[go: up one dir, main page]

EP1656165A1 - Systeme polymere de liberation de medicament pour dispositifs medicaux - Google Patents

Systeme polymere de liberation de medicament pour dispositifs medicaux

Info

Publication number
EP1656165A1
EP1656165A1 EP04768107A EP04768107A EP1656165A1 EP 1656165 A1 EP1656165 A1 EP 1656165A1 EP 04768107 A EP04768107 A EP 04768107A EP 04768107 A EP04768107 A EP 04768107A EP 1656165 A1 EP1656165 A1 EP 1656165A1
Authority
EP
European Patent Office
Prior art keywords
coating
compound
composition
vehicle
dexamethasone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04768107A
Other languages
German (de)
English (en)
Other versions
EP1656165B1 (fr
Inventor
Kadem Polybiomed Limited AI-LAMEE
Martyn Polyiomed Limited LOTT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polybiomed Ltd
Original Assignee
Polybiomed Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0319461A external-priority patent/GB0319461D0/en
Priority claimed from GB0325060A external-priority patent/GB0325060D0/en
Application filed by Polybiomed Ltd filed Critical Polybiomed Ltd
Publication of EP1656165A1 publication Critical patent/EP1656165A1/fr
Application granted granted Critical
Publication of EP1656165B1 publication Critical patent/EP1656165B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/22Lipids, fatty acids, e.g. prostaglandins, oils, fats, waxes
    • A61L2300/222Steroids, e.g. corticosteroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/43Hormones, e.g. dexamethasone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • A61L2300/608Coatings having two or more layers
    • A61L2300/61Coatings having two or more layers containing two or more active agents in different layers

Definitions

  • the present invention relates to a coating composition for a medical device, a method of coating a medical device and a device coated with the composition.
  • it relates to the incorporation of more than one bioactive agent into a coating composition and a method for using the composition to coat an implantable medical device.
  • Example 6 relates to spraying a stent with a solution of poly (ethylene- covinyl acetate), polybutyl methacrylate and rapamycin dissolved in tetrahydrofuran followed by spraying the thus-coated stent with a solution of poly (ethyl ene-co-vinyl acetate) polybutyl methacrylate and dexamethasone dissolved in tetrahydrofuran.
  • US 6,258,121 and US 6,569,195 disclose a polymeric coating for a stent comprising a blend of a faster releasing hydrophilic polymeric material (such as a polylactic acid polyethelene oxide copolymer) and a second slower releasing hydrophobic material (such as a polylactic acid/polycaprolactone copolymer).
  • This polymeric blend can be combined with an active agent such as Taxol which is delivered from the stent to inhibit restenosis following angioplasty.
  • an active agent such as Taxol which is delivered from the stent to inhibit restenosis following angioplasty.
  • polylactic acid is biodegradable.
  • WO 03/035135 (Scimed Life Systems Inc.) discloses another coating composition for a drug- release stent which includes a styrene-isobutylene based block copolymer, paclitaxel and organic solvent.
  • the drug release profile for this coating is dependant upon the drug- to-polymer ratio.
  • the slow release formulation has a three-fold greater coating weight compared with the moderate release formulation.
  • the present invention seeks to provide an improved release system for implantable devices.
  • Preferred aspects of the present invention seek to provide a system in which drugs or other biologically active materials are released in a controlled and programmable manner, i.e. at a desired rate and/or over a desired period of time and/or after a predetermined period of time after implantation of the device.
  • A is a vinyl acetal group
  • B is a vinyl alcohol group
  • C is a vinyl acetate group
  • x is from 0.8 to 0.9
  • y is from 0.1 to 0.2
  • z is from 0 to 0.025.
  • the vehicle additionally comprises a second compound which is a polymer of Formula 2:
  • the proportion of the second compound may be over 50% by weight of the coating composition.
  • [A] x — [B] y — [C] z is a compound of Formula 1A:
  • Rl and R2 are independently H or an alkyl, alkenyl, alkynyl or aryl group and wherein optionally an alkyl, alkenyl, alkynyl or aryl group may be substituted for any pendent hydrogen atom. More preferably, Rl and R2 are independently C1-C6 alkyl.
  • the first compound can be bought "off the shelf, it can also be synthesised from vinylacetate (CH 2 CHOCOCH 3 ). This is hydrolysed to form one of the co-polymers (polyvinylalcohol), reacts with an aldehyde (butyl- 1-al in the preferred embodiment) to form the co-polyvinylacetal co-polymer and itself forms the co-vinylacetate co-polymer.
  • vinylacetate CH 2 CHOCOCH 3
  • aldehyde butyl- 1-al in the preferred embodiment
  • the first compound is a polymer which is poly(vinylbutyral-co-vinyl alcohol-co-vinyl acetate) with an average Mw from 50,000 to 80,000 and with 88 wt% vinyl butyral groups:
  • a copolymer of Formula 1 provides an effective vehicle for a bioactive to be released from a medical device such as a stent.
  • the exemplary copolymer PVB combines hydrophobicity with good adhesion properties.
  • the glass transition temperatures (T g ) are very similar for both classes of copolymers.
  • the presence of acetate groups in both copolymers means that the copolymers are more likely to be miscible, and therefore there is less likely to a problem of phase separation.
  • the two classes of copolymers are soluble in similar solvents and a simple solvent system can be used therefore to dissolve and apply the coating composition, such as tetrahydrofuran, dichloromethane or chloroform.
  • the copolymer combination has a wide range of solubility and can therefore be used with a wide range of bioactives.
  • the good compatibility of the preferred copolymer combination is in contrast to other combinations that have been tried such as PVB and polyethylene glycol or PVB with a combination of polyethylene glycol and polypropylene glycol, both of which result in compatibility problems.
  • a further advantage of the inventive composition is that it allows greater control and selectivity of the drug release than prior art compositions. For example, many prior art compositions release the drug too quickly for it to have the required effect, and therefore drug release is controlled by the use of polymer-only top coatings or variations in the polyme ⁇ drug ratio of the coating. In particular, the latter can lead to a requirement for coating thicknesses which may compromise coating integrity.
  • compositions such as that disclosed in the Cordis reference mentioned above (WO 01/87372), attempt to provide a system which releases two different drugs at different rates with each drug targeting a different region of the wound healing response.
  • release profiles of the two drugs are in fact fairly similar, which means that the selectivity aimed for is not achieved.
  • the present composition is far more effective at providing a system with distinct and selective release profiles.
  • a method for coating a medical device comprising the step of:
  • the method additionally comprising the step of:
  • the first coating preferably has a vehicle comprising said first compound and said second compound in a ratio from 80:20 to 100:0 (most preferably 98:2) and the second coating preferably has a vehicle comprising said first compound and said second compound in a ratio from 70:30 to 94:6 (most preferably 90:10) .
  • the bioactive in the second coating may be the same as that in the first, in the preferred embodiment different bioactives are employed in order to result in different effects in vivo as the bioactives are released over time.
  • the first coating composition may include an anti-proliferative agent such as rapamycin and the second coating may include an anti-inflammatory agent such as dexamethasone.
  • Other bioactives that can be employed include estradiol, taxol, vincristine, prostaglandins, vinblastine, heparin, or a nitric oxide donor.
  • the proportion of bioactive to vehicle may be typically from 1 :9 to 1:1 and is preferably from 1:4 to 1:2.
  • a medical device such as a stent or graft-stent
  • a coating composition by means of a method as defined above.
  • the stent is preferably be formed of a metal but the inventive compositions can adhere to many other materials such as PET, PTFE, nylon, polycarbonate, polypropylene and polyurethane.
  • a method of using said device comprising implanting the device in an animal or human body.
  • adhesion to the surface can be enhanced by means of the method disclosed in WO 03/024500 (in the name of the present applicant), the contents of which are incorporated herein by reference. Where 100% PVB is used, application directly to an unmodified surface may be sufficient (although adhesion may optionally be enhanced by modification techniques). As the amount of PnVPA is increased in the formulation, surface modification may be required to maintain adequate adhesion.
  • Figures 5 to 8 are drug elution profiles for stents which have been coated with compositions in accordance with the present invention where the drugs in question are dexamethasone, rapamycin, 17 ⁇ -estradiol and dexamathasone/rapamycin (dual elution) respectively;
  • Figure 9 is a schematic representation of pull-off test equipment.
  • Figure 10 is a graph showing the average adhesion strength for various test samples.
  • Fig. 1 shows part of the wall 11 of a stent 10 of metallic material.
  • a stent 10 of metallic material To solve clinical problems, such as restenosis, produced by the implanting of the stent 10, it is treated as follows.
  • PVB poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate)
  • PnVPA poly (1- vinylpyrrolidone-co-vinyl acetate)
  • PVB is predominantly hydrophobic and comprises the bulk of the formulation, preferably anything from 70% to 100% . Small additions of the hydrophilic PnVPA give the coating its "programmability" in terms of being able to control the release rate of drugs.
  • Layer 12 typically has a thickness of 6-7 microns.
  • the rapamycin is provided in a suitable solvent which, after the application of layer 12, is removed by allowing the coating to dry. The drying operation also serves to maintain the activity of the rapamycin.
  • the stent is then similarly coated until a second layer 14 comprising dexamethasone in a mixture of the same two polymers.
  • the polymers PVB and PnVPA have different proportions by weight than in layer 12.
  • Layer 14 typically has a thickness of 3-4 microns.
  • the dexamethasone is provided in a suitable solvent which, after application of layer 14, is removed by drying.
  • the formulations of layers 12 and 14, and in particular the ratios of the polymers PVB and PnVPA, are selected to release their active agents at respective desired rates.
  • the ratio of PVB, which is hydrophobic, to PnvPA, which is hydrophilic is selected so that the dexamethasone is substantially released during the first few hours after implantation to reduce inflammation. Release of the dexamethasone, normally at a reducing rate, may continue for a period of up to ten days.
  • Typical ratios for PVB to PnVPA in layer 14 are between 70:30 and 94:6, preferably 90: 10.
  • the rapamycin in the lower layer 12 is released more slowly.
  • Typical percentages by weight of PVB are 80% to 100%, i.e. layer 12 may be solely PVB with no PnVPA content.
  • the preferred ratio of PVB to PnVPA is 98:2.
  • the rapamycin is typically released over a period of ten days or more.
  • the selective release of the active materials can be carefully controlled with reference to rate of release, duration of release and timing of initiation of release.
  • rapamycin may be used as the anti-proliferative agent estradiol, taxol, vincristine, vinblastine, or a nitric oxide donor.
  • estradiol may be used as the anti-proliferative agent estradiol, taxol, vincristine, vinblastine, or a nitric oxide donor.
  • Appropriate mixtures of drugs may be incorporated in each of layer 12 and 14.
  • a primer layer (not shown) may be applied to the surface of stent 10 before the application of layer 12.
  • stent 10 Preferably the entire surface of stent 10 is coated, but if desired parts of its surface may remain uncoated.
  • layer 14 covers all layer 12, but to achieve certain patterns of release, parts of layer 12 may remain uncoated.
  • the stents may be made of a plastics material.
  • the drug-eluting coatings disclosed can be used with coronary, peripheral or gastrointestinal stents or with other types of devices such as abdominal aortic aneurysm devices, anastomosis devices, heart valve repair devices, implantable biosensors, pacing and electro stimulation leads, vascular grafts or vena cava filters.
  • anti-platelet agents e.g prostaglandins and/or anti-coagulants agents e.g. heparin.
  • anti-coagulants agents e.g. heparin.
  • implantable devices are coated with three or more layers and such arrangements combine as desired the features of the various described embodiments.
  • PVB Poly(vinyl pyrrolidone-co-vinyl acetate), average Mw 50,000 (referred to as PnVPA)
  • This example describes the preparation and elution of stents comprising various ratios of PVB/PnVPA and dexamethasone
  • Stents were cleaned by immersion in IP A for 30 mins with ultrasound and dried at 100°C overnight. All stents then underwent a surface modification procedure as outlined in WO03024500 by the same applicant.
  • the stents were weighed, spray coated with the respective formulations and dried overnight at 40°C under vacuum. Upon weighing the average coating weight of the stents was 442 ⁇ g yielding a dexamethasone content of 89 ⁇ g +/- 8 ⁇ g.
  • Each stent was placed on a hook and suspended in a vial containing 8ml of an aqueous release medium with a 5 mm magnetic flea. The vials were placed on a multipoint stirrer set at lOOOrpm and incubated at 37°C.
  • the stents were transferred to fresh aliquots of release medium and replaced on the stirrer to resume agitation.
  • the solution containing dexamethasone was set aside for analysis.
  • This example describes the preparation and elution of stents comprising various ratios of PVB/PnVPA and Rapamycin
  • Stents were cleaned by immersion in IPA for 30 mins with ultrasound and dried at 100°C overnight.
  • the stents were weighed, spray coated with the respective formulations and dried overnight at 40C under vacuum. Upon weighing the average coating weight of the stents was 755 ⁇ g yielding a rapamycin content of 189 ⁇ g +/- 13 ⁇ g.
  • Each stent was placed on a hook and suspended in a vial containing 8ml of an aqueous release medium with a 5mm magnetic flea.
  • the vials were placed on a multipoint stirrer set at lOOOrpm and incubated at 37°C.
  • the stents were transferred to fresh aliquots of release medium and replaced on the stirrer to resume agitation.
  • the solution containing rapamycin was set aside for analysis.
  • Three coating solutions were prepared in a blend of chloroform and acetone (80:20 by weight) comprising various ratios of PVB/PnVPA (Table 3). 17 ⁇ -Estrradiol was added to each formulation so that in terms of total solids 25% was 17 ⁇ -Estradiol, 75% polymer.
  • the stents were weighed, spray coated with the respective formulations and dried overnight at 40°C under vacuum. Upon weighing the average coating weight of the stents was 904 ⁇ g yielding a 17 ⁇ -Estradiol content of 229 ⁇ g +/- 32 ⁇ g.
  • Each stent was placed on a hook and suspended in a vial containing 8ml of an aqueous release medium with a 5mm magnetic flea. The vials were placed on a multipoint stirrer set at lOOOrpm and incubated at 37°C.
  • the stents were transferred to fresh aliquots of release medium and replaced on the stirrer to resume agitation.
  • the solution containing 17 ⁇ -Estradiol was set aside for analysis.
  • This example describes the preparation and elution of stents comprising rapamycin and dexamethasone each contained within a specific ratio of PVB/PnVPA
  • Stents were cleaned by immersion in IPA for 30 mins with ultrasound and dried at 100°C overnight.
  • a coating solution was prepared made up of PEP 100 and rapamycin in chloroform, so that in terms of total solids 25% was rapamycin, 75% polymer.
  • a second coating solution was prepared made of PEP 94 and dexamethasone in a mixture of chloroform and acetone (80:20 by volume), so that in terms of total solids 25% was dexamethasone, 75% polymer.
  • the stents were weighed, spray coated in equal amounts with the respective formulations such that the bottom layer comprised PEP 100 with rapamycin and the top layer PEP94 with dexamethasone. The stents were then dried overnight at 40°C under vacuum. Upon weighing the average coating weight of the stents was 680 ⁇ g yielding drug loadings of approx 85 ⁇ g +/- 1 l ⁇ g for each individual drug.
  • Each stent was placed on a hook and suspended in a vial containing 8ml of an aqueous release medium with a 5mm magnetic flea.
  • the vials were placed on a multipoint stirrer set at lOOOrpm and incubated at 37C.
  • the stents were transferred to fresh aliquots of release medium and replaced on the stirrer to resume agitation.
  • the solution containing dexamethasone/rapamycin was set aside for analysis.
  • concentrations of dexamethasone and rapamycin in each sample were determined from standard curves of absorbance at 241nm and 291nm respectively versus concentration of calibration solutions (see Fig. 8).
  • This example describes the preparation and elution of stents comprising 17 ⁇ - estradiol and dexamethasone each contained within a specific ratio of PVB/PnVPA
  • the stents were weighed, spray coated in a ratio of 3:1 (estradiol: dexamethasone) with the respective formulations such that the bottom layer comprised PEP94 with 17 ⁇ - estradiol and the top layer PEP90 with dexamethasone. The stents were then dried overnight at 40°C under vacuum.
  • each stent was placed on a hook and suspended in a vial containing 8ml. of an aqueous release medium with a 5mm magnetic flea.
  • the vials were placed on a multipoint stirrer set at lOOOrpm and incubated at 37°C. After a given time interval (ranging from 1 hour to several days), the stents were transferred to fresh aliquots of release medium and replaced on the stirrer to resume agitation.
  • the solution containing dexamethasone/ 17 ⁇ -estradiol was set aside for analysis. Analysis of the samples was carried out using HPLC (Agilent 1100 series).
  • 0.25mm thick stainless steel plate was cut to the required size (25 x 50mm), cleaned in 2- propanol, and dried thoroughly.
  • Functionalised plates (set 3) were coated with a primer layer of PEP100 at 1 % by weight in chloroform using an airbrush to apply an even coating of around 1.5 milligrams to one side of each plate. This coating was dried at 100°C for 20 hours.
  • Untreated set 1, and functionalised set 2 plates were coated with a 1 %w/w PEP94 solution in chloroform, applied by airbrush to give an even coating on one side of the plate of around 15 milligrams.
  • the plates were dried at 40°C under reduced pressure for 16 hours.
  • each plate to be tested was soaked with a solution of 0.01 %w/w aqueous sodium dodecyl sulphate for two hours. The sample was then tissue dried and an aluminium stub attached to the area with a high strength adhesive.
  • Fig 9 depicts a schematic representation of pull-off test equipment in which aluminium stub 1 is attached to test coating 2 with adhesive bond 3.
  • the adhesion tests were performed using a commercially available Elcometer Parti 100 test rig with a F20 piston. In testing the stub 1 and top platen 4 are forced apart by the inflation of pneumatic bladder 5. The maximum pneumatic pressure at coating separation was recorded and converted to an adhesion strength using conversion tables supplied with the test rig. In all the samples tested the fracture occurred at the coating - steel interface.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Prostheses (AREA)
  • Paints Or Removers (AREA)
  • Medicinal Preparation (AREA)
EP04768107A 2003-08-19 2004-08-18 Systeme polymere de liberation de medicament pour dispositifs medicaux Expired - Lifetime EP1656165B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0319461A GB0319461D0 (en) 2003-08-19 2003-08-19 Polymers for controlled drug release
GB0325060A GB0325060D0 (en) 2003-10-27 2003-10-27 Drug release system
PCT/GB2004/003547 WO2005018696A1 (fr) 2003-08-19 2004-08-18 Systeme polymere de liberation de medicament pour dispositifs medicaux

Publications (2)

Publication Number Publication Date
EP1656165A1 true EP1656165A1 (fr) 2006-05-17
EP1656165B1 EP1656165B1 (fr) 2008-12-17

Family

ID=34219617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04768107A Expired - Lifetime EP1656165B1 (fr) 2003-08-19 2004-08-18 Systeme polymere de liberation de medicament pour dispositifs medicaux

Country Status (8)

Country Link
US (1) US20060286139A1 (fr)
EP (1) EP1656165B1 (fr)
JP (1) JP4732346B2 (fr)
AT (1) ATE417637T1 (fr)
AU (1) AU2004266484B2 (fr)
CA (1) CA2534039A1 (fr)
DE (1) DE602004018509D1 (fr)
WO (1) WO2005018696A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090062909A1 (en) 2005-07-15 2009-03-05 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
GB0607189D0 (en) * 2006-04-10 2006-05-17 Polybiomed Ltd interleukin IL 1ra composition
KR101226256B1 (ko) * 2006-07-03 2013-01-25 헤모텍 아게 혈관의 영구 개방을 위한 활성 물질 방출용 의료 제품, 그의 제조 방법 및 용도
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
WO2008094548A2 (fr) * 2007-01-30 2008-08-07 Boston Scientific Limited . Administration locale d'agent thérapeutique à des valvules cardiaques
US20090074831A1 (en) * 2007-09-18 2009-03-19 Robert Falotico LOCAL VASCULAR DELIVERY OF mTOR INHIBITORS IN COMBINATION WITH PEROXISOME PROLIFERATORS-ACTIVATED RECEPTOR STIMULATORS
FR2927813B1 (fr) * 2008-02-21 2017-07-21 Hexacath Dispositif medical implantable sur une couche de protection/retention d'un agent actif ou medicament, notamment hydrosoluble
EA020655B1 (ru) 2008-04-17 2014-12-30 Миселл Текнолоджиз, Инк. Стенты, имеющие биорассасывающиеся слои
JP2011528275A (ja) 2008-07-17 2011-11-17 ミセル テクノロジーズ,インク. 薬物送達医療デバイス
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
DE102008034826A1 (de) * 2008-07-22 2010-01-28 Alexander Rübben Verfahren zur Erzeugung einer bioaktiven Oberfläche auf dem Ballon eines Ballonkatheters
WO2010075298A2 (fr) * 2008-12-23 2010-07-01 Surmodics Pharmaceuticals, Inc. Composites implantables et compositions comprenant des agents biologiquement actifs libérables
EP2413847A4 (fr) 2009-04-01 2013-11-27 Micell Technologies Inc Endoprothèses enduites
EP2335745B1 (fr) * 2009-12-21 2017-11-22 Biotronik VI Patent AG Implant doté d'un revêtement
US11369498B2 (en) 2010-02-02 2022-06-28 MT Acquisition Holdings LLC Stent and stent delivery system with improved deliverability
US10232092B2 (en) 2010-04-22 2019-03-19 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US20130172853A1 (en) 2010-07-16 2013-07-04 Micell Technologies, Inc. Drug delivery medical device
CA2841360A1 (fr) 2011-07-15 2013-01-24 Micell Technologies, Inc. Dispositif medical d'administration de medicament
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
KR20150143476A (ko) 2013-03-12 2015-12-23 미셀 테크놀로지즈, 인코포레이티드 생흡수성 생체의학적 임플란트
JP2016519965A (ja) 2013-05-15 2016-07-11 マイセル・テクノロジーズ,インコーポレイテッド 生体吸収性バイオメディカルインプラント
KR102387358B1 (ko) * 2018-05-17 2022-04-14 히타치 긴조쿠 가부시키가이샤 케이블 및 의료용 중공관

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU190619B (en) * 1983-11-11 1986-09-29 Bezzegh,Denes,Hu Process for producing tablets with controlled dissolution of active ingredients
CA1250494A (fr) * 1984-03-01 1989-02-28 Chhattar S. Kucheria Liaisonnement d'enduits de verre bio-actifs
USRE34990E (en) * 1986-08-07 1995-07-04 Ciba-Geigy Corporation Oral therapeutic system having systemic action
US5026771A (en) * 1989-08-03 1991-06-25 Monsanto Company Coating compositions containing ethylenically unsaturated carbamates
US5324615A (en) * 1993-08-13 1994-06-28 Xerox Corporation Method of making electrostatographic imaging members containing vanadyl phthalocyanine
US5637113A (en) * 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
DE69625799T2 (de) * 1995-02-01 2003-10-23 Schneider (Usa) Inc., Plymouth Verfahren zur hydrophilisierung von hydrophoben polymeren
US5674513A (en) * 1996-02-20 1997-10-07 Viro-Kote, Inc. Anti-bacterial/anti-viral coatings, coating process and parameters thereof
GB2325934A (en) * 1997-06-03 1998-12-09 Polybiomed Ltd Treating metal surfaces to enhance bio-compatibility and/or physical characteristics
US6110483A (en) * 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US8029561B1 (en) * 2000-05-12 2011-10-04 Cordis Corporation Drug combination useful for prevention of restenosis
US6254634B1 (en) * 1998-06-10 2001-07-03 Surmodics, Inc. Coating compositions
US20020087184A1 (en) * 1998-06-18 2002-07-04 Eder Joseph C. Water-soluble coating for bioactive devices
US6340465B1 (en) * 1999-04-12 2002-01-22 Edwards Lifesciences Corp. Lubricious coatings for medical devices
US6613082B2 (en) * 2000-03-13 2003-09-02 Jun Yang Stent having cover with drug delivery capability
US6656200B2 (en) * 2000-04-07 2003-12-02 Collagen Matrix, Inc. Embolization device
US6746773B2 (en) * 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
GB0100760D0 (en) * 2001-01-11 2001-02-21 Biocompatibles Ltd Drug delivery from stents
DE10107795B4 (de) * 2001-02-13 2014-05-15 Berlex Ag Gefäßstütze mit einem Grundkörper, Verfahren zur Herstellung der Gefäßstütze, Vorrichtung zur Beschichtung der Gefäßstütze
JP2004526499A (ja) * 2001-03-16 2004-09-02 エスティーエス バイオポリマーズ,インコーポレイティド 複数層ポリマーコーティングを有する薬物添加ステント
US6676987B2 (en) * 2001-07-02 2004-01-13 Scimed Life Systems, Inc. Coating a medical appliance with a bubble jet printing head
GB0122393D0 (en) * 2001-09-17 2001-11-07 Polybiomed Ltd Treating metal surfaces to enhance bio-compatibility
US7294329B1 (en) * 2002-07-18 2007-11-13 Advanced Cardiovascular Systems, Inc. Poly(vinyl acetal) coatings for implantable medical devices
EP1594397B1 (fr) * 2003-02-20 2011-10-26 Cook Medical Technologies LLC Dispositif medical a revetement adhesif et procede de fabrication associe
WO2004098565A2 (fr) * 2003-05-02 2004-11-18 Surmodics, Inc. Dispositif de relargage d'agent bioactif a liberation controlee

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005018696A1 *

Also Published As

Publication number Publication date
AU2004266484A1 (en) 2005-03-03
AU2004266484B2 (en) 2011-04-14
DE602004018509D1 (de) 2009-01-29
ATE417637T1 (de) 2009-01-15
JP2007502638A (ja) 2007-02-15
WO2005018696A1 (fr) 2005-03-03
EP1656165B1 (fr) 2008-12-17
CA2534039A1 (fr) 2005-03-03
US20060286139A1 (en) 2006-12-21
JP4732346B2 (ja) 2011-07-27

Similar Documents

Publication Publication Date Title
EP1656165B1 (fr) Systeme polymere de liberation de medicament pour dispositifs medicaux
CN1674853B (zh) 用于医疗移植物的药物洗脱涂层
EP1740235B1 (fr) Compositions de revetement pour agents bioactifs
US7754272B2 (en) Local drug delivery
US8512750B2 (en) Stents with drug-containing amphiphilic polymer coating
US20050043788A1 (en) Drug-eluting stent
US8518097B2 (en) Plasticized stent coatings
WO2001074414A1 (fr) Excipient biocompatible contenant de l'actinomycine d et son procede de preparation
JP2010042279A (ja) ドラッグデリバリー装置用のコーティング
US20050281858A1 (en) Devices, articles, coatings, and methods for controlled active agent release
EP2560698A1 (fr) Dispositifs médicaux enrobés d'un produit de la famille des « limus »
WO2008088593A2 (fr) Additifs et procédés pour améliorer la cinétique d'élution d'agents actifs
WO2006107336A1 (fr) Compositions de revetements bioactifs pour dispositifs medicaux
HK1083183B (en) Drug eluting coatings for medical implants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060306

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
R17C First examination report despatched (corrected)

Effective date: 20061205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004018509

Country of ref document: DE

Date of ref document: 20090129

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090328

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090317

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090518

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

26N No opposition filed

Effective date: 20090918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: BAYER MATERIALSCIENCE AG

Free format text: POLYBIOMED LIMITED#67 MILTON PARK#ABINGDON, OXFORDSHIRE OX14 4RX (GB) -TRANSFER TO- BAYER MATERIALSCIENCE AG# #51368 LEVERKUSEN (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110812

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120815

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120823

Year of fee payment: 9

Ref country code: DE

Payment date: 20120816

Year of fee payment: 9

Ref country code: IT

Payment date: 20120726

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120816

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004018509

Country of ref document: DE

Effective date: 20140301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902