[go: up one dir, main page]

EP1508007A1 - Appareil de congelation pourvu d'une fonction de degivrage et son procede de fonctionnement - Google Patents

Appareil de congelation pourvu d'une fonction de degivrage et son procede de fonctionnement

Info

Publication number
EP1508007A1
EP1508007A1 EP03752736A EP03752736A EP1508007A1 EP 1508007 A1 EP1508007 A1 EP 1508007A1 EP 03752736 A EP03752736 A EP 03752736A EP 03752736 A EP03752736 A EP 03752736A EP 1508007 A1 EP1508007 A1 EP 1508007A1
Authority
EP
European Patent Office
Prior art keywords
freezer
time interval
heating device
timer
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03752736A
Other languages
German (de)
English (en)
Other versions
EP1508007B1 (fr
Inventor
Georg Strauss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP1508007A1 publication Critical patent/EP1508007A1/fr
Application granted granted Critical
Publication of EP1508007B1 publication Critical patent/EP1508007B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/008Defroster control by timer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator

Definitions

  • the present invention relates to a freezer with a cooling surface, on which an ice layer can form during the operation of the freezer, and a heating device for heating the cooling surface and thereby defrosting such an ice layer.
  • Conventional freezers of this type also known as frost-free devices, have a control device for controlling the operation of the heating device, which automatically puts the heating device into operation when a running time of the device or a compressor of the device, recorded with the aid of a timer, is one exceeds the predetermined limit. In this way it is ensured that the cooling surface is defrosted from time to time even without the active intervention of a user, so that no layer of ice can form on it that significantly impairs the energy efficiency of the device.
  • a problem with this technology is that it is unable to take into account whether refrigerated goods may have been freshly stored in the freezer just before the defrosting process is initiated. If this is the case, such refrigerated goods should be frozen as quickly as possible, which requires a high cooling capacity.
  • automatic defrosting of the cooling surface at such a time means that freezing takes a long time, and under unfavorable circumstances it could even result in the refrigerated goods already stored in the freezer being heated so much by the newly stored goods, that this stock is thawing.
  • Another disadvantage of this technique is that it is associated with relatively high energy costs because the freezer's increased power requirement associated with defrosting can occur at any time of the day.
  • the object of the present invention is to provide a freezer and an operating method therefor, which ensure that frozen goods are quickly frozen at any time. ten and which also make it possible to minimize the energy costs associated with the operation of such a device.
  • the object is achieved on the one hand by a freezer with an icable cooling surface, a heating device for heating the cooling surface and a control circuit for controlling the operation of the heating device as a function of a timer in which the control circuit is set up, the operation of the heating device during a lock time interval set by the timer.
  • this freezer need not necessarily be an automatic defrost freezer;
  • the timer does not necessarily serve to trigger a defrosting process after a certain time, as in the conventional frost-free devices, but, on the contrary, to prevent this at certain, unfavorable times.
  • the times at which a defrosting process is considered necessary can be determined both automatically and by a user, as will be explained in more detail below.
  • the time interval defined by the timer is a time interval, and preferably one that lasts from 9:00 a.m. to 10:00 p.m., preferably at least from 1:00 a.m. to 5:00 a.m.
  • This determination of the time interval is based on the assumption that at night, especially between 9:00 a.m. and 10:00 p.m., there is little likelihood that refrigerated goods will be reloaded into the freezer because most users do shopping earlier in the day.
  • the extension of the time interval in which the operation of the heating device is blocked to 5:00 a.m. on one day until 1:00 a.m. the next day has the additional advantage that inexpensive night-time electricity is then available in the time still available for defrosting can be used for defrosting.
  • the freezer according to the invention preferably also uses inexpensive night-time electricity in that, provided that no defrosting takes place, it operates the cooling surface with a higher cooling capacity in the time allowed for defrosting than during the blocked time interval. This means that energy is also given to the freezer during normal operation. if necessary, shifted from the blocked time interval to the period in which defrosting is permitted and in which the costs for electrical energy are lower than in the blocked time interval.
  • the timer is coupled to a sensor for detecting the opening of a door of the freezer, and the time interval specified by the timer is a time interval from when the door is opened.
  • the effect of this configuration is comparable to that described above.
  • the timer for the control circuit can be constructed differently. First, it can be an autonomous timer that does not receive any control signals from outside. Such a timer can in particular comprise an oscillator, especially a quartz oscillator for high accuracy at low costs.
  • a radio receiver for receiving a radio time standard is particularly suitable as a non-autonomous timer.
  • the interface to such a network can of course also serve to receive a time signal transmitted or queried on the network and to make it available to the control circuit.
  • a preferred application of the invention are devices such as the frost-free devices already mentioned, in which the control circuit is designed to record at least one operating parameter of the freezer correlated with the degree of icing of the cooling surface and to close the heating device outside the specified time interval take if the at least one monitored operating parameter has exceeded a limit value.
  • Preferred examples of such operating parameters are the total time that has elapsed since the last operating phase of the heating device or the operating time that has passed since then of a compressor of the freezer.
  • a parameter that, unlike the two above, does not require cumulative detection, is the ratio of the operating time to the operating time of a freezer compressor.
  • Another suitable parameter is the number of door openings counted since the last operating phase of the heating device.
  • the control circuit is assigned an operating element for entering a command for starting up the heating device.
  • This control element enables the user to enter a command to start up the heating device at any time if he determines that defrosting is useful, especially if he has opened the door and thus recognized the need for defrosting.
  • the lock according to the invention prevents the defrosting process from being carried out at an unfavorable time.
  • Such an operating element can of course also be provided on a freezer with automatic defrost.
  • the object is further achieved by a method for controlling a freezer with an icable cooling surface and a heating device for heating the cooling surface, with the following steps:
  • Figure 1 is a schematic section through a freezer to which the present invention is applicable.
  • FIG. 2 shows a block diagram of a first embodiment of a control arrangement for the box device
  • FIG. 3 shows a flowchart of an operating method for the control arrangement from FIG. 2;
  • FIG. 5 shows a flow diagram of an operating method for the control arrangement from FIG. 4;
  • FIG. 6 shows a modification of the control method from FIG. 5;
  • FIG. 7 shows a third embodiment of a control arrangement according to the invention.
  • FIG. 8 shows a flowchart of a working method for the control arrangement from FIG. 7.
  • the structure of the refrigeration device shown in FIG. 1 is essentially known and is therefore only to be outlined briefly.
  • a heat-insulating housing 1 and a door 2 of this type delimit a freezer compartment 3 in the interior of the housing 1.
  • a wall 4 separates a chamber 5 from the freezer compartment 3, on the rear wall of which an evaporator 6 serving as a cooling surface is arranged.
  • the evaporator 6 is part of a refrigerant circuit, together with a compressor 7 and a condenser 8.
  • a fan 9 is arranged in a through opening in the partition 4. arranged to cause air circulation between the freezer compartment 3 and the chamber 5.
  • the evaporator 6 Under normal operating conditions, the evaporator 6 is at temperatures below zero degrees Celsius. Moisture from air circulated from the freezer compartment 3 into the chamber 5 condenses on the surface of the evaporator 6 and forms an ice layer thereon after prolonged operation. In order to be able to defrost this layer of ice, a heating device 10 is arranged in the chamber 5.
  • the invention can of course also be applied to freezers in which the evaporator 6 is not housed in its own chamber, but is in direct thermal contact with the freezer compartment 3.
  • Fig. 2 shows a first embodiment of a control arrangement for the refrigerator of Fig. 1.
  • the control arrangement comprises a control circuit 11, e.g. a microprocessor or microcontroller connected to an operating element 12, e.g. an electrical button attached to the housing 1, a temperature sensor 13 arranged on the evaporator 6 and a timer 14 are connected.
  • the timer 14 is preferably implemented in the form of a quartz clock or a radio clock and periodically delivers a quantitative signal representative of the time.
  • the timer 14 can also be the interface to such a network, since in such networks time signals are periodically transmitted or requested by the interface 14 from another terminal can.
  • step S1 the time delivered by the timer 14 in the next step S2. If this is between 5:00 a.m. and 1:00 a.m., the control circuit 11 first ignores the user's command and waits in step S3 until 1:00 a.m. The time interval from 5:00 a.m. to 1:00 a.m.
  • the control circuit 11 switches on the power supply to the heating device 10 and, at the same time, switches off the compressor 7 and the blower 9 if they were switched on.
  • the control circuit 11 waits until the defrosting process is initiated until its operating phase has ended normally.
  • the power supply to the heating device 10 is switched off in step S6 and the normal one Cooling operation resumed.
  • the user can thus enter a defrost command at any time convenient for him, e.g. if he recognizes that defrosting is necessary when loading or unloading refrigerated goods.
  • a defrost command By restricting the defrosting period to the time between 1:00 a.m. and 5:00 a.m., it is ensured that, until the defrosting process is initiated, any newly loaded refrigerated goods will be safely frozen through.
  • Fig. 4 shows an example of a control arrangement which enables a fully automatic defrost operation. Components of this arrangement which have already been described with reference to FIG. 2 have the same reference numerals and are not described separately.
  • the control circuit 11 of FIG. 4 additionally has a signal input 15, to which a control signal generated by a thermostat control circuit 16 for switching the compressor 7 on and off is present.
  • FIG. 5 A first example of a working method that can be carried out with this configuration of the control arrangement is shown in FIG. 5.
  • the method begins with an operating time counter t being set to zero in step S11 after the freezer has been switched on.
  • the control circuit 11 recognizes that the compressor 7 is switched on (S12)
  • it saves the current time takt in a buffer b (S13).
  • the value in the buffer b is subtracted from the now current time takt and stored again in the buffer b (S15).
  • step S16 If the result in step S16 shows that the result is less than zero, the beginning and end of the compressor operating phase belong to different days, and 24 hours must be added to the value in buffer b (S17) in order to obtain the correct duration of the operating phase of the compressor , The duration thus obtained is added to t (S18), and it is checked (S19) whether the result over a total operating time t
  • the total operating time of the freezer since the last defrosting process could be measured and branched to step S21 as soon as the total operating time has exceeded a predetermined limit value.
  • a further embodiment of an operating method for the control arrangement from FIG. 4 is dealt with on the basis of FIG. 6.
  • the ratio between the running time of the compressor and the running time of the freezer is used as a criterion for the need for defrosting.
  • This modification has the advantage that no parameters are accumulated over the entire operating time from the last defrosting process, so that the defrosting process can also be triggered correctly if saved parameter values are lost as a result of a power failure or another fault.
  • step S31 the method begins with the initialization of a parameter a, which is representative of the relationship between the compressor runtime and the device runtime, to a value a, which in principle can be selected arbitrarily below a predetermined limit value A.
  • step S32 is checked whether the compressor 7 is turned on or not. If not, the parameter a is multiplied by a “forgetting factor” 1- ⁇ in step S34; otherwise, it is incremented beforehand in step S33. By repeating these steps frequently, a converges to a value proportional to the desired ratio.
  • step S 35 a check is made whether the limit value A has been exceeded, if not, steps S32 to S34 are repeated, otherwise it is determined that a defrosting process is required and steps S21 to S26 follow.
  • the signal input 15 of FIG. 4 is replaced by a connection to a switch 17.
  • This switch 17 is arranged in a manner known per se on the housing 1 in order to detect the opening and closing of the door 2 and accordingly switch the interior lighting of the freezer compartment 3 on and off.
  • the control circuit 11 counts the number of times that the door 2 has been opened since the last defrosting process or, alternatively, the total time that the door 2 has been open since the last defrosting process, and compares the result with a limit value. This process is not illustrated using a flow diagram, since its implementation by generalizing the examples given above should be obvious. As soon as the limit value is determined to be exceeded, steps S21 to S26 are also carried out in this method.
  • step S 41 the value of any suitable parameter is recorded, for example the number or duration of the door openings, compressor operating time, total operating time, ratio of compressor operating time to total operating time, etc. If it is determined in step S 42 that door 2 has been opened, then the timer 14 started (S43), which in this embodiment does not serve to supply a time, but rather to indicate the lapse of a predetermined period of time, for example three hours. These steps are repeated cyclically as long as it is not determined in step S44 that the monitored parameter has exceeded the limit value.
  • next step (S45) must be checked whether the timer has expired, that is to say whether the specified time has elapsed since the door was last opened. If this is not the case, steps S41 to S44 are looped through until the timer has expired. The expiry of the timer indicates that a defrost process can now be initiated because enough time has passed since the last door was opened to safely freeze any newly stored items.
  • the subsequent steps are identical to steps S4 to S7 from FIG. 3 and therefore do not need to be explained again.
  • a side result of this control is that the timer will mostly expire at night, because it is therefore most likely that the door will remain closed for so long that the timer can expire. Therefore, with the method of FIG. 8, mainly inexpensive nighttime electricity can be used for the defrosting process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
EP03752736A 2002-05-16 2003-05-13 Appareil de congelation pourvu d'une fonction de degivrage et son procede de fonctionnement Expired - Lifetime EP1508007B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10221904 2002-05-16
DE10221904A DE10221904A1 (de) 2002-05-16 2002-05-16 Gefriergerät mit Abtaufunktion und Betriebsverfahren dafür
PCT/EP2003/005004 WO2003098134A1 (fr) 2002-05-16 2003-05-13 Appareil de congelation pourvu d'une fonction de degivrage et son procede de fonctionnement

Publications (2)

Publication Number Publication Date
EP1508007A1 true EP1508007A1 (fr) 2005-02-23
EP1508007B1 EP1508007B1 (fr) 2010-10-27

Family

ID=29413900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03752736A Expired - Lifetime EP1508007B1 (fr) 2002-05-16 2003-05-13 Appareil de congelation pourvu d'une fonction de degivrage et son procede de fonctionnement

Country Status (10)

Country Link
US (1) US7320226B2 (fr)
EP (1) EP1508007B1 (fr)
CN (1) CN100374800C (fr)
AT (1) ATE486256T1 (fr)
BR (1) BR0309948A (fr)
DE (2) DE10221904A1 (fr)
ES (1) ES2353114T3 (fr)
PL (1) PL202376B1 (fr)
RU (1) RU2313742C2 (fr)
WO (1) WO2003098134A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20031395A1 (it) * 2003-07-09 2005-01-10 Whirlpool Co Refrigeratore a sbrinamento automatico temporalmente indirizzato.
DE102008054934A1 (de) * 2008-12-18 2010-07-01 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät sowie Verfahren zur Temperaturregelung in einem Kältegerät
EA026812B1 (ru) * 2009-11-10 2017-05-31 Юнилевер Н.В. Необмерзающие поверхности и способ их получения
DE102010007141A1 (de) * 2010-02-05 2011-08-11 Aht Cooling Systems Gmbh Kühltruhe
DE102012213644A1 (de) * 2012-08-02 2014-02-20 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit automatischer Abtauung
DE102012221296A1 (de) * 2012-11-21 2014-05-22 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit einem Kühlfach
US10808961B2 (en) 2013-08-30 2020-10-20 James Leych Lau Energy saving controller
US10047969B2 (en) * 2013-08-30 2018-08-14 James Leych Lau Energy saving controller
CN104880016B (zh) * 2015-05-26 2018-02-02 青岛海尔股份有限公司 冷藏冷冻设备及其防凝露方法和防凝露系统
WO2019199386A1 (fr) * 2018-04-13 2019-10-17 Carrier Corporation Procédé de dégivrage d'un système frigorifique
KR102833826B1 (ko) * 2018-11-27 2025-07-15 엘지전자 주식회사 냉장고 및 그의 제어방법
US20200173719A1 (en) * 2018-12-03 2020-06-04 Mikko Lauri Antti Jaakkola Method and system for cold storage health and content monitoring
CN114812035B (zh) * 2021-01-29 2024-03-15 青岛海尔电冰箱有限公司 冰箱及其控制方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1979103A (en) * 1931-12-19 1934-10-30 Edwin G Gaynor Automatic control for refrigerators, etc.
US2703481A (en) * 1950-09-27 1955-03-08 Cutler Hammer Inc Circuit controlling device for refrigerating systems and the like
GB770362A (en) * 1955-02-15 1957-03-20 Westinghouse Electric Int Co Improvements in or relating to refrigerating apparatus
US3164969A (en) * 1963-08-26 1965-01-12 Lexaire Corp Heat pump defrost control
CH626500B (de) * 1980-01-10 Suisse Horlogerie Oszillator mit digitaler temperaturkompensation.
US4392357A (en) * 1981-04-27 1983-07-12 Emhart Industries, Inc. Method and means controlling defrost cycles of a cooling unit
US4581901A (en) * 1983-01-21 1986-04-15 Emhart Industries, Inc. Control system for a heat pump system
US4530218A (en) * 1984-02-27 1985-07-23 Whirlpool Corporation Refrigeration apparatus defrost control
US4787063A (en) * 1984-10-19 1988-11-22 Francis Muguet Acquisition and transmission system for a recorder and a computer center
JP2763568B2 (ja) * 1989-03-06 1998-06-11 松下冷機株式会社 ショーケースの制御装置
KR930013649A (ko) * 1991-12-21 1993-07-22 이헌조 냉장고의 사용 패턴 학습에 의한 제상방법
US5379608A (en) * 1992-03-24 1995-01-10 Fuji Electric Co., Ltd. Defrosting control unit for showcases
US5363669A (en) * 1992-11-18 1994-11-15 Whirlpool Corporation Defrost cycle controller
JPH06249566A (ja) * 1993-02-24 1994-09-06 Sanyo Electric Co Ltd 冷蔵庫の除霜制御装置
US5345775A (en) * 1993-03-03 1994-09-13 Ridenour Ralph Gaylord Refrigeration system detection assembly
US5415005A (en) * 1993-12-09 1995-05-16 Long Island Lighting Company Defrost control device and method
US5483804A (en) * 1994-03-28 1996-01-16 Sanyo Electric Co., Ltd. Defrost control apparatus for refrigerator
GB9407098D0 (en) * 1994-04-09 1994-06-01 Harrison Brothers Steeplejacks Detection system and method of operating same
DE4438917C2 (de) * 1994-11-03 1998-01-29 Danfoss As Verfahren zum Abtauen eines Kältesystems und Steuergerät zur Durchführung dieses Verfahrens
US5970726A (en) * 1997-04-08 1999-10-26 Heatcraft Inc. Defrost control for space cooling system
US6026651A (en) * 1998-07-21 2000-02-22 Heat Timer Corporation Remote controlled defrost sequencer
JP2001160176A (ja) * 1999-12-03 2001-06-12 Sanden Corp 自動販売機
US6408634B1 (en) * 2000-08-17 2002-06-25 Jimex Corporation Multi-chamber refrigeration system utilizing a single compressor and digital temperature controls
DE60030971T2 (de) * 2000-08-18 2007-06-14 Ranco Inc. Of Delaware, Wilmington Steuervorrichtung und Verfahren zum Steuern des Abtauvorgangs in einem Kühlschrank

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03098134A1 *

Also Published As

Publication number Publication date
DE50313221D1 (de) 2010-12-09
ES2353114T3 (es) 2011-02-25
EP1508007B1 (fr) 2010-10-27
US20050066667A1 (en) 2005-03-31
BR0309948A (pt) 2005-03-01
PL202376B1 (pl) 2009-06-30
DE10221904A1 (de) 2003-12-04
PL371493A1 (en) 2005-06-27
WO2003098134A1 (fr) 2003-11-27
RU2004133383A (ru) 2005-07-20
CN100374800C (zh) 2008-03-12
US7320226B2 (en) 2008-01-22
ATE486256T1 (de) 2010-11-15
CN1653307A (zh) 2005-08-10
RU2313742C2 (ru) 2007-12-27

Similar Documents

Publication Publication Date Title
DE69313959T2 (de) Doppelverdampfer-Kühlschrank mit sequentiellem Verdichterbetrieb
EP1508007B1 (fr) Appareil de congelation pourvu d'une fonction de degivrage et son procede de fonctionnement
EP0690277B1 (fr) Dispositif de commande d'une installation de refroidissement ou congélation
EP2059733A1 (fr) Machine frigorifique et son procédé d'exploitation
DE69920350T2 (de) Selbstregelvorrichtung zum Steuern von Kühlschränken und Gefrierapparaten
EP1332325B1 (fr) Appareil frigorifique a degivrage automatique
DE69107789T2 (de) Kühlgerät mit nur einer thermostatischen Temperaturregelvorrichtung.
WO2012150196A1 (fr) Appareil frigorifique à un seul circuit
EP3759405A1 (fr) Réfrigérateur avec dispositif de dégivrage par chauffage
DE2800285A1 (de) Kuehlschrank mit zwei auf unterschiedlichen temperaturen zu betreibenden kuehlfaechern
DE2507706C2 (de) Kühlmöbel, insbesondere Zweitemperaturen-Kühlschrank
EP2335128B1 (fr) Appareil de réfrigération et/ou de congélation et procédé de régulation d'un tel appareil de réfrigération et/ou de congélation
EP2883011A1 (fr) Appareil ménager frigorifique et procédé permettant de faire fonctionner un dispositif de chauffage d'un appareil ménager frigorifique
DE102006058462A1 (de) Kühlgerät und Verfahren zum Steuern desselben
WO2014023689A1 (fr) Appareil frigorifique et procédé permettant de faire fonctionner ledit appareil
DE3326799A1 (de) Abtaueinrichtung fuer eine kuehlflaeche
DE102011078320B4 (de) Kältegerät mit Verdunstungsschale und Hilfseinrichtung zur Verdunstungsförderung
DE102011078324A1 (de) Kältegerät mit Verdunstungsschale und Hilfseinrichtung zur Verdunstungsförderung
WO2013060611A2 (fr) Appareil de froid à bac d'évaporation et dispositif auxiliaire favorisant l'évaporation
WO2013000773A2 (fr) Appareil de froid à bac d'évaporation et dispositif auxiliaire favorisant l'évaporation
DE102023200198A1 (de) Bestimmen eines Abtauzeitpunkts eines Verdampfers eines Haushalts-Kältegeräts
DE10126817A1 (de) Kältegerät
EP2776768A2 (fr) Appareil frigorifique à un seul circuit
EP1470375A1 (fr) Appareil frigorifique a reglage de la temperature de l'air
DE102011078322A1 (de) Kältegerät mit Verdunstungsschale und Hilfseinrichtung zur Verdunstungsförderung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20061114

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50313221

Country of ref document: DE

Date of ref document: 20101209

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110215

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101027

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313221

Country of ref document: DE

Effective date: 20110728

BERE Be: lapsed

Owner name: BSH BOSCH UND SIEMENS HAUSGERATE G.M.B.H.

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20120508

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120608

Year of fee payment: 10

Ref country code: GB

Payment date: 20120522

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120522

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 486256

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120525

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130513

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130514

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313221

Country of ref document: DE

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE

Effective date: 20150407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170531

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313221

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201