EP1633869A1 - Verfahren zur sequenziellen isolierung von dns und rns aus derselben nukleinsäure-enthaltenden probe - Google Patents
Verfahren zur sequenziellen isolierung von dns und rns aus derselben nukleinsäure-enthaltenden probeInfo
- Publication number
- EP1633869A1 EP1633869A1 EP04739565A EP04739565A EP1633869A1 EP 1633869 A1 EP1633869 A1 EP 1633869A1 EP 04739565 A EP04739565 A EP 04739565A EP 04739565 A EP04739565 A EP 04739565A EP 1633869 A1 EP1633869 A1 EP 1633869A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- functional surface
- dna
- solution
- rna
- time period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 64
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 64
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 64
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 60
- 239000011324 bead Substances 0.000 claims description 32
- 230000003196 chaotropic effect Effects 0.000 claims description 28
- 150000003839 salts Chemical class 0.000 claims description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 238000011282 treatment Methods 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 21
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 claims description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 15
- 238000005406 washing Methods 0.000 claims description 12
- 102000016911 Deoxyribonucleases Human genes 0.000 claims description 11
- 108010053770 Deoxyribonucleases Proteins 0.000 claims description 11
- 238000000746 purification Methods 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 10
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 claims description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 claims description 6
- 229960004592 isopropanol Drugs 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 230000005291 magnetic effect Effects 0.000 claims description 3
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 claims description 2
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 claims description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 2
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 claims description 2
- 102000006382 Ribonucleases Human genes 0.000 claims description 2
- 108010083644 Ribonucleases Proteins 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- 229940107816 ammonium iodide Drugs 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 2
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 claims description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims description 2
- 239000004312 hexamethylene tetramine Substances 0.000 claims description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims description 2
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 claims description 2
- 229910001487 potassium perchlorate Inorganic materials 0.000 claims description 2
- 239000012286 potassium permanganate Substances 0.000 claims description 2
- 235000009518 sodium iodide Nutrition 0.000 claims description 2
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 claims description 2
- 229910001488 sodium perchlorate Inorganic materials 0.000 claims description 2
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 claims description 2
- UQFSVBXCNGCBBW-UHFFFAOYSA-M tetraethylammonium iodide Chemical compound [I-].CC[N+](CC)(CC)CC UQFSVBXCNGCBBW-UHFFFAOYSA-M 0.000 claims description 2
- RXMRGBVLCSYIBO-UHFFFAOYSA-M tetramethylazanium;iodide Chemical compound [I-].C[N+](C)(C)C RXMRGBVLCSYIBO-UHFFFAOYSA-M 0.000 claims description 2
- 108020004414 DNA Proteins 0.000 description 70
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 68
- 239000000243 solution Substances 0.000 description 58
- 239000006166 lysate Substances 0.000 description 25
- 230000005293 ferrimagnetic effect Effects 0.000 description 21
- 238000002955 isolation Methods 0.000 description 21
- 239000002245 particle Substances 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 14
- 239000001509 sodium citrate Substances 0.000 description 13
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 13
- 229940038773 trisodium citrate Drugs 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000010839 reverse transcription Methods 0.000 description 9
- 239000000725 suspension Substances 0.000 description 9
- 101710163270 Nuclease Proteins 0.000 description 8
- 210000004748 cultured cell Anatomy 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 238000003753 real-time PCR Methods 0.000 description 7
- 238000011534 incubation Methods 0.000 description 6
- 239000006249 magnetic particle Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000027455 binding Effects 0.000 description 4
- -1 rRNA Proteins 0.000 description 4
- 230000004568 DNA-binding Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 230000004570 RNA-binding Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102000039471 Small Nuclear RNA Human genes 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 1
- 210000001768 subcellular fraction Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
- C12N15/1006—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
Definitions
- the present invention refers to a method for isolating nucleic acids from a nucleic acid-containing sample. More specifically, the present invention relates to a method for sequentially isolating DNA and RNA from the same nucleic acid-containing sample. Furthermore, the present invention refers to kit for sequentially isolating DNA and RNA from the same nucleic acid-containing sample.
- nucleic acids such as DNA and RNA
- Procedures involving the Isolation and/or concentration of nucleic acids continue to play a crucial roie in biotechnology.
- Early methods of isolating nucleic acids involve a series of extractions using organic solvents, followed by ethanol precipitation and dialysis of the nucleic acids. These methods are relatively laborious and often result in a low nucleic acid yield.
- RNA isolation procedures show some degree of selectivity between DNA and RNA.
- the selective isolation of RNA is performed either under acidic conditions on a silica solid phase (US 5,990,302) or under chaotropic conditions in the presence of an alcohol on a silica solid phase (WO 95/01359). In the latter case, normally a low selectivity for RNA over DNA is observed, and a DNA digest step is thus included to obtain pure RNA.
- some methods for the selective isolation of DNA are known from the art.
- RNA and DNA are isolated simultaneously from one nucleic acid-containing sample.
- These methods comprise isolation of the total nucleic acids on a silica solid phase under chaotropic conditions and excluding the DNA digest step as described above.
- the problem underlying the present invention is to overcome the disadvantageous arising from the methods known in the art and to provide a method which allows for the sequential isolation of DNA and RNA from the same sample, i.e. the sequential isolation of DNA and RNA in different eluates from the same nucleic acid-containing sample.
- the problem is solved by the method according to the present invention which allows for sequentially isolating DNA and RNA from the same nucleic acid-containing sample, comprising the steps of:
- step (a) adding a chaotropic salt to a final concentration of from 1 to 4.5 M to a nucleic acid-containing sample, (b) following step (a), adding an alcohol to a final concentration of from 13 to 70 %(v/v) to the solution of (a),
- step (c) bringing the solution of step (b) into contact with a functional surface, maintaining this contact for a particular time period, breaking the contact between the solution of step (b) and the functional surface,
- step (d) bringing the DNA-depleted solution of step (c) into contact with a functional surface, maintaining this contact for a particular time period, breaking the contact between the solution of step (c) and the functional surface,
- step (c) is less than half of the time period of step (d).
- DNA and RNA both are able to bind to a functional surface, e.g. a silica surface, under suitable conditions.
- DNA and RNA bind with different kinetics to a functional surface, e.g. a silica surface, in the presence of both a particular concentration of a chaotropic salt and a particular concentration of an alcohol.
- the functional surface utilized in step (d) is of the same kind as the functional surface utilized in step (c).
- the method according to the invention is, thereby, less laborious and easier to handle.
- the binding conditions for DNA and RNA do not have to be changed between step (c) and step (d) due to the same kind of solid support utilized in step (c) and step (d).
- the present invention provides a method for sequentially isolating DNA and RNA from the same nucleic acid-containing sample, comprising the steps of:
- step (b) following step (a), adding an alcohol to a final concentration of from 13 to 70 %(v/v) to the solution of (a),
- step (c) bringing the solution of step (b) into contact with a functional surface, maintaining this contact for a particular time period, breaking the contact between the solution of step (b) and the functional surface,
- step (d) bringing the DNA-depleted solution of step (c) into contact with a functional surface, maintaining this contact for a particular time period, breaking the contact between the solution of step (c) and the functional surface,
- step (c) is less than half of the time period of step (d).
- the functional surface utilized in step (d) is of the same kind as the functional surface of step (c).
- the method according to the invention is, thereby, less laborious and easier to handle.
- the binding conditions for DNA and RNA do not have to be changed between step (c) and step (d) due to the same kind of solid support utilized in step (c) and step (d).
- a functional surface useful in the present invention is either a surface comprising carboxylic acid groups or, preferably, the functional surface is a silica surface.
- the functional surface is provided in bead form. If the functional surface is provided in bead form, preferably the functional surface comprises a plurality of beads.
- these beads are magnetic beads, i.e. the beads are magnetically attractable.
- all sorts of magnetically attractable beads are useful in the present invention, e.g. paramagnetic beads, superparamagnetic beads, ferrimagnetic beads and/or ferromagnetic beads.
- the number of beads utilized in step (c) is less than half of the number of beads utilized in step (d), thereby advantageously reducing the material consumption and, accordingly, the material costs. Therefore, the method of the invention is particularly suitable in high throughput screening procedures by reducing, e.g., the necessary sample amount/volume, time and costs.
- the number of beads utilized in step (c) is less than 1/5 of the number of beads utilized in step (d) and in an even more preferred embodiment the number of beads utilized in step (c) is less than 1/10 of the number of beads utilized in step (d).
- the term 'DNA' comprises all imaginable types of DNA of any length, e.g. genomic DNA, plastidial DNA, plasmids, cosmids, phasmids, reverse transcription products, PCR products, oligonucleotides or the like.
- the term 'DNA' may also comprise a mixture of different DNA types, e.g. total DNA from a natural source, e.g. cells.
- 'RNA' comprises all imaginable types of RNA of any length, e.g. mRNA, tRNA, rRNA, small nuclear RNA, ribozymes or the like.
- the term 'RNA' may also comprise a mixture of different RNA types, e.g. total RNA from a natural source, e.g. cells.
- the term 'sequential isolation stands for the separated isolation of at first DNA followed by RNA from the same nucleic acid-containing sample. Therefore, DNA and RNA are isolated separately but in a continuous process and from the same nucleic acid-containing sample. Thus, the present invention allows for a comparatively low sample amount/volume for the isolation of DNA and RNA in separated fractions from one nucleic acid-containing sample.
- the source of the nucleic acids contained in the nucleic acid-containing sample may be any imaginable source. It may either be a natural source, e.g. from cells or tissue or the like, or an artificial source, e.g. a PCR product or the like. If the source is a natural source, it is regardless of which kind the natural source is, i.e. the source may be procaryotic or eucaryotic, the source may be single cells or tissue or even subcellular fractions.
- the nucleic acid-containing sample has to be an aqueous solution, e.g. a cell lysate, or has to be brought into an aqueous solution by addition of a chaotropic salt solution according to step (a) or any suitable solvent. Solvents suitable to bring nucleic acids into solution are well known to those skilled in the art.
- the chaotropic salt is added in step (a) in form of a solution and can advantageously be used to lyse the source of the nucleic acids, e.g. cells or tissue. In this case an additional sufficient incubation time is needed to allow the cells to lyse.
- the required conditions to lyse the source of the nucleic acids i.e. incubation time, temperature etc., are well known to a person skilled in the art and can easily be adapted to the method according to the invention.
- the chaotropic salt added to the nucleic acid-containing sample in step (a) is selected from urea, sodium iodide, potassium iodide, sodium permanganate, potassium permanganate, sodium perchlorate, potassium perchlorate, sodium chlorate, potassium chlorate, guanidinium hydrochloride, guanidinium isothiocyanate, guanidinium thiocyanate, hexamine cobalt chloride, tetramethyl ammonium chloride, alkyltrimethyl ammonium chloride, tetraethyl ammonium chloride, tetramethyl ammonium iodide, alkyltrimethyl ammonium iodide, tetraethyl ammonium iodide or is a mixture thereof.
- alkyl represents a branched or unbranched hydrocarbon radical having 1 to 20 carbon atoms.
- the chaotropic salt is added to the nucleic acid-containing sample as a solution of suitable concentration.
- suitable solvent e.g. water or a buffer system
- Suitable solvents or buffer systems according to the present invention are obvious to a skilled person.
- the chaotropic salt can be added as a solid. In the latter case, it is required that the nucleic acid-containing sample is available as a solution.
- the chaotropic salt is added in step (a) to a final concentration in a range of from 1 to 4.5 M.
- the chaotropic salt is added in step (a) to a final concentration in a range of from 1.2 to 3.5 M and more preferably in a range of from 1.5 to 3 M.
- the term 'final concentration' for the purpose of the present invention stands for the concentration of a substance, i.e. the chaotropic salt added in step (a) and the alcohol added in step (b), after adding the chaotropic salt in step (a) and after adding the alcohol in step (b) but before step (c) of the present invention.
- the alcohol added in step (b) is selected from methanol, ethanol, n-propanol, iso- propanol or is a mixture thereof. Thereby, the alcohol is added pure or diluted in a suitable solvent, e.g. water, to a suitable concentration.
- a suitable solvent e.g. water
- the alcohol is added in step (b) to a final concentration in a range of from 13 to 70 %(v/v). In a preferred embodiment, the alcohol is added in step (b) to a final concentration in a range of from 25 to 60 %(v/v) and more preferably in a range of from 30 to 50 %(v/v).
- An essential feature of the present invention is that the different binding kinetics of RNA and DNA in the presence of a chaotropic salt and an alcohol to a functional surface are utilized. Therefore, the time period of step (c) is less than half of the time period of step (d), i.e. the kinetics for the DNA binding is much faster than the kinetics for the RNA binding under suitable conditions according to the invention. Therefore, for the binding of DNA to the functional surface a significant shorter incubation time is needed as compared to the incubation time needed for the binding of RNA to the functional surface.
- the time period of step (c) is less than 1/10 of the time period of step (d) and more preferably the time period of step (c) is less than 1/20 of the time period of step (d).
- the time period in step (c) is in a range of from 5 seconds to 60 seconds and the time period in step (d) is 30 seconds or more, depending on the time period in step (c).
- the time period in step (d) has no strict upward boundaries, but is limited upwards to an incubation time which appears suitable to a person skilled in the art, i.e. either a degradation of the RNA or an unhelpful prolongation of the method according to the invention should be avoided.
- the method of the present invention can be performed at any suitable temperature. A suitable temperature for such a method is obvious to a person skilled in the art.
- the preferred temperature range for the present invention is room temperature (18°C to 25°C).
- the method is performed in an automated process. Due to the fact that similar methods utilizing, e.g., magnetic beads are well known from the art as automated processes, the method of the invention can easily be adapted to an automated process.
- RNA bound to the functional surface in step (c) is a DNA-rich fraction.
- the DNA has to be further purified.
- the RNA isolation step (d) The solution obtained by step (c) after breaking the contact between the solution and the functional surface is DNA- depleted but is not free of DNA. Therefore, during the prolonged incubation time in step (d) a small amount of DNA will bind the functional surface.
- the RNA bound to the functional surface in step (d) is a RNA-rich fraction.
- the RNA has to be further purified.
- the further purification steps as mentioned above may be any purification procedures known from the art and suitable for a purification of nucleic acids bound to a functional surface according to the present invention.
- the further purification normally comprises at least one washing step, an optional nuclease treatment and an elution step.
- step (c) may comprise at least the steps of:
- step (c) washing the DNA bound to the functional surface of step (c) after breaking the contact between the solution of step (b) and the functional surface with a suitable solution, (2) eluting the DNA from the functional surface using a suitable solution,
- step (3) prior to, simultaneously with or following step (1) or step (2), performing a RNase treatment under suitable conditions.
- step (d) may in general comprise at least the steps of:
- step (d) washing the RNA bound to the functional surface of step (d) after breaking the contact between the DNA-depleted solution of step (c) and the functional surface with a suitable solution
- step (3) prior to, simultaneously with or following step (1) or step (2), performing a
- a suitable solution comprising either a high concentration of chaotropic salt, e.g. 7 M guanidinium hydrochloride, or a high concentration of a suitable alcohol, e.g. ethanol at 65 to 80 % (v/v), or a suitable organic solvent, the nucleic acids being insoluble in this organic solvent.
- a suitable solution compositions and performance of such washing steps are known from the state of the art. At least one washing step may be performed or the washing steps may be performed in a number seeming suitable to a person skilled in the art.
- An exemplary and non-limiting procedure is to perform one or two washing steps with solution comprising a high concentration of chaotropic salt, e.g. 5.4 M guanidinium thiocyanate, to remove biological contaminants followed by at least two washing steps with a solution comprising a high concentration of an alcohol, e.g. 80% (v/v) ethanol, to remove the chaotropic salt.
- a nuclease treatment may be performed.
- the nucleic acids are normally eluted from the functional surface to perform a nuclease treatment.
- the elution from the functional surface is achieved by, e.g., resuspending the functional surface in a low salt solution or water.
- Any suitable enzyme and any suitable solution for the nuclease treatment may be utilized. Such enzymes and solutions are well known to those skilled in the art.
- the nuclease treatment can be performed at any stage of the further purification as mentioned above.
- the nucleic acids may be rebound to the functional surface from which they were eluted after the nuclease treatment by, e.g., changing the concentration(s) of the substance(s) of content.
- the functional surface for binding the nucleic acids is steps (c) and/or (d) has not inevitably to be of the same kind as the functional surface for rebinding the nucleic acid.
- the nuclease may be inactivated, e.g. by heat or any other suitable measure, and the nucleic acids may be used for other purposes without being rebound to the functional surface, e.g. precipitating the nucleic acids by addition of an alcohol followed by collecting the nucleic acids by, e.g., centrifugation. Suitable methods are well known to those skilled in the art.
- the present invention provides a kit for sequentially isolating DNA and RNA from the same nucleic acid-containing sample according to the present invention.
- the kit comprises at least a functional surface according to the invention and/or a chaotropic salt and/or an alcohol.
- the chaotropic salt may be part of the kit as, e.g., a solid or as a stock solution or as a ready-to-use solution.
- the alcohol may be part of the kit as, e.g., a stock solution or as a ready-to- use solution.
- the kit furthermore comprises substances and/or devices allowing for a further purification of the isolated DNA and RNA according to one of the several different methods known in the art. Examples
- Crossing point (Ct) values from real-time PCR were used as a measure for the concentration of DNA and RNA in the eluted fractions of nucleic acids.
- Ct Crossing point
- GtB-CtA concentration B] E " .
- a frozen cell pellet of 1 x 10 6 HL60 cultured cells was lysed in 100 ⁇ Solution A.
- the lysate was further homogenized by 5 times passing a 23G syringe. Subsequently, 300 ⁇ Solution A were added and gently mixed. To this solution, 300 ⁇ 96 %(v/v) ethanol were added. The final concentrations were:
- RNA isolation comprises the steps of:
- step (b) 60 ⁇ of a magnetic particle suspension being of the same kind as the magnetic particle suspension utilized in step (a) were added to the partially DNA-depleted lysate from step (a) and incubated for 3 minutes. Subsequently, the ferrimagnetic particles were removed from the lysate by a magnet (fraction 2) and the remaining solution was discarded.
- a frozen cell pellet of 1 x 10 6 HL60 cultured cells was lysed in 100 I Solution A.
- the lysate was further homogenized by 5 times passing a 23G syringe. Subsequently, 500 ⁇ Solution A were added and gently mixed. To this solution, 100 ⁇ 96 %(v/v) ethanol were added. The final concentrations were:
- step (a) 6 mg of ferrimagnetic particles were suspended in 20 ⁇ of an aqueous solution comprising a composition according to the final composition of the lysate as displayed above (13.7 %(v/v) ethanol, 3.0 M guanidinium thiocyanate, 21.5 mM trisodium citrate).
- a frozen cell pellet of 1 x 10 6 HL60 cultured cells was lysed in 100 ⁇ Solution A.
- the lysate was further homogenized by 5 times passing a 23G syringe. Subsequently, 100 ⁇ Solution A were added and gently mixed. To this solution, 500 ⁇ 96 %(v/v) ethanol were added. The final concentrations were:
- step (a) 6 mg of ferrimagnetic particles were suspended in 20 ⁇ of an aqueous solution comprising a composition according to the final composition of the lysate as displayed above (68.6 %(v/v) ethanol, 1.0 M guanidinium thiocyanate, 7.2 mM trisodium citrate).
- a frozen cell pellet of 1 x 10 6 HL60 cultured cells was lysed in 100 /I Solution A.
- the lysate was further homogenized by 5 times passing a 23G syringe.
- 100 /I Solution A were added and gently mixed.
- 500 ⁇ 100 %(v/v) iso-propanol were added. The final concentrations were:
- step (a) 6 mg of ferrimagnetic particles were suspended in 20 ⁇ of an aqueous solution comprising a composition according to the final composition of the lysate as displayed above (71.5 %(v/v) iso-propanol, 1.0 M guanidinium thiocyanate, 7.2 mM trisodium citrate).
- a frozen cell pellet of 1 x 10 6 HL60 cultured cells was lysed in 100 /I Solution B.
- the lysate was further homogenized by 5 times passing a 23G syringe.
- 300 ⁇ Solution B were added and gently mixed.
- 300 ⁇ 96 %(v/v) ethanol were added. The final concentrations were:
- step (b) 60 ⁇ of a magnetic particle suspension being of the same kind as the magnetic particle suspension utilized in step (a) were added to the partially DNA-depleted lysate from step (a) and incubated for 3 minutes. Subsequently, the ferrimagnetic particles were removed from the lysate by a magnet (fraction 2) and the remaining solution was discarded.
- Crossing point (Ct) values from real-time PCR were measured both with and without a preceding reverse transcription. Without reverse transcription the Ct value is a measure of the DNA concentration. Including a preceding reverse transcription the Ct value is a measure of the total amount of RNA and DNA. The difference between the Ct value with and without preceding reverse transcription is usually referred to as ⁇ Ct. ⁇ Ct is commonly used as a measure for RNA fraction of total nucleic acid. Larger ⁇ Ct values identify higher RNA fractions of total nucleic acids. Results
- a frozen cell pellet of 1 x 10 6 HL60 cultured cells was lysed in 100 ⁇ Solution A.
- the lysate was further homogenized by 5 times passing a 23G syringe. Subsequently, 300 ⁇ Solution A were added and gently mixed. To this solution, 300 ⁇ 100 %(v/v) methanol were added. The final concentrations were:
- step (a) 6 mg of ferrimagnetic particles were suspended in 20 ⁇ of an aqueous solution comprising a composition according to the final composition of the lysate as displayed above (42.8 %(v/v) methanol, 2.0 M guanidinium thiocyanate, 14.4 mM trisodium citrate).
- a frozen cell pellet of 1 x 10 6 HL60 cultured cells was lysed in 100 ⁇ Solution A. Subsequently, 100 ⁇ Solution A were added and gently mixed. To this solution, 150 ⁇ 96 %(v/v) ethanol were added. The final concentrations were:
- the subsequent isolation of nucleic acids comprises the steps of:
- step (b) 80 ⁇ of a magnetic particle suspension being of the same kind as the magnetic particle suspension utilized in step (a) were added to the partially DNA-depleted lysate from step (a) and incubated for 2 minutes.
- ferrimagnetic particles were removed from the lysate by a magnet (fraction 2) and the remaining solution was discarded.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US47607203P | 2003-06-04 | 2003-06-04 | |
| PCT/EP2004/005999 WO2004108925A1 (en) | 2003-06-04 | 2004-06-03 | Method for sequentially isolating dna and rna from the same nucleic acid-containing sample |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1633869A1 true EP1633869A1 (de) | 2006-03-15 |
Family
ID=33511751
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP04739565A Ceased EP1633869A1 (de) | 2003-06-04 | 2004-06-03 | Verfahren zur sequenziellen isolierung von dns und rns aus derselben nukleinsäure-enthaltenden probe |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP1633869A1 (de) |
| WO (1) | WO2004108925A1 (de) |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007070381A2 (en) | 2005-12-09 | 2007-06-21 | Promega Corporation | Nucleic acid purification with a binding matrix |
| JP2009528845A (ja) * | 2006-03-08 | 2009-08-13 | プロメガ・コーポレーション | 低分子量rnaの精製方法 |
| WO2007140417A2 (en) | 2006-05-31 | 2007-12-06 | Sequenom, Inc. | Methods and compositions for the extraction and amplification of nucleic acid from a sample |
| GB0719022D0 (en) * | 2007-09-28 | 2007-11-07 | Mole Genetics As | Isolation method |
| US20110060135A1 (en) * | 2007-11-29 | 2011-03-10 | New England Biolabs, Inc. | Selective Purification of Small RNAs from Mixtures |
| EP2128169A1 (de) | 2008-05-30 | 2009-12-02 | Qiagen GmbH | Verfahren zur Isolierung von kurzkettigen Nukleinsäuren |
| EP3211095B1 (de) | 2009-04-03 | 2019-01-02 | Sequenom, Inc. | Zusammensetzungen und verfahren für die herstellung von nukleinsäuren |
| EP2264168B1 (de) * | 2009-06-18 | 2014-12-17 | Qiagen GmbH | Verfahren zur Isolierung von Nukleinsäuren |
| EP2345719A1 (de) * | 2010-01-18 | 2011-07-20 | Qiagen GmbH | Verfahren zur Isolierung kleiner RNA |
| DK2588609T3 (en) | 2010-06-29 | 2018-03-19 | Exscale Biospecimen Solutions Ab | METHOD AND KIT FOR SEQUENTIAL ISOLATION OF NUCLEOTIDE SPECIES FROM A SAMPLE |
| US8808990B2 (en) | 2011-05-12 | 2014-08-19 | Exact Sciences Corporation | Serial isolation of multiple DNA targets from stool |
| US8980107B2 (en) | 2011-05-12 | 2015-03-17 | Exact Sciences Corporation | Spin filter |
| CN103649298A (zh) | 2011-05-12 | 2014-03-19 | 精密科学公司 | 核酸的分离 |
| US8993341B2 (en) | 2011-05-12 | 2015-03-31 | Exact Sciences Corporation | Removal of PCR inhibitors |
| EP3218480A1 (de) | 2014-11-14 | 2017-09-20 | Corning Incorporated | Verfahren und kits zur rna-reinigung nach ivt |
| ES2965460T3 (es) * | 2015-06-09 | 2024-04-15 | Biocartis Nv | Método automatizable para el aislamiento de ácidos nucleicos |
| JP2018522588A (ja) | 2015-07-23 | 2018-08-16 | バイオカルティス エン フェー | 最適化された臨床試料のシーケンシング |
| TWI691595B (zh) * | 2015-09-02 | 2020-04-21 | 創想生物科技有限公司 | 選擇性分離核酸之方法及套組 |
| EP3344643B1 (de) | 2015-09-04 | 2025-07-02 | Qiagen Sciences LLC | Verfahren zur gemeinsamen isolierung von nukleinsäuren und proteinen |
| AU2019260569B9 (en) | 2018-04-24 | 2025-12-11 | Qiagen Sciences Llc | Nucleic acid isolation and inhibitor removal from complex samples |
| EP3784684A1 (de) | 2018-04-24 | 2021-03-03 | Qiagen Sciences, LLC | Isolierung und entfernung von biomolekülen |
| EP4592387A3 (de) | 2018-04-27 | 2025-10-29 | QIAGEN GmbH | Verfahren zur isolierung von nukleinsäuren aus pflanzenproben |
| US20210238580A1 (en) | 2018-05-11 | 2021-08-05 | Qiagen Gmbh | Lysis method for plant samples |
| RU188425U1 (ru) * | 2018-08-02 | 2019-04-11 | Мераб Георгиевич Чикобава | Дозированная форма для выделения днк |
| CN113755484A (zh) * | 2020-06-01 | 2021-12-07 | 苏州新海生物科技股份有限公司 | 一种核酸提取方法以及应用 |
| WO2025046143A1 (en) | 2023-09-01 | 2025-03-06 | Qiagen Gmbh | Method for isolating nucleic acids from an inhibitor rich biological sample |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5010183A (en) * | 1989-07-07 | 1991-04-23 | Macfarlane Donald E | Process for purifying DNA and RNA using cationic detergents |
| ES2125869T3 (es) * | 1990-07-13 | 1999-03-16 | Microprobe Corp | Composicion no corrosiva y procedimientos utiles para la extraccion de acidos nucleicos. |
| US5155018A (en) * | 1991-07-10 | 1992-10-13 | Hahnemann University | Process and kit for isolating and purifying RNA from biological sources |
| US5346994A (en) * | 1992-01-28 | 1994-09-13 | Piotr Chomczynski | Shelf-stable product and process for isolating RNA, DNA and proteins |
| GB9425138D0 (en) * | 1994-12-12 | 1995-02-08 | Dynal As | Isolation of nucleic acid |
| US5945515A (en) * | 1995-07-31 | 1999-08-31 | Chomczynski; Piotr | Product and process for isolating DNA, RNA and proteins |
| DE29601618U1 (de) * | 1996-01-31 | 1996-07-04 | InViTek GmbH, 13125 Berlin | Vorrichtung zur gleichzeitigen multiplen Isolierung |
| WO1998008971A1 (de) * | 1996-08-26 | 1998-03-05 | Invitek Gmbh | Verfahren zum nachweis klinisch relevanter veränderungen der dns-sequenz des ki-ras-onkogens, seine verwendung und testkit zur früherkennung von tumoren |
| US6027945A (en) * | 1997-01-21 | 2000-02-22 | Promega Corporation | Methods of isolating biological target materials using silica magnetic particles |
| US6936414B2 (en) * | 1999-12-22 | 2005-08-30 | Abbott Laboratories | Nucleic acid isolation method and kit |
-
2004
- 2004-06-03 EP EP04739565A patent/EP1633869A1/de not_active Ceased
- 2004-06-03 WO PCT/EP2004/005999 patent/WO2004108925A1/en not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2004108925A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2004108925A1 (en) | 2004-12-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2004108925A1 (en) | Method for sequentially isolating dna and rna from the same nucleic acid-containing sample | |
| AU706211B2 (en) | Isolation of nucleic acid | |
| JP3253638B2 (ja) | シリカ磁気粒子を使用する生物学的目標物質の分離法 | |
| US9464316B2 (en) | Method for isolating nucleic acids comprising the use of ethylene glycol multimers | |
| AU771249B2 (en) | Method for purification and manipulation of nucleic acids using paramagnetic particles | |
| CA2725631C (en) | Method for isolating nucleic acids | |
| US20080132694A1 (en) | Method For Facilitating an Automated Isolation of a Biopolymer Using Magnetic Particles | |
| JP2002507116A (ja) | 固体相核酸の単離 | |
| JP2002502856A (ja) | 核酸の単離および精製方法 | |
| JP2003507049A (ja) | Dnaの同時単離及び定量化 | |
| EP2094846A1 (de) | Verwendung von tde zur isolation von nukleinsäuren | |
| JP2004523238A (ja) | 核酸の磁気単離および精製の方法 | |
| CN110088282A (zh) | 用磁性颗粒分离高纯度核酸的方法 | |
| JP4198461B2 (ja) | シラン処理シリカ基質を用いた溶解物クリアランスおよび核酸単離 | |
| RU2766005C2 (ru) | Система очистки нуклеиновой кислоты с использованием одного буферного раствора для промывания и элюирования | |
| WO2004108741A1 (en) | Process for the concentration and/or isolation of nucleic acid or nucleic acid-containing species | |
| WO2009040444A1 (en) | Rna isolation method | |
| US20070148651A1 (en) | Method and kit for the isolation of rna | |
| JPH11196869A (ja) | リボ核酸の単離方法 | |
| AU772552B2 (en) | Methods of isolating biological target materials using silica magnetic particles | |
| JP3811767B6 (ja) | 均質な混合物から核酸を純化する方法 | |
| JP2001252100A (ja) | 核酸の分別手段 | |
| JP2006246732A (ja) | 核酸精製用支持体および精製方法 | |
| MXPA98007681A (en) | Methods of isolating biological target materials using silica magnetic particles |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20060104 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
| 18R | Application refused |
Effective date: 20060624 |