in sequence (i.e., greatest % identity) to the sequence of the human antibody. A human antibody that is "the product of" or "derived from" a particular human germline immunoglobulin sequence may contain amino acid differences as compared to the germline sequence, due to, for example, naturally occurring somatic mutations or intentional introduction of site-directed mutation. However, a selected human antibody typically is at least 90% identical in amino acids sequence to an amino acid sequence encoded by a human germline immunoglobulin gene and contains amino acid residues that identify the human antibody as being human when compared to the germline immunoglobulin amino acid sequences of other species (e.g., murine germline sequences). In certain cases, a human antibody may be at least 60%, 70%, 80%, 90%, or at least 95%, or even at least 96%, 97%, 98%, or 99% identical in amino acid sequence to the amino acid sequence encoded by the germline immunoglobulin gene. Typically, a human antibody derived from a particular human germline sequence will display no more than 10 amino acid differences from the amino acid sequence encoded by the human germline immunoglobulin gene. In certain cases, the human antibody may display no more than 5, or even no more than 4, 3, 2, or 1 amino acid difference from the amino acid sequence encoded by the germline immunoglobulin gene. The antibodies of the invention may be engineered to include modifications within the Fc region, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity. Furthermore, an antibody of the invention may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be modified to alter its glycosylation, again to alter one or more functional properties of the antibody. Each of these embodiments is described in further detail below. The numbering of residues in the Fc region is that of the EU index of Kabat.
  • In one embodiment, the hinge region of CH1 is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased. This approach is described further in U.S. Patent No. 5,677,425 by Bodmer et al. The number of cysteine residues in the hinge region of CH1 is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the antibody.
  • In another embodiment, the Fc hinge region of an antibody is mutated to decrease the biological half-life of the antibody. More specifically, one or more amino acid mutations are introduced into the CH2-CH3 domain interface region of the Fc-hinge fragment such that the antibody has impaired Staphylococcyl protein A (SpA) binding relative to native Fc-hinge domain SpA binding. This approach is described in further detail in U.S. Patent No. 6,165,745 by Ward et al.
  • In another embodiment, the antibody is modified to increase its biological half-life. Various approaches are possible. For example, one or more of the following mutations can be introduced: T252L, T254S, T256F, as described in U.S. Patent No. 6,277,375 to Ward . Alternatively, to increase the biological half life, the antibody can be altered within the CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Patent Nos. 5,869,046 and 6,121,022 by Presta et al. The Fc constant region of an antibody is critical for determining serum half-life and effector functions, i.e., antibody dependent cell cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC) activities. One can engineer specific mutants of the Fc fragment to alter the effector function and/or serum half-life (see Xencor technology for example) (See e.g., WO2004029207 ).
  • One method to alter effector function and serum half-life of an antibody is to graft the variable region of an antibody fragment with an Fc fragment having the appropriate effector function. IgG1 or IgG4 isotypes can be selected for cell killing activity, whereas IgG2 isotype can be used for silent antibodies (with no cell killing activity).
  • Silent antibodies with long serum half-life can be obtained by making chimeric fusion of variable regions of an antibody with a serum protein such as HSA or a protein binding to such serum protein, such HSA - binding protein.
  • In yet other embodiments, the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector functions of the antibody. For example, one or more amino acids can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Patent Nos. 5,624,821 and 5,648,260, both by Winter et al.
  • In another embodiment, one or more amino acids selected from amino acid residues can be replaced with a different amino acid residue such that the antibody has altered C1q binding and/or reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Patent Nos. 6,194,551 by Idusogie et at.
  • In another embodiment, one or more amino acid residues are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in PCT Publication WO 94/29351 by Bodmer et al.
  • In yet another embodiment, the Fc region is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or to increase the affinity of the antibody for an Fcγ receptor by modifying one or more amino acids. This approach is described further in PCT Publication WO 00/42072 by Presta . Moreover, the binding sites on human IgG1 for FcγRI, FcγRII, FcγRIII and FcRn have been mapped and variants with improved binding have been described (see Shields, R.L. et al., 2001 J. Biol. Chen. 276:6591-6604):
  • In still another embodiment, the glycosylation of an antibody is modified. For example, an aglycoslated antibody can be made (i.e., the antibody lacks glycosylation). Glycosylation can be altered to, for example, increase the affinity of the antibody for
  • "antigen'. Such carbohydrate modifications can be accomplished by; for example, altering one or more sites of glycosylation within the antibody sequence. For example, one or more amino acid substitutions can be made that result in elimination of one or more variable region framework glycosylation sites to thereby eliminate glycosylation at that site. Such aglycosylation may increase the affinity of the antibody for antigen. Such an approach is described in further detail in U.S. Patent Nos. 5,714,350 and 6,350,861 by Co et al.
  • Additionally or alternatively, an antibody can be made that has an altered type of glycosylation, such as a hypofucosylated antibody having reduced amounts of fucosyl residues or an antibody having increased bisecting GlcNac structures. Such altered glycosylation patterns have been demonstrated to increase the ADCC ability of antibodies. Such carbohydrate modifications can be accomplished by, for example, expressing the antibody in a host cell with altered glycosylation machinery. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express recombinant antibodies of the invention to thereby produce an antibody with altered glycosylation. For example, EP 1,176,195 by Hang et al. describes a cell line with a functionally disrupted FUT8 gene, which encodes a fucosyl transferase, such that antibodies expressed in such a cell line exhibit hypofucosylation. PCT Publication WO 03/035835 by Presta describes a variant CHO cell line, Lecl3 cells, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell (see also Shields, R.L. et al., 2002 J. Biol. Chem. 277:26733-26740). PCT Publication WO 99/54342 by Umana et al. describes cell lines engineered to express glycoprotein-modifying glycosyl transferases (e.g., beta(1,4)-N acetylglucosaminyltransferase III (GnTIII)) such that antibodies expressed in the engineered cell lines exhibit increased bisecting GlcNac structures which results in increased ADCC activity of the antibodies (see also Umana et al., 1999 Nat. Biotech. 17:176-180).
  • Another modification of the antibodies herein that is contemplated by the invention is pegylation. An antibody can be pegylated to, for example, increase the biological (e.g., serum) half-life of the antibody. To pegylate an antibody, the antibody, or fragment thereof, typically is reacted with polyethylene glycol (PEG), such as a reactive ester or aldehyde derivative of PEG, under conditions in which one or more PEG groups become attached to the antibody or antibody fragment. The pegylation can be carried out by an acylation reaction or an alkylation reaction with a reactive PEG molecule (or an analogous reactive watersoluble polymer). As used herein, the term "polyethylene glycol" is intended to encompass any of the forms of PEG that have been used to derivatize other proteins, such as mono (C1-C10) alkoxy- or aryloxy-polyethylene glycol or polyethylene glycol-maleimide. In certain embodiments, the antibody to be pegylated is an aglycosylated antibody. Methods for pegylating proteins are known in the art and can be applied to the antibodies of the invention. See for example, EP 0 154 316 by Nishimura et al. and EP 0 401 384 by Ishikawa et al.
  • Effector functions can also be altered by modulating the glycosylation pattern of the antibody. Glycart (e.g., US6,602,684 ), Biowa (e.g., US6,946,292 ) and Genentech (e.g WO03/035835 ) have engineered mammalian cell lines to produce antibodies with increased or decreased effector function. Especially, non fucosylated antibodies will have enhanced ADCC activities. Glycofi has also developed yeast cell lines capable of producing specific glycoforms of antibodies. Also Kyowa Hakka/Biowa technology to reduce fucose. See, e.g., WO 03/085102 .
  • A wide variety of antibody/ immunoglobulin frameworks or scaffolds can be employed so long as the resulting polypeptide includes one or more binding region which is specific for the hTSLP protein. Such frameworks or scaffolds include the 5 main idiotypes of human immunoglobulins, or fragments thereof (such as those disclosed elsewhere herein), and include immunoglobulins of other animal species, preferably having humanized aspects. Single heavy-chain antibodies such as those identified in camelids are of particular interest in this regard. Novel frameworks, scaffolds and fragments continue to be discovered and developed by those skilled in the art.
  • Alternatively, known or future non-immunoglobulin frameworks and scaffolds may be employed, as long as they comprise a binding region specific for the hTSLP protein. Such compounds are known herein as "polypeptides comprising a cMAC-specific binding region". Known non-immunoglobulin frameworks or scaffolds include Adnectins (fibronectin) (Compound Therapeutics, Inc., Waltham, MA), ankyrin (Molecular Partners AG, Zurich, Switzerland), domain antibodies (Domantis, Ltd (Cambridge, MA) and Ablynx nv (Zwijnaarde, Belgium)), lipocalin (Anticalin) (Pieris Proteolab AG, Freising, Germany), small modular immuno-pharmaceuticals (Trubion Pharmaceuticals Inc., Seattle, WA), maxybodies (Avidia, Inc. (Mountain View, CA)), Protein A (Affibody AG, Sweden) and affilin (gamma-crystallin or ubiquitin) (Scil Proteins GmbH, Halle, Germany).
  • According to the instant invention, the anti-hTSLP antibody or fragment thereof, or the polypeptide comprising a hTSLP-specific binding region, regardless of the framework or scaffold employed, may be bound, either covalently or non-covalently, to an additional moiety. The additional moiety may be a polypeptide, an inert polymer such as PEG, small molecule, radioisotope, metal, ion, nucleic acid or other type of biologically relevant molecule. Such a construct, which may be known as an immunoconjugate, immunotoxin, or the like, is also included in the meaning of antibody, antibody fragment or polypeptide comprising ahTSLP-specific binding region, as used herein.
  • Methods of engineering antibodies
  • As discussed above, the anti- hTSLP antibodies having VH and VL sequences shown herein can be used to create new anti- hTSLP antibodies by modifying the VH and/or VL sequences, or the constant region(s) attached thereto. Thus, in another aspect of the invention, the structural features of an anti- hTSLP antibody of the invention are used to create structurally related anti- hTSLP antibodies that retain at least one functional property of the antibodies of the invention, such as binding to hTSLP and also inhibiting one or more functional properties of hTSLP (e.g., receptor binding, inhibition of mediator release).
  • For example, one or more CDR regions of the antibodies of the present invention, or mutations thereof, can be combined recombinantly with known framework regions and/or other CDRs to create additional, recombinantly-engineered, anti- hTSLP antibodies of the invention, as discussed above. Other types of modifications include those described in the previous section. The starting material for the engineering method is one or more of the VH and/or VL sequences provided herein, or one or more CDR regions thereof. To create the engineered antibody, it is not necessary to actually prepare (i.e., express as a protein) an antibody having one or more of the VH and/or VL sequences provided herein, or one or more CDR regions thereof. Rather, the information contained in the sequence(s) is used as the starting material to create a "second generation" sequence(s) derived from the original sequence(s) and then the "second generation" sequence(s) is prepared and expressed as a protein.
  • Accordingly, in another embodiment, the invention provides a method for preparing an anti- hTSLP antibody consisting of: a heavy chain variable region antibody sequence having a CDR1 sequence selected from SEQ ID NO: 3, a CDR2 sequence selected from the group consisting of SEQ ID NOs: 18-20 and a CDR3 sequence selected from SEQ ID NO: 28 and a light chain variable region antibody sequence having a CDR1 sequence selected from SEQ ID NO: 8, a CDR2 sequence selected from SEQ ID NO: 47 and a CDR3 sequence selected from the group consisting of SEQ ID NOs: 60-61 altering at least one amino acid residue within the heavy chain variable region antibody sequence and/or the light chain variable region antibody sequence to create at least one altered antibody sequence; and expressing the altered antibody sequence as a protein.
  • Standard molecular biology techniques can be used to prepare and express the altered antibody sequence. The antibody encoded by the altered antibody sequence(s) is one that retains one, some or all of the functional properties of the anti- hTSLP antibodies described herein, which functional properties include, but are not limited to, specifically binding to hTSLP; and the antibody exhibits at least one of the following functional properties: the antibody inhibits binding of hTSLP protein to the hTSLP receptor, or the antibody inhibits hTSLP receptor binding preventing or ameliorating an inflammatory, fibrotic or allergic condition, particularly an inflammatory or obstructive airways disease, or the antibody inhibits hTSLP receptor binding thereby preventing or ameliorating asthma.
  • The altered antibody may exhibit one or more, two or more, or three or more of the functional properties discussed above.
  • The functional properties of the altered antibodies can be assessed using standard assays available in the art and/or described herein, such as those set forth in the Examples (e.g., ELISAs).
  • In certain embodiments of the methods of engineering antibodies of the invention, mutations can be introduced randomly or selectively along all or part of an anti- hTSLP antibody coding sequence and the resulting modified anti- hTSLP antibodies can be screened for binding activity and/or other functional properties as described herein. Mutational methods have been described in the art. For example, PCT Publication WO 02/092780 by Short describes methods for creating and screening antibody mutations using saturation mutagenesis, synthetic ligation assembly, or a combination thereof. Alternatively, PCT Publication WO 03/074679 by Lazar et al. describes methods of using computational screening methods to optimize physiochemical properties of antibodies.
  • Nucleic acid molecules encoding antibodies of the invention
  • Another aspect of the invention pertains to nucleic acid molecules that encode the antibodies of the invention. The nucleic acids may be present in whole cells, in a cell lysate, or may be nucleic acids in a partially purified or substantially pure form. A nucleic acid is "isolated" or "rendered substantially pure" when purified away from other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis and others well known in the art. See, F. Ausubel, et al., ed. 1987 Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York. A nucleic acid of the invention can be, for example, DNA or RNA and may or may not contain intronic sequences. In an embodiment, the nucleic acid is a cDNA molecule. The nucleic acid may be present in a vector such as a phage display vector, or in a recombinant plasmid vector.
  • Nucleic acids of the invention can be obtained using standard molecular biology techniques. For antibodies expressed by hybridomas (e.g., hybridomas prepared from transgenic mice carrying human immunoglobulin genes as described further below), cDNAs encoding the light and heavy chains of the antibody made by the hybridoma can be obtained by standard PCR amplification or cDNA cloning techniques. For antibodies obtained from an immunoglobulin gene library (e.g., using phage display techniques), nucleic acid encoding the antibody can be recovered from various phage clones that are members of the library.
  • Once DNA fragments encoding VH and VL segments are obtained, these DNA fragments can be further manipulated by standard recombinant DNA techniques, for example to convert the variable region genes to full-length antibody chain genes, to Fab fragment genes or to an scFv gene. In these manipulations, a VL- or VH-encoding DNA fragment is operatively linked to another DNA molecule, or to a fragment encoding another protein, such as an antibody constant region or a flexible linker. The term "operatively linked", as used in this context, is intended to mean that the two DNA fragments are joined in a functional manner, for example, such that the amino acid sequences encoded by the two DNA fragments remain in-frame, or such that the protein is expressed under control of a desired promoter.
  • The isolated DNA encoding the VH region can be converted to a full-length heavy chain gene by operatively linking the VH-encoding DNA to another DNA molecule encoding heavy chain constant regions (CH1, CH2 and CH3). The sequences of human heavy chain constant region genes are known in the art (see e.g., Kabat, E. A., el al., 1991 Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification. The heavy chain constant region can be an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region. For a Fab fragment heavy chain gene, the VH-encoding DNA can be operatively linked to another DNA molecule encoding only the heavy chain CH1 constant region.
  • The isolated DNA encoding the VL region can be converted to a full-length light chain gene (as well as to a Fab light chain gene) by operatively linking the VL-encoding DNA to another DNA molecule encoding the light chain constant region, CL. The sequences of human light chain constant region genes are known in the art (see e.g., Kabat, E. A., et al., 1991 Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification. The light chain constant region can be a kappa or a lambda constant region.
  • To create an scFv gene, the VH- and VL-encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly4 -Ser)3, such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (see e.g., Bird et al., 1988 Science 242:423-426; Huston et at., 1988 Proc. Natl. Acad. Sci. USA 85:5879-5883; McCafferty et al., 1990 Nature 348:552-554).
  • Production of monoclonal antibodies of the invention
  • Monoclonal antibodies (mAbs) can be produced by a variety of techniques, including conventional monoclonal antibody methodology e.g., the standard somatic cell hybridization technique of Kohler and Milstein, 1975 Nature 256: 495. Many techniques for producing monoclonal antibody can be employed e.g., viral or oncogenic transformation of B lymphocytes.
  • An animal system for preparing hybridomas is the murine system. Hybridoma production in the mouse is a well established procedure. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. Fusion partners (e.g., murine myeloma cells) and fusion procedures are also known. Monolconal antibodies can also be produced using a specific hybridoma, which has been deposited in a strain collection.
  • Chimeric or humanized antibodies of the present invention can be prepared based on the sequence of a murine monoclonal antibody prepared as described above. DNA encoding the heavy and light chain immunoglobulins can be obtained from the murine hybridoma of interest and engineered to contain non-murine (e.g.,. human) immunoglobulin sequences using standard molecular biology techniques. For example, to create a chimeric antibody, the murine variable regions can be linked to human constant regions using methods known in the art (see e.g., U.S. Patent No. 4,816,567 to Cabilly et al. ). To create a humanized antibody, the murine CDR regions can be inserted into a human framework using methods known in the art (see e.g., U.S. Patent No. 5,225,539 to Winter , and U.S. Patent Nos. 5,530,101 ; 5,585,089 ; 5,693,762 and , 6;180;370 to.Queen.et al.
  • In a certain embodiment, the antibodies of the invention are human monoclonal antibodies. Such human monoclonal antibodies directed against hTSLP can be generated using transgenic or transchromosomic mice carrying parts of the human immune system rather than the mouse system. These transgenic and transchromosomic mice include mice referred to herein as HuMAb mice and KM mice, respectively, and are collectively referred to herein as "human Ig mice."
  • The HuMAb mouse® (Medarex, Inc.) contains human immunoglobulin gene miniloci that encode un-rearranged human heavy (µ and γ) and κ light chain immunoglobulin sequences, together with targeted mutations that inactivate the endogenous µ and κ chain loci (see e.g., Lonberg, et al., 1994 Nature 368(6474): 856-859). Accordingly, the mice exhibit reduced expression of mouse IgM or κ, and in response to immunization, the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human IgGκ monoclonal (Lonberg, N. et al., 1994 supra; reviewed in Lonberg, N., 1994 Handbook of Experimental Pharmacology 113:49-101; Lonberg, N. and Huszar, D., 1995 Intern. Rev. Immunol.13: 65-93, and Harding, F. and Lonberg, N., 1995 Ann. N. Y. Acad. Sci. 764:536-546). The preparation and use of HuMAb mice, and the genomic modifications carried by such mice, is further described in Taylor, L. et al., 1992 Nucleic Acids Research 20:6287-6295; Chen, J. et at., 1993 International Immunology 5: 647-656; Tuaillon et al., 1993 Proc. Natl. Acad. Sci. USA 94:3720-3724; Choi et al., 1993 Nature Genetics 4:117-123; Chen, J. et al., 1993 EMBO J. 12: 821-830; Tuaillon et al., 1994 J. Immunol. 152:2912-2920; Taylor, L. et al., 1994 International Immunology 579-591; and Fishwild, D. et al., 1996 Nature Biotechnology 14: 845-851. See further, U.S. Patent Nos. 5,545,806 ; 5,569,825 ; 5,625,126 ; 5,633,425 ; 5,789,650 ; 5,877,397 ; 5,661,016 ; 5,814,318 ; 5,874,299 ; and 5,770,429 ; all to Lonberg and Kay; U.S. Patent No. 5,545,807 to Surani et al. ; PCT Publication Nos..WO 92103918 , WO 93/12227 , WO 94/25585 , WO 97113852 , WO 98/24884 and WO 99/45962 , all to Lonberg and Kay; and PCT Publication No. WO 01/14424 to Korman et al.
  • In another embodiment, human antibodies of the invention can be raised using a mouse that carries human immunoglobulin sequences on transgenes and transchomosomes such as a mouse that carries a human heavy chain transgene and a human light chain transchromosome. Such mice, referred to herein as "KM mice", are described in detail in PCT Publication WO 02/43478 to Ishida et al.
  • Still further, alternative transgenic animal systems expressing human immunoglobulin genes are available in the art and can be used to raise anti- hTSLP antibodies of the invention. For example, an alternative transgenic system referred to as the Xenomouse (Abgenix, Inc.) can be used; such mice are described in, for example, U.S. Patent Nos. 5,939,598 ; 6,075,181 ; 6,114,598 ; 6, 150,584 and 6,162,963 to Kucherlapati et al.
  • Moreover, alternative transchromosomic animal systems expressing human immunoglobulin genes are available in the art and can be used to raise anti- hTSLP antibodies of the invention. For example, mice carrying both a human heavy chain transchromosome and a human light chain tranchromosome, referred to as "TC mice" can be used; such mice are described in Tomizuka et al., 2000 Proc. Natl. Acad. Sci. USA 97:722-727. Furthermore, cows carrying human heavy and light chain transchromosomes have been described in the art (Kuroiwa et al., 2002 Nature Biotechnology 20:889-894) and can be used to raise anti - hTSLP antibodies of the invention.
  • Human monoclonal antibodies of the invention can also be prepared using phage display methods for screening libraries of human immunoglobulin genes. Such phage display methods for isolating human antibodies are established in the art. See for example: U.S. Patent Nos. 5,223,409 ; 5,403,484 ; and 5,571,698 to Ladner et al. ; U.S. Patent Nos. 5,427,908 and 5,580,717 to Dower et al. ; U.S. Patent Nos. 5,969,108 and 6,172,197 to McCafferty et al. ; and U.S. Patent Nos. 5,885,793 ; 6,521;404 ; 6,544,731 ; 6,555,313 ; 6,582,915 and 6,593,081 to Griffiths et al.
  • Human monoclonal antibodies of the invention can also be prepared using SCID mice into which human immune cells have been reconstituted such that a human antibody response can be generated upon immunization. Such mice are described in, for example, U.S. Patent Nos. 5,476,996 and 5,698,767 to Wilson et al.
  • Antibodies obtained from screening of antibody human libraries, (e.g. phage display with Morphosys), from libraries such as HuCal library from Morphosys, affinity maturation technology and further codon optimization sequence technologies can also be used. Affinity maturation can also be used on antibodies made in other ways (e.g., hybridomas).
  • Generation of transfectomas producing monoclonal antibodies
  • Antibodies of the invention also can be produced in a host cell transfectoma using, for example, a combination of recombinant DNA techniques and gene transfection methods as is well known in the art (e.g., Morrison, S. (1985) Science 229:1202).
  • For example, to express the antibodies, or antibody fragments thereof, DNAs encoding partial or full-length light and heavy chains, can be obtained by standard molecular biology techniques (e.g., PCR amplification or cDNA cloning using a hybridoma that expresses the antibody of interest) and the DNAs can be inserted into expression vectors such that the genes are operatively linked to transcriptional and translational control sequences. In this context, the term "operatively linked" is intended to mean that an antibody gene is ligated into a vector such that transcriptional and translational control sequences within the vector serve their intended function of regulating the transcription and translation of the antibody gene. The expression vector and expression control sequences are chosen to be compatible with the expression host cell used. The antibody light chain gene and the antibody heavy chain gene can be inserted into separate vector or, more typically, both genes are inserted into the same expression vector. The antibody genes are inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present). The light and heavy chain variable regions of the antibodies described herein can be used to create full-length antibody genes of any antibody isotype by inserting them into expression vectors already encoding heavy chain constant and light chain constant regions of the desired isotype such that the VH segment is operatively linked to the CH segment(s) within the vector and the VL segment is operatively linked to the CL segment within the vector. Additionally or alternatively, the recombinant expression vector can encode a signal peptide that facilitates secretion of the antibody chain from a host cell. The antibody chain gene can be cloned into the vector such that the signal peptide is linked in frame to the amino terminus of the antibody chain gene. The signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (i.e., a signal peptide from a non-immunoglobulin protein).
  • In addition to the antibody chain genes, the recombinant expression vectors of the invention carry regulatory sequences that control the expression of the antibody chain genes in a host cell. The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals) that control the transcription or translation of the antibody chain genes. Such regulatory sequences are described, for example, in Goeddel (Gene Expression Technology. Methods in Enzymology 185, Academic Press, San Diego, CA 1990). It will be appreciated by those skilled in the art that the design of the expression vector, including the selection of regulatory sequences, may depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. Regulatory sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from cytomegalovirus (CMV), Simian Virus 40 (SV40), adenovirus (e.g., the adenovirus major late promoter (AdMLP)), and polyoma. Alternatively, nonviral regulatory sequences may be used, such as the ubiquitin promoter or P-globin promoter. Still further, regulatory elements composed of sequences from different sources, such as the SRa promoter system, which contains sequences from the SV40 early promoter and the long terminal repeat of human T cell leukemia virus type I (Takebe, Y. et al., 1988 Mol. Cell. Biol. 8:466-472).
  • In addition to the antibody chain genes and regulatory sequences, the recombinant expression vectors of the invention may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes. The selectable marker gene facilitates selection of host cells into which the vector has been introduced (see, e.g., U.S. Pat. Nos. 4,399,216 , 4,634,665 and 5; 179,017 , all by Axel et al.). For example, typically the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced. Selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr- host cells with methotrexate selection/amplification) and the neo gene (for G418 selection).
  • For expression of the light and heavy chains, the expression vector(s) encoding the heavy and light chains is transfected into a host cell by standard techniques. The various forms of the term "transfection" are intended to encompass a wide variety of techniques commonly used for the introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, e.g., electroporation, calcium-phosphate precipitation, DEAE-dextran transfection and the like. It is theoretically possible to express the antibodies of the invention in either prokaryotic or eukaryotic host cells. Expression of antibodies in eukaryotic cells, in particular mammalian host cells, is discussed because such eukaryotic cells, and in particular mammalian cells, are more likely than prokaryotic cells to assemble and secrete a properly folded and immunologically active antibody. Prokaryotic expression of antibody genes has been reported to be ineffective for production of high yields of active antibody (Boss, M. A. and Wood, C. R., 1985 Immunology Today 6:12-13).
  • Mammalian host cells for expressing the recombinant antibodies of the invention include Chinese Hamster Ovary (CHO cells) (including dhfr- CHO cells, described Urlaub and Chasin, 1980 Proc. Natl. Acad. Sci. USA 77:4216-4220 used with a DH FR selectable marker, e.g., as described in R.J. Kaufman and P.A. Sharp, 1982 Mol. Biol. 159:601-621, NSO myeloma cells, COS cells and SP2 cells. When recombinant expression vectors encoding antibody genes are introduced into mammalian host cells, the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods.
  • Sequences encoding partial or full-length light and heavy chains are expressed by transfecting the expression vector(s) carrying such sequences into a host cell by standard transfection techniques. Typically, eukaryotic host cells are used for expressing antibodies, as antibodies are generally glycoproteins and prokaryotic cells are therefore not appropriate. Mammalian host cells which can be used for expressing the recombinant antibodies include Chinese Hamster Ovary (CHO cells) (including dhfr- CHO cells), NSO myeloma cells, COS cells and SP2 cells. Alternatively, one can use a host cell engineered to produce glycoproteins with mammalian-like glycosylation patterns, including yeast, fungi or plant cell lines. The antibodies can be produced for example in glycoengineered yeast cell lines, including Pichia, Saccharomyces or Kluyveromyces species, and preferably, Pichia pastoris or Saccharomyces cerevisae or Kluyveromyces lactis, see for example EP1297172B1 (Glycofi). The antibodies can also be produced in glycoengineered plant cell lines, and preferably bryophyte cell lines as described in WO2004057002 (Greenovation). Antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or secretion of the antibody into the culture medium. Antibodies are recovered from the culture medium using standard protein purification methods.
  • Immunoconjugates
  • In another aspect, the present invention features an anti- hTSLP antibody, or a fragment thereof, conjugated to a therapeutic moiety, such as a cytotoxin, a drug (e.g., an immunosuppressant) or a radiotoxin. Such conjugates are referred to herein as "immunoconjugates". Immunoconjugates that include one or more cytotoxins are referred to as "immunotoxins." A cytotoxin or cytotoxic agent includes any agent that is detrimental to (e.g., kills) cells. Examples include taxon, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, t. colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 - dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents also include, for example, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), ablating agents (e.g., mechlorethamine, thioepa chloraxnbucil, meiphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin, anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).
  • Other examples of therapeutic cytotoxins that can be conjugated to an antibody of the invention include duocarmycins, calicheamicins, maytansines and auristatins, and derivatives thereof. An example of a calicheamicin antibody conjugate is commercially available (MylotargTm; Wyeth-Ayerst).
  • Cytotoxins can be conjugated to antibodies of the invention using linker technology available in the art. Examples of linker types that have been used to conjugate a cytotoxin to an antibody include, but are not limited to, hydrazones, thioethers, esters, disulfides and peptide-containing linkers. A linker can be chosen that is, for example, susceptible to cleavage by low pH within the lysosomal compartment or susceptible to cleavage by proteases, such as proteases preferentially expressed in tumor tissue such as cathepsins (e.g., cathepsins B, C, D).
  • For further discussion of types of cytotoxins, linkers and methods for conjugating therapeutic agents to antibodies, see also Saito, G. et al., 2003 Adv. Drug Deliv. Rev. 55:199-215; Trail, P.A. et al., 2003 Cancer Immunol. Immunother. 52:328-337; Payne, G., 2003 Cancer Cell 3:207-212; Allen, T.M., 2002 Nat. Rev. Cancer 2:750-763; Pastan, I. and Kreitman, R. J., 2002 Curr. Opin. Investig. Drugs 3:1089-1091; Senter, P.D. and Springer, C.J., 2001 Adv. Drug Deliv. Rev. 53:247-264.
  • Antibodies of the present invention also can be conjugated to a radioactive isotope to generate cytotoxic radiopharmaceuticals, also referred to as radioimmunoconjugates. Examples of radioactive isotopes that can be conjugated to antibodies for use diagnostically or therapeutically include, but are not limited to, iodine131, indium111, yttrium90, and lutetium177. Method for preparing radioimmunconjugates are established in the art. Examples of radioimmunoconjugates are commercially available, including Zevalin (DEC Pharmaceuticals) and Bexxar (Corixa Pharmaceuticals), and similar methods can be used to prepare radioimmunoconjugates using the antibodies of the invention.
  • The antibody conjugates of the invention can be used to modify a given biological response, and the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon-γ; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.
  • Techniques for conjugating such therapeutic moiety to antibodies are well known, see, e.g., Amon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et at., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev., 62:119-58 (1982).
  • Bispecific molecules
  • In another aspect, the present invention features bispecific molecules comprising an anti- hTSLP antibody, or a fragment thereof, of the invention. An antibody of the invention, or antigen-binding portions thereof, can be derivatized or linked to another functional molecule, e.g., another peptide or protein (e.g., another antibody or ligand for a receptor) to generate a bispecific molecule that binds to at least two different binding sites or target molecules. The antibody of the invention may in fact be derivatized or linked to more than one other functional molecule to generate multi-specific molecules that bind to more than two different binding sites and/or target molecules; such multi-specific molecules are also intended to be encompassed by the term "bispecific molecule" as used herein. To create a bispecific molecule of the invention, an antibody of the invention can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other binding molecules, such as another antibody, antibody fragment, peptide or binding mimetic, such that a bispecific molecule results.
  • Accordingly, the present invention includes bispecific molecules comprising at least one first binding specificity for hTSLP and a second binding specificity for a second target epitope. For example, the second target epitope is an Fc receptor, e.g., human FcγRI (CD64) or a human Fcα receptor (CD89). Therefore, the invention includes bispecific molecules capable of binding both to FcγR, FcαR or FcεR expressing effector cells (e.g., monocytes, macrophages or polymorphonuclear cells (PMNs), and to target cells expressing hTSLP. These bispecific molecules target hTSLP expressing cells to effector cell and trigger Fc receptor-mediated effector cell activities, such as phagocytosis of an hTSLP expressing cells, antibody dependent cell-mediated cytotoxicity (ADCC), cytokine release, or generation of superoxide anion.
  • Additionally, for the invention in which the bispecific molecule is multi-specific, the molecule can further include a third binding specificity, in addition to an anti-Fc binding specificity and an anti- hTSLP binding specificity. For example, the third binding specificity could be an anti-enhancement factor (EF) portion, e.g., a molecule which binds to a surface protein involved in cytotoxic activity and thereby increases the immune response against the target cell. The "anti-enhancement factor portion" could be an antibody, functional antibody fragment or a ligand that binds to a given molecule, e.g., an antigen or a receptor, and thereby results in an enhancement of the effect of the binding determinants for the Fc receptor or target cell antigen.
  • The "anti-enhancement factor portion" can bind an Fc receptor or a target cell antigen. Alternatively, the anti-enhancement factor portion could bind to an entity that is different from the entity to which the first and second binding specificities bind. For example, the anti-enhancement factor portion can bind a cytotoxic T-cell (e.g. by CD2, CD3, CD8, CD28, CD4, CD44, ICAM-1 or other immune cell that results in an increased immune response against the target cell).
  • In one embodiment, the bispecific molecules of the invention comprise as a binding specificity at least one antibody, or an antibody fragment thereof, including, e.g., an Fab, Fab', F(ab')2, Fv, or a single chain Fv. The antibody may also be a light chain or heavy chain dimer, or any minimal fragment thereof such as a Fv or a single chain construct as described in Ladner et al. U.S. Patent No. 4,946,778 .
  • In one embodiment, the binding specificity for an Fcγ receptor is provided by a monoclonal antibody, the binding of which is not blocked by human immunoglobulin G (IgG). As used herein, the term "IgG receptor" refers to any of the eight γ-chain genes located on chromosome 1. These genes encode a total of twelve transmembrane or soluble receptor isoforms which are grouped into three Fγ receptor classes: FcγRI (CD64), FcγRII(CD32), and FcγRIII (CD 16). In another embodiment, the Fcγ receptor is a human high affinity FcγRI. The human FcγRI is a 72 kDa molecule, which shows high affinity for monomeric IgG (108 - 109 M-1).
  • The production and characterization of certain anti-Fcγ monoclonal antibodies are described by Fanger et at. in PCT Publication WO 88/00052 and in U.S. Patent No. 4,954,617 . These antibodies bind to an epitope of FcγRI, FcγRII or FcγRIII at a site which is distinct from the Fcγ binding site of the receptor and, thus, their binding is not blocked substantially by physiological levels of IgG. Specific anti-FcγRI antibodies useful in this invention are mAb 22, mAb 32, mAb 44, mAb 62 and mAb 197. The hybridoma producing mAb 32 is available from the American Type Culture Collection, ATCC Accession No. HB9469. In other embodiments, the anti-Fcγ receptor antibody is a humanized form of monoclonal antibody 22 (H22). The production and characterization of the H22 antibody is described in Graziano, R.F. et al., 1995 J. Immunol 155 (10): 4996-5002 and PCT Publication WO 94/10332 . The 1122 antibody producing cell line was deposited at the American Type Culture Collection under the designation HA022CL1 and has the accession no. CRL 11177.
  • In still other embodiments, the binding specificity for an Fc receptor is provided by an antibody that binds to a human IgA receptor, e.g., an Fc-alpha receptor (FcαRI (CD89), the binding of which does not have to be blocked by human immunoglobulin A (IgA). The term "IgA receptor" is intended to include the gene product of one a gene (FcαRI) located on chromosome 19. This gene is known to encode several alternatively spliced transmembrane isoforms of 55 to 110 kDa. FcαRI (CD89) is constitutively expressed on monocytes/macrophages, eosinophilic and neutrophilic granulocytes, but not on non-effector cell populations. FcαRI has medium affinity (5 x 107 M-1) for both IgA1 and IgA2, which is increased upon exposure to cytokines such as G-CSF or GM-CSF (Morton, H.C. et al., 1996 Critical Reviews in Immunology 116:423-440). Four FcαRI-specific monoclonal antibodies, identified as A3, A59, A62 and A77, which bind FcαRI outside the IgA ligand binding domain, have been described (Monteiro, R.C. et al., 1992 J. Immunol. 148:1764).
  • FcαRI and FcγRI are trigger receptors for use in the bispecific molecules of the invention because they are expressed primarily on immune effector cells, e.g., monocytes, PMNs, macrophages and dendritic cells; expressed at high levels (e.g., 5,000-100,000 per cell); mediators of cytotoxic activities (e.g., ADCC, phagocytosis); mediate enhanced antigen presentation of antigens, including self-antigens, targeted to them.
  • Other antibodies which can be employed in the bispecific molecules of the invention are murine, chimeric and humanized monoclonal antibodies.
  • The bispecific molecules of the present invention can be prepared by conjugating the constituent binding specificities, e.g., the anti-FcR and anti- hTSLP binding specificities, using methods known in the art. For example, each binding specificity of the bispecific molecule can be generated separately and then conjugated to one another. When the binding specificities are proteins or peptides, a variety of coupling or cross-linking agents can be used for covalent conjugation. Examples of cross-linking agents include protein A, carbodiimide, N-succinimidyl-S-acetyl-thioacetate (SATA), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), o-phenylenedimaleimide (oPDM), N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP), and sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohaxane-1-carboxylate (sulfo-SMCC) (see e.g., Karpovsky et al., 1984 J. Exp. Med. 160:1686; Liu, MA et al., 1985 Proc. Natl. Acad. Sci. USA 82:8648). Other methods include those described in Paulus, 1985 Behring Ins. Mitt. No. 78,118-132; Brennan et al., 1985 Science 229:81-83), and Glennie et al., 1987 J. Immunol. 139: 2367-2375). Conjugating agents are SATA and sulfo-SMCC, both available from Pierce Chemical Co. (Rockford, IL).
  • When the binding specificities are antibodies, they can be conjugated by sulfhydryl bonding of the C-terminus hinge regions of the two heavy chains. In a particularly embodiment, the hinge region is modified to contain an odd number of sulfhydryl residues, for example one, prior to conjugation.
  • Alternatively, both binding specificities can be encoded in the same vector and expressed and assembled in the same host cell. This method is particularly useful where the bispecific molecule is a mAb x mAb, mAb x Fab, Fab x F(ab')2 or ligand x Fab
  • fusion protein. A bispecific molecule of the invention can be a single chain molecule comprising one single chain antibody and a binding determinant, or a single chain bispecific molecule comprising two binding determinants. Bispecific molecules may comprise at least two single chain molecules. Methods for preparing bispecific molecules are described for example in U.S. Patent Number 5,260,203 ; U.S. Patent Number 5,455,030 ; U.S. Patent Number 4,881,175 ; U.S. Patent Number 5,132,405 ; U.S. Patent Number 5,091,513 ; U.S. Patent Number 5,476,786 ; U.S. Patent Number 5,013,653 ; U.S. Patent Number 5,258,498 ; and U.S. Patent Number 5,482,858 .
  • Binding of the bispecific molecules to their specific targets can be confirmed by, for example, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (REA), FACS analysis, bioassay (e.g., growth inhibition), or Western Blot assay. Each of these assays generally detects the presence of protein-antibody complexes of particular interest by employing a labeled reagent (e.g., an antibody) specific for the complex of interest. For example, the FcR-antibody complexes can be detected using e.g., an enzyme-linked antibody or antibody fragment which recognizes and specifically binds to the antibody-FcR complexes. Alternatively, the complexes can be detected using any of a variety of other immunoassays. For example, the antibody can be radioactively 4 labeled and used in a radioimmunoassay (RIA) (see, for example, Weintraub; B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986 . The radioactive isotope can be detected by such means as the use of a γ counter or a scintillation counter or by autoradiography.
  • Pharmaceutical compositions
  • In another aspect, the present invention provides a composition, e.g., a pharmaceutical composition, containing one or a combination of monoclonal antibodies, or antigen-binding portion(s) thereof, of the present invention, formulated together with a pharmaceutically acceptable carrier. Such compositions may include one or a combination of (e.g., two or more different) antibodies, or immunoconjugates or bispecific molecules of the invention. For example, a pharmaceutical composition of the invention can comprise a combination of antibodies (or immunoconjugates or bispecifics) that bind to different epitopes on the target antigen or that have complementary activities.
  • Pharmaceutical compositions of the invention also can be administered in combination therapy, i.e., combined with other agents. For example, the combination therapy can include an anti- hTSLP antibody of the present invention combined with at least one other anti-inflammatory agent. Examples of therapeutic agents that can be used in combination therapy are described in greater detail below in the section on uses of the antibodies of the invention.
  • As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. The carrier should be suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion). Depending on the route of administration, the active compound, i.e., antibody, immunoconjuage, or bispecific molecule, may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.
  • The pharmaceutical compounds of the invention may include one or more pharmaceutically acceptable salts. A "pharmaceutically acceptable salt" refers to a salt that retains the desired biological activity of the parent compound and does not impart any undesired toxicological effects (see e.g., Berge, S.M., et al., 1977 J. Pharm. Sci. 66:1-19). Examples of such salts include acid addition salts and base addition salts. Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like; as well as from nontoxic organic acids such as aliphatic mono- and di-carboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like. Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as N,N'-dibenzylethylenediamine, N-methylglucamine, chloroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.
  • A pharmaceutical composition of the invention also may include a pharmaceutically acceptable anti-oxidant. Examples of pharmaceutically acceptable antioxidants include: water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • Examples of suitable aqueous and nonaqueous carriers that may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as, aluminum monostearate and gelatin.
  • Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example; by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. In many cases, one can include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent that delays absorption for example, monostearate salts and gelatin.
  • Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by sterilization microfiltration. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the methods of preparation are vacuum drying and freeze-drying (lyophilization) that yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the subject being treated, and the particular mode of administration. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the composition which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 0.01 per cent to about ninety-nine percent of active ingredient, from about 0.1 per cent to about 70 per cent, or from about 1 percent to about 30 percent of active ingredient in combination with a pharmaceutically acceptable carrier.
  • Dosage regimens are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
  • For administration of the antibody, the dosage ranges from about 0.0001 to 100 mg/kg, and more usually 0.01 to 5 mg/kg, of the host body weight. For example dosages can be 0.3 mg/kg body weight, 1 mg/kg body weight, 3 mg/kg body weight, 5 mg/kg body weight or 10 mg/kg body weight or within the range of 1-10 mg/kg. An exemplary treatment regime entails administration once per week, once every two weeks, once every three weeks, once every four weeks, once a month, once every 3 months or once every three to 6 months. Dosage regimens for an anti- hTSLP antibody of the invention include 1 mg/kg body weight or 3 mg/kg body weight by intravenous administration, with the antibody being given using one of the following dosing schedules: every four weeks for six dosages, then every three months; every three weeks; 3 mg/kg body weight once followed by I mg/kg body weight every three weeks.
  • In some methods, two or more monoclonal antibodies with different binding specificities are administered simultaneously, in which case the dosage of each antibody administered falls within the ranges indicated. Antibody is usually administered on multiple occasions. Intervals between single dosages can be, for example, weekly, monthly, every three months or yearly. Intervals can also be irregular as indicated by measuring blood levels of antibody to the target antigen in the patient. In some methods, dosage is adjusted to achieve a plasma antibody concentration of about 1-1000 µg/ml and in some methods about 25-300 µg/ml.
  • Alternatively, antibody can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. In general, human antibodies show the longest half-life, followed by humanized antibodies, chimeric antibodies, and nonhuman antibodies. The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated or until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patient can be administered a prophylactic regime.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. The selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • A "therapeutically effective dosage" of an anti- hTSLP antibody of the invention can results in a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction.
  • A composition of the present invention can be administered by one or more routes of administration using one or more of a variety of methods known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. Routes of administration for antibodies of the invention include intravenous, intramuscular, intradermal, intraperitoneal, subcutaneous, spinal or other parenteral routes of administration, for example by injection or infusion. The phrase "parenteral administration" as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrastemal injection and infusion.
  • Alternatively, an antibody of the invention can be administered by a nonparenteral route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically.
  • The active compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J.R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.
  • Therapeutic compositions can be administered with medical devices known in the art. For example, in one embodiment, a therapeutic composition of the invention can be administered with a needleless hypodermic injection device, such as the devices shown in U.S. Patent Nos. 5,399,163 ; 5,383,851 ; 5,312,335 ; 5,064,413 ; 4,941,880 ; 4,790,824 or 4,596,556 . Examples of well known implants and modules useful in the present invention include: U.S. Patent No. 4,487,603 , which shows an implantable micro-infusion pump for dispensing medication at a controlled rate; U.S. Patent No. 4,486,194 , which shows a therapeutic device for administering medicants through the skin; U.S. Patent No. 4,447,233 , which shows a medication infusion pump for delivering medication at a precise infusion rate; U.S. Patent No. 4,447,224 , which shows a variable flow implantable infusion apparatus for continuous drug delivery; U.S. Patent No. 4,439,196 , which shows an osmotic drug delivery system having multi-chamber compartments; and U.S. Patent No. 4,475,196 , which shows an osmotic drug delivery system. Many other such implants, delivery systems, and modules are known to those skilled in the art.
  • In certain embodiments, the human monoclonal antibodies of the invention can be formulated to ensure proper distribution in vivo. For example, the blood-brain barrier (BBB) excludes many highly hydrophilic compounds. To ensure that the therapeutic compounds of the invention cross the BBB (if desired), they can be formulated, for example, in liposomes. For methods of manufacturing liposomes, see, e.g., U.S. Patents 4,522,811 ; 5,374,548 ; and 5,399,331 . The liposomes may comprise one or more moieties which are selectively transported into specific cells or organs, thus enhance targeted drug delivery (see, e.g., V.V. Ranade, 1989 J. Cline Pharmacol. 29:685). Exemplary targeting moieties include folate or biotin (see, e.g., U.S. Patent 5,416,016 to Low et al .); mannosides (Umezawa et al., 1988 Biochem. Biophys. Res. Commun. 153:1038); antibodies (P.G. Bloeman et al., 1995 FEBS Lett. 357:140; M. Owais et al., 1995 Antimicrob. Agents Chemother. 39:180); surfactant protein A receptor (Briscoe et al., 1995 Am. J. Physiol.1233:134); p120 (Schreier et al., 1994 J. Biol. Chem. 269:9090); see also K. Keinanen; M.L. Laukkanen, 1994 FEBSLett. 346:123; J.J. Killion; I.J. Fidler, 1994 Immunomethods 4:273.
  • Uses and methods of the invention
  • The antibodies (and immunoconjugates and bispecific molecules) of the present invention have in vitro and in vivo diagnostic and therapeutic utilities. For example, these molecules can be administered to cells in culture, e.g. in vitro or in vivo, or in a subject, e.g., in vivo, to treat, prevent or diagnose a variety of disorders. The term "subject" as used herein in intended to include human and non-human animals. Non-human animals includes all vertebrates, e.g., mammals and non-mammals, such as non-human primates, sheep, dogs, cats, cows, horses, chickens, amphibians, and reptiles. The methods are particularly suitable for treating human patients having a disorder associated with aberrant hTSLP expression. When antibodies to hTSLP are administered together with another agent, the two can be administered in either order or simultaneously.
  • In one embodiment, the antibodies (and immunoconjugates and bispecific molecules) of the invention can be used to detect levels of hTSLP, or levels of cells that contain hTSLP. This can be achieved, for example, by contacting a sample (such as an in vitro sample) and a control sample with the anti- hTSLP antibody under conditions that allow for the formation of a complex between the antibody and hTSLP. Any complexes formed between the antibody and hTSLP are detected and compared in the sample and the control. For example, standard detection methods, well known in the art, such as ELISA and flow cytometic assays, can be performed using the compositions of the invention.
  • Accordingly, in one aspect, the invention further provides methods for detecting the presence of hTSLP (e.g., hTSLP antigen) in a sample, or measuring the amount of hTSLP, comprising contacting the sample, and a control sample, with an antibody of the invention, or an antigen binding portion thereof, which specifically binds to hTSLP, under conditions that allow for formation of a complex between the antibody or portion thereof and hTSLP. The formation of a complex is then detected, wherein a difference in complex formation between the sample compared to the control sample is indicative of the presence of hTSLP in the sample.
  • Also within the scope of the invention are kits consisting of the compositions (e.g., antibodies, human antibodies, immunoconjugates and bispecific molecules) of the invention and instructions for use. The kit can further contain a least one additional reagent, or one or more additional antibodies of the invention (e.g., an antibody having a complementary activity which binds to an epitope on the target antigen distinct from the first antibody). Kits typically include a label indicating the intended use of the contents of the kit. The term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit.
  • The invention having been fully described, it is further illustrated by the following examples and claims, which are illustrative and are not meant to be further limiting. Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are within the scope of the present invention and claims.
  • The following examples describe monoclonal, in particular human monoclonal, anti-human TSLP antibody that specifically binds to human TSLP and neutralized its biological activity in different cell based assays, including primary human cell assays. The developed antibodies showed extremely high affinity in the low pM range.
  • EXAMPLES
  • For the generation of therapeutic antibodies against human TSLP protein, selections with the MorphoSys HuCAL GOLD® phage display library were carried out. HuCAL GOLD® is a Fab library based on the HuCAL® concept6-8 9, in which all six CDRs are diversified, and which employs the CysDisplay technology for linking Fab fragments to the phage surface10.
  • Example 1: Generation of human TSLP-specific antibodies from the HuCAL GOLD® Library Phagemid rescue, phage amplification, and purification
  • The HuCAL GOLD® library was amplified in 2xYT medium containing 34 µg/ml chloramphenicol and 1% glucose (2xYT-CG). After infection with VCSM13 helper phages at an OD600nm of 0.5 (30 min at 37°C without shaking; 30 min at 37°C shaking at 250 rpm), cells were spun down (4120 g; 5 min; 4°C), resuspended in 2xYT/34 µg/ml chloramphenicol/ 50 µg/ml kanamycin/ 0.25 mM IPTG and grown overnight at 22°C. Phages were PEG-precipitated twice from the supernatant, resuspended in PBS/ 20% glycerol and stored at -80°C.
  • Phage amplification between two panning rounds was conducted as follows: mid-log phase E. coli TG1 I cells were infected with eluted phages and plated onto LB-agar supplemented with 1% of glucose and 34 µg/ml of chloramphenicol (LB-CG plates). After overnight incubation at 30°C, the TG1 colonies were scraped off the agar plates and used to inoculate 2xYT-CG until an OD600nm of 0.5 was reached and VCSM13 helper phages added for infection as described above.
  • Pannings with HuCAL GOLD®
  • For the selection of antibodies recognizing human TSLP two different panning strategies were applied. In summary, HuCAL GOLD® phage-antibodies were divided into four pools comprising different combinations of VH master genes (pool 1: VH1/5 λκ, pool 2: VH3 λκ, pool 3: VH2/4/6 λκ, pool 4: VH1-6 λκ). These pools were individually subjected to three rounds of solid phase panning on human TSLP directly coated to Maxisorp plates and in addition three of solution pannings on biotinylated TSLP.
  • The first panning variant was solid phase panning against human TSLP:
  • 2 wells on a Maxisorp plate (F96 Nunc-Immunoplate) were coated with 300 µl of 5µg/ml TSLP- each o/n at 4°C. The coated wells were washed 2x with 350µl PBS and blocked with 350µl 5% MPBS for 2h at RT on a microtiter plate shaker. For each panning about 1013 HuCAL GOLD® phage-antibodies were blocked with equal volume of PBST/5% MP for 2h at room temperature. The coated wells were washed 2x with 350µl PBS after the blocking. 300µl of pre-blocked HuCAL GOLD® phage-antibodies were added to each coated well and incubated for 2h at RT on a shaker. Washing was performed by adding five times 350µl PBS/0.05% Tween, followed by washing another four times with PBS. Elution of phage from the plate was performed with 300 µl 20mM DTT in 10mM Tris/HCl pH8 per well for 10 min. The DTT phage eluate was added to 14 ml of E.coli TG1, which were grown to an OD600 of 0.6-0.8 at 37°C in 2YT medium and incubated in 50ml plastic tubes for 45min at 37°C without shaking for phage infection. After centrifugation for 10 min at 5000rpm, the bacterial pellets were each resuspended in 500µl 2xYT medium, plated on 2xYT-CG agar plates and incubated overnight at 30°C. Colonies were then scraped from the plates and phages were rescued and amplified as described above. The second and third rounds of the solid phase panning on directly coated TSLP was performed according to the protocol of the first round except for increasing the stringency of the washing procedure.
  • The second panning variant was solution panning against biotinylated human TSLP:
  • For the solution panning, using biotinylated TSLP coupled to Dynabeads M-280 (Dynal), the following protocol was applied: 1.5 ml Eppendorf tubes were blocked with 1.5 ml 2xChemiblocker diluted 1:1 with PBS over night at 4°C. 200µl streptavidin coated magnetic Dynabeads M-280 (Dynal) were washed 1x with 200 µl PBS and resuspended in 200 µl 1xChemiblocker (diluted in 1x PBS). Blocking of beads was performed in pre-blocked tubes over night at 4°C. Phages diluted in 500µl PBS for each panning condition were mixed with 500µl 2xChemiblocker / 0.1% Tween 1 h at RT (rotator). Pre-adsorption of phages was performed twice: 50 µl of blocked Streptavidin magnetic beads were added to the blocked phages and incubated for 30 min at RT on a rotator. After separation of beads via a magnetic device (Dynal MPC-E) the phage supernatant (~1ml) was transferred to a new blocked tube and pre-adsorption was repeated on 50 µl blocked beads for 30 min. Then, 200 nM biotinylated hTSLP was added to blocked phages in a new blocked 1.5 ml tube and incubated for I h at RT on a rotator. 100 µl of blocked streptavidin magnetic beads were added to each panning phage pool and incubated 10 min at RT on a rotator. Phages bound to biotinylated TSLP were immobilized to the magnetic beads and collected with a magnetic particle separator (Dynal MPC-E). Beads were then washed 7x in PBS/0.05% Tween using a rotator, followed by washing another three times with PBS. Elution of phage from the Dynabeads was performed adding 300 µl 20 mM DTT in 10 mM Tris/HCl pH 8 to each tube for 10 min. Dynabeads were removed by the magnetic particle separator and the supernatant was added to 14ml of an E.coli TG-1 culture grown to OD600nm of 0.6-0.8. Beads were then washed once with 200µl PBS and together with additionally removed phages the PBS was added to the 14 ml E.coli TG-1 culture. For phage infection, the culture was incubated in 50 ml plastic tubes for 45 min at 37°C without shaking. After centrifugation for 10 min at 5000 rpm, the bacterial pellets were each resuspended in 500 µl 2xYT medium, plated on 2xYT-CG agar plates and incubated overnight at 30°C. Colonies were then scraped from the plates and phages were rescued and amplified as described above.
  • The second and third rounds of the solution panning on biotinylated TSLP was performed according to the protocol of the first round except for increasing the stringency of the washing procedure.
  • Subcloning and expression ofsoluble Fab fragments
  • The Fab-encoding inserts of the selected HuCAL GOLD® phagemids were sub-cloned into the expression vector pMORPH®X9_Fab_FH (Fig 1) in order to facilitate rapid and efficient expression of soluble Fabs. For this purpose, the plasmid DNA of the selected clones was digested with XbaI and EcoRI, thereby excising the Fab-encoding insert (ompA-VLCL and phoA-Fd), and cloned into the XbaI/EcoRI-digested expression vector pMORPH®X9_Fab_FH. Fabs expressed from this vector carry two C-terminal tags (FLAG™ and 6xHis, respectively) for both, detection and purification.
  • Microexpression of HuCAL GOLD® Fab antibodies in E. coli
  • Chloramphenicol-resistant single colonies obtained after subcloning of the selected Fabs into the pMORPH®X9_Fab_FH expression vector were used to inoculate the wells of a sterile 96-well microtiter plate containing 100 µl 2xYT-CG medium per well and grown overnight at 37°C. 5 µl of each E. coli TG-1 culture was transferred to a fresh, sterile 96-well microtiter plate pre-filled with 100 µl 2xYT medium supplemented with 34 µg/ml chloramphenicol and 0.1% glucose per well. The microtiter plates were incubated at 30°C shaking at 400 rpm on a microplate shaker until the cultures were slightly turbid (~2-4 hrs) with an OD600nm of ~0.5.
  • To these expression plates, 20 µl 2xYT medium supplemented with 34 µg/ml chloramphenicol and 3 mM IPTG (isopropyl-ß-D-thiogalactopyranoside) was added per well (end concentration 0.5 mM IPTG), the microtiter plates sealed with a gas-permeable tape, and incubated overnight at 30°C shaking at 400 rpm.
  • Generation of whole cell lysates (BEL extracts): To each well of the expression plates, 40 µl BEL buffer (2xBBS/ EDTA: 24.7 g/l boric acid, 18.7 g NaCl/l, 1.49 g EDTA/I, pH 8.0) was added containing 2.5 mg/ml lysozyme and incubated for 1 h at 22°C on a microtiter plate shaker (400 rpm). The BEL extracts were used for binding analysis by ELISA or a BioVeris M-series® 384 analyzer (see Example 2).
  • Enzyme Linked Immunosorbent Assay (ELISA) Techniques
  • 5 µg/ml of human recombinant TSLP (R&D Systems) in PBS was coated onto 384 well Maxisorp plates (Nunc-Immunoplate) o/n at 4°C. After coating the wells were washed once with PBS / 0.05 % Tween (PBS-T) and 2x with PBS. Then the wells were blocked with PBS-T with 2% BSA for 2 h at RT. In parallel 15 µl BEL extract and 15 µl PBS-T with 2% BSA were incubated for 2 h at RT. The blocked Maxisorp plated were washed 3x with PBS-T before 10 µl of the blocked BEL extracts were added to the wells and incubated for 1 h at RT. For detection of the primary Fab antibodies, the following secondary antibodies were applied: alkaline phospatase (AP)-conjugated AffiniPure F(ab')2 fragment, goat anti-human, - anti-mouse or -anti-sheep IgG (Jackson Immuno Research). For the detection of AP-conjugates fluorogenic substrates like AttoPhos (Roche) were used according to the instructions by the manufacturer. Between all incubation steps, the wells of the microtiter plate were washed with PBS-T three times and three times after the final incubation with secondary antibody. Fluorescence was measured in a TECAN Spectrafluor plate reader.
  • Expression of HuCAL GOLD® Fab antibodies in E. coli and purification
  • Expression of Fab fragments encoded by pMORPH®X9_Fab_FH in TG-1 cells was carried out in shaker flask cultures using 750 ml of 2xYT medium supplemented with 34 µg/ml chloramphenicol. Cultures were shaken at 30°C until the OD600nm reached 0.5. Expression was induced by addition of 0.75 mM IPTG for 20 h at 30°C. Cells were disrupted using lysozyme and Fab fragments isolated by Ni-NTA chromatography (Qiagen, Hilden, Germany). Protein concentrations were determined by UV-spectrophotometry11.
  • Example 2: Identification of neutralizing anti-human TSLP Fab candidates that inhibit TSLP induced signaling of the TSLP receptor
  • 22 different human TSLP specific antibodies, which were selected from the HuCAL GOLD® library, were tested for the potency to neutralize human TSLP.
  • A. Blocking of TSLP binding to the TSLP receptor by anti-human TSLP Fabs in FACS assay
  • Binding inhibition of biotinylated TSLP to Ba/F3 cells, expressing hTSLPR, hIL7Rα was analyzed by FACS. The Fab antibodies were diluted in FACS buffer (cellwash (B&D) /3%FCS). 50 µl biotinylated TSLP at 100 ng/ml was incubated with 50 µl of 100 µg/ml Fab for I h at RT. To avoid internalization of the TSLP receptor all further steps with cells were carried out at 4 °C or on ice. 100 µl Ba/F3 cells at 2x 106 cells/ml were transferred to each well of a 96 well plate (NUNC) and centrifuged at 2000 rpm; 4°C. Cells were washed 2x with 150 µl cold FACS buffer, resuspended with the Fab / biotinylated TSLP mix and incubated for 1h at 4°C on a shaker. Streptavidin PE 1:400 in FACS-buffer was added for detection. After 30 min incubation, cells were centrifuged as mentioned above and washed 2x with 150µl cold FACS buffer. 5000 cells were analyzed in FACS. MOR04494, MOR04496, MOR04497 and MOR04609 showed inhibition of cell binding.
  • Inhibition of TSLP dependent STAT5 activation
  • Ba/F3 cells, expressing hTSLPR, hIL7Rα and a Stat5-Luc reporter gene, were grown in the presence of 5 ng/ml TSLP. 10 µl of 1x106 cells/ml in assay buffer (RPMI-1640 w/o phenol red, 10 % FCS, penicillin 10 Uml-1/streptomycin 10 µgml-1, 1 % puromycin) were added to Costar 96-well white plate (Coming). 70 µl of assay buffer and 10 µl of anti-TSLP antibody (10x) in assay buffer was added and incubated for 20 min at 37 °C. 10 µl of 5 ng/ml TSLP (R&D Systems; 0.5 ng/ml final concentration) in assay buffer was added to give a final assay volume of 100 µl. The plate was covered and left for 5-6 h at 37 °C in a humidified incubator. To the wells 100 µl (1:1 with assay volume) of Bright-Glo™ luciferase (Promega) were added and incubated for 5 min at RT. The plate was sealed with TopSeal™ before recording luminescence. MOR04493, MOR04494, MOR04496, MOR04497 and MOR04609 neutralized TSLP in this assay.
  • Determination of Neutralizing Activity in Primary Monocyte
  • Isolation of human blood moncytes - 150 mL of blood was collected from healthy adult volunteers on the NHRC donor panel. Blood was collected with tubes containing 1mL of anti-coagulant (20 mg/mL EDTA in PBS) per 10 mL blood and then diluted with 12.5 mL PBS per 20 mL blood. Red blood cells were then sedimented by mixing the diluted blood with 12.5 mL 4 % Dextran (in PBS) per tube and incubating for 40 minutes on ice. PBMCs were isolated by density centrifugation using Ficoll and the 'buffy coat' containing PBMCs was recovered using a plastic pastete. The cells were washed once (300xg for 7 minutes) in PBS and counted. MACS isolation of cells was carried out according to the manufacturers instructions using the Monocyte Isolation kit II (Miltenyi Biotec). All buffer additions and washes were with MACS buffer at 4°C (PBS, 0.5 % BSA, 2mM EDTA, pH 7.2) unless otherwise stated. Briefly, to 107 cells, 30 µL of buffer and 10 µL each of FcR Blocking Reagent and Biotin-Antibody Cocktail were added, mixed well and incubated for 10 minutes. A further 30 µL of buffer and 20 µL of Anti-Biotin Microbeads were then added to the cells and incubated for 15 minutes. Cells were washed (300xg for 10 minutes), resuspended at 108 cells per 500 µL buffer and applied to the 'primed' LS column. The 'untouched' monocyte fraction was collected by retaining all other cell types on the column. During the isolation procedure samples were collected for later analysis by flow cytometry.
  • TARC production by monocytes treated with TSLP and blocking the response with anti-TSLP antibodies - Freshly isolated monocytes were resuspended at 1 x 106 cells per mL of assay buffer (RPMI 1640, 10 % FCS, penicillin 10 U/mL / streptomycin 10 µg/mL). 100 µL of cells were added to each well of a 96-well flat-bottomed plate to give a concentration of 100,000 cells per well. 80 µL of assay buffer was added to wells that were used for the TSLP dose response curve and 60 µL was added to wells in which anti-TSLP antibodies were to be tested. For the anti-TSLP antibody testing, 20 µL of a 10x stock solution of each anti-TSLP antibody was added to the cells and incubated at 37°C, 5 % CO2 for 20 minutes. rhTSLP was then added at 0.5 ng/mL to each well (20 µL of 10x stock solution per well) containing anti-TSLP antibody. A TSLP dose response curve was included on each plate. Plates were incubated for 24 hours at 37°C, 5 % CO2 after which supernatants were harvested and stored at -20°C for future analysis.
  • ELISA of monocyte supernatants to measure TARC - Measurements of TARC production in culture supernatants was carried out using a human TARC duoset ELISA kit (R+D Systems) according to manufacturer's instructions. Briefly monocyte supernatants were diluted 1:2 in assay buffer (RPMI 1640, 10 % FCS, penicillin 10 U/mL / streptomycin 10 pg/mL) and added in triplicate to 96-well half-area plates previously coated with TARC capture antibody. Plates were incubated for 2 hours at RT then washed again. 50 µL of biotinylated detection mAb was then added to each well and incubated for a further 2 hours at RT. Plates were washed and horseradish peroxidase was added at 50 µL per well and incubated for 20 minutes at RT in the dark. A final wash was carried out and 100 µL of TMB substrate was added per well and plates were incubated at RT in the dark. Colour development was stopped after 20 minutes incubation by addition of 50 µL 1M sodium hydroxide. Plates were read immediately on a Spectramax microplate reader set at 450nm (Molecular Devices). Data was analysed using SoftmaxPro software and percentage inhibition of maximal absorbance response by anti-TSLP antibodies was calculated using an Excel spreadsheet.
  • Neutralization of Natural Human TSLP in Receptor Gene Assay
  • Human natural TSLP was generated by treating primary human fibroblast cells (Clonetics), with a cytokine cocktail containing IL-1β (1 ng/ml), TNF-a (1 ng/ml) and IL-13 (10 ng/ml) for 24 hours at 37°C in phenol-red free RPMI containing 10% FBS. The cell culture supernatant containing induced natural TSLP was shown to be active in the RGA described above.
  • A I in 10 dilution of the natural TSLP containing TSLP corresponded to approximately the same level of activity in the RGA as 0.5 ng/ml of rhTSLP and hence was used as the final dilution when testing the activity of candidate antibodies.
  • TSLP / TSLP receptor binding inhibition BioVeris assay
  • For the TSLP binding inhibition assay, recombinant human TSLP (R&D-Systems) was directly coupled (NHS/EDC coupling) to carboxylic acid M-270 Dynal magnetic beads. 50 µl Fab antibodies per well (10 µM stock , 1:5 dilution steps) were incubated for 2 h with 25 µl TSLP coated beads in 96 well plates (Nunc). 50 µl of 100 pM TSLP-receptor/Fc fusion and 1:1000 diluted anti-human Fc detection antibody labeled with BV-tag according to instructions of supplier (BioVeris, Europe, Witney, Oxforfshire, UK) were added to each well and incubated for 1 h. (Final Fab concentration: 32 nM - 4 µM, final TSLP conc: 40 pM). Detection was performed by BioVeris M-384 SERIES® Workstation (BioVeris Europe, Witney, Oxforfshire, UK). MOR04493, MOR04494, MOR04496, MOR04497, MOR04609, and MOR04832 showed inhibition of TSLP receptor binding in this assay.
  • Determination of nanomolar affinities using surface plasmon resonance (Biacore)
  • Kinetic SPR analysis was performed on a SA-chip (Biacore, Sweden) which had been coated with a density of -400 RU biotinylated recombinant human TSLP i. A respective amount of biotinylated human serum albumin (HSA) was immobilized on the reference flow cell. PBS (136 mM NaCl, 2.7 mM KCl, 10 mM Na2HP04, 1.76 mM KH2PO4 pH 7.4) was used as the running buffer. The Fabs were applied in concentration series of 16 - 500 nM at a flow rate of 20 µl/min. Association phase was set to 60 s and dissociation phase to 120 s. The summarized affinities of the parental Fab antibodies 4493, 4494, 4496, 4497, 4832 and 4609 to human TSLP determined by that method are in the range of 8 - 1400 nM.
  • Example 3: Affinity maturation of selected anti-TSLP Fabs by parallel exchange of LCDR3 and HCDR2 cassettes B. Generation of Fab libraries for affinity maturation
  • In order to increase the affinity and inhibitory activity of the identified anti-TSLP antibodies, 6 Fab clones MOR04493, MOR04494, For04496, MOR04497, MOR04609, and MOR04832 were subjected to affinity maturation. For this purpose, CDR regions were optimized by cassette mutagenesis using trinucleotide directed mutagenesis12,13
  • The following paragraph briefly describes the protocol used for cloning of the maturation libraries and Fab optimization. Fab fragments from expression vector pMORPH®X9_Fab_FH were cloned into the phagemid vector pMORPH®25 ( US 6,753,136 ). Two different strategies were applied in parallel to optimize both, the affinity and the efficacy of the parental Fabs.
  • Six phage antibody Fab libraries were generated where the LCDR3 of six parental clones was replaced by a repertoire of individual light chain CDR3 sequences. In parallel, the HCDR2 region of each parental clone was replaced by a repertoire of individual heavy chain CDR2 sequences. Affinity maturation libraries were generated by standard cloning procedures and transformation of the diversified clones into electro-competent E. coli TOP10F' cells (Invitrogen). Fab-presenting phages were prepared as described in Example 1A. Four maturation pools were built and kept separate during the subsequent selection process:
    • pool 1: CDR3 libraries of MOR04493 and MOR04832
    • pool 2: HCDR2 libraries of MOR04493 and MOR04832
    • pool 3: LCDR3 libraries of MOR04494; MOR04496; MOR04497;
      MOR04609
    • pool 4: HCDR2 libraries of MOR04494; MOR04496; MOR04497;
      MOR04609
    Maturation panning strategies
  • Pannings using the four antibody pools were performed on biotinylated recombinant human TSLP (R&D Systems) in solution for three rounds, respectively as described in Example 1B, solution panning against biotinylated human TSLP. The selection stringency was increased by reduction of biotinylated antigen from panning round to panning round, by prolonged washing steps and by addition of non-biotinylated antigen for off-rate selection.
  • Electrochemiluminescene (BioVeris) based binding analysis for detection of TSLP binding Fab in bacterial lysates
  • Binding of optimized Fab antibodies in E. coli lysates (BEL extracts) to TSLP was analyzed in BioVeris M-SERIES® 384 AnalyzerBioVeris, Europe, Witney, Oxforfshire, UK). BEL extracts were diluted in assay buffer (PBS/0,05%Tween20/0.5%BSA) for use in BioVeris screening. Biotinylated. TSLP (R&D Systems) was coupled to streptavidin coated paramagnetic beads, Anti-human (Fab)'2 (Dianova) was ruthenium labeled using the BV-tag (BioVeris Europe, Witney, Oxfordshire, UK). This secondary antibody was added to the TSLP coupled beads before measuring in the BioVeris M-SERIES® 384 Analyzer. After sequence analysis of hits from the BioVeris screening, 20 unique Fab clones were identified: MOR05008; MOR05009; MOR05010; MOR05011; MOR05012; More5013; MOR05014; More5015; MOR05016; MOR05017; MOR05018; MOR05019; MOR05020; MOR05021; MOR05022; MOR05023; MOR05024; MOR05025; MOR05026; MOR05027.
  • IgG conversion and cross-transfection of two independently optimized variable chains in order to further improve the affinities of the antibodies
  • All 20 optimized Fab antibodies were sub-cloned into IgGI format. Affinity of all 20 IgG1 of MOR05008; MOR05009; MORO5010; MOR0501 1; MOR05012; MOR05013; MOR05014; More5015; MOR05016; MOR05017; MOR05018; MOR05019; MOR05020; MOR05021; MOR05022;.MOR05023; MOR05024; MOR05025; MOR05026; MOR05027 was measured in solution equilibrium titration from tissue culture supernatant.
  • For a further improvement of affinity the independently optimized H-CDR2 and L-CDR3 from matured IgG1s, which were derived from the same parental clone, were combined, because there was a high probability that this combination would lead to a further gain of affinity 14-16 . The heavy and the light chain of the IgG1 were on separate vectors and therefore by cross-transfection it was possible to combine the two different optimized chains which were then co-expressed in one cell and assemble to IgG antibodies. This method was applied for binders that were derived from the parental clone MOR04494 and MOR04497, where from both the H-CDR2 and the L-CDR3 library optimized chains were identified in parallel. For MOR04494 all six optimized heavy chains from MOR05010 - MOR05015 5 were combined one by one with the three optimized light chains of MOR05016 - More5018 resulting in 18 new antibodies. For MOR04497 the one optimized H-CDR2 of MOR5019 was combined with the three optimized light chains of MOR05020 - MOR05022 resulting in 3 new antibodies.
  • Determination of picomolar affinities using Solution Equilibrium Titration (SET)
  • For KD determination, monomer fractions (at least 90% monomer content, analyzed by analytical SEC; Superdex75, Amersham Pharmacia) of Fab were used. In addition it was possible to determine the affinities of IgGI, as the antigen TSLP is supposed to be a monomer in solution. Electrochemiluminescence (ECL) based affinity determination in solution and data evaluation were basically performed as described by Haenel et al., 2005. A constant amount of Fab or IgG1 was equilibrated with different concentrations (serial 3n dilutions) of recombinant human TSLP (R&D Systems) in solution. Biotinylated human TSLP coupled to paramagnetic beads (M-280 Streptavidin, Dynal), and BV-tag (BioVeris Europe, Witney, Oxfordshire, UK) labeled anti-human (Fab)'2 (Dianova) was added and the mixture incubated for 30 min. Subsequently, the concentration of unbound Fab was quantified via ECL detection using the M-SERIES® 384 analyzer (BioVeris Europe).
  • Affinity determination to cynomolgus TSLP (mammalian expression and purification at NVS) in solution was done essentially as described above replacing the human TSLP by the cynomolgus TSLP. For detection of free Fab, biotinylated human TSLP coupled to paramagnetic beads was used. Affinities were calculated according to Haenel et al. (2005)17. Using the assay conditions described above (inonomeric) affinities for the affinity-optimized anti-TSLP IgGs were determined in solution. The affinities to human and cynomolgus TSLP are summarized in Table 5. Table 5: Affinities of optimized IgG1.
    VH- /VL pairs for IgG IgG rh TSLP cyno TSLP-APP Parental binder
    VH VL MOR0# KD [pM] KD [pM]
    1 5008 10 1438 MOR04493
    2 5009 5 10861
    3 4494 > 200 20857 MOR04494
    4 5010 2 1099
    5 5011 31 4951
    6 5012 25 1535
    7 5013 34 1367
    8 5014 8 3711
    9 5015 26 2959
    10 5016 7 98
    11 5017 4 111
    12 5018 14 358
    13 5010 5016 5154 13 18
    14 5010 5017 5155 1 9
    15 5010 5018 5156 16 58
    16 5011 5016 5157 1 34
    17 5011 5017 5158 9 21
    18 5011 5018 5159 12 87
    19 5012 5016 5160 27 28
    20 5012 5017 5161 11 11
    21 5012 5018 5162 21 81
    22 5013 5016 5163 22 17
    23 5013 5017 5164 14 8
    24 5013 5018 5165, 19 45
    25 5014 5016 5166 22 27
    26 5014 5017 5167 14 16
    27 5014 5018 5168 <1 108
    28 5015 5016 5169 1 53
    29 5015 5017 5170 11 25
    30 5015 5018 5171 29 71
    31 4497 > 200 20 nM MOR04497
    32 5019 36 3825
    33 5020 13 103
    34 5021 14 79
    35 5022 7 79
    36 5019 5020 5172 122 7540
    37 5019 5021 5173 39 3377
    38 5019 5022 5174 117 4763
    39 5023 5 > 20 nM MOR04832
    40 5024 4 > 20 nM
    41 5025 7 > 20 nM
    42 5026 12 > 20 nM
    43 5027 7 > 20 nM
    parental
    x-clones
  • Thus, as a further aspect of the present invention, there is presented the use of an isolated hTSLP-binding region of an antibody or functional fragment thereof having an KD of less than 100 pM, suitably less than 50pM, preferably less than 30pM, in the treatment of a disease associated with the presence of cell receptor target hTSLP, such as asthma or atopic dermatitis.
  • Reference List
    1. 1. Reche,P.A. et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol 167, 336-343 (2001).
    2. 2. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. ).
    3. 3. Levin,S.D. et al. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J Immunol 162, 677-683 (1999).
    4. 4. Novak,N. & Bieber,T. The role of dendritic cell subtypes in the pathophysiology of atopic dermatitis, J Am Acad Dermatol. 53, S 171-S 176 (20.05).
    5. 5. Quentmeier,H. et al. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 15, 1286-1292 (2001).
    6. 6. Knappik,A. et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296, 57-86 (2000).
    7. 7. Krebs,B. et al. High-throughput generation and engineering of recombinant human antibodies. J Immunol Methods 254, 67-84 (2001).
    8. 8. Rauchenberger,R. et al. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast ).
    9. 9. Knappik,A. et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296, 57-86 (2000).
    10. 10. Löhning,C. Novel methods for displaying (poly)peptides/proteins on bacteriophage particles via disulfide bonds. ( WO 01/05950). 2001 .
      Ref Type: Patent
    11. 11. Krebs,B. et al. High-throughput generation and engineering of recombinant human antibodies. J Immunol Methods 254, 67-84 (2001).
    12. 12. Nagy,Z.A. et al. Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat Med 8, 801-807 (2002).
    13. 13. Virnekas,B. et al. Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res 22, 5600-5607 (1994).
    14. 14. Chen,Y. et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen../A/b/ Biol 293, 865-881 (1999).
    15. 15. Schier,R. et al. Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol 263, 551-567 (1996).
    16. 16. Yang,W.P. et al. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J Mol Biol 254, 392-403 (1995).
    17. 17. Haenel,C., Satzger,M., Ducata,D.D., Ostendorp,R. & Brocks,B. Characterization of high-affinity antibodies by electrochemiluminescence-based equilibrium titration. Anal Biochem 339, 182-184 (2005).
    Annex 1 CDR Sequences Of Antibodies Of The Invention VH CDR (H-CDR) Sequences
  • Figure imgb0001
    Figure imgb0002
  • VL Kappa CDR (L-CDR) Sequences
  • Figure imgb0003
  • VL Lamda CDR (L-CDR) Sequences
  • Figure imgb0004
    Figure imgb0005
  • Annex 2 HuCAL GOLD ® anti-TSLP antibody amino acid sequences
  • Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
    Figure imgb0041
    Figure imgb0042
    Figure imgb0043
    Figure imgb0044
    Figure imgb0045
    Figure imgb0046
    Figure imgb0047
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    Figure imgb0054
    Figure imgb0055
    Figure imgb0056
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
    Figure imgb0061
    Figure imgb0062
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
    Figure imgb0066
    Figure imgb0067
    Figure imgb0068
    Figure imgb0069
    Figure imgb0070
    Figure imgb0071
    Figure imgb0072
    Figure imgb0073
    Figure imgb0074
    Figure imgb0075
    Figure imgb0076
    Figure imgb0077
    Figure imgb0078
    Figure imgb0079
    Figure imgb0080
    Figure imgb0081
    Figure imgb0082
    Figure imgb0083
    Figure imgb0084
    Figure imgb0085
    Figure imgb0086
    Figure imgb0087
    Figure imgb0088
    Figure imgb0089
    Figure imgb0090
    Figure imgb0091
    Figure imgb0092
    Figure imgb0093
    Figure imgb0094
    Figure imgb0095
    Figure imgb0096
    Figure imgb0097
    Figure imgb0098
    Figure imgb0099
    Figure imgb0100
    Figure imgb0101
    Figure imgb0102
    Figure imgb0103
    Figure imgb0104
    Figure imgb0105
    Figure imgb0106
    Figure imgb0107
    Figure imgb0108
    Figure imgb0109
  • MOR 5164, 5167, 5170 LIGHT CHAIN LAMBDA
  • The LC Lamda amino acid sequence is shown in SEQ ID NO: 99: and is encoded by the nucleotide sequence of SEQ ID NO: 100:
    Figure imgb0110
    Figure imgb0111
    Figure imgb0112
  • MOR 5164, 5167, 5170 LIGHT CHAIN LAMBDA (OPTIMIZED)
  • The LC Lamda amino acid sequence is shown in SEQ ID NO: 101: and is encoded by the nucleotide sequence of SEQ ID NO: 102:
    Figure imgb0113
    Figure imgb0114
  • MOR5164 HEAVY CHAIN IgG1:
  • The HC Lamda amino acid sequence is shown in SEQ ID NO: 103 and is encoded by the nucleotide sequence of SEQ ID NO: 104
    Figure imgb0115
    Figure imgb0116
  • MOR5164 HEAVY CHAIN IgG1 (OPTIMIZED)
  • The HC Lamda amino acid sequence is shown in SEQ ID NO: 105 and is encoded by the nucleotide sequence of SEQ ID NO: 106
    Figure imgb0117
    Figure imgb0118
    Figure imgb0119
  • MOR5167 HEAVY CHAIN IgG1:
  • The HC Lamda amino acid sequence is shown in SEQ ID NO: 107 and is encoded by the nucleotide sequence of SEQ ID NO: 108
    Figure imgb0120
    Figure imgb0121
    GGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTC CCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGA GGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAA GCCGCGGGAGGAGCAGTACAACAGCACGTACCGGGTGGTCAGCGTCCTCACCGT CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAA AGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCG AGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCA GGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTG GACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGT GGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACC ACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA (SEQ ID NO: 108)
  • MOR5167 HEAVY CHAIN IgG1 (OPTIMIZED):
  • The HC Lamda amino acid sequence is shown in SEQ ID NO: 109 and is encoded by the nucleotide sequence of SEQ ID NO: 110
    Figure imgb0122
    Figure imgb0123
    Figure imgb0124
  • MOR5170 HEAVY CHAIN IgG1:
  • The HC Lamda amino acid sequence is shown in SEQ ID NO: 1 I I and is encoded by the nucleotide sequence of SEQ ID NO: 112
    Figure imgb0125
    Figure imgb0126
  • MOR5170 HEAVY CHAIN IgG1 (OPTIMIZED):
  • The HC Lamda amino acid sequence is shown in SEQ ID NO: 113 and is encoded by the nucleotide sequence of SEQ ID NO: 114
    Figure imgb0127
    Figure imgb0128

Claims (7)

  1. An isolated human or humanized antibody or functional fragment thereof comprising an antigen-binding region that is specific for TSLP and wherein the antibody or functional fragment thereof binds TSLP and comprises a heavy variable region selected from SEQ ID NO: 84, SEQ ID NO: 85 and SEQ ID NO: 86 and a light chain variable region SEQ ID NO: 88.
  2. The isolated antibody according to claim 1 which is an IgGi, IgG2 or an IgG4.
  3. The isolated antibody according to any one of claims 1 or 2 which is an IgG1 having a light chain lambda sequence selected from SEQ ID NO: 99 or SEQ ID NO: 101 and a heavy chain sequence selected from 5EQ I D NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111 and SEQ ID NO: 113.
  4. Ar1 isolated or recombinant polynucleotide which encodes a polypeptide comprising an antigen-binding region of an antibody or a functional fragment thereof according to any one of claims 1 or 2 or an isolated antibody according to claim 3.
  5. The polynucleotide of claim 4 which Is a DNA.
  6. An isolated host cell comprising a first and a second recombinant DNA segment encoding a heavy chain and a light chain, respectively, of the antibody of claim 3; wherein said DNA segments are respectively operably linked to a first and second promoter, and are capable of being expressed in said host cell.
  7. A pharmaceutical composition comprising an antibody or functional fragment thereof according to any one of claims 1 to 3 and a pharmaceutically acceptable carrier or excipient therefor.
EP07722882A 2006-02-23 2007-02-21 Thymic stromal lymphopoietin (tslp) antibodies and uses thereof Not-in-force EP1991583B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10183229A EP2341076A3 (en) 2006-02-23 2007-02-21 Thymic stromal lymphopoietin (TSLP) antibodies and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0603683.4A GB0603683D0 (en) 2006-02-23 2006-02-23 Organic compounds
PCT/EP2007/001506 WO2007096149A1 (en) 2006-02-23 2007-02-21 Thymic stromal lympho po i et in (tslp) antibodies and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10183229.3 Division-Into 2010-09-30

Publications (2)

Publication Number Publication Date
EP1991583A1 EP1991583A1 (en) 2008-11-19
EP1991583B1 true EP1991583B1 (en) 2012-12-19

Family

ID=36178659

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10183229A Withdrawn EP2341076A3 (en) 2006-02-23 2007-02-21 Thymic stromal lymphopoietin (TSLP) antibodies and uses thereof
EP07722882A Not-in-force EP1991583B1 (en) 2006-02-23 2007-02-21 Thymic stromal lymphopoietin (tslp) antibodies and uses thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10183229A Withdrawn EP2341076A3 (en) 2006-02-23 2007-02-21 Thymic stromal lymphopoietin (TSLP) antibodies and uses thereof

Country Status (24)

Country Link
US (2) US8420787B2 (en)
EP (2) EP2341076A3 (en)
JP (1) JP2009527235A (en)
KR (1) KR20080099330A (en)
CN (1) CN101389657A (en)
AR (1) AR059867A1 (en)
AU (1) AU2007218165A1 (en)
BR (1) BRPI0708145A2 (en)
CA (1) CA2638851A1 (en)
CL (1) CL2007000478A1 (en)
CR (1) CR10184A (en)
EC (1) ECSP088690A (en)
ES (1) ES2404058T3 (en)
GB (1) GB0603683D0 (en)
IL (1) IL193229A0 (en)
MA (1) MA30274B1 (en)
MX (1) MX2008010807A (en)
NO (1) NO20083911L (en)
PE (1) PE20080112A1 (en)
RU (1) RU2008137531A (en)
TN (1) TNSN08333A1 (en)
TW (1) TW200813089A (en)
WO (1) WO2007096149A1 (en)
ZA (1) ZA200806490B (en)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702949B2 (en) 1997-10-24 2004-03-09 Microdiffusion, Inc. Diffuser/emulsifier for aquaculture applications
ES2288036T5 (en) 1998-11-13 2017-07-06 Immunex Corporation Human TSLP DNA and polypeptides
US7288633B2 (en) 2001-07-23 2007-10-30 Immunex Corporation Modified human thymic stromal lymphopoietin
HUE035250T2 (en) * 2005-10-12 2018-05-02 Morphosys Ag Generation and profiling of fully human HuCAL GOLD-derived therapeutic antibodies specific for human CD38
US7723477B2 (en) 2005-10-31 2010-05-25 Oncomed Pharmaceuticals, Inc. Compositions and methods for inhibiting Wnt-dependent solid tumor cell growth
DK2481756T3 (en) 2005-10-31 2017-10-09 Oncomed Pharm Inc Compositions and Methods for Diagnosing and Treating Cancer
WO2008052145A2 (en) 2006-10-25 2008-05-02 Revalesio Corporation Methods of therapeutic treatment of eyes and other human tissues using an oxygen-enriched solution
WO2008052143A2 (en) 2006-10-25 2008-05-02 Revalesio Corporation Mixing device and output fluids of same
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
AU2007334499B2 (en) 2006-12-14 2014-04-24 Merck Sharp & Dohme Corp. Engineered anti-TSLP antibody
SI2173379T1 (en) 2007-07-02 2015-12-31 Oncomed Pharmaceuticals, Inc. Compositions and methods for treating and diagnosing cancer
US20090176654A1 (en) * 2007-08-10 2009-07-09 Protelix, Inc. Universal fibronectin type III binding-domain libraries
US8680019B2 (en) * 2007-08-10 2014-03-25 Protelica, Inc. Universal fibronectin Type III binding-domain libraries
US8470966B2 (en) 2007-08-10 2013-06-25 Protelica, Inc. Universal fibronectin type III binding-domain libraries
US7982016B2 (en) * 2007-09-10 2011-07-19 Amgen Inc. Antigen binding proteins capable of binding thymic stromal lymphopoietin
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
CA2703672A1 (en) * 2007-10-25 2009-04-30 Revalesio Corporation Compositions and methods for modulating cellular membrane-mediated intracellular signal transduction
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
US20090227018A1 (en) * 2007-10-25 2009-09-10 Revalesio Corporation Compositions and methods for modulating cellular membrane-mediated intracellular signal transduction
WO2009134929A2 (en) 2008-05-01 2009-11-05 Revalesio Corporation Compositions and methods for treating digestive disorders
CN105079805A (en) 2008-09-26 2015-11-25 昂考梅德药品有限公司 Frizzled-binding agents and uses thereof
EP2213682A1 (en) 2009-01-30 2010-08-04 Institut Curie TSLP promotes immune evasion and persistence of viruses
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
WO2011056772A1 (en) * 2009-11-04 2011-05-12 Schering Corporation Engineered anti-tslp antibody
TWI535445B (en) 2010-01-12 2016-06-01 安可美德藥物股份有限公司 Wnt antagonists and methods of treatment and screening
NZ602700A (en) 2010-04-01 2014-10-31 Oncomed Pharm Inc Frizzled-binding agents and uses thereof
EP2566460A4 (en) 2010-05-07 2015-12-23 Revalesio Corp Compositions and methods for enhancing physiological performance and recovery time
CN103347500A (en) 2010-08-12 2013-10-09 利发利希奥公司 Compositions and methods for treatment of taupathy
MX349198B (en) 2011-07-15 2017-07-18 Oncomed Pharmaceuticals Inc * Rspo binding agents and uses thereof.
AU2012328952A1 (en) * 2011-10-28 2014-05-01 Merck Sharp & Dohme Corp. IL-19 as a biomarker of TSLP treatment
US9732151B2 (en) 2011-11-03 2017-08-15 Merck Sharp & Dohme Corp. Biomarkers for TSLP treatment
WO2014012007A2 (en) 2012-07-13 2014-01-16 Oncomed Pharmaceuticals, Inc. Rspo3 binding agents and uses thereof
WO2014066328A1 (en) 2012-10-23 2014-05-01 Oncomed Pharmaceuticals, Inc. Methods of treating neuroendocrine tumors using wnt pathway-binding agents
AU2014212081A1 (en) 2013-02-04 2015-08-13 Oncomed Pharmaceuticals, Inc. Methods and monitoring of treatment with a Wnt pathway inhibitor
US9168300B2 (en) 2013-03-14 2015-10-27 Oncomed Pharmaceuticals, Inc. MET-binding agents and uses thereof
JP6943568B2 (en) * 2013-12-06 2021-10-06 アメリカ合衆国 Thymic interstitial lymphocyte neoplastic factor receptor-specific chimeric antigen receptor and method of using it
KR102496507B1 (en) 2014-05-07 2023-02-03 암겐 인코포레이티드 Autoinjector with shock reducing elements
CA2949237C (en) 2014-05-16 2022-08-23 Amgen Inc. Assay for detecting th1 and th2 cell populations
KR20220143782A (en) 2014-06-03 2022-10-25 암겐 인코포레이티드 Devices and methods for assisting a user of a drug delivery device
EP3193935A4 (en) 2014-09-16 2018-03-21 Oncomed Pharmaceuticals, Inc. Treatment of fibrotic diseases
MX2021014323A (en) 2014-10-14 2023-02-02 Amgen Inc Drug injection device with visual and audio indicators.
CN114569716A (en) 2014-10-23 2022-06-03 美国安进公司 Reducing the viscosity of pharmaceutical formulations
US11357916B2 (en) 2014-12-19 2022-06-14 Amgen Inc. Drug delivery device with live button or user interface field
CA3069716C (en) 2015-02-17 2021-11-09 Amgen Inc. Drug delivery device with vacuum assisted securement and/or feedback
US11806509B2 (en) 2015-02-27 2023-11-07 Amgen Inc. Drug delivery device having a needle guard mechanism with a turnable threshold of resistance to needle guard movement
WO2016142426A1 (en) * 2015-03-11 2016-09-15 Glaxosmithkline Intellectual Property Development Limited Tslp binding proteins
KR101843248B1 (en) * 2015-03-17 2018-03-29 고려대학교 세종산학협력단 Peptide derivatives controlling thymic stromal lymphoprotein mediated signal transduction, and pharmaceutical composition for prevention and treatment of allergy and asthma comprising the peptide derivatives
WO2017039786A1 (en) 2015-09-02 2017-03-09 Amgen Inc. Syringe assembly adapter for a syringe
WO2017042701A1 (en) * 2015-09-09 2017-03-16 Novartis Ag Thymic stromal lymphopoietin (tslp)-binding antibodies and methods of using the antibodies
EP3347377B1 (en) * 2015-09-09 2021-02-17 Novartis AG Thymic stromal lymphopoietin (tslp)-binding antibodies and methods of using the antibodies
EP3386573B1 (en) 2015-12-09 2019-10-02 Amgen Inc. Auto-injector with signaling cap
WO2017120178A1 (en) 2016-01-06 2017-07-13 Amgen Inc. Auto-injector with signaling electronics
GB201615588D0 (en) * 2016-09-14 2016-10-26 Glaxosmithkline Ip Dev Ltd TSLP Binding Proteins
DK3429663T3 (en) 2016-03-15 2020-09-28 Amgen Inc REDUCING THE LIKELIHOOD OF GLASS BREAKING IN MEDICINE ADMINISTRATION DEVICES
WO2017178869A1 (en) * 2016-04-15 2017-10-19 Pontificia Universidad Católica De Chile Pharmaceutical composition for reducing the symptoms and disease of the respiratory infection caused by human metapneumovirus (hmpv), which comprises at least one agent that neutralises the function of the tslp and/or tslpr and/or ox40l and/or cd177 molecules, and a pharmaceutically acceptable excipient, and the use thereof
US11541168B2 (en) 2016-04-29 2023-01-03 Amgen Inc. Drug delivery device with messaging label
US11389588B2 (en) 2016-05-02 2022-07-19 Amgen Inc. Syringe adapter and guide for filling an on-body injector
WO2017197222A1 (en) 2016-05-13 2017-11-16 Amgen Inc. Vial sleeve assembly
WO2017200989A1 (en) 2016-05-16 2017-11-23 Amgen Inc. Data encryption in medical devices with limited computational capability
US11541176B2 (en) 2016-06-03 2023-01-03 Amgen Inc. Impact testing apparatuses and methods for drug delivery devices
WO2018004842A1 (en) 2016-07-01 2018-01-04 Amgen Inc. Drug delivery device having minimized risk of component fracture upon impact events
US20190328965A1 (en) 2016-08-17 2019-10-31 Amgen Inc. Drug delivery device with placement detection
CN107955071B (en) * 2016-10-18 2021-03-26 上海赛远生物科技有限公司 Human anti-human CD47 antibody and coding gene and application thereof
EP3532127A1 (en) 2016-10-25 2019-09-04 Amgen Inc. On-body injector
JP2020503976A (en) 2017-01-17 2020-02-06 アムジエン・インコーポレーテツド Injection device and associated methods of use and assembly
CA3048520A1 (en) 2017-02-17 2018-08-23 Amgen Inc. Drug delivery device with sterile fluid flowpath and related method of assembly
EP3582829A1 (en) 2017-02-17 2019-12-25 Amgen Inc. Insertion mechanism for drug delivery device
JP7377596B2 (en) 2017-02-22 2023-11-10 アムジエン・インコーポレーテツド Low viscosity, high concentration evolocumab formulations and their manufacturing method
JP2020508803A (en) 2017-03-06 2020-03-26 アムジエン・インコーポレーテツド Drug delivery device with anti-actuation feature
US11571511B2 (en) 2017-03-07 2023-02-07 Amgen Inc. Insertion mechanism and method of inserting a needle of a drug delivery device
KR102893480B1 (en) 2017-03-09 2025-11-28 암겐 인코포레이티드 Insertion mechanism for drug delivery device
CN106943593A (en) * 2017-03-24 2017-07-14 浙江中医药大学 Application of the anti-TSLP antibody in the chronic itch medicine of preventing and treating is prepared
HUE063805T2 (en) 2017-03-28 2024-01-28 Amgen Inc Plunger rod and syringe assembly system and method
AU2018282077B2 (en) 2017-06-08 2023-11-23 Amgen Inc. Torque driven drug delivery device
CA3061982A1 (en) 2017-06-08 2018-12-13 Amgen Inc. Syringe assembly for a drug delivery device and method of assembly
MA49447A (en) 2017-06-22 2020-04-29 Amgen Inc REDUCTION OF IMPACTS / SHOCKS OF ACTIVATION OF A DEVICE
WO2018237225A1 (en) 2017-06-23 2018-12-27 Amgen Inc. ELECTRONIC DRUG DELIVERY DEVICE COMPRISING A CAP ACTIVATED BY A SWITCH ASSEMBLY
MA49562A (en) 2017-07-14 2020-05-20 Amgen Inc NEEDLE INSERTION-RETRACTION SYSTEM FEATURING A DOUBLE-TORSION SPRING SYSTEM
MA49626A (en) 2017-07-21 2020-05-27 Amgen Inc GAS PERMEABLE SEALING ELEMENT FOR DRUG CONTAINER AND ASSEMBLY PROCEDURES
JP2020528296A (en) 2017-07-25 2020-09-24 アムジエン・インコーポレーテツド Drug delivery device with gear module and related assembly method
WO2019022950A1 (en) 2017-07-25 2019-01-31 Amgen Inc. Drug delivery device with container access system and related method of assembly
MA49838A (en) 2017-08-09 2020-06-17 Amgen Inc DRUG DELIVERY SYSTEM WITH CHAMBER HYDRAULIC-PNEUMATIC PRESSURE
EP3669004A1 (en) * 2017-08-16 2020-06-24 Medimmune, LLC Compositions and methods for treatment of atopic dermatitis and treatment selection
US11077246B2 (en) 2017-08-18 2021-08-03 Amgen Inc. Wearable injector with sterile adhesive patch
US11103636B2 (en) 2017-08-22 2021-08-31 Amgen Inc. Needle insertion mechanism for drug delivery device
ES2939292T3 (en) 2017-10-04 2023-04-20 Amgen Inc Flow adapter for drug delivery device
EP3691716B1 (en) 2017-10-06 2023-11-29 Amgen Inc. Drug delivery device with interlock assembly and related method of assembly
US11464903B2 (en) 2017-10-09 2022-10-11 Amgen Inc. Drug delivery device with drive assembly and related method of assembly
WO2019090079A1 (en) 2017-11-03 2019-05-09 Amgen Inc. System and approaches for sterilizing a drug delivery device
US12053618B2 (en) 2017-11-06 2024-08-06 Amgen Inc. Fill-finish assemblies and related methods
JP2021501616A (en) 2017-11-06 2021-01-21 アムジエン・インコーポレーテツド Drug delivery device with placement and flow detection
MA50557A (en) 2017-11-10 2020-09-16 Amgen Inc PISTONS FOR DRUG DELIVERY DEVICES
IL273638B2 (en) 2017-11-16 2024-10-01 Amgen Inc Door lock mechanism for drug delivery device
JP7366353B2 (en) * 2018-04-18 2023-10-23 リードジーン バイオメディカル インコーポレイテッド Compositions of isolated anti-indoxyl sulfate monoclonal antibodies and/or antigen-binding fragments thereof and uses thereof
US10835685B2 (en) 2018-05-30 2020-11-17 Amgen Inc. Thermal spring release mechanism for a drug delivery device
US11083840B2 (en) 2018-06-01 2021-08-10 Amgen Inc. Modular fluid path assemblies for drug delivery devices
CA3103682A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Delivery devices for administering drugs
MA53379A (en) 2018-07-24 2021-06-02 Amgen Inc ADMINISTRATION DEVICES FOR THE ADMINISTRATION OF MEDICINES
WO2020023220A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation
WO2020023336A1 (en) 2018-07-24 2020-01-30 Amgen Inc. Hybrid drug delivery devices with grip portion
MA53320A (en) 2018-07-31 2021-11-03 Amgen Inc FLUID PATH ASSEMBLY FOR DRUG DELIVERY DEVICE
AU2019347710B2 (en) 2018-09-24 2025-05-08 Amgen Inc. Interventional dosing systems and methods
IL281469B2 (en) 2018-09-28 2024-08-01 Amgen Inc Assembling a memory alloy ejector activation assembly for a drug delivery device
US12156991B2 (en) 2018-10-02 2024-12-03 Amgen Inc. Injection systems for drug delivery with internal force transmission
WO2020072846A1 (en) 2018-10-05 2020-04-09 Amgen Inc. Drug delivery device having dose indicator
US12053617B2 (en) 2018-10-15 2024-08-06 Amgen Inc. Drug delivery device having damping mechanism
WO2020081480A1 (en) 2018-10-15 2020-04-23 Amgen Inc. Platform assembly process for drug delivery device
US12485219B2 (en) 2018-11-01 2025-12-02 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
US11213620B2 (en) 2018-11-01 2022-01-04 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
TWI831847B (en) 2018-11-01 2024-02-11 美商安進公司 Drug delivery devices with partial needle retraction and methods for operating the same
CN109678957B (en) * 2018-12-06 2021-04-06 浙江工业大学 Anti-human TSLP monoclonal antibody and preparation and application thereof
ES3032751T3 (en) 2019-04-24 2025-07-24 Amgen Inc Syringe sterilization verification assemblies and methods
TW202110882A (en) 2019-06-04 2021-03-16 大陸商江蘇恆瑞醫藥股份有限公司 Antibodies capable of binding to tslp and the application thereof
AU2020311432A1 (en) * 2019-07-11 2022-02-03 Tavotek Biotherapeutics (Hong Kong) Limited Agents that interfere with thymic stromal lymphopoietin (TSLP)-receptor signaling
MX2022002149A (en) 2019-08-23 2022-03-17 Amgen Inc Drug delivery device with configurable needle shield engagement components and related methods.
JP7331298B2 (en) * 2019-09-04 2023-08-23 ビオシオン インコーポレイテッド Antibody-conjugated TSLP and uses thereof
RS66646B1 (en) 2019-10-28 2025-04-30 Medimmune Ltd DRY POWDER FORMULATIONS OF THYMIC STROMAL LYMPHOPOETIN (TSLP)-BINDING ANTIBODIES AND METHODS OF USING THEM
CN112876564B (en) * 2019-11-29 2022-07-15 康诺亚生物医药科技(成都)有限公司 Development and application of TSLP (TSLP-related disease treatment agent)
US20220363781A1 (en) * 2019-12-13 2022-11-17 Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. Anti-tslp antibody and uses thereof
CN111883211B (en) * 2020-08-07 2021-04-23 张哲� Gene scar for representing HRD homologous recombination repair defect and identification method
CN114437212B (en) * 2020-11-06 2023-03-14 上海麦济生物技术有限公司 Anti-human thymic stromal lymphopoietin antibody and preparation method and application thereof
TW202219066A (en) * 2020-11-12 2022-05-16 大陸商上海濟煜醫藥科技有限公司 A tslp antigen binding protein and the application thereof
CN115210258A (en) * 2021-02-04 2022-10-18 舒泰神(北京)生物制药股份有限公司 Antibody for specifically recognizing thymic stromal lymphopoietin and application thereof
CN114853888B (en) * 2021-02-05 2023-11-03 上海洛启生物医药技术有限公司 anti-TSLP nanobody and application thereof
MX2023009971A (en) * 2021-03-03 2023-09-05 Chia Tai Tianqing Pharmaceutical Group Co Ltd Pharmaceutical composition containing anti-tslp antibody.
KR20240011135A (en) 2021-05-21 2024-01-25 암젠 인크 How to Optimize Filling Recipes for Drug Containers
CN115433275A (en) * 2021-06-02 2022-12-06 启愈生物技术(上海)有限公司 Anti-thymic stromal lymphopoietin (TSLP) antibody and use thereof
CN113069543B (en) * 2021-06-07 2021-08-06 迈威(上海)生物科技股份有限公司 Liquid composition comprising monoclonal antibodies against thymic stromal lymphopoietin
CN113683694B (en) 2021-09-03 2022-05-13 江苏荃信生物医药股份有限公司 Anti-human TSLP monoclonal antibody and application thereof
CN117106084B (en) * 2021-12-02 2024-03-22 北京东方百泰生物科技股份有限公司 An anti-TSLP monoclonal antibody, its antigen-binding fragment and its application
TW202525846A (en) 2023-08-25 2025-07-01 美商普羅特歐拉吉克適美國公司 Anti-il-13 multispecific antibody constructs and uses thereof
WO2025108344A1 (en) * 2023-11-22 2025-05-30 上海华奥泰生物药业股份有限公司 Antigen binding protein targeting tslp and use

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US5374548A (en) 1986-05-02 1994-12-20 Genentech, Inc. Methods and compositions for the attachment of proteins to liposomes using a glycophospholipid anchor
MX9203291A (en) 1985-06-26 1992-08-01 Liposome Co Inc LIPOSOMAS COUPLING METHOD.
US5108921A (en) 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
EP1690935A3 (en) 1990-01-12 2008-07-30 Abgenix, Inc. Generation of xenogeneic antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
EP2314696A1 (en) 1998-09-21 2011-04-27 Schering Corporation Therapeutic uses of human Interleukin-B50 antagonist.
ES2288036T5 (en) 1998-11-13 2017-07-06 Immunex Corporation Human TSLP DNA and polypeptides
US6890734B2 (en) * 2000-11-10 2005-05-10 Schering Corporation Nucleic acids encoding a cytokine receptor complex
KR100857943B1 (en) 2000-11-30 2008-09-09 메다렉스, 인코포레이티드 Transgenic Transchromosomal Rodents for the Preparation of Human Antibodies
EP1487865A4 (en) 2002-02-01 2005-12-14 Schering Corp USES OF MAMMAL CYTOKINE AND REAGENTS THEREFOR
US20060171943A1 (en) 2005-02-01 2006-08-03 Amgen Inc. Compositions and methods of treating fibrotic disorders
AU2007334499B2 (en) 2006-12-14 2014-04-24 Merck Sharp & Dohme Corp. Engineered anti-TSLP antibody
US7982016B2 (en) 2007-09-10 2011-07-19 Amgen Inc. Antigen binding proteins capable of binding thymic stromal lymphopoietin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BROWN MCKAY ET AL: "Tolerance to single, but not multiple, amino acid replacements in antibody V-H CDR2: A means of minimizing B cell wastage from somatic hypermutation?", JOURNAL OF IMMUNOLOGY, vol. 156, no. 9, 1996, pages 3285 - 3291, ISSN: 0022-1767 *

Also Published As

Publication number Publication date
IL193229A0 (en) 2009-02-11
ES2404058T3 (en) 2013-05-23
PE20080112A1 (en) 2008-03-13
RU2008137531A (en) 2010-03-27
EP2341076A2 (en) 2011-07-06
CL2007000478A1 (en) 2008-03-14
JP2009527235A (en) 2009-07-30
CN101389657A (en) 2009-03-18
US8420787B2 (en) 2013-04-16
EP2341076A3 (en) 2011-08-24
CR10184A (en) 2008-12-03
EP1991583A1 (en) 2008-11-19
BRPI0708145A2 (en) 2011-05-17
CA2638851A1 (en) 2007-08-30
MX2008010807A (en) 2008-09-01
ZA200806490B (en) 2009-06-24
AU2007218165A1 (en) 2007-08-30
TW200813089A (en) 2008-03-16
US20130323237A1 (en) 2013-12-05
TNSN08333A1 (en) 2009-12-29
US20090186022A1 (en) 2009-07-23
KR20080099330A (en) 2008-11-12
WO2007096149A1 (en) 2007-08-30
AR059867A1 (en) 2008-05-07
GB0603683D0 (en) 2006-04-05
MA30274B1 (en) 2009-03-02
ECSP088690A (en) 2008-09-29
NO20083911L (en) 2008-11-05

Similar Documents

Publication Publication Date Title
EP1991583B1 (en) Thymic stromal lymphopoietin (tslp) antibodies and uses thereof
EP2532679B1 (en) Human antibodies against il13 and therapeutic uses
AU2005258077C1 (en) Interferon alpha receptor 1 antibodies and their uses
CA2546054C (en) Interferon alpha antibodies and their uses
AU2004298492B2 (en) IP-10 antibodies and their uses
WO2010112458A1 (en) Composition and methods of use for therapeutic antibodies specific for the il-12 receptore betal subunit
WO2017095875A1 (en) Anti human ip-10 antibodies and their uses
CN101287760B (en) Anti-IL13 human antibodies
AU2011250741B2 (en) IP-10 antibodies and their uses
AU2011236019B2 (en) Interferon alpha receptor 1 antibodies and their uses
HK1163707B (en) Ip-10 antibodies and their uses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090113

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1122313

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 589392

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007027461

Country of ref document: DE

Effective date: 20130207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121219

Ref country code: AT

Ref legal event code: MK05

Ref document number: 589392

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121219

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2404058

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130523

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

26N No opposition filed

Effective date: 20130920

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007027461

Country of ref document: DE

Effective date: 20130920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140211

Year of fee payment: 8

Ref country code: ES

Payment date: 20140113

Year of fee payment: 8

Ref country code: IT

Payment date: 20140218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140417

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007027461

Country of ref document: DE

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1122313

Country of ref document: HK

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150221

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180703