[go: up one dir, main page]

EP1562584A1 - Nouveaux hydroxyindoles, leur utilisation comme inhibiteurs de la phosphodiesterase 4 et procedes de production desdits composes - Google Patents

Nouveaux hydroxyindoles, leur utilisation comme inhibiteurs de la phosphodiesterase 4 et procedes de production desdits composes

Info

Publication number
EP1562584A1
EP1562584A1 EP03775355A EP03775355A EP1562584A1 EP 1562584 A1 EP1562584 A1 EP 1562584A1 EP 03775355 A EP03775355 A EP 03775355A EP 03775355 A EP03775355 A EP 03775355A EP 1562584 A1 EP1562584 A1 EP 1562584A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
hydroxyindol
glyoxylic acid
acid amide
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03775355A
Other languages
German (de)
English (en)
Inventor
Norbert Höfgen
Hildegard Kuss
Ute Egerland
Chris Rundfeldt
Helge Hartenhauer
Antje Gasparic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elbion GmbH
Original Assignee
Elbion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elbion GmbH filed Critical Elbion GmbH
Publication of EP1562584A1 publication Critical patent/EP1562584A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/22Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an aralkyl radical attached to the ring nitrogen atom

Definitions

  • the invention relates to substituted 4- or / and 7-hydroxyindoles, processes for their preparation, pharmaceutical preparations containing these compounds and the pharmaceutical use of these compounds, which are inhibitors of phosphodiesterase 4, as active ingredients for the treatment of diseases with an inhibition the phosphodiesterase 4 activity in immune-competent cells (eg macrophages and lymphocytes) can be influenced by the compounds according to the invention.
  • immune-competent cells eg macrophages and lymphocytes
  • PDE phosphodiesterases
  • PDE PDE
  • phosphorodiesterase inhibitors new opportunities for the treatment of asthma, thorax 1991, 46 : 512-523.
  • the inhibition of PDE 4 by suitable inhibitors is therefore regarded as an important approach for the therapy of a large number of allergy-induced diseases (Schudt, Ch, Dent, G, Rabe, K, Phosphodiesterase Inhibitors, Academic Press London 1996).
  • TNFff tumor necrosis factor a
  • TNF ⁇ 7 tumor necrosis factor a
  • TNFff is a major pro-inflammatory cytokine that affects a variety of biological processes. TNF ⁇ is released from activated macrophages, activated T lymphocytes, mast cells, basophils, fibroblasts, endothelial cells and astrocytes in the brain, for example. It has a self-activating effect on neutrophils, eosinophils, fibroblasts and endothelial cells, which releases various tissue-destroying mediators.
  • TNF causes the increased production of further pro-inflammatory cytokines, such as GM-CSF (Granulocy-macrophage colony-stimulating factor) or interleukin-8. Due to its inflammatory and catabolic effects, TNF ⁇ plays a central role in a variety of diseases, such as inflammation of the respiratory tract, inflammation of the joints, endotoxic shock, tissue rejection, AIDS and numerous other immunological diseases. Inhibitors of phosphodiesterase 4 are thus also suitable for the therapy of such diseases associated with TNF ⁇ r. Chronic obstructive pulmonary diseases (COPD) are widespread in the population and are also of great economic importance.
  • COPD chronic obstructive pulmonary diseases
  • COPD chronic bronchitis - a widespread disease of multifactorial origin, respiratory lung disease 20 (5), 260-267, 1994.
  • the WHO estimates that COPD will be the third leading cause of death within the next 20 years.
  • COPD chronic obstructive pulmonary diseases
  • beta2 agonists e.g. salmeterol
  • muscarinic antagonists e.g. ipratropium
  • TNF ⁇ r tumor necrosis factor
  • Granulocytes stimulated Jersmann, HPA; Rathjen, DA and Ferrante, A:
  • PDE4 inhibitors can very effectively inhibit the release of TNF ⁇ from a large number of cells and thus suppress the activity of the neutrophil granulocytes.
  • the non-specific PDE inhibitor pentoxifylline is able to inhibit both the formation of oxygen radicals and the phagocytosis ability of neutrophil granulocytes (Wenisch, C; Zedtwitz-Liebenstein, K; Parschalk, B and Graninger, W: Effect of pentoxifylline in vitro on neutrophil reactive oxygen production and phagocytic ability assessed by flow cytometry, Clin. Drug Invest., 13 (2): 99-104, 1997).
  • PDE 4 inhibitors are already known. These are primarily xanthine derivatives, rolipram analogs or nitraquazone derivatives (overview in: Karlsson, JA, Aldos, D, Phosphodiesterase 4 inhibitors for the treatment of asthma, Exp. Opin. Ther. Patents 1997, 7: 989 -1003). So far, none of these compounds has been brought to clinical use. It had to be found that the known PDE 4 inhibitors also have various side effects, such as nausea and emesis, which have not been adequately suppressed so far. It is therefore necessary to discover new PDE 4 inhibitors with a better therapeutic index.
  • Indol-3-ylglyoxylic acid amides and processes for their preparation have been described several times.
  • 3-position unsubstituted indoles which are synthesized by substitution in position 1 of a commercially available indole, were converted into indol-3-ylglyoxylic acid halides by reaction with oxalic acid halides, which halides were then reacted with ammonia or with primary or secondary amines give the corresponding indol-3-ylglyoxylamides (Scheme 1).
  • Farmaco 22 (1967), 229-244 describes the preparation of 5-ethoxyindol-3-yIglyoxylklareamiden. Again, the indole derivative used is reacted with oxalyl chloride and the resulting indol-3-ylglyoxylic acid chloride is reacted with an amine.
  • the invention relates to substituted hydroxyindoles of the general formula
  • n can be 1 or 2
  • alkyl is straight or branched, optionally mono- or polysubstituted by -OH, -SH, -NH 2, -NHC ⁇ alkyl, -N (C 1. 6, alkyl) 2, -NHC. 6 14 aryl, -N (C 6, 14 aryl) 2 ,
  • 3-14 ring members with mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles with 5-1 5 ring members and 1-6 heteroatoms, which are preferably N, O and S, the C 6 . 14 aryl groups and the carbocyclic and heterocyclic substituents, in turn, optionally one or more times with -C ⁇ alkyl, -OH, -NH 2 , -NHC ,. 6 alkyl, -N (C 1.
  • alkyl 2, -NO 2, -CN, -F, -Cl, -Br, -I, -OC ⁇ alkyl, -SC ⁇ !, -Alky -SO 3 H, -SO 2 C n .
  • alkyl, -OSOaC L ⁇ alkyl, -COOH, - (CO ⁇ AI, -O (CO) C,.
  • alkyl may be substituted, and the alkyl groups on the carbocyclic and heterocyclic substituents in turn, if necessary, one or more times with - OH, -SH, -NH 2 , -F, -Cl, -Br, -I, -SO 3 H, -COOH may be substituted, or
  • aryl groups and the carbocyclic and heterocyclic substituents in turn optionally one or more times with -C ⁇ alkyl, -OH, -NH 2 , -NHC ⁇ alkyl, -NfC ⁇ alkyl) ⁇ -NO 2 , -CN, -F, -Cl, -Br, -I, -OC ⁇ -Alky !, -SC ⁇ alkyl, -SO 3 H, -SO ⁇ L ealkyl, -OSOaC ⁇ alkyl, -COOH, - (COJC L g alkyl, -O (CO) C., ..
  • alkyl can be substituted, and wherein the alkyl groups on the carbocyclic and heterocyclic substituents in turn, if appropriate, one or more times with -OH, -SH, -NH 2 , -F, -Cl, -Br, -I, -SO 3 H, -COOH can be substituted,
  • -Pyridyl optionally mono- or polysubstituted with -C ⁇ alkyl, -OH, -SH, -NO 2 , -CN, -COOH, -COOC ,. 3 alkyl, -F, -Cl, -Br, -I, -OC ⁇ alkyl,
  • 5 -alkyl or -O (CO) C 1 . 5 alkyl may be substituted, or
  • NR 2 R 3 together form a saturated or unsaturated five- or six-membered ring which can contain up to 3 heteroatoms, preferably N, S and O, optionally one or more times
  • R 4 and R 5 are -H or -OH, at least one of which must be - OH.
  • n has the meaning 2 in the case of the compounds 1.
  • R 4 has the meaning —OH and R 5 has the meaning H.
  • NR 2 R 3 preferably represents one substituted with one or more halogen atoms, for example F, Cl, Br, I Phenylamino or pyridylamino group.
  • R 1 is advantageously a substituted benzyl radical, with a substituent on the phenyl ring preferably in the ortho position to the benzyl methylene group stands.
  • the compounds mentioned in the experimental examples are also particularly preferred.
  • the invention further relates to the physiologically tolerable salts of the compounds of the formula.
  • the physiologically tolerable salts are obtained in the usual way by neutralizing the bases with inorganic or organic acids or by neutralizing the acids with inorganic or organic bases.
  • inorganic acids are hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid
  • organic acids are, for example, carboxylic, sulfonic or sulfonic acid, such as acetic acid, tartaric acid, lactic acid, propionic acid, glycolic acid, malonic acid, maleic acid, fumaric acid, tannic acid, succinic acid, alginic acid, Benzoic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, cinnamic acid, mandelic acid, citric acid, malic acid, salicylic acid, 3-aminosalicylic acid, ascorbic acid, embonic acid, nicotinic acid, isonicotinic acid, oxalic acid, amino acids, methanesulfonic acid, ethanesul
  • inorganic bases are sodium hydroxide solution, potassium hydroxide solution, ammonia
  • organic bases are amines, but preferably tertiary amines, such as trimethylamine, triethylamine, pyridine, N, N-dimethylaniline, quinoline, isoquinoline, ⁇ -picoline,? -Picolin, y-picoline , Quinaldine or pyrimidine.
  • physiologically compatible salts of the compounds of the formula 1 can be obtained by converting derivatives which have tertiary amino groups in a manner known per se using quaternizing agents into the corresponding quaternary ammonium salts.
  • quaternizing agents are alkyl halides, such as methyl iodide, ethyl bromide and n-propyl chloride, but arylalkyl halides, such as benzyl chloride or 2-phenylethyl bromide, are also suitable.
  • the invention further relates to the compounds of the formula 1 which contain an asymmetric carbon atom, the D form, the L form and D, L mixtures and, in the case of several asymmetric carbon atoms, the diastereomeric forms.
  • Those compounds of the formula J_ which contain asymmetric carbon atoms and are generally obtained as racemates can be separated into the optically active isomers in a manner known per se, for example using an optically active acid.
  • an optically active starting substance from the outset, in which case a corresponding optically active or diastereomeric compound is obtained as the end product.
  • the compounds of the formula __ can be used alone, in combination with one another or in combination with other active ingredients.
  • the compounds according to the invention are inhibitors of phosphodiesterase 4. It is therefore the object of this invention that the compounds of the formula 1 and their salts and pharmaceutical preparations which contain these compounds or their salts can be used for the treatment of diseases in which an inhibition of the Phosphodiesterase 4 is useful.
  • These diseases include, for example, joint inflammation, including arthritis and rheumatoid arthritis, as well as other arthritic diseases, such as rheumatoid spondylitis and osteoarthritis.
  • Other possible uses are the treatment of patients suffering from osteoporosis, sepsis, septic shock, gram-negative sepsis, toxic shock syndrome, respiratory distress syndrome, asthma or other chronic pulmonary diseases such as COPD, bone resorption diseases or graft rejection or other autoimmune diseases such as lupus erythematosus, multiple sclerosis, glomerulonephritis and uveitis, insulin-dependent diabetes mellitus and chronic demyelination.
  • the compounds according to the invention can also be used for the therapy of infections, such as viral infections and parasite infections, for example for the therapy of malaria, leishmaniasis, infection-related fever, infection-related muscle pain, AIDS and cachexia and non-allergic rhinitis.
  • infections such as viral infections and parasite infections
  • malaria for example for the therapy of malaria, leishmaniasis, infection-related fever, infection-related muscle pain, AIDS and cachexia and non-allergic rhinitis.
  • the compounds according to the invention can also be used as bronchodilators and for asthma prophylaxis.
  • the compounds according to formula 1 are also inhibitors of the accumulation of eosinophils and their activity. Accordingly, the compounds of the invention can also be used in diseases in which eosinophils play a role. These diseases include, for example, inflammatory respiratory diseases, such as bronchial asthma, allergic rhinitis, allergic conjunctivitis, atopic dermatitis, eczema, allergic angiitis, inflammation mediated by eosinophils, such as eosinophilic fasciitis, eosinophilic pneumonia and PIE syndrome (pulmonary infiltration with Eosinophilaria), uicerative colitis, Crohn's disease and proliferative skin diseases such as psoriasis or keratosis.
  • inflammatory respiratory diseases such as bronchial asthma, allergic rhinitis, allergic conjunctivitis, atopic dermatitis, eczema, allergic angiitis, inflammation mediated by eo
  • the compounds of formula 1 and their salts can also inhibit LPS-induced pulmonary neutrophil infiltration in rats in vivo.
  • the pharmacologically important properties found prove that the compounds of formula 1 and their salts and pharmaceutical Preparations containing these compounds or their salts can be used therapeutically for the treatment of chronic obstructive pulmonary diseases.
  • the compounds of the invention also have neuroprotective properties and can be used to treat diseases in which neuroprotection is useful.
  • diseases include senile dementia (Alzheimer's disease), memory loss, Parkinson 's disease, depression, strokes and intermittent claudication.
  • prostate diseases such as, for example, benign prostate hyperplasia, pollakiuria, nocturia and the treatment of incontinence, colic caused by urinary stones and male and female sexual dysfunctions.
  • the compounds according to the invention can also be used to inhibit the development of a drug addiction when repeated use of analgesics, such as morphine, and to reduce the development of tolerance when repeated use of these analgesics.
  • analgesics such as morphine
  • an effective dose of the compounds according to the invention or their salts is used to prepare the medicaments.
  • the dosage of the active ingredients can vary depending on the route of administration, age, weight of the patient, type and severity of the diseases to be treated and similar factors.
  • the daily dose can be given as a single dose to be administered once or divided into two or more daily doses and is usually 0.001-100 mg. Daily doses of 0.1 to 50 mg are particularly preferably administered.
  • Oral, parenteral, intravenous, transdermal, topical, inhalative and intranasal preparations are possible as the application form. Topical, inhalative and intranasal preparations of the compounds according to the invention are particularly preferably used.
  • the usual galenical forms of preparation are used, such as tablets, dragees, capsules, dispersible powders, granules, aqueous solutions, aqueous or oily suspensions, syrups, juices or drops.
  • Solid dosage forms can contain inert ingredients and carriers, e.g. Calcium carbonate, calcium phosphate, sodium phosphate, lactose, starch, mannitol, alginates, gelatin, guar gum, magnesium or aluminum stearate, methyl cellulose, talc, highly disperse silicas, silicone oil, higher molecular fatty acids (such as stearic acid), gelatin, agar or vegetable or animal Fats and oils, solid high molecular weight polymers (such as polyethylene glycol); Preparations suitable for oral administration can optionally contain additional flavors and / or sweeteners.
  • inert ingredients and carriers e.g. Calcium carbonate, calcium phosphate, sodium phosphate, lactose, starch, mannitol, alginates, gelatin, guar gum, magnesium or aluminum stearate, methyl cellulose, talc, highly disperse silicas, silicone oil, higher molecular fatty acids (such as stearic acid), gelatin,
  • Liquid pharmaceutical forms can be sterilized and / or optionally contain auxiliaries, such as preservatives, stabilizers, wetting agents, penetrants, emulsifiers, spreading agents, solubilizers, salts, sugars or sugar alcohols for regulating the osmotic pressure or for buffering and / or viscosity regulators.
  • auxiliaries such as preservatives, stabilizers, wetting agents, penetrants, emulsifiers, spreading agents, solubilizers, salts, sugars or sugar alcohols for regulating the osmotic pressure or for buffering and / or viscosity regulators.
  • Such additives are, for example, tartrate and citrate buffers, ethanol, complexing agents (such as ethylenediamine-tetraacetic acid and their non-toxic salts).
  • complexing agents such as ethylenediamine-tetraacetic acid and their non-toxic salts.
  • high molecular weight polymers are suitable, such as liquid polyethylene oxide, microcrystalline celluloses, carboxymethyl celluloses, polyvinylpyrrolidones, dextrans or gelatin.
  • Solid carriers are, for example, starch, lactose, mannitol, methyl cellulose, talc, highly disperse silicas, higher molecular fatty acids (such as stearic acid), gelatin, agar agar, Calcium phosphate, magnesium stearate, animal and vegetable fats, solid high-molecular polymers, such as polyethylene glycol.
  • Oily suspensions for parenteral or topical applications can include vegetable synthetic or semi-synthetic oils, such as liquid fatty acid esters with 8 to 22 carbon atoms in the fatty acid chains, for example palmitin, laurin, tridecyl, margarine, stearin, arachine, Myristic, behenic, pentadecyl, linoleic, elaidic, brasidic, erucic or oleic acid, which are monohydric to trihydric alcohols containing 1 to 6 carbon atoms, such as methanol, ethanol, propanol, butanol, pentanol or whose isomers, glycol or glycerol are esterified.
  • vegetable synthetic or semi-synthetic oils such as liquid fatty acid esters with 8 to 22 carbon atoms in the fatty acid chains, for example palmitin, laurin, tridecyl, margarine, stearin, arachine, My
  • Such fatty acid esters are, for example, commercially available miglyols, isopropyl myristate, isopropyl palmitate, isopropyl stearate, PEG 6-capric acid, Cap ryl / C apric acid esters of saturated fatty alcohols, polyoxyethylene glycerol trioleates, ethyl oleate, waxy fatty acid fatty acid esters, such as artificial fatty acid fatty acid esters, such as artificial -isopropyl ester, oleic acid oleyl ester, oleic acid decyl ester, lactic acid ethyl ester, dibutyl phthalate, adipic acid diisopropyl ester, polyol fatty acid esters and others Silicone oils of various viscosities or fatty alcohols, such as isotridecyl alcohol, 2-octyldodecanol, cetylstearyl alcohol or oleyl alcohol,
  • Suitable solvents, gelling agents and solubilizers are water or water-miscible solvents.
  • alcohols such as ethanol or isopropyl alcohol, benzyl alcohol, 2-octyldodecanol, polyethylene glycols, phthalates, adipates, propylene glycol, glycerol, di- or tripropylene glycol, waxes, methyl cellosolve, cellosolve, ester, morpholines, dioxane, dimethylsulfoxide, dimethyl formamide, dimethyl formamide, are suitable , Cyclohexanone etc.
  • Cellulose ethers which can dissolve or swell both in water and in organic solvents, such as, for example, hydroxypropylmethylcellulose, methylcellulose, ethylcellulose or soluble starches, can be used as film formers.
  • Ionic macromolecules in particular are used here, e.g. As sodium carboxymethyl cellulose, polyacrylic acid, polymethacrylic acid and its salts, Nat umamylopektinsemiglykolat, alginic acid or propylene glycol alginate as sodium salt, gum arabic, xanthan gum, guar gum or carrageenan.
  • Further formulation auxiliaries that can be used are: glycerol, paraffin of different viscosities, triethanolamine, collagen, allantoin, novantisol acid.
  • surfactants, emulsifiers or wetting agents may also be necessary for the formulation, e.g. B.
  • Stabilizers such as montmorillonites or colloidal silicas, for stabilizing emulsions or for preventing the breakdown of active substances, such as antioxidants, for example tocopherols or butylhydroxyanisole, or preservatives, such as p-hydroxybenzoic acid ester, can also be used to prepare the desired formulations.
  • Preparations for parenteral administration can be in separate dosage unit forms, such as. B. ampoules or vials.
  • Solutions of the active ingredient are preferably used, preferably aqueous solutions and above all isotonic solutions, but also suspensions.
  • These injection forms can be used as a finished product Be made available or prepared directly before use by mixing the active compound, for example the lyophilizate, optionally with other solid carriers, with the desired solvent or suspending agent.
  • Intranasal preparations can be present as aqueous or oily solutions or as aqueous or oily suspensions. They can also be in the form of lyophilisates which are prepared with the appropriate solvent or suspending agent before use.
  • the preparations are made, filled and sealed under the usual antimicrobial and aspetic conditions.
  • the invention further relates to processes for the preparation of the compounds according to the invention.
  • R 4 and R 5 are -H, -OR 6 , at least one of which must be -OR 6 and R 6 for a protective or leaving group, in particular alkyl, cycloalkyl, arylalkyl, aryl, heteroaryl -, Acyl, alkoxycarbonyl, aryloxycarbonyl, aminocarbonyl, N-substituted Ami ⁇ ocarbonyl, silyl, sulfonyl groups and complexing agents, such as compounds of boric acid, phosphoric acid and covalently or coordinatively bound metals such as zinc, aluminum or Copper stands,
  • the compounds of formula 1 according to the invention are released by cleavage of the leaving group R 6 still contained in R 4 and / or R 5 .
  • both acids and bases such as, for example, hydrobromic acid, hydrochloric acid or hydroiodic acid or sodium hydroxide solution, potassium hydroxide solution and sodium or potassium carbonate, but also activating Lewis acids, such as, for example, AlCl 3 , BF 3 , BBr 3 or LiCI used.
  • the cleavage reaction takes place in the absence or in the presence of additional activators, such as ethane-1, 2-dithiol or benzyl mercaptan, and ether cleavages, using hydrogen, under elevated pressure or under atmospheric pressure, in the presence of a suitable catalyst, such as, for example, palladium or iridium catalysts ,
  • R 4 and R 5 are -H, -OR 6 , at least one of which must be - OR 6 and R 6 for a protective or leaving group, in particular alkyl, cycloalkyi,. arylalkyl, aryl, Heteroaryl, acyl, alkoxycarbonyl, aryloxycarbonyl, aminocarbonyl, N-substituted aminocarbonyl, silyl, sulfonyl groups and complexing agents, such as, for example, compounds of boric acid, phosphoric acid and covalently or coordinatively bound metals, such as zinc, aluminum or copper, are first converted into the analog indol-3-yl-glyoxylic acid chlorides of the formula 5 in a manner known per se by acylation with oxalyl chloride.
  • a protective or leaving group in particular alkyl, cycloalkyi,. arylalkyl, aryl, Heteroaryl, acyl, alkoxycarbon
  • the compounds of the formula J_ according to the invention are released by cleavage of the leaving group R 6 still contained in R 4 and / or R 5 .
  • both acids and bases such as, for example, hydrobromic acid, hydrochloric acid or hydroiodic acid or sodium hydroxide solution, potassium hydroxide solution and sodium or potassium carbonate, but also activating Lewis acids, such as, for example, AICI 3 , BF 3 , BBr 3 or LiCI used.
  • the cleavage reaction takes place in the absence or in the presence of additional activators, such as ethane-1, 2-dithiol or benzyl mercaptan, and ether cleavages, using hydrogen, under elevated pressure or under atmospheric pressure, in the presence of a suitable catalyst, such as, for example, palladium or iridium catalysts ,
  • the compounds according to the invention are strong inhibitors of phosphodiesterase 4. Their therapeutic potential becomes in vivo for example by inhibiting the asthmatic late phase reaction (eosinophilia) and by inhibiting LPS-induced neutrophilia in rats.
  • PDE4 activity is determined using enzyme preparations from human polymorphonuclear lymphocytes (PMNL). Human blood (buffy coats) was anticoagulated with citrate. The platelet-rich plasma in the supernatant is separated from the erythrocytes and leukocytes by centrifugation at 700 xg for 20 minutes at room temperature (RT). The PMNLs for the PDE 4 determination are isolated by a subsequent dextran sedimentation and subsequent gradient centrifugation with Ficoll-Paque.
  • PMNL polymorphonuclear lymphocytes
  • the still intact PMNLs are washed twice with PBS and lysed using ultrasound.
  • the supernatant from a one-hour centrifugation at 4 ° C at 48000 xg contains the cytosolic fraction of the PDE 4 and is used for the PDE 4 measurements.
  • the phosphodiesterase activity is carried out using a modified method from Amersham Pharmacia Biotech, a SPA assay (scintillation proximity assay).
  • the reaction mixtures contain buffers (50 mM Tris-HCl (pH 7.4), 5 mM MgCl 2 , 100 M cGMP), the inhibitors in variable concentrations and the corresponding enzyme preparation.
  • the reaction is started by adding the substrate, 0.5 vM [ 3 H] -cAMP.
  • the final volume is 100 ⁇ ⁇ .
  • Test substances are prepared as stock solutions in DMSO.
  • the DMSO concentration in the reaction mixture is 1% v / v. At this DMSO concentration, the PDE activity is not affected.
  • the samples are incubated at 37 ° C for 30 minutes.
  • the reaction is stopped by adding a defined amount of SPA beads and the samples are measured after one hour in the beta counter.
  • the non-specific enzyme activity (the blank) is determined in the presence of 100 ⁇ M rolipram and subtracted from the test values.
  • the incubation batches of the PDE4 assay contain 100 ⁇ M cGMP in order to inhibit any contamination by the PDE 3.
  • IC 50 values in the range from 10 ⁇ 9 to 10 ⁇ 5 M were determined with regard to the inhibition of the phosphodiesterase.
  • the selectivity towards PDE types 3, 5 and 7 is a factor of 100 to 10,000.
  • Example 5 Inhibition of late-phase eosinophilia 48 hours after inhaling ovalbumin challenge in actively sensitized Brown Norway
  • the inhibition of pulmonary eosinophil infiltration by the substances according to the invention is tested on male Brown Norway rats (200-250 g) which are actively sensitized to ovalbumin (OVA).
  • OVA ovalbumin
  • the sensitization is carried out by subcutaneous injections of a suspension of 10 ⁇ g OVA together with 20 mg aluminum hydroxide as adjuvant in 0.5 ml physiological saline per animal on day 1, 14 and 21.
  • the animals receive Bordetella pertussis vaccine dilution per animal 0.25 ml i.p. injected.
  • the animals are placed individually in open 1 liter plexiglass boxes which are connected to a head and nose exposure device.
  • the animals are exposed to an aerosol made from 1.0% ovalbumin suspension (allergen challenge).
  • the ovalbumin aerosol is generated by a nebulizer operated by compressed air (0.2 MPa) (Bird micro nebulizer, Palm Springs CA, USA).
  • the exposure time is 1 hour, whereby normal controls are also nebulized with an aerosol from 0.9% saline for 1 hour.
  • EOS eosinophils
  • test substances are administered intraperitoneally or orally as a suspension in 10% polyethylene glycol 300 and 0.5% 5-hydroxyethyl cellulose 2 hours before the allergen challenge.
  • control groups are treated with the vehicle according to the application form of the test substance.
  • the compounds according to the invention inhibit late-phase eosinophilia by 30% to 100% after intraperitoneal application of 10 mg / kg and by 30% to 75% after oral application of 30 mg / kg.
  • the compounds according to the invention are therefore particularly suitable for the production of medicaments for the treatment of diseases which are associated with the action of eosinophils.
  • Example 6 Inhibition of Lipopolysaccharide (LPS) -induced lung neutrophilia in Lewis rats
  • the inhibition of pulmonary neutrophil infiltration by the substances according to the invention is tested on male Lewis rats (250-350 g).
  • the animals On the day of the experiment, the animals are placed individually in open 1 liter plexiglass boxes which are connected to a head and nose exposure device.
  • the animals are exposed to an aerosol from a lipopolysaccharide suspension (100 ⁇ g LPS / ml 0.1% hydroxylamine solution) in PBS (LPS provocation).
  • the LPS / hydroxylamine aerosol is generated by a nebulizer operated by compressed air (0.2 MPa) (Bird micro nebulizer, Palm Springs CA, USA).
  • the exposure time is 40 minutes, whereby normal controls are also nebulized for 40 minutes with an aerosol from 0.1% hydroxylamine solution in PBS.
  • SC vehicle treated control group challenged with 0.1% hydroxylamine solution
  • LPSC vehicle-treated control group challenged with LPS (100 ⁇ g / ml 0.1% hydroxylamine solution)
  • LPSD substance-treated test group challenged with LPS (100 ⁇ g / ml 0.1% hydroxylamine solution).
  • test substances are administered orally as a suspension in 10% polyethylene glycol 300 and 0.5% 5-hydroxyethyl cellulose 2 hours before the LPS challenge.
  • control groups are treated with the vehicle according to the application form of the test substance.
  • the compounds according to the invention inhibit neutrophilia by 30% to 90% after oral administration of 1 mg / kg and are therefore particularly suitable for the production of medicaments for the treatment of diseases which are associated with the action of neutrophils.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Virology (AREA)
  • Pulmonology (AREA)
  • Pain & Pain Management (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Cardiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Molecular Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

L'invention concerne des 4- et/ou 7-hydroxyindoles substitués de formule (I), des procédés de production desdits composés, des préparations pharmaceutiques contenant ces composés ainsi que l'utilisation pharmaceutique de ces composés, inhibiteurs de la phosphodiestérase 4, comme principes actifs dans le traitement de maladies nécessitant une inhibition de l'activité de la phosphodiestérase 4 dans des cellules immunocompétentes (p. ex. macrophages et lymphocytes) par les composés de la présente invention.
EP03775355A 2002-11-15 2003-11-14 Nouveaux hydroxyindoles, leur utilisation comme inhibiteurs de la phosphodiesterase 4 et procedes de production desdits composes Withdrawn EP1562584A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10253426 2002-11-15
DE10253426A DE10253426B4 (de) 2002-11-15 2002-11-15 Neue Hydroxyindole, deren Verwendung als Inhibitoren der Phosphodiesterase 4 und Verfahren zu deren Herstellung
PCT/EP2003/012742 WO2004045607A1 (fr) 2002-11-15 2003-11-14 Nouveaux hydroxyindoles, leur utilisation comme inhibiteurs de la phosphodiesterase 4 et procedes de production desdits composes

Publications (1)

Publication Number Publication Date
EP1562584A1 true EP1562584A1 (fr) 2005-08-17

Family

ID=32240098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03775355A Withdrawn EP1562584A1 (fr) 2002-11-15 2003-11-14 Nouveaux hydroxyindoles, leur utilisation comme inhibiteurs de la phosphodiesterase 4 et procedes de production desdits composes

Country Status (19)

Country Link
US (2) US7166637B2 (fr)
EP (1) EP1562584A1 (fr)
JP (1) JP2006508141A (fr)
KR (1) KR20050075014A (fr)
CN (1) CN1711082A (fr)
AR (1) AR042053A1 (fr)
AU (1) AU2003283400A1 (fr)
BR (1) BR0316234A (fr)
CA (1) CA2505988A1 (fr)
DE (1) DE10253426B4 (fr)
HR (1) HRP20050542A2 (fr)
MX (1) MXPA05005138A (fr)
NO (1) NO20052864L (fr)
PL (1) PL376524A1 (fr)
RU (1) RU2005118409A (fr)
TW (1) TW200510306A (fr)
UA (1) UA80567C2 (fr)
WO (1) WO2004045607A1 (fr)
ZA (2) ZA200503399B (fr)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078448A1 (fr) 2002-03-13 2003-09-25 Signum Biosciences, Inc. Modulation de la methylation de proteines et du phosphate des phosphoproteines
DE10253426B4 (de) * 2002-11-15 2005-09-22 Elbion Ag Neue Hydroxyindole, deren Verwendung als Inhibitoren der Phosphodiesterase 4 und Verfahren zu deren Herstellung
DE10318611A1 (de) * 2003-04-24 2004-11-11 Elbion Ag 4-, 6- oder 7-Hydroxyindole mit N-Oxidgruppen und deren Verwendung als Therapeutika
DE10318609A1 (de) * 2003-04-24 2004-11-11 Elbion Ag 5-Hydroxyindole mit N-Oxidgruppen und deren Verwendung als Therapeutika
TW200517381A (en) * 2003-08-01 2005-06-01 Genelabs Tech Inc Bicyclic heteroaryl derivatives
WO2005023761A2 (fr) 2003-09-11 2005-03-17 Kemia, Inc. Inhibiteurs des cytokines
GB0401334D0 (en) 2004-01-21 2004-02-25 Novartis Ag Organic compounds
GB0411056D0 (en) 2004-05-18 2004-06-23 Novartis Ag Organic compounds
GT200500281A (es) 2004-10-22 2006-04-24 Novartis Ag Compuestos organicos.
GB0424284D0 (en) 2004-11-02 2004-12-01 Novartis Ag Organic compounds
GB0426164D0 (en) 2004-11-29 2004-12-29 Novartis Ag Organic compounds
RU2007130896A (ru) * 2005-01-14 2009-02-20 Дженелэбс Текнолоджиз, Инк. (Us) Индольные производные для лечения вирусных инфекций
US7923041B2 (en) 2005-02-03 2011-04-12 Signum Biosciences, Inc. Compositions and methods for enhancing cognitive function
US8221804B2 (en) 2005-02-03 2012-07-17 Signum Biosciences, Inc. Compositions and methods for enhancing cognitive function
GB0507577D0 (en) 2005-04-14 2005-05-18 Novartis Ag Organic compounds
GB0510390D0 (en) 2005-05-20 2005-06-29 Novartis Ag Organic compounds
TW200738677A (en) * 2005-06-27 2007-10-16 Elbion Ag Nitro-substituted hydroxyindoles, their use as inhibitors of phosphodiesterase 4, and processes for preparing them
JP5006330B2 (ja) 2005-10-21 2012-08-22 ノバルティス アーゲー Il13に対するヒト抗体および治療的使用
GB0526244D0 (en) 2005-12-22 2006-02-01 Novartis Ag Organic compounds
GB0601951D0 (en) 2006-01-31 2006-03-15 Novartis Ag Organic compounds
HRP20120494T1 (hr) 2006-04-21 2012-08-31 Novartis Ag Derivati purina za uporabu kao agonista adenozin a2a receptora
US20100056791A1 (en) 2006-09-01 2010-03-04 Yasushi Kohno Pyrazolopyridine carboxamide derivative and phosphodiesterase (pde) inhibitor containing the same
KR20090073121A (ko) 2006-09-29 2009-07-02 노파르티스 아게 Pi3k 지질 키나제 억제제로서의 피라졸로피리미딘
US20100041662A1 (en) 2006-10-30 2010-02-18 Sandrine Ferrand Heterocyclic compounds as antiinflammatory agents
MY148330A (en) * 2006-10-31 2013-03-29 Basf Se Regulation of a process for producing water-absorbing polymer particles in a heated gas phase
CA2673803A1 (fr) 2007-01-10 2008-07-17 Irm Llc Composes et compositions en tant qu'inhibiteurs de proteases activatrices de canaux
ES2361595T3 (es) 2007-05-07 2011-06-20 Novartis Ag Compuestos orgánicos.
WO2009023623A1 (fr) * 2007-08-10 2009-02-19 H, Lundbeck A/S Analogues d'hétéroarylamides
KR101578235B1 (ko) 2007-12-10 2015-12-16 노파르티스 아게 유기 화합물
WO2009087224A1 (fr) 2008-01-11 2009-07-16 Novartis Ag Pyrimidines utilisés en tant qu'inhibiteurs de kinase
EP2282735B1 (fr) 2008-04-21 2019-01-16 Signum Biosciences, Inc. Modulateurs du pp2a pour traiter alzheimer, parkinson, diabete
AU2009256645A1 (en) 2008-06-10 2009-12-17 Novartis Ag Pyrazine derivatives as epithelial sodium channel blockers
TW201031406A (en) 2009-01-29 2010-09-01 Novartis Ag Substituted benzimidazoles for the treatment of astrocytomas
US8389526B2 (en) 2009-08-07 2013-03-05 Novartis Ag 3-heteroarylmethyl-imidazo[1,2-b]pyridazin-6-yl derivatives
US8912220B2 (en) * 2009-08-10 2014-12-16 Galenea Pharmaceuticals Compounds and methods of use thereof
EA201200260A1 (ru) 2009-08-12 2012-09-28 Новартис Аг Гетероциклические гидразоны и их применение для лечения рака и воспаления
CN102573846B (zh) 2009-08-17 2015-10-07 因特利凯公司 杂环化合物及其用途
MX2012002179A (es) 2009-08-20 2012-03-16 Novartis Ag Compuestos heterociclicos de oxima.
AU2010310449A1 (en) 2009-10-22 2012-05-03 Vertex Pharmaceuticals Incorporated Compositions for treatment of cystic fibrosis and other chronic diseases
US8247436B2 (en) 2010-03-19 2012-08-21 Novartis Ag Pyridine and pyrazine derivative for the treatment of CF
WO2012034095A1 (fr) 2010-09-09 2012-03-15 Irm Llc Composés et compositions comme inhibiteurs de trk
UY33597A (es) 2010-09-09 2012-04-30 Irm Llc Compuestos y composiciones como inhibidores de la trk
US8372845B2 (en) 2010-09-17 2013-02-12 Novartis Ag Pyrazine derivatives as enac blockers
US20130324526A1 (en) 2011-02-10 2013-12-05 Novartis Ag [1,2,4] triazolo [4,3-b] pyridazine compounds as inhibitors of the c-met tyrosine kinase
US9127000B2 (en) 2011-02-23 2015-09-08 Intellikine, LLC. Heterocyclic compounds and uses thereof
JP5959541B2 (ja) 2011-02-25 2016-08-02 ノバルティス アーゲー Trk阻害剤としてのピラゾロ[1,5−a]ピリジン
EP3323820B1 (fr) 2011-02-28 2023-05-10 Epizyme, Inc. Composés hétéroaryles bicycliques substitués condensés en 6,5
UY34305A (es) 2011-09-01 2013-04-30 Novartis Ag Derivados de heterociclos bicíclicos para el tratamiento de la hipertensión arterial pulmonar
EP2755976B1 (fr) 2011-09-15 2018-07-18 Novartis AG 3-(quinolin-6-ylthio)-[1,2,4]triazolo[4,3-a]pyradines substituées en position 6 à activité tyrosine kinase
WO2013038381A1 (fr) 2011-09-16 2013-03-21 Novartis Ag Dérivés d'amide pyridine/pyrazine
WO2013038378A1 (fr) 2011-09-16 2013-03-21 Novartis Ag Dérivés pyridinamides
US9056867B2 (en) 2011-09-16 2015-06-16 Novartis Ag N-substituted heterocyclyl carboxamides
EP2755967B1 (fr) 2011-09-16 2015-10-21 Novartis AG Composés hétérocycliques destinés au traitement de la mucosviscidose
WO2013038373A1 (fr) 2011-09-16 2013-03-21 Novartis Ag Dérivés pyrimidinamides
CA2856803A1 (fr) 2011-11-23 2013-05-30 Intellikine, Llc Regimes de traitement ameliores utilisant des inhibiteurs de mtor
US8809340B2 (en) 2012-03-19 2014-08-19 Novartis Ag Crystalline form
ES2894830T3 (es) 2012-04-03 2022-02-16 Novartis Ag Productos combinados con inhibidores de tirosina·cinasa y su uso
US9073921B2 (en) 2013-03-01 2015-07-07 Novartis Ag Salt forms of bicyclic heterocyclic derivatives
CN105246482A (zh) 2013-03-15 2016-01-13 因特利凯有限责任公司 激酶抑制剂的组合及其用途
TW201605450A (zh) 2013-12-03 2016-02-16 諾華公司 Mdm2抑制劑與BRAF抑制劑之組合及其用途
EA201692140A1 (ru) 2014-04-24 2017-04-28 Новартис Аг Производные аминопиридина в качестве ингибиторов фосфатидилинозитол 3-киназы
EP3134397A1 (fr) 2014-04-24 2017-03-01 Novartis AG Dérivés aminés de pyrazine utilisables en tant qu'inhibiteurs de la phosphatidylinositol 3-kinase
JP6404944B2 (ja) 2014-04-24 2018-10-17 ノバルティス アーゲー ホスファチジルイノシトール3−キナーゼ阻害薬としてのピラジン誘導体
WO2016011658A1 (fr) 2014-07-25 2016-01-28 Novartis Ag Polythérapie
KR20170036037A (ko) 2014-07-31 2017-03-31 노파르티스 아게 조합 요법
CN105832724B (zh) * 2015-10-16 2018-07-03 北京冠瑞金生物科技有限公司 吲哚醇在制备抗抑郁症药物中的用途
CA3010615C (fr) 2016-01-14 2024-02-20 Beth Israel Deaconess Medical Center, Inc. Modulateurs de mastocytes et leurs utilisations
EP3980121A1 (fr) 2019-06-10 2022-04-13 Novartis AG Dérivé de pyridine et de pyrazine pour le traitement de la fk, de la bpco et de la bronchiectasie
CN114341132A (zh) 2019-08-28 2022-04-12 诺华股份有限公司 经取代的1,3-苯基杂芳基衍生物及其在治疗疾病中的用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ227841A (en) * 1988-02-12 1991-08-27 Merck Sharp & Dohme Heterocyclic compounds with at least two non-condensed five membered rings and pharmaceutical compositions
MX9304801A (es) * 1992-08-06 1997-06-28 Warner Lambert Co 2-toindoles (selenoidoles) disulfuros (seleniduros) relacinados, los cuales inhiben a las proteinas tirosina cinasas y los cuales tienen propiedades anti-tumorales.
CZ283965B6 (cs) * 1992-08-06 1998-07-15 Warner-Lambert Company 2-thioindolové, 2-indolinthionové a polysulfidové sloučeniny, 2-selenoindolové, 2-indolinselenonové a selenidové sloučeniny a farmaceutické prostředky na jejich bázi
US5567711A (en) * 1995-04-19 1996-10-22 Abbott Laboratories Indole-3-carbonyl and indole-3-sulfonyl derivatives as platelet activating factor antagonists
DE19636150A1 (de) * 1996-09-06 1998-03-12 Asta Medica Ag N-substituierte Indol-3-glyoxylamide mit antiasthmatischer, antiallergischer und immunsuppressiver/immunmodulierender Wirkung
DE19818964A1 (de) * 1998-04-28 1999-11-04 Dresden Arzneimittel Neue Hydroxyindole, deren Verwendung als Inhibitoren der Phospodiesterase 4 und Verfahren zu deren Herstellung
DE19917504A1 (de) * 1999-04-17 2000-10-19 Dresden Arzneimittel Verwendung von Hydroxyindolen, die Inhibitoren der Phosphodiesterase 4 sind, zur Therapie chronisch obstruktiver Lungenerkrankungen
PT1475377E (pt) * 1998-04-28 2006-11-30 Elbion Ag Derivados de indole e sua utilização como inibidores da fosfodiesterase 4
DE10053275A1 (de) 2000-10-27 2002-05-02 Dresden Arzneimittel Neue 7-Azaindole, deren Verwendung als Inhibitoren der Phosphodiesterase 4 und Verfahren zu deren Herstellung
TW200402417A (en) 2002-06-21 2004-02-16 Akzo Nobel Nv 1-[(Indol-3-yl)carbonyl]piperazine derivatives
DE10253426B4 (de) * 2002-11-15 2005-09-22 Elbion Ag Neue Hydroxyindole, deren Verwendung als Inhibitoren der Phosphodiesterase 4 und Verfahren zu deren Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004045607A1 *

Also Published As

Publication number Publication date
MXPA05005138A (es) 2005-07-22
RU2005118409A (ru) 2006-01-20
US20070093531A1 (en) 2007-04-26
DE10253426B4 (de) 2005-09-22
UA80567C2 (en) 2007-10-10
CA2505988A1 (fr) 2004-06-03
HRP20050542A2 (en) 2005-08-31
ZA200507002B (en) 2006-06-28
BR0316234A (pt) 2005-10-11
WO2004045607A1 (fr) 2004-06-03
TW200510306A (en) 2005-03-16
DE10253426A1 (de) 2004-06-03
NO20052864L (no) 2005-06-13
PL376524A1 (pl) 2006-01-09
AU2003283400A1 (en) 2004-06-15
KR20050075014A (ko) 2005-07-19
JP2006508141A (ja) 2006-03-09
AR042053A1 (es) 2005-06-08
ZA200503399B (en) 2006-06-28
CN1711082A (zh) 2005-12-21
US7166637B2 (en) 2007-01-23
US20040147759A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
DE10253426B4 (de) Neue Hydroxyindole, deren Verwendung als Inhibitoren der Phosphodiesterase 4 und Verfahren zu deren Herstellung
EP1076657B1 (fr) Nouveaux hydroxyindoles, leur utilisation comme inhibiteurs de la phosphodiesterase 4 et leur procede de preparation
EP1330455B1 (fr) Nouveaux 7-azaindoles, leur utilisation en tant qu'inhibiteurs de la phosphodiesterase 4 et leur procede de production
KR20010025011A (ko) 항천식, 항알레르기, 소염, 면역 조절 및 신경 보호작용을 갖는 신규한 1,2,5-삼치환된1,2-디하이드로-인다졸-3-온, 이들의 제조 방법 및약제로서의 이의 용도
EP1615911A1 (fr) 5-hydroxy-indoles comportant des groupes n-oxyde et leur utilisation comme inhibiteurs de la phosphodiesterase 4
EP1615912A1 (fr) 4-, 6- ou 7-hydroxyindoles a groupes n-oxyde et leur utilisation comme produits therapeutiques
EP1613627A1 (fr) 7-azaindoles et leur utilisation comme produits therapeutiques
DE19818964A1 (de) Neue Hydroxyindole, deren Verwendung als Inhibitoren der Phospodiesterase 4 und Verfahren zu deren Herstellung
DE10228132A1 (de) Amide cyclischer Aminosäuren als PDE 4 Inhibitoren
DE10053275A1 (de) Neue 7-Azaindole, deren Verwendung als Inhibitoren der Phosphodiesterase 4 und Verfahren zu deren Herstellung
US20060293362A1 (en) Nitro-substituted hydroxyindoles, their use as inhibitors of phosphodiesterase 4, and processes for preparing them

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELBION AG

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1075829

Country of ref document: HK

RAX Requested extension states of the european patent have changed

Extension state: LV

Payment date: 20050427

Extension state: LT

Payment date: 20050427

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GASPARIC, ANTJE

Inventor name: HARTENHAUER, HELGE

Inventor name: RUNDFELDT, CHRIS

Inventor name: EGERLAND, UTE

Inventor name: KUSS, HILDEGARD

Inventor name: HOEFGEN, NORBERT

17Q First examination report despatched

Effective date: 20051108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080717

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1075829

Country of ref document: HK