EP1964173A1 - Microcomponent comprising two wafers interconnected by pins and the associated interconnection process - Google Patents
Microcomponent comprising two wafers interconnected by pins and the associated interconnection processInfo
- Publication number
- EP1964173A1 EP1964173A1 EP06831789A EP06831789A EP1964173A1 EP 1964173 A1 EP1964173 A1 EP 1964173A1 EP 06831789 A EP06831789 A EP 06831789A EP 06831789 A EP06831789 A EP 06831789A EP 1964173 A1 EP1964173 A1 EP 1964173A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wafer
- pins
- microcomponent
- electrical connection
- wafers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/563—Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49855—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers for flat-cards, e.g. credit cards
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/57—Protection from inspection, reverse engineering or tampering
- H01L23/573—Protection from inspection, reverse engineering or tampering using passive means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/90—Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05568—Disposition the whole external layer protruding from the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05573—Single external layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16104—Disposition relative to the bonding area, e.g. bond pad
- H01L2224/16105—Disposition relative to the bonding area, e.g. bond pad the bump connector connecting bonding areas being not aligned with respect to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/2919—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8112—Aligning
- H01L2224/81136—Aligning involving guiding structures, e.g. spacers or supporting members
- H01L2224/81138—Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
- H01L2224/81141—Guiding structures both on and outside the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81193—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81194—Lateral distribution of the bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81897—Mechanical interlocking, e.g. anchoring, hook and loop-type fastening or the like
- H01L2224/81898—Press-fitting, i.e. pushing the parts together and fastening by friction, e.g. by compression of one part against the other
- H01L2224/81899—Press-fitting, i.e. pushing the parts together and fastening by friction, e.g. by compression of one part against the other using resilient parts in the bump connector or in the bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06524—Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06527—Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/0665—Epoxy resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
Definitions
- Microcomponent comprising two wafers interconnected by pins and the associated interconnection process
- the invention relates to a microcomponent comprising:
- the invention also relates to an associated interconnection process for such a microcomponent.
- wafer any element that could form part of the microcomponent - that is a part of an electronic circuit, an electronic circuit, a single substrate, etc.
- the two wafers of the microcomponent must be interconnected to each other.
- the search to find the best possible interconnection between the wafers of a microcomponent is an acknowledged issue in the industry, relating to issues of conditioning during the manufacture of the microcomponent and issues of security, notably against all types of chemical, physical and energy attacks.
- microcomponent 1 consists of a first wafer 2, for instance a silicon substrate with a CMOS circuit, consisting of a first side 3 on which there are the electrical connection pads 4.
- a plurality of electrical connection pins 5 are then formed on the electrical connection pads 4 of the first wafer 2.
- a layer 6 of a sealing material is then applied to the first side 3 of the first wafer 2 (figure 1).
- a second wafer 7 for instance a silicon substrate provided with a CMOS circuit, consists of a plurality of electrical connection pads 8, intended to cooperate with the electrical connection pins 5 of the first wafer 2.
- the sealing layer 6 is structured, preferably, around the electrical connection pins 5 of the first wafer 2, such that they are awaiting cooperation with the electrical connection pads 8 of the second wafer 7.
- the interconnection process for wafers 2 and 7 of the microcomponent 1 thus consists of placing the electrical connection pads 8 of the second wafer 7 in front of the electrical connection pins 5 of the first wafer 2 (figure 2).
- the second wafer 7 is then sealed to the first wafer 2, by means of layer 6 of the sealing material, for example by thermocompression.
- the electrical connection pins 5 of the first wafer 2 are in contact with the electrical connection pads 8 of the second wafer 7 and sealing material layer 6 is distributed between the electrical connection pins 5 of the first wafer 2.
- the microcomponent 1 thus assembled now has its two wafers 2 and 7 interconnected by means of the electrical connection pins 5 and anchored by sealing layer 6.
- a microcomponent assembled using an interconnection process such as that described above does not have optimum characteristics in terms of the electrical connections and mechanical solidity, notably with regard to the location of the pins relative to the electrical connection pads.
- a microcomponent does not provide sufficient guarantees in terms of issues relating to security, concerning the coming apart of the wafers of the microcomponent.
- the purpose of the invention is to resolve the above mentioned drawbacks and is intended to produce a microcomponent consisting of two interconnected wafers, simple to produce and achieving a good mechanical solidity between the wafers and an optimum electrical connection between the two wafers, whilst satisfying the security criteria aimed at preventing the deterioration of the microcomponent.
- the subject of the invention is characterised by the fact that the second wafer has a plurality of interconnection pins, located on a first side of the second wafer, opposing the first side of the first wafer.
- the first interconnection pins of the second wafer are formed on the electrical connection pads of the second wafer, with the first interconnection pins being positioned facing the electrical connection pins of the first wafer and coming into contact by nesting one within the other.
- the first wafer has additional pins, formed on the support pads of the first wafer and act to provide the basis for the mechanical support.
- the second interconnection pins on the second wafer, formed on the support pads of the second wafer act as mechanical anchoring pins, facing the sealing material.
- each pad is associated with a bi-dimensional matrix of pins.
- the purpose of the invention is also for the realisation of an interconnection process with the assembling and anchoring of a first wafer and a second wafer to form a microcomponent, with the first and second wafers being anchored and interconnected to each other, with the process comprising at least the following steps:
- Figures 1 to 3 are schematic representations of various stages of a process for the interconnection by assembling and sealing of two wafers of a microcomponent in application of the existing state of the art.
- Figure 4 is a schematic representation of a first embodiment of a microcomponent according to the invention, before the assembling and sealing of its wafers.
- Figure 5 is a highly schematic representation of a detailed section of the nesting pins of the microcomponent according to figure 4.
- Figure 6 is a schematic representation of a variant for the formation of a microcomponent according to the invention, before the assembling and sealing of its wafers.
- Figure 7 is a schematic representation of another variant for the formation of a microcomponent according to the invention, before the assembling and sealing of its wafers.
- Figures 8 and 9 are each highly schematic representations of a detailed section of the nesting in the variants of pins of a microcomponent according to the invention.
- microcomponent 1 has a plurality of interconnection pins, formed on a first side, side 9 of the second wafer 7, intended to face the first side 3 of the first wafer 2.
- FIGS 4, 6 and 7, the various embodiments of the microcomponent 1 are shown before assembly and sealing of wafers 2 and 7 of microcomponent 1.
- the second wafer 7 has first interconnection pins 10, formed on electrical connection pads 8 of the second wafer 7.
- the electrical connection pads 8 and the interconnection pins 10 of the second wafer 7 are slightly offset relative to the electrical connection pads 4 and the electrical connection pins 5 of the first wafer 2.
- the interconnection pins 10 of the second wafer 7 and the electrical connection pins 5 of the first wafer 2 come into contact by nesting with each other (figure 5).
- the interconnection pins 10 of the second wafer 7 and the electrical connection pins 5 of the first wafer 2 then act to provide an electrical contact between the two wafers 2 and 7.
- microcomponent 1 can have a passivation layer (not shown in figure 4), formed conventionally on the first side 9 of the second wafer 7, preferably prior to the formation of the electrical connection pads 8, and intended particularly to protect the first side 9 of the second wafer 7.
- the interconnection pins 10 of the second wafer 7 must thus be long enough to project through this passivation layer and overcome the disadvantages of such passivation layer.
- FIG 5 the nesting of the electrical connection pins 5 of the first wafer 2 and the interconnection pins 10 of the second wafer 7 is shown highly schematically.
- the nesting consists of placing in contact at least part of an electrical connection pin 5 of the first wafer 2 with at least part of an interconnection pin 10 of the second wafer 7.
- the interconnection pins 10 associated with each connection pad 8 of the second wafer 7 and the electrical connection pins 5 associated with each electrical connection pad 4 of the first wafer 2 are distributed, preferably, in accordance with the bi-dimensional matrices. At least a sufficient number of pins 5, 10 thus enable the establishing of an optimum contact between wafers 2 and 7.
- electrical connection pins 5 and the interconnection pins 10 of the second wafer 7 are cylindrical.
- the electrical connection pins 5 of the first wafer 2 have a height hi of approximately 3 ⁇ m to 9 ⁇ m and a width L1 of approximately 2/vm to 5 ⁇ m.
- Interconnection pins 10 of the second wafer 7 have a height h2 of approximately 2 ⁇ m and a width L2 of approximately 2//m.
- Electrical connection pins 5 of the first wafer 2 and interconnection pins 10 of the second wafer 7 nest, for example, with an overlay height H of approximately 0.5 ⁇ m to 1 ⁇ m.
- the second wafer 7 has second interconnection pins 11 , formed on the support pads 12 formed on the first side 9 of the second wafer 7.
- the second interconnection pins 11 of the second wafer 7 constitute mechanical anchoring pins, facing the sealing layer 6 and intended to work with sealing layer 6 during the assembly of wafers 2 and 7 of the microcomponent 1.
- the second interconnection pins 11 are, preferably, identical to the first interconnection pins 10, as shown in figure 5.
- the second interconnection pins 11 are intended solely for ensuring an optimum mechanical anchoring of the two wafers 2 and 7 of the microcomponent 1.
- the electrical connection of the microcomponent 1 is then achieved by electrical connection pins 5 of the first wafer 2, working with the electrical connection pads 8 of the second wafer 7.
- the second interconnection pins 11 can also be formed on the support pads 12 formed on the first side 9 of the second wafer 7 of the microcomponent 1 as shown in figure 4.
- the same microcomponent 1 then has both the first interconnection pins 10 of the second wafer 7, for the electrical connection of wafers 2 and 7 (figure 4), and the second interconnection pins 11 of the second wafer 7, for the mechanical anchoring of the second wafer 7 to the first wafer 2 (figure 6).
- the first wafer 2 of the microcomponent 1 has electrical connection pins 5, mating both with the electrical connection pads 8 of the second wafer 7, shown on the right-hand side of the first wafer 2, and with the first interconnection pins 10 of the second wafer 7, shown on the left-hand side of the first wafer 2.
- the electrical connection pads 4 of the first wafer 2 are connected to the corresponding electrical circuits (not shown) by means, for example, of electrical connection tracks 13.
- the electrical connection pads 8 of the second wafer 7 are linked to the corresponding electrical circuits (not shown) by means, for example, of electrical connection tracks 14.
- the first wafer 2 of the microcomponent 1 also has additional pins 15, on the support pads 16 formed on the first side 3 of the first wafer 2.
- the additional pins 15 of the first wafer 2 act as mechanical support elements for the microcomponent 1 , performing notably the role of spacers for the assembling of the two wafers 2 and 7.
- the additional pins 15 can be nested, as a preference, with the additional interconnection pins 17 of the second wafer 7, formed on the support pads 12 on the first side 9 of the second wafer 7.
- Additional pins 15 and 17 thus act solely as mechanical support elements for microcomponent 1 and act as spacers and thickness shims for the microcomponent 1.
- the additional pins 15 and 17 enable more specifically the increasing of the security of the interconnection between wafers 2 and 7.
- the additional pins 15, 17 enable notably the prevention of any functional disassembling of the two wafers 2, 7 of the microcomponent 1.
- Such additional pins 15, 17 thus maximise the security with regard to the deterioration of one of the wafers 2, 7 of the microcomponent 1 in the event of polishing.
- the second interconnection pins 11 intended for anchoring in sealing layer 6, as shown in figure 6, can be formed on the other support pads 12 on the first side 9 of the second wafer 7 of a microcomponent 1 as shown in figure 7.
- the mechanical anchoring of the two wafers 2 and 7 is strengthened because wafers 2 and 7 are held by the additional pins 15 of the first wafer 2 and the additional pins 17 of the second wafer 7 and the second interconnection pins 11 of the second wafer 7, anchored in sealing layer 6.
- a multitude of additional pins 15, 17, and/or pins 11 provided for the mechanical anchoring in the sealing layer are directly placed on part or on the whole of the surface of at least one wafer 2, 7. This multitude of pins thus allows the achievement of a mechanical anchoring by means of nesting the pins one with the other.
- the fact of including a large number of small size pins 15, 17, 11 , on the surface of the wafers enables a reduction in the assembling energy by limiting the efforts in terms of the nesting.
- all of the pins 5, 15 of the first wafer 2 are, preferably, of the same shape and the same size and all of the pins 10, 11 , 17 of the second wafer 7 are also all, preferably, of the same shape and the same size.
- each pad of the first wafer 2, that is the electrical connection pads 4 and the support pads 16, and each pad of the second wafer 7, that is the electrical connection pads 8 and the support pads 12, are associated with a bi-dimensional matrix of corresponding pins 5, 10, 11 , 15, 17.
- the bi-dimensional matrices of pins 5, 10, 11 , 15, 17 can take any shape, for example, square, rectangular, circular or even dissymmetric, provided they enable a good quality contact or an sufficient contact between pins 5, 10, 11 , 15, 17.
- all of the pins 5, 10, 11 , 15, 17 have, preferably, the same section, for example square, rectangular, or circular, and are made of the same material, for example nickel or copper.
- a free end of each of the pins 5, 10, 11 , 15, 17 can also include a finishing coating of gold.
- pins 5, 15 of the first wafer 2 are formed on the corresponding pads 4, 16 of the first wafer 2, preferably, by electrochemical growth.
- Pins 10, 11 , 17 of the second wafer 7 are formed on the corresponding pads 8, 12 of the second wafer 7, preferably, by chemical growth, also known as "electroless" deposition.
- Pins 5, 15 of the first wafer 2 are thus hard, and pins 10, 11 , 17 of the second wafer 7 are thus soft, relative to pins 5, 15 of the first wafer 2.
- Pins 5, 15 of the first wafer 2 are, preferably, higher and harder than pins 10, 11 , 17 of the second wafer 7, for safety reasons, and pins 10, 11 , 17 of the second wafer 7 are softer than pins 5, 15 of the first wafer 2, notably to enable their hardening by annealing after sealing, in order to optimise the anchoring of the two wafers 2 and 7.
- pins 10, 11 , 17 of the second wafer 7 can be produced simultaneously with pins 5, 15 of the first wafer 2, during a same production step of wafers 2 and 7, or can be produced after pins 5, 15 of the first wafer 2, during the two succeeding fabrication stages.
- both the pins 5, 15 of the first wafer 2 and pins 10, 11 , 17 of the second wafer 7 by electro-chemical growth, as all of the pins 5, 10, 11 , 15, 17 of the microcomponent 1 are hard, or by chemical growth, as all of the pins 5, 10, 11 , 15, 17 of the microcomponent 1 are soft.
- pins 5, 15 of the first wafer 2 can be formed by chemical growth and pins 10, 11 , 17 of the second wafer 7 can be formed by electro- chemical growth, as pins 5, 15 of the first wafer 2 are thus soft relative to pins 10, 11 , 17 of the second wafer 7.
- the layer 6, for example, in a polymer material is deposited, for example, on the first side 3 of the first wafer 2.
- the layer 6, for example, in polyimide is then, preferably, structured by means of masks and etching stages, notably around pins 5, 15 of the first wafer 2.
- first side 9 of the second wafer 7 is aligned relative to the first side 3 of the first wafer 2 and the assembly and sealing of the second wafer 7 on the first wafer 2 is performed, for example, by thermocompression, eutectic soldering, gluing, etc.
- a liquid glue for example epoxy resin, replacing sealing layer 6.
- the process consists of applying the liquid glue, for example on the first side 3 of the first wafer 2, and of performing the assembly and sealing of the two wafers 2 and
- thermocompression for example by thermocompression or just using cold compression.
- the pins 10, 11 , 17 of the second wafer 7 are softer than pins 5, 15 of the first wafer 2 and have a relatively short height h2, they can be hardened by an annealing phase, after the sealing of wafers 2 and 7.
- the microcomponent 1 notably provides a reliable and optimum interconnection in terms of the electrical connection and mechanical anchoring, thanks namely to the interconnection pins forming both means of electrical connection and means of mechanical anchoring. Furthermore, the protection against disassembly of wafers 2 and 7 is ensured, namely thanks to the additional pins 15 of the first wafer 2 and to the additional interconnection pins 17 of the second wafer 7. In addition, the presence of interconnection pins on each active side of the microcomponent 1 , that is on the first side 3 of the first wafer 2 and on the first side 9 of the second wafer 7, increases the capacity and the reliability of the microcomponent 1.
- pins 5, 10, 11 , 15, 17 in a bi-dimensional matrix enables the optimising of the large-scale electrical contact.
- the connection surface of the pins, from a mechanical and electrical point of view, is greater, more robust and offers increased flexibility of contact.
- connection pads 4, 8 of the two wafers The electrical connection is achieved, at the level of the connection pads 4, 8 of the two wafers, through contact between the interconnection pins 5, 10 of the two wafers.
- the embodiments as described above do not require huge accuracy in the aligning of the connection pads 4, 8 with regard to each other. Indeed, given that several interconnection pins 5, 10 are supported by each connection pad 4, 8, it is sufficient that at least two interconnection pins 5, 10 are nested to achieve an electrical connection.
- the assembling can therefore include a slight offset in the connection pads 4, 8 with regard to each other.
- the assembling does not require the use of assembly spacers to maintain the assembly height, as this is fixed by the assembly conditions, that is by the force applied, the temperature, shape of the pins, the materials used and the materials used for the sealing layer.
- this interconnection process for wafers 2, 7 of the microcomponent 1 is easily implemented and ensures a reliable interconnection in terms of the electrical connection and mechanical anchoring.
- the sealing of wafers 2 and 7 is irreversible and the security of the assembling is notably ensured by means of the additional pins 15 and 17.
- the conditioning of the microcomponent 1 also achieves an optimum efficiency, thanks notably to the simplicity of the interconnection process according to the invention.
- the invention is not limited to the various embodiments as described above.
- the shape and the dimensions of the pins 5, 10, 11 , 15, 17 can be different, provided that the pins ensure the achievement of an optimum electrical connection and mechanical interconnection.
- the electrical connection pins 5 of the first wafer 2 can notably conform according to a body, for example, in a cylindrical shape, with an enlarged, domed and malleable free end 19, in the general shape of a cap.
- the interconnection pins 10 of the second wafer 7 have, for example, a bevelled end 20, intended to mate with the enlarged ends 19 of the electrical connection pins 5 of the first wafer 2.
- the enlarged ends 19 of the electrical connection pins 5 are malleable, as shown by the dotted lines in figure 8, under the effect of the bevelled end 20 of the interconnection pins 10. This configuration enables namely the optimising of the electrical contact between the pins 5 and 10.
- the interconnection pins 10 of the second wafer 7 may be identical with the electrical connection pins 5 of the first wafer 2, shown in figure 8, and can have an enlarged, domed and malleable end 19.
- the enlarged ends 19 distort, in order for the enlarged ends 19 of interconnection pins 10 of the second wafer 7 to come within the enlarged ends 19 of the electrical connection pins 5 of the first wafer 2.
- the additional pins 15 of the first wafer 2, the additional interconnection pins 17 and the second interconnection pins 11 of the second wafer 7 can also be the same shape as the electrical connection pins 5 of the first wafer 2 and the first interconnection pins 10 of the second wafer 7, as shown in figures 8 and 9.
- the height of the covering H can vary, depending on the deformation and the various heights to be taken up by the pins 10, 11 , 17 of the second wafer 7, during the sealing of the microcomponent 1.
- the pads 4, 8, 12, 16 of wafers 2 and 7 can be formed by the metallization of the surface and etching. Their exact location on the first side 3 of the first wafer 2 and on the first side 9 of the second wafer 7 is not important, provided that they allow the achievement of a good interconnection between the two wafers 2, 7.
- the microcomponent 1 shown in figures 4 and 6 can have electrical connection tracks, such as shown in figure 7, linking the corresponding pads 4, 8 with the associated electrical circuits (not shown in figures 4 and 6).
- microcomponent 1 deriving the benefits of having all of the types of pins, that is the electrical connection pins 5 on the first wafer 2 mating with interconnection pins 10 of the second wafer 7 and with the electrical connection pads 8 of the second wafer 7, the additional pins 15 on the first wafer 2, mating with the additional pins 17 of the second wafer 7, and the second interconnection pins 11 on the second wafer 7, mating with the sealing layer 6 for the mechanical anchoring.
- the microcomponent 1 is used namely in the field of integrated circuits, and more specifically for chip cards.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Micromachines (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0513197A FR2895567B1 (en) | 2005-12-22 | 2005-12-22 | MICRO COMPONENT COMPRISING TWO PLATES INTERCONNECTED BY PICOTS AND ASSOCIATED INTERCONNECTION METHOD |
| PCT/IB2006/003741 WO2007072202A1 (en) | 2005-12-22 | 2006-12-19 | Microcomponent comprising two wafers interconnected by pins and the associated interconnection process |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1964173A1 true EP1964173A1 (en) | 2008-09-03 |
Family
ID=36609517
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP06831789A Withdrawn EP1964173A1 (en) | 2005-12-22 | 2006-12-19 | Microcomponent comprising two wafers interconnected by pins and the associated interconnection process |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP1964173A1 (en) |
| FR (1) | FR2895567B1 (en) |
| WO (1) | WO2007072202A1 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2932004B1 (en) * | 2008-06-03 | 2011-08-05 | Commissariat Energie Atomique | STACKED ELECTRONIC DEVICE AND METHOD FOR PRODUCING SUCH AN ELECTRONIC DEVICE |
| DE102009013826A1 (en) * | 2009-03-18 | 2011-03-10 | Michalk, Manfred, Dr. | Circuit arrangement, method for electrical and / or mechanical connection and apparatus for applying connecting elements |
| US10137789B2 (en) * | 2016-07-20 | 2018-11-27 | Ford Global Technologies, Llc | Signal pin arrangement for multi-device power module |
| WO2018145968A1 (en) * | 2017-02-09 | 2018-08-16 | Siemens Aktiengesellschaft | Power module |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6362437B1 (en) * | 1999-06-17 | 2002-03-26 | Nec Corporation | Mounting structure of integrated circuit device having high effect of buffering stress and high reliability of connection by solder, and method of mounting the same |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5411400A (en) * | 1992-09-28 | 1995-05-02 | Motorola, Inc. | Interconnect system for a semiconductor chip and a substrate |
| US6130148A (en) * | 1997-12-12 | 2000-10-10 | Farnworth; Warren M. | Interconnect for semiconductor components and method of fabrication |
| US6297063B1 (en) * | 1999-10-25 | 2001-10-02 | Agere Systems Guardian Corp. | In-situ nano-interconnected circuit devices and method for making the same |
-
2005
- 2005-12-22 FR FR0513197A patent/FR2895567B1/en not_active Expired - Fee Related
-
2006
- 2006-12-19 WO PCT/IB2006/003741 patent/WO2007072202A1/en not_active Ceased
- 2006-12-19 EP EP06831789A patent/EP1964173A1/en not_active Withdrawn
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6362437B1 (en) * | 1999-06-17 | 2002-03-26 | Nec Corporation | Mounting structure of integrated circuit device having high effect of buffering stress and high reliability of connection by solder, and method of mounting the same |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2895567B1 (en) | 2008-07-11 |
| WO2007072202A1 (en) | 2007-06-28 |
| FR2895567A1 (en) | 2007-06-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9425114B2 (en) | Flip chip packages | |
| KR101909780B1 (en) | Mems packages and methods of manufacture thereof | |
| US7851907B2 (en) | Semiconductor integrated circuit package having electrically disconnected solder balls for mounting | |
| US20060055032A1 (en) | Packaging with metal studs formed on solder pads | |
| CN101897013B (en) | An interconnect structure and a method of fabricating the same | |
| US20180294206A1 (en) | Wafer level integration for embedded cooling | |
| US20100047963A1 (en) | Through Silicon Via Bonding Structure | |
| US20070045812A1 (en) | Microfeature assemblies including interconnect structures and methods for forming such interconnect structures | |
| US7084500B2 (en) | Semiconductor circuit with multiple contact sizes | |
| WO1994023451A1 (en) | Semiconductor chip assemblies and components with pressure contact | |
| US9761542B1 (en) | Liquid metal flip chip devices | |
| US7939376B2 (en) | Patterned die attach and packaging method using the same | |
| US8258625B2 (en) | Semiconductor device | |
| US20130000963A1 (en) | Micro pin hybrid interconnect array | |
| Lau | Critical issues of wafer level chip scale package (WLCSP) with emphasis on cost analysis and solder joint reliability | |
| US20140239428A1 (en) | Chip arrangement and a method for manufacturing a chip arrangement | |
| EP1964173A1 (en) | Microcomponent comprising two wafers interconnected by pins and the associated interconnection process | |
| CN110071085B (en) | Semiconductor chips, flip-chip packages including the same, and wafer-level packages | |
| US20080150101A1 (en) | Microelectronic packages having improved input/output connections and methods therefor | |
| US20040259290A1 (en) | Method for improving the mechanical properties of BOC module arrangements | |
| US9099458B2 (en) | Construction of reliable stacked via in electronic substrates—vertical stiffness control method | |
| US9478482B2 (en) | Offset integrated circuit packaging interconnects | |
| Goldberg et al. | Integration of a Mechanically Reliable 65-nm node technology for low-k and ULK Interconnects with various Substrate and Package Types | |
| JPH10510107A (en) | Chip interconnect carrier and method for mounting a spring contact on a semiconductor device | |
| CN101452901B (en) | Micro-connection lug structure with stress buffering and manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20080526 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE Owner name: GEMALTO SA |
|
| 17Q | First examination report despatched |
Effective date: 20090127 |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 25/065 20060101ALI20120709BHEP Ipc: H01L 23/58 20060101ALI20120709BHEP Ipc: H01L 23/498 20060101ALI20120709BHEP Ipc: H01L 21/56 20060101AFI20120709BHEP |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20160429 |