EP1508625B1 - Alliage de cuivre, qui a une excellente résistance à la corrosion et au dézincage, et procédure de fabrication - Google Patents
Alliage de cuivre, qui a une excellente résistance à la corrosion et au dézincage, et procédure de fabrication Download PDFInfo
- Publication number
- EP1508625B1 EP1508625B1 EP03018581A EP03018581A EP1508625B1 EP 1508625 B1 EP1508625 B1 EP 1508625B1 EP 03018581 A EP03018581 A EP 03018581A EP 03018581 A EP03018581 A EP 03018581A EP 1508625 B1 EP1508625 B1 EP 1508625B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zinc
- resistance
- copper
- copper alloy
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 230000007797 corrosion Effects 0.000 title abstract description 36
- 238000005260 corrosion Methods 0.000 title abstract description 36
- 238000005336 cracking Methods 0.000 title abstract description 32
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 52
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 25
- 239000010949 copper Substances 0.000 claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 claims abstract description 18
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011574 phosphorus Substances 0.000 claims abstract description 11
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 8
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 239000011701 zinc Substances 0.000 claims description 44
- 239000011135 tin Substances 0.000 claims description 42
- 229910052725 zinc Inorganic materials 0.000 claims description 34
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 33
- 229910052718 tin Inorganic materials 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 22
- 229910052742 iron Inorganic materials 0.000 claims description 21
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 abstract description 3
- 239000011133 lead Substances 0.000 description 22
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- 241001275902 Parabramis pekinensis Species 0.000 description 12
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 9
- 229910001297 Zn alloy Inorganic materials 0.000 description 8
- 229910001369 Brass Inorganic materials 0.000 description 7
- 239000010951 brass Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005242 forging Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910017518 Cu Zn Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the present invention generally relates to a copper alloy and a method for producing the same. More specifically, the invention relates to a copper alloy having an excellent corrosion cracking resistance and an excellent dezincing resistance, in addition to characteristics of conventional brasses having an excellent machinability or cutting workability and an excellent recyclability, and a method for producing the same.
- Japanese Patent Laid-Open No. 10-183275 discloses that tin (Sn) is added to a copper-zinc alloy to be extruded to control the concentration of Sn in a gamma phase through various heat treatments to improve the dezincing resistance of the alloy.
- Japanese Patent Laid-Open No. 6-108184 proposes that Sn is added to a copper-zinc alloy to be extruded to form a single alpha phase to enhance the dezincing corrosion resistance of the alloy. That is, the above described alloys are characterized in that a larger amount of Sn than that in conventional brasses is added.
- Japanese Patent Laid-Open No. 2001-294956 proposes that very small amounts of phosphorus (P) and tin (Sn) are added to a copper-zinc alloy to be extruded and reduced to be heat-treated to form a structure wherein a beta phase is separated by an alpha phase, to improve the dezincing resistance of the alloy.
- EP 1 008 664 A1 discloses a copper-based alloy comprising 58 to 63 % of copper, 0.5 to 4.0 % of lead, 0.05 to 0.25 % of phosphorus, 0.5 to 3.0 % of tin and 0.05 to 0.3 % of nickel, with the balance being zinc and unavoidable impurities.
- the method for adding the very small amounts of Sn and P to carry out heat treatments can be inexpensively carried out to improve the dezincing resistance due to the small amount of additives.
- this method can not improve the stress corrosion cracking resistance of the alloy.
- the inventors have diligently studied and found that it is possible to provide a copper alloy having an excellent corrosion cracking resistance and an excellent dezincing resistance while maintaining excellent characteristics of conventional brasses, by adding appropriate amounts of tin (Sn), silicon (Si), phosphorus (P), and at least one of bismuth (Bi) and lead (Pb), and optionally at least one of nickel (Ni) and iron (Fe) to a conventional brass material and by carrying out a heat treatment on appropriate conditions to control the structure of the alloy.
- tin tin
- Si silicon
- P phosphorus
- Pb bismuth
- Pb bismuth
- Fe nickel
- the inventors have made the present invention.
- a copper alloy comprises 58 to 66 wt% of copper, 0.3 to 0.5 wt% of tin, 0.01 to 0.5 wt% of silicon 0.02 to 0.15 wt% of phosphorus at least one of 0.3 to 3.0 wt% of bismuth and 0.3 to 3.5 wt% of lead, and optionally at least one of 0.02 to 3.0 wt% of nickel and 0.02 to 0.6 wt% of iron, with the balance being zinc and unavoidable impurities, wherein a proportion of an alpha phase is 80 vol% or more.
- the total amount of phosphorus, nickel and iron may be in the range of from 0.02 to 3.0 wt%.
- a method for producing a copper alloy comprising the steps of: preparing raw materials of a copper alloy comprising 58 to 66 wt% of copper, 0.3 to 0.5 wt% of tin, 0.01 to 0.5 wt% of silicon, 0.02 to 0.15 wt% of phosphorus at least one of 0.3 to 3.0 wt% of bismuth and 0.3 to 3.5 wt% of lead, and optionally at least one of 0.02 to 3.0 wt% of nickel and 0.02 to 0.6 wt% of iron, with the balance being zinc and unavoidable impurities; casting the raw materials to form an ingot; hot working the ingot; cold or hot working the hot worked ingot; annealing the cold or hot worked ingot at a temperature of 300 to 600 °C for two minutes to five hours; and cooling the annealed ingot at a cooling rate of 0.2 to 10 °C/sec.
- the total amount of phosphorus, nickel and iron may be in the range of from 0.02 to 3.0 wt%.
- a copper alloy having an excellent corrosion cracking resistance and an excellent dezincing resistance consists of 58 to 66 wt% of copper (Cu), 0.3 to 0.5 wt% of Sn, 0.01 to 0.5 wt% of Si, 0.02 to 0.15 wt% of P, at least one of 0.3 to 3.0 wt% of Bi and 0.3 to 3.5 wt% of Pb, and optionally at least one of 0.02 to 3.0 wt% of Ni and 0.02 to 0.6 wt% of FE, with the balance being zinc (Zn) and unavoidable impurities, wherein the proportion of an alpha phase is 80 vol% or more.
- the amount of Cu is less than 58 wt%, a beta phase increases, so that it is not possible to improve the dezincing resistance of the alloy even if a heat treatment is subsequently carried out.
- the amount of Cu exceeds 66 wt%, a beta phase does not sufficiently deposit even in a high temperature range, so that the hot workability of the alloy deteriorates. Therefore, the amount of Cu is preferably in the range of from 58 to 66 wt%, more preferably in the range of from 60 to 62 wt%.
- Tin (Sn) has the function of improving the dezincing resistance of an alpha phase and a beta phase. If the amount of Sn is less than 0.3 wt%, it is not possible to obtain a satisfied dezincing resistance. If the amount of Sn exceeds 0.5 wt%, a hard, friable gamma phase is easy to deposit, so that the extension of mechanical characteristics deteriorates. Therefore, the amount of Sn is in the range of from 0.3 to 0.5 wt%.
- Silicon (Si) remarkably has the functions of improving the dezincing resistance of a beta phase and of improving the stress corrosion cracking resistance of the whole alloy if a predetermined proportion of Si is solid-dissolved in beta and alpha phases. If the amount of Si is less than 0.01 wt%, these functions can not be obtained. Since the zinc equivalent of Si is a high value of 10, if the amount of Si to be added exceeds 0.5 wt%, the proportion of a beta phase increases, and the extension of mechanical characteristics deteriorates. Therefore, the amount of Si is preferably in the range of 0.01 to 0.5 wt%, more preferably in the range of 0.1 to 0.2 wt%.
- a third element such as Sn, Si or Ni
- a third element such as Sn, Si or Ni
- it is often solid-dissolved in alpha and beta phases without forming a specific phase.
- the amount of Zn increases or decreases is produced in the copper-zinc alloy, so that the alloy has properties corresponding thereto.
- Guillet has proposed a method for expressing this relationship by using the zinc equivalent of an additional element.
- the proportion of an alpha phase is 80 vol% or more, advantageous effects will be described below.
- the beta phase is inferior to the alpha phase with respect to both of stress corrosion cracking resistance and dezincing resistance.
- the zinc equivalents of Sn and Si are 2 and 10, respectively, and the solid solutions of Sn and Si are preferentially formed in a beta phase. If the amount of these elements to be added increases, the proportion of the beta phase increases, and the hardness of the whole material increases to decrease the elongation thereof.
- the proportion of the alpha phase is set to be 80 vol% or more, the residual beta phase can be reinforced by adding a very small amount of elements without damaging the elongation of the whole material, and the stress corrosion cracking resistance of the alpha phase can be improved by the solid solution of Si. Therefore, the proportion of the alpha phase is preferably 80 vol% or more, and more preferably 90 vol% or more.
- a copper alloy having an excellent stress corrosion cracking resistance and dezincing resistance contains at least one of 0.3 to 3.5 wt% of Pb and 0.3 to 3.0 wt% of Bi.
- Pb and Bi serve to improve the machinability or cutting workability of brasses, respectively. If the amount of Pb is 0.3 wt% or more, it is possible to obtain a good free-cutting workability. However, if the amount of Pb exceeds 3.5 wt%, the mechanical properties of brasses deteriorate to tend to cause embrittlement. Therefore, the amount of Pb is preferably in the range of from 0.3 to 3.5 wt%. In addition, since the material cost of Pb is low, the amount of Pb is more preferably in the range of 2.5 to 3.5 wt%.
- the amount of Bi is in the range of from 0.3 to 3.0 wt%, preferably in the range of from 1.4 to 2.5 wt%, it is possible to obtain a good free-cutting workability. Since Pb is harmful to the human body although Bi is more expensive than Pb, Bi can be substituted for Pb.
- a copper alloy having an excellent stress corrosion cracking resistance and dezincing resistance preferably contains at least one of 0.02 to 0.15 wt% of P, 0.02 to 3.0 wt% of Ni, and 0.02 to 0.6 wt% of Fe, the total amount of these elements being in the range of from 0.02 to 3.0 wt%.
- Nickel (Ni) has the function of decreasing the size of crystal grains, and also has the function of increasing the proportion of the alpha phase since the zinc equivalent of Ni is negative. If the amount of Ni is less than 0.02 wt%, it is not sufficiently obtain these functions. On the other hand, if the amount of Ni exceeds 3.0 wt%, there are problems on mechanical characteristics and adding costs. Therefore, the amount of Ni is preferably in the range of 0.02 to 3.0 wt%, and more preferably in the range of 0.1 to 0.4 wt%.
- Phosphorus (P) has the function of improving the dezincing resistance of the alpha phase without damaging mechanical characteristics. However, if the amount of P is less than 0.02 wt%, it is not possible to obtain such a function, and if the amount of P exceeds 0.15 wt%, intergranular segregation is caused to deteriorate the ductility and stress corrosion cracking resistance of the alloy. Therefore, the amount of P to be added is in the range of from 0.02 to 0.15 wt%.
- Iron has the functions of inhibiting the size of the alpha phase from being increased and of stabilizing mechanical characteristics. Since most of scrap materials include Fe, costs increase if the amount of Fe is less than 0.02 wt%, and the elongation of the alloy deteriorates if the amount of Fe exceeds 0.6 wt%. Therefore, the amount of Fe to be added is preferably in the range of from 0.02 to 0.6 wt%.
- the total amount of Ni, Fe and P is preferably in the range of from 0.02 to 3.0 wt%, and more preferably in the range of from 0.05 to 0.5 wt%.
- the mixture is cast to form an ingot, it is extruded in a temperature range of from 600 to 850 °C.
- a temperature range of from 600 to 850 °C By the mixing, it is possible to obtain an alpha-plus-beta phase structure having a good hot workability in a high temperature region.
- the bar After the hot forging or cold reduction of a bar thus obtained is carried out, the bar is heat-treated at a temperature of 300 to 600 °C for two minutes to five hours, and then cooled at a cooling rate of 0.2 to 10 °C/sec to control the structure.
- the beta phase portion after extruding is changed to an alpha or gamma phase except for a part of the beta phase portion.
- the concentration of additives in the residual beta phase increases, and the solid solution of Si is formed in the alpha phase, so that the stress corrosion cracking resistance and dezincing resistance of the bar are improved.
- the heat treatment temperature is lower than 300 °C, phase transformation is not sufficiently carried out.
- the heat treatment temperature is higher than 600 °C, the beta phase is stable, so that no alpha-plus-gamma phase is deposited. Therefore, the heat treatment temperature is preferably in the range of from 300 to 600 °C.
- the cooling rate is higher than 10 °C/sec, there is the possibility that distortion may be caused by cooling.
- the cooling rate is lower than 0.2 °C /sec, there are some cases where the size of crystal grains increases to have an influence on dezincing resistance. Therefore, the cooling temperature is preferably in the range of from 0.2 to 10 °C/sec.
- Raw materials of components in each of Examples 1 through 19 shown in Table 1 were mixed to be melted in an induction furnace to be semi-continuously cast to form a bar having a diameter of 80 mm. Then, the bar was hot-extruded so as to have a diameter of 30 mm, and cold-drawn so as to have a diameter of 29.5 mm. Thereafter, in each example, the bar was heat-treated on heat treatment conditions shown in Table 2, and the cooling rate was in the range of from 0.2 to 10 °C/sec.
- the proportion of the alpha phase was obtained by the point calculating method on a microphotograph of a cross section (see "Handbook of Metals” (edited by Japan Society for Metals, the revised fifth edition, Maruzen), p 289). Furthermore, 23 x 30 points were measured at intervals of 10 ⁇ m in a lattice.
- the dezincing resistance was evaluated on the basis of ISO 6509 by observing the depth of dezincing resistance after the sample was dipped in a solution containing 12.7 g/L of CuCl 2 ⁇ 2H 2 O at a temperature of 75 ⁇ 3 °C for 24 hours. The sample was tested so that the direction of extruding was coincident with the direction of dezincing corrosion. After the region of 10 mm x 10 mm was measured, the dezincing resistance was evaluated as "good” when the maximum dezincing depth was 100 ⁇ m or less, and the dezincing resistance was evaluated as "not bad” when the maximum dezincing depth exceeds 100 ⁇ m.
- each of the samples before cold drawing was cut into pieces having a thickness of 1.5 mm to be hot-rolled so as to have a thickness of about 0.5 mm, and the surface thereof was cold-rolled by about 0.03 mm. Thereafter, a heat treatment was carried out, so that a sample having a thickness of 0. 5 mm, a width of 10 mm and a length of 140 mm was prepared. Then, a stress being 50 % of the proof stress was applied to each of the samples by the two-point load method based on JIS H8711, and each of the samples was held in a desiccator including 14 % NH 3 . In this state, the time required to cause corrosion cracking was measured. The stress corrosion cracking resistance was evaluated by "bad" when cracks were produced within 5 hours, "not bad” when cracks are produced in 5 to 15 hours, and "good” when no cracks are produced after 15 hours or more.
- Table 2 shows the proportions of the alpha phase and the results of dezincing tests and stress corrosion cracking tests in Examples 1 through 19. As can be seen from this table, in all examples, the proportions of the alpha phase were 80 vol% or more, and the stress corrosion cracking resistance and dezincing resistance were good. Table 2 Ex.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Claims (4)
- Alliage de cuivre, comprenant 58 à 66 % en poids de cuivre, 0,3 à 0,5 % en poids d'étain, 0,01 à 0,5 % en poids de silicium, 0,02 à 0,15 % en poids de phosphore, au moins un parmi 0,3 à 3,0 % en poids de bismuth et 0,3 à 3,5 % en poids de plomb, et en option au moins un parmi 0,02 à 3,0 % en poids de nickel et 0,02 à 0,6 % en poids de fer, le reste étant du zinc et des impuretés inévitables, dans lequel une proportion d'une phase alpha est de 80 % en volume ou plus.
- Alliage de cuivre selon la revendication 1, dans lequel une teneur apparente B' de zinc dans ledit alliage de cuivre est dans la plage de 34 à 39 % en poids, ladite teneur apparente B' de zinc étant exprimée par l'expression suivante :
dans laquelle A désigne la teneur (pourcentage en poids) de cuivre et B désigne la teneur (pourcentage en poids) de zinc, t1, t2, t3 et t4 désignent les équivalents-zinc de l'étain, du silicium, du nickel et du fer, respectivement (t1 = 2,0, t2 = 10,0, t3 = - 1,3, t4 = 0,9), et q1, q2, q3 et q4 désignent les teneurs (pourcentage en poids) d'étain, de silicium, de nickel et de fer, respectivement. - Procédé pour produire un alliage de cuivre, ledit procédé comprenant les étapes consistant à :préparer des matériaux bruts d'un alliage de cuivre comprenant 58 à 66 % en poids de cuivre, 0,3 à 0,5 % en poids d'étain, 0,01 à 0,5 % en poids de silicium, 0,02 à 0,15 % en poids de phosphore, au moins un parmi 0,3 à 3,0 % en poids de bismuth et 0,3 à 3,5 % en poids de plomb, et en option au moins un parmi 0,02 à 3,0 % en poids de nickel et 0,02 à 0,6 % en poids de fer, le reste étant du zinc et des impuretés inévitables;couler les matériaux bruts pour former un lingot ;travailler à chaud ledit lingot ;travailler à froid ou à chaud le lingot travaillé à chaud ;recuire le lingot travaillé à froid ou à chaud à une température de 300 à 600 °C pendant deux minutes à cinq heures ; etrefroidir le lingot recuit à une vitesse de refroidissement de 0,2 à 10 °C/seconde.
- Procédé pour produire un alliage de cuivre selon la revendication 3, dans lequel une teneur apparente B' de zinc dans ledit alliage de cuivre est dans la plage de 34 à 39 % en poids, ladite teneur apparente B' de zinc étant exprimée par l'expression suivante :
dans laquelle A désigne la teneur (pourcentage en poids) de cuivre et B désigne la teneur (pourcentage en poids) de zinc, t1, t2, t3 et t4 désignent les équivalents-zinc de l'étain, du silicium, du nickel et du fer, respectivement (t1 = 2,0, t2 = 10,0, t3 = - 1,3, t4 = 0,9), et q1, q2, q3 et q4 désignent les teneurs (pourcentage en poids) d'étain, de silicium, de nickel et de fer, respectivement.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP03018581A EP1508625B1 (fr) | 2003-08-18 | 2003-08-18 | Alliage de cuivre, qui a une excellente résistance à la corrosion et au dézincage, et procédure de fabrication |
| AT03018581T ATE353981T1 (de) | 2003-08-18 | 2003-08-18 | Kupferlegierung, die exzellente korrosionsbeständigkeit und entzinkungsbeständigkeit aufweist, und eine methode zu deren herstellung |
| DE60311803T DE60311803T2 (de) | 2003-08-18 | 2003-08-18 | Kupferlegierung, die exzellente Korrosionsbeständigkeit und Entzinkungsbeständigkeit aufweist, und eine Methode zu deren Herstellung |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP03018581A EP1508625B1 (fr) | 2003-08-18 | 2003-08-18 | Alliage de cuivre, qui a une excellente résistance à la corrosion et au dézincage, et procédure de fabrication |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1508625A1 EP1508625A1 (fr) | 2005-02-23 |
| EP1508625B1 true EP1508625B1 (fr) | 2007-02-14 |
Family
ID=34042861
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP03018581A Expired - Lifetime EP1508625B1 (fr) | 2003-08-18 | 2003-08-18 | Alliage de cuivre, qui a une excellente résistance à la corrosion et au dézincage, et procédure de fabrication |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP1508625B1 (fr) |
| AT (1) | ATE353981T1 (fr) |
| DE (1) | DE60311803T2 (fr) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2007340472B2 (en) | 2006-12-28 | 2011-04-21 | Kitz Corporation | Leadless brass alloy excellent in stress corrosion cracking resistance |
| ES2738900T3 (es) * | 2010-11-17 | 2020-01-27 | Luvata Appleton Llc | Anodo colector alcalino |
| JPWO2013115363A1 (ja) * | 2012-02-01 | 2015-05-11 | Toto株式会社 | 耐食性に優れた黄銅 |
| CN102851532A (zh) * | 2012-09-10 | 2013-01-02 | 顾建 | 一种用于阀门的铜合金材料 |
| CN102864327A (zh) * | 2012-09-10 | 2013-01-09 | 任静儿 | 用于阀门的铜合金材料 |
| CN102851531A (zh) * | 2012-09-10 | 2013-01-02 | 虞雪君 | 一种铜锌合金 |
| CN109930026B (zh) * | 2017-12-18 | 2020-12-18 | 有研工程技术研究院有限公司 | 一种高强度高导电、耐应力松弛铜合金引线框架材料及其制备方法 |
| CN118600259A (zh) * | 2024-05-28 | 2024-09-06 | 鹤山市金益铜业有限公司 | 一种抗脱锌铜锭及其制备工艺 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4294629A (en) * | 1979-10-02 | 1981-10-13 | Trefimetaux | Drawn rods made of lead brass and a process for the thermal treatment thereof |
| JPS58185738A (ja) * | 1982-04-20 | 1983-10-29 | Yamamoto Sangyo Kk | 黄銅合金 |
| US5445687A (en) * | 1991-11-14 | 1995-08-29 | Toyo Valve Co., Ltd. | Hot working material of corrosion resistant copper-based alloy |
| JP3104828B2 (ja) * | 1993-09-24 | 2000-10-30 | 株式会社日立製作所 | エレベーターのデータ伝送方式 |
| US5507885A (en) * | 1994-01-17 | 1996-04-16 | Kitz Corporation | Copper-based alloy |
| WO1998045490A1 (fr) * | 1997-04-08 | 1998-10-15 | Kitz Corporation | Alliage cuivreux de bonne tenue a la fissuration par corrosion sous contrainte, resistant a la corrosion, se pretant au travail a chaud, et procede de production |
| JP3761741B2 (ja) * | 1999-05-07 | 2006-03-29 | 株式会社キッツ | 黄銅とこの黄銅製品 |
| JP2001294956A (ja) * | 2000-04-11 | 2001-10-26 | Sumitomo Light Metal Ind Ltd | 耐脱亜鉛腐食性に優れた快削黄銅およびその製造方法 |
-
2003
- 2003-08-18 AT AT03018581T patent/ATE353981T1/de not_active IP Right Cessation
- 2003-08-18 EP EP03018581A patent/EP1508625B1/fr not_active Expired - Lifetime
- 2003-08-18 DE DE60311803T patent/DE60311803T2/de not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| ATE353981T1 (de) | 2007-03-15 |
| DE60311803T2 (de) | 2007-10-31 |
| EP1508625A1 (fr) | 2005-02-23 |
| DE60311803D1 (de) | 2007-03-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2784167B1 (fr) | Feuille d'alliage de cuivre à base de cu-ti, son procédé de fabrication et composant portant de courant électrique | |
| EP1441040B1 (fr) | Alliage à base de cuivre et son procédé de fabrication | |
| US5565045A (en) | Copper base alloys having improved bend formability | |
| EP2743360B1 (fr) | Laiton présentant une excellente résistance à la corrosion | |
| EP2194149B1 (fr) | Plaque d'alliage en cuivre et son procédé de production | |
| EP0175183B1 (fr) | Alliages de cuivre présentant des propriétés de résistance mécanique et de conductivité | |
| US5370840A (en) | Copper alloy having high strength and high electrical conductivity | |
| EP2957646B1 (fr) | Tôle d'alliage de cuivre à base de cu-ni-co-si à haute résistance, procédé pour la production de celle-ci et composant conducteur de courant | |
| US4260432A (en) | Method for producing copper based spinodal alloys | |
| EP1698708B1 (fr) | Procédé de production d'un alliage non-magnétique à dureté elevée | |
| EP3158095B1 (fr) | Alliages de cuivre-nickel-silicium | |
| EP3085799B1 (fr) | Alliage de cuivre et son procédé de fabrication | |
| US20050039827A1 (en) | Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same | |
| EP2607508B1 (fr) | Alliage de cuivre-cobalt-silicium pour matériau d'électrode | |
| EP1063309A2 (fr) | Alliage de cuivre | |
| EP1508625B1 (fr) | Alliage de cuivre, qui a une excellente résistance à la corrosion et au dézincage, et procédure de fabrication | |
| EP3578678A1 (fr) | Acier maraging et son procédé de fabrication | |
| EP3085798A1 (fr) | Alliage de cuivre | |
| EP0769563A1 (fr) | Bronze phosphoreux, contenant du fer | |
| JP3824944B2 (ja) | 耐応力腐食割れ性および耐脱亜鉛性に優れた銅合金およびその製造方法 | |
| EP0385257A1 (fr) | Procédé de fabrication de tôles en alliage d'aluminium durci, à haute résistance et très bonne résistance à la corrosion | |
| CN100415911C (zh) | 优异抗腐裂性和抗脱锌性能的铜合金及其制造方法 | |
| KR20130012643A (ko) | 내식성과 소성가공성 및 형상기억성이 향상된 무연쾌삭 황동합금 | |
| JPH07258804A (ja) | 電子機器用銅合金の製造方法 | |
| JP3410125B2 (ja) | 高強度銅基合金の製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
| 17P | Request for examination filed |
Effective date: 20050425 |
|
| AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DOWA HOLDINGS CO., LTD. |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REF | Corresponds to: |
Ref document number: 60311803 Country of ref document: DE Date of ref document: 20070329 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070514 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070515 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070525 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070716 |
|
| NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
| ET | Fr: translation filed | ||
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 |
|
| 26N | No opposition filed |
Effective date: 20071115 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070818 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070515 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070820 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070818 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070818 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070214 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200715 Year of fee payment: 18 Ref country code: DE Payment date: 20200804 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200713 Year of fee payment: 18 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60311803 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210818 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 |