EP1983287A1 - Agencement d'échangeur de chaleur - Google Patents
Agencement d'échangeur de chaleur Download PDFInfo
- Publication number
- EP1983287A1 EP1983287A1 EP08010942A EP08010942A EP1983287A1 EP 1983287 A1 EP1983287 A1 EP 1983287A1 EP 08010942 A EP08010942 A EP 08010942A EP 08010942 A EP08010942 A EP 08010942A EP 1983287 A1 EP1983287 A1 EP 1983287A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coil
- coil support
- water
- heat exchanger
- tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 128
- 239000012530 fluid Substances 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 5
- -1 polyethylene Polymers 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 26
- 239000002826 coolant Substances 0.000 description 15
- 230000005494 condensation Effects 0.000 description 10
- 238000009833 condensation Methods 0.000 description 10
- 238000010257 thawing Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H4/00—Fluid heaters characterised by the use of heat pumps
- F24H4/02—Water heaters
- F24H4/04—Storage heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/08—Hot-water central heating systems in combination with systems for domestic hot-water supply
- F24D3/082—Hot water storage tanks specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/18—Water-storage heaters
- F24H1/186—Water-storage heaters using fluid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/18—Water-storage heaters
- F24H1/20—Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
- F24H1/208—Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes with tubes filled with heat transfer fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/02—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
- F28D7/024—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
- F28F9/013—Auxiliary supports for elements for tubes or tube-assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
- F28F9/013—Auxiliary supports for elements for tubes or tube-assemblies
- F28F9/0132—Auxiliary supports for elements for tubes or tube-assemblies formed by slats, tie-rods, articulated or expandable rods
Definitions
- the present invention relates to heating systems, and in particular to a coil support device according to the preamble of claim 1.
- the present invention also relates to a heat exchanger arrangement comprising a coil support device according to the preamble of claim 8.
- These heating systems may consist of, e.g. oilfired boilers, bioenergy boilers, which e.g. are intended for firing with chips or pellets, and heat pumps.
- the heating systems often comprise a water heater, which, in principle, consists of a water container in which hot water is heated and stored to enable a momentary consumption of water that is larger than what the heating system momentarily can produce.
- the hot water may be heated during the night to enable a large hot water consumption during the day.
- the water in the water heater may, in principle, be heated to an arbitrary temperature, which enables consumption of a large number of litres of ready-mixed hot water when the water heater is fully heated.
- water heating is performed more often. Further, heating of the hot water in the water heater, the so called secondary water or hot water, is performed by the so called primary water, heated by the heat pump loop. As the available water heating temperature is limited by the temperature to which the heat pump is capable of heating the primary water, there is a limitation in the temperature to which the secondary water may be heated.
- the water heating method often used today involves use of a double-walled water container, wherein the clean water is contained in the inner container, and is heated by hot water in the double-wall through the container wall.
- a problem when using this kind of water heating is that heat pumps with high output power, e.g. more than 6 kW, tends to, during heating of hot water, and in particular during summer operation, turn off and on a number of times during heating, charging, of the hot water, which results in poor usage of the heat pump.
- the object of the present invention is to provide a system for heating water that solves the above mentioned problem.
- the coil support device is for supporting a tubular coil in a water container, wherein said coil support device consists of a coil support element and an elongated coil support locking element, wherein said coil support element consists of an elongated structure having a plurality of substantially transversal cut-outs, each adapted for receiving a portion of a respective turn of said tubular coil, wherein said coil support device is arranged to be applied to said coil such that an elongated space is formed between said coil and said coil support element, chara-cterised in that said elongated coil support locking device is arranged to, from one end of the coil support element, be inserted into said space formed between the coil and the coil support element so as to, in use, lock said coil support element to the coil.
- tubular coil may be assembled in the container in a manufacturing plant and then transported to an installation location without having to risk the coil collapsing and becoming damaged, which otherwise could be the case, e.g. if the tubular coil is made from copper.
- a further advantage is that the tubular coil may easily be positioned in an optimal way in the container, both regarding the position relative to the container wall and the positioning of the individual turns of the coil.
- the heat exchanger arrangement includes a water container having an inlet for supplying water to be heated and an outlet for discharging heated water.
- the heat exchanger arrangement includes a tubular coil arranged in said water container, wherein said tubular coil includes an inlet for receiving hot fluid and an outlet for discharging said hot fluid after passage through the coil, wherein the coil is made from a material admitting heat from the hot fluid to be emitted to water in the container when hot fluid is passing through the coil, and includes a coil support device for keeping the tubular coil in position.
- the outlet of the coil may be arranged in the lower end of the tubular coil.
- the tubular coil solution has the advantage that a considerably higher hot water velocity may be achieved as compared to what is possible when using the double-wall solution, which further increases heat transfer. Even further, the solution according to the present invention allows that the heat transferring surface may be positioned more freely than when using a double-wall, which has the advantage that a larger temperature gradient may be achieved in the container.
- the system can further comprise means for heating the hot fluid using a heat pump, wherein the hot fluid is circulated through the container using a circulation pump, and wherein the system comprises means for controlling the circulation pump continuously or in relation to predetermined start and stop conditions.
- the circulation pump may be controlled such that the circulation pump is turned on at a first predetermined cooling medium condensation pressure, and turned off at a second predetermined cooling medium condensation pressure, which is lower than said first cooling medium condensation pressure.
- the circulation pump may be controlled such that the cooling medium condensation pressure is kept at a predetermined cooling medium condensation pressure.
- Controlling the circulation pump towards a certain working point may allow a higher temperature in the water container, which in turn has as result that a consumer of large amounts of water may achieve a larger amount of ready-mixed hot water (ready-mixed hot water means the total volume of the hot water in the container and the volume of the cold water that the hot water is mixed together with) but at a higher cost due to lower efficiency.
- ready-mixed hot water means the total volume of the hot water in the container and the volume of the cold water that the hot water is mixed together with
- the pitch of the tubular coil may be evenly distributed over its length, or, alternatively, the pitch of the tubular coil may vary over its length.
- the pitch may be lower in the top and bottom as compared to the pitch in the middle of the coil. This has the advantage that the water transferring surface may be adapted to achieve a best possible temperature stratification in the container.
- the heat exchanger arrangement may further comprise a double-wall, which may be used as an accumulator container, e.g. for defrosting water.
- a double-wall which may be used as an accumulator container, e.g. for defrosting water. This has the advantage that if the heat pump uses outside air as heat source, the volume in the double-wall may be used as defrosting container for defrosting an air heat exchanger, on demand or at regular intervals.
- a heat pump 10 installed in a real estate such as a private house.
- the heat pump is provided with a control computer 12, which controls and monitors various functions in the heat pump. Such functions may be, e.g. setting and/or monitoring operating temperatures of the heat pump compressor, indoor and outdoor temperatures, heating function settings, room temperature control depending on time-of-day or holiday absence etc.
- a user may communicate with the control computer 12 via a display 29 and keypad 29 arranged on the heat pump.
- the heat pump 10 further comprises a heat pump circuit 20 and a water container 11 having an inlet 13 in the bottom part of the container for supplying water to be heated and an outlet 14 in the upper part of the container for discharging heated water.
- the heat pump circuit 20 comprises a circulating cooling medium, refrigerant, wherein liquid cooling medium absorbs heat from a heat source such as heat loop in rock 22, having a temperature of about -5° - +5° and is evaporated in an evaporator.
- the evaporation temperature may be, e.g. -3°.
- the gaseous cooling medium is then compressed using a compressor 23 to a higher pressure, which, due to the smaller volume of the gas, results in an increased gas temperature.
- the compressed, hot gas then delivers its heat via a condenser 24 and sub-cooler 25 to the so called primary water, or radiator water 26.
- the sub-cooler has as result that more heat may be extracted, which consequently yields a more economic heat pump.
- the pressure of the, at this stage liquid, cooling medium is then considerably lowered in an expansion valve 27, whereupon the temperature of the cooling medium is rapidly lowered, whereupon the cooling medium again absorbs heat from the heat loop 22.
- the heat loop may also absorb heat from earth, air and/or water.
- the primary water is then alternately used for heating hot water or the estates radiator and/or underfloor heating system.
- the efficiency of the heat pump is controlled by the temperature of the cooling medium when it reaches the condenser. The lower the temperature, i.e. the lower the pressure, the higher efficiency.
- the coefficient of performance, COP, of the heat pump i.e. the ratio of delivered power and supplied power, may be 4,4; at 50° it may be 3,3 and at 60° it may be 2,7.
- the heat pump can not heat the primary water to an arbitrary high temperature, which leads to restrictions in the temperature to which the secondary water, hot water, may be heated by the primary water.
- FIG. 1 In fig. 1 is shown the method for heating the secondary water that is commonly used today.
- the water container 11 is double-walled with an outer wall 15 surrounding the container 11.
- the primary water is, by means of a valve, alternately circulated through the estate's heating system (not shown) and the volume 16 between the container 11 and the wall 15.
- the hot primary water passes through the volume 16, the water in the container 11 is heated through the container wall surface 17.
- the primary water reaches the bottom of the double-wall it is led by means of outlet 18 back towards the heat pump portion for reheating.
- a heat exchanger arrangement according to the present invention, which allows a larger heat transfer to the water in the container and also larger hot water consumption.
- a tubular coil 31 extending substantially through the entire portion of the water container 30 that is filled with water, is arranged in the water container 30.
- the primary water, heated by the heat pump portion is let into the tubular coil from above and circulates through the coil, which is ended by an outlet in the container bottom, after which the primary water is recirculated to the heat pump portion for reheating prior to circulating the coil again.
- the tubular coil has the advantage that, as compared to the container wall, a considerably larger heat transfer surface is obtained, which results in transfer of a larger amount of energy during passage through the coil.
- the coil is shown as having an essentially square section, this section, however, may, of course, also be circular, triangular or of any other polygon shape.
- the tubular coil and the water container are coaxially aligned in this example.
- the coil extends through all or substantially all of the water carrying portion of the container, a greater temperature gradient as compared to the double-wall solution is achieved. I.e., even if the total energy contained in the container is the same, the temperature difference between the top and bottom will be greater using the tubular coil, which results in a higher temperature in the upper part as compared to using a double-wall.
- each additional degree of higher temperature in the hot water is important since this means that a larger amount of ready-mixed water with a temperature suitable for consumption can be obtained.
- the present invention thus facilitates the often present regulations regarding how much hot water a water heater must be able to deliver during a continuous discharge, and then again at a new discharge after a certain amount of time, e.g. one hour.
- a top temperature 5° higher than when using a double-wall solution is obtained. Further, recharging is much quicker since the heat pump does not turn off in the same manner as when using the double-wall.
- the present invention further has the advantage that the weight of the total appliance is lighter and the heat pump is thus easier to transport and install.
- the double-wall may be kept.
- a defrosting container containing hot water is normally required, wherein the hot water is circulated through an air heat exchanger having a flange battery to defrost ice precipitated on the flange battery.
- This defrosting container normally constitutes a separate unit, positioned next to the heat pump.
- the present invention allows that the freed volume in the double-wall is used as a defrosting container. Water that has been cooled during heating of the flange battery may then be reheated by the hot water through the wall of the water container, and then be shunted to the flange battery when necessary.
- the limited ability of the wall to transfer heat has as result that the temperature of the hot water is only slightly affected.
- the invention thus has the advantage that the extra container is unnecessary, with following savings in cost and space.
- the water is circulated through the tubular coil using a circulation pump. Normally, no control of the circulation pump is performed, the water is circulated continuously.
- a control of the circulation pump may be performed. For example, a very simple control principle may be used, wherein the circulation pump is started when the condensation pressure in the heat pump has reached, e.g. 25,5 bar, which means that the cooling medium has a high temperature and that the primary water thus will be heated to a high temperature when the circulation starts. When the condensation pressure then has dropped, e.g. to 20 bar, due to heat transfer to the primary water the circulation pump is turned of until the condensation pressure again has risen to 25,5 bar.
- this control method is very simple and may be implemented in a simple manner.
- the advantage of this control method is that even more hot water may be drawn from the container, in particular when using hot water of higher temperatures, such as 50° hot water.
- This control method also results in an even greater temperature difference in the container, and thereby higher top temperature.
- the disadvantage of this control is that the COP of the heat pump is lower than when using an uncontrolled circulation pump due to the higher condensation temperature.
- Another alternative regulation possibility is to turn on the circulation pump during a certain fraction of the time, e.g. 1 second every 4 seconds.
- a continuous control of the circulation pump may be applied.
- the working point of the heat pump compressor may be kept about a predetermined point, e.g. 26 bar, which allows that an even larger volume of high temperature hot water maybe drawn, which may be advantageous for large families or at occasions with guests staying overnight.
- the lower COP factor raises the costs for heating.
- the circulation pump may advantageously be variable-speed controlled to enable an accurate and continuous control.
- circulation pump start and stop pressures merely constitutes an example, and should be chosen lower than the condensation pressure at which the heat pump turns off.
- the water container may also be provided with a sensor in the top of the water container in order to allow display of a real water temperature.
- This sensor may also be used in control of hot water production.
- the heat pump may turn off when the top temperature has reached a certain temperature. This has the advantage that a customer may choose at which temperature the heat pump turns off. If the household is not a large consumer of hot water, maybe 45° or 50° is enough to provide the household with a sufficient amount of ready-mixed water from the water in the water container.
- the sensor may also be used to start the heat pump when the top temperature falls below a certain value, e.g. when the top temperature has fallen due to hot water consumption or heat transfer by radiation, e.g. when the container has been left unused for some time.
- a coil support device may be used to keep the coil in position.
- two diametrically opposed coil support devices 41, 42 that are used to support a coil in a container 43.
- the coil support devices 41, 42 each consists of two separate parts wherein one 44 constitutes the coil support element and the other part 45 constitutes a coil support locking element.
- the coil supports are preferably made from thermoplastic such as polyethylene or polyoximethylene and consist of, e.g. a 2 mm thick plate with cut-outs 46 for the coil support.
- the coil support is bent approximately 90 degrees using a tool and is applied onto the corner of the coil.
- a coil support locking element in the shape of a stiff rod is inserted into the space arisen between the coil and the coil support from one end.
- the coil support is shown both in a bent shape and in a planar shape.
- the coil support may be arranged such that it remains in a bent shape after bending, but may also be arranged such that when the tool releases the coil support this may, as much as possible, tend to again become straight, i.e. until the coil support locking element is stopped by the coil and thereby prohibits the coil support from fully straightening out.
- the coil support locking element consists of, e.g., a round bar made from polyethylene or polyoxymethylene.
- the locking element may have a diameter of about 8 mm and be about 900 mm in length.
- both coil supports are mounted in this manner on each coil and in two opposite corners of the coil.
- both coil supports may be identical, but shaped such that a compensation for the pitch of the coil is accomplished by turning one support upside down.
- the lower portions of the coil support rests on the bottom portion of the container and, in this manner, keeps the coil in position and prohibits it from collapsing during transport.
- the coil support also ensures that a correct positioning of the coil is maintained during the heat exchanger lifetime.
- the coil support may be completely flat but shaped such that it still may be applied on to a corner of the coil.
- the corner of the coil may, e.g., be relatively sharp, as may be the case, e.g. when an axial section of the coil is triangular, quadrangular, pentagonal or of another polygon shape.
- water has been used as heat transfer medium.
- some other liquid may be used, or fluids such as gas or gas/liquid mixtures.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Water Supply & Treatment (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE0402355A SE528862C2 (sv) | 2004-09-29 | 2004-09-29 | Värmeväxlaranordning |
| EP05788736A EP1794532A1 (fr) | 2004-09-29 | 2005-09-29 | Echangeur thermique |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP05788736A Division EP1794532A1 (fr) | 2004-09-29 | 2005-09-29 | Echangeur thermique |
| EP05788736.6 Division | 2005-09-29 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1983287A1 true EP1983287A1 (fr) | 2008-10-22 |
| EP1983287B1 EP1983287B1 (fr) | 2011-09-14 |
Family
ID=33414856
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08010942A Expired - Lifetime EP1983287B1 (fr) | 2004-09-29 | 2005-09-29 | Agencement d'échangeur de chaleur |
| EP05788736A Withdrawn EP1794532A1 (fr) | 2004-09-29 | 2005-09-29 | Echangeur thermique |
| EP08010941A Expired - Lifetime EP1983286B1 (fr) | 2004-09-29 | 2005-09-29 | Agencement d'échangeur de chaleur |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP05788736A Withdrawn EP1794532A1 (fr) | 2004-09-29 | 2005-09-29 | Echangeur thermique |
| EP08010941A Expired - Lifetime EP1983286B1 (fr) | 2004-09-29 | 2005-09-29 | Agencement d'échangeur de chaleur |
Country Status (5)
| Country | Link |
|---|---|
| EP (3) | EP1983287B1 (fr) |
| AT (2) | ATE524702T1 (fr) |
| NO (1) | NO20071639L (fr) |
| SE (1) | SE528862C2 (fr) |
| WO (1) | WO2006036121A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010230203A (ja) * | 2009-03-26 | 2010-10-14 | Corona Corp | 貯湯式給湯器 |
| WO2011104766A1 (fr) | 2010-02-26 | 2011-09-01 | ダイキン工業株式会社 | Élément de support de serpentin |
| NL2036737B1 (en) | 2024-01-04 | 2025-07-18 | De Jong Gorredijk B V | Coil support, assembly of such a coil support and at least one tensioning member, and a container for a heater comprising at least one such a coil support |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008267790A (ja) * | 2007-03-27 | 2008-11-06 | Daikin Ind Ltd | ヒートポンプ式給湯装置および暖房給湯装置 |
| CN101586877B (zh) * | 2009-07-06 | 2011-08-10 | 徐生恒 | 热平衡式热水器 |
| US8889572B2 (en) | 2010-09-29 | 2014-11-18 | Milliken & Company | Gradient nanofiber non-woven |
| US8795561B2 (en) | 2010-09-29 | 2014-08-05 | Milliken & Company | Process of forming a nanofiber non-woven containing particles |
| TW201417702A (zh) * | 2012-11-01 | 2014-05-16 | Zhong-Xiong Que | 水中保溫透氣帳蓬 |
| CN103344043B (zh) * | 2013-07-16 | 2015-08-12 | 英特换热设备(浙江)有限公司 | 储热蓄水式热泵热水器及其室内机 |
| CN104501417B (zh) * | 2014-12-01 | 2017-02-22 | 江门市君盛实业有限公司 | 一种盘管固定装置 |
| CN106123097A (zh) * | 2016-06-30 | 2016-11-16 | 珠海格力电器股份有限公司 | 基于热水器的取暖装置 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB603315A (en) * | 1945-10-18 | 1948-06-14 | Ewart & Son Ltd | Improvements in water heaters |
| US2865612A (en) * | 1956-04-02 | 1958-12-23 | Hall Robert M | Vehicular water heaters for field use |
| DE1454702A1 (de) * | 1962-10-08 | 1969-03-27 | Omnical Ges Fuer Kessel Und Ap | Lagerung und Halterung von Rohrspiralen in Warmwasser-Durchflussboilern |
| US3828847A (en) * | 1973-02-14 | 1974-08-13 | Glass Lined Water Heater Co | Hot water heater |
| JPS52124262A (en) * | 1976-04-12 | 1977-10-19 | Kawasaki Heavy Ind Ltd | Heat pipe supporting parts for helical coil typehet exchanger |
| US4201264A (en) * | 1978-07-31 | 1980-05-06 | Owens-Illinois, Inc. | Solar water tank |
| EP0676592A2 (fr) * | 1994-04-08 | 1995-10-11 | Bradford-White Corporation | Déchauffeur d'eau et échangeur de chaleur combiné |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH411284A (de) * | 1963-08-16 | 1966-04-15 | Beteiligungs & Patentverw Gmbh | Warmwasserheizung |
| FR1434253A (fr) * | 1965-02-22 | 1966-04-08 | Appareil mixte de chauffage central et de service d'eau chaude | |
| DE1679730A1 (de) * | 1967-09-22 | 1971-03-25 | Richard Gruchol | Brauchwassererwaermer |
| NO793312L (no) * | 1979-10-15 | 1981-04-21 | Thorleif Moell | Anordning vedroerende varmepumper. |
| GB2069667A (en) * | 1980-02-18 | 1981-08-26 | Hawkhead Bray & Son Ltd | A hot water system |
| DE3403337A1 (de) * | 1983-02-26 | 1984-08-30 | Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart | Vorrichtung zum erwaermen von wasser |
| EP0173173A3 (fr) * | 1984-08-29 | 1986-07-30 | Konvektco Nederland B.V. | Echangeur de chaleur |
| DE8427652U1 (de) * | 1984-09-20 | 1985-12-12 | Vießmann, Hans, Dr.h.c., 3559 Battenberg | Speicher, insbesondere Brauchwasserspeicher |
| CA2038520C (fr) * | 1991-03-18 | 2002-01-22 | Louis Cloutier | Echangeur de chaleur comportant des injecteurs de fluide |
| ATE172530T1 (de) * | 1994-01-14 | 1998-11-15 | Martin Mag Ing Bergmayr | Heizanlage, insbesondere solaranlage |
| EP1371908A1 (fr) * | 2002-06-12 | 2003-12-17 | Justo Comadira Gonzalez | Chauffe-eau avec échangeur de chaleur à haute performance |
-
2004
- 2004-09-29 SE SE0402355A patent/SE528862C2/sv not_active IP Right Cessation
-
2005
- 2005-09-29 EP EP08010942A patent/EP1983287B1/fr not_active Expired - Lifetime
- 2005-09-29 EP EP05788736A patent/EP1794532A1/fr not_active Withdrawn
- 2005-09-29 AT AT08010942T patent/ATE524702T1/de not_active IP Right Cessation
- 2005-09-29 AT AT08010941T patent/ATE524701T1/de not_active IP Right Cessation
- 2005-09-29 EP EP08010941A patent/EP1983286B1/fr not_active Expired - Lifetime
- 2005-09-29 WO PCT/SE2005/001442 patent/WO2006036121A1/fr not_active Ceased
-
2007
- 2007-03-28 NO NO20071639A patent/NO20071639L/no not_active Application Discontinuation
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB603315A (en) * | 1945-10-18 | 1948-06-14 | Ewart & Son Ltd | Improvements in water heaters |
| US2865612A (en) * | 1956-04-02 | 1958-12-23 | Hall Robert M | Vehicular water heaters for field use |
| DE1454702A1 (de) * | 1962-10-08 | 1969-03-27 | Omnical Ges Fuer Kessel Und Ap | Lagerung und Halterung von Rohrspiralen in Warmwasser-Durchflussboilern |
| US3828847A (en) * | 1973-02-14 | 1974-08-13 | Glass Lined Water Heater Co | Hot water heater |
| JPS52124262A (en) * | 1976-04-12 | 1977-10-19 | Kawasaki Heavy Ind Ltd | Heat pipe supporting parts for helical coil typehet exchanger |
| US4201264A (en) * | 1978-07-31 | 1980-05-06 | Owens-Illinois, Inc. | Solar water tank |
| EP0676592A2 (fr) * | 1994-04-08 | 1995-10-11 | Bradford-White Corporation | Déchauffeur d'eau et échangeur de chaleur combiné |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010230203A (ja) * | 2009-03-26 | 2010-10-14 | Corona Corp | 貯湯式給湯器 |
| WO2011104766A1 (fr) | 2010-02-26 | 2011-09-01 | ダイキン工業株式会社 | Élément de support de serpentin |
| EP2381186A4 (fr) * | 2010-02-26 | 2012-01-04 | Daikin Ind Ltd | Élément de support de serpentin |
| CN102762930A (zh) * | 2010-02-26 | 2012-10-31 | 大金工业株式会社 | 线圈支承构件 |
| AU2010346932B2 (en) * | 2010-02-26 | 2013-10-03 | Daikin Europe N.V. | Coil support member |
| AU2010346932B8 (en) * | 2010-02-26 | 2013-10-17 | Daikin Europe N.V. | Coil support member |
| CN102762930B (zh) * | 2010-02-26 | 2014-12-10 | 大金工业株式会社 | 线圈支承构件 |
| US9702587B2 (en) | 2010-02-26 | 2017-07-11 | Daikin Industries, Ltd. | Water storage vessel assembly with coil support member |
| NL2036737B1 (en) | 2024-01-04 | 2025-07-18 | De Jong Gorredijk B V | Coil support, assembly of such a coil support and at least one tensioning member, and a container for a heater comprising at least one such a coil support |
Also Published As
| Publication number | Publication date |
|---|---|
| NO20071639L (no) | 2007-05-07 |
| EP1983287B1 (fr) | 2011-09-14 |
| WO2006036121A1 (fr) | 2006-04-06 |
| SE0402355L (sv) | 2006-03-30 |
| ATE524701T1 (de) | 2011-09-15 |
| EP1983286B1 (fr) | 2011-09-14 |
| ATE524702T1 (de) | 2011-09-15 |
| EP1794532A1 (fr) | 2007-06-13 |
| EP1983286A1 (fr) | 2008-10-22 |
| SE0402355D0 (sv) | 2004-09-29 |
| SE528862C2 (sv) | 2007-02-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5366153A (en) | Heat pump system with refrigerant isolation and heat storage | |
| US5680898A (en) | Heat pump and air conditioning system incorporating thermal storage | |
| US5220807A (en) | Combined refrigerator water heater | |
| US5507337A (en) | Heat pump and air conditioning system incorporating thermal storage | |
| AU719697B2 (en) | Thermal energy storage air conditioning system | |
| US5558273A (en) | Two-pipe system for refrigerant isolation | |
| US4798240A (en) | Integrated space heating, air conditioning and potable water heating appliance | |
| US20010032475A1 (en) | Non-stratified heat pump water heater and method of making | |
| EP1983287B1 (fr) | Agencement d'échangeur de chaleur | |
| US20110048058A1 (en) | Thermal energy storage and cooling system with enhanced heat exchange capability | |
| US20240110733A1 (en) | Regrigerant charge control system for heat pump systems | |
| WO2008113121A1 (fr) | Système de transfert, de récupération et de gestion thermiques | |
| EP2522933B1 (fr) | Appareil de stockage de chaleur à cycle en cascade et procédé de commande de celui-ci | |
| EP2885584B1 (fr) | Appareil et procédé pour influencer la température dans un bâtiment | |
| US20080120986A1 (en) | Water supply system | |
| US12173910B2 (en) | Hybrid fossil fuel-electric multi-function heat pump | |
| KR20220039003A (ko) | 온수기 | |
| WO2015140683A1 (fr) | Chauffe-eau à accumulation | |
| WO2003038353A1 (fr) | Procede de commande d'une pompe a chaleur et pompe a chaleur permettant de mettre en oeuvre ledit procede | |
| EP4624809A1 (fr) | Système de chauffage d'au moins un espace et de fourniture d'eau chaude sanitaire et procédé de fonctionnement du système | |
| SE529029C2 (sv) | Värmeväxlaranordning | |
| JP2005315553A (ja) | 貯湯式給湯装置の熱交換器ユニット | |
| SE529031C2 (sv) | Värmeväxlaranordning | |
| CN119063055A (zh) | 一种多介质空气源蓄热型微通道辐射散热末端系统 | |
| CZ11826U1 (cs) | Zásobník tepla kondenzačního kotle a sestava pro ohřev užitkové vody a/nebo vytápění |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AC | Divisional application: reference to earlier application |
Ref document number: 1794532 Country of ref document: EP Kind code of ref document: P |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| 17P | Request for examination filed |
Effective date: 20090406 |
|
| AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AC | Divisional application: reference to earlier application |
Ref document number: 1794532 Country of ref document: EP Kind code of ref document: P |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005030085 Country of ref document: DE Effective date: 20111117 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110914 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
| LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110914 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111215 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 524702 Country of ref document: AT Kind code of ref document: T Effective date: 20110914 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120114 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120116 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110929 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
| 26N | No opposition filed |
Effective date: 20120615 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005030085 Country of ref document: DE Effective date: 20120615 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111225 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110929 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20130911 Year of fee payment: 9 Ref country code: DE Payment date: 20130925 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130910 Year of fee payment: 9 Ref country code: GB Payment date: 20130925 Year of fee payment: 9 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005030085 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140929 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140930 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150529 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150401 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140929 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140930 |