EP1428666A1 - Préparation des plaques d'impression flexographiques utilisant l'enregistrement à jet d'encre - Google Patents
Préparation des plaques d'impression flexographiques utilisant l'enregistrement à jet d'encre Download PDFInfo
- Publication number
- EP1428666A1 EP1428666A1 EP02102717A EP02102717A EP1428666A1 EP 1428666 A1 EP1428666 A1 EP 1428666A1 EP 02102717 A EP02102717 A EP 02102717A EP 02102717 A EP02102717 A EP 02102717A EP 1428666 A1 EP1428666 A1 EP 1428666A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- layers
- curing
- image
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/003—Forme preparation the relief or intaglio pattern being obtained by imagewise deposition of a liquid, e.g. by an ink jet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J11/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
- B41J11/0015—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
- B41J11/002—Curing or drying the ink on the copy materials, e.g. by heating or irradiating
- B41J11/0021—Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
- B41J11/00214—Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using UV radiation
Definitions
- the present invention relates to a method for making flexographic printing plates. More specifically the invention is related to provide a computer to plate system for flexography.
- Flexographic printing plates are well known for use in letterpress printing, particularly on surfaces which are soft and easily deformable, such as packaging materials, e.g., cardboard, plastic films, aluminium foils etc.
- Flexographic printing plates can be prepared from photopolymerisable compositions, such as those described in U.S. Pat. Nos. 4,323,637 and 4,427,759.
- the photopolymerisable compositions generally comprise an elastomeric binder, at least one monomer and a photo-initiator.
- Photosensitive elements generally have a photopolymerisable layer interposed between a support and a coversheet or multi-layer cover element.
- EP-A-654 150 a flexographic printing element having a incorporated IR ablatable layer and process for making a flexographic printing plate is disclosed.
- An opaque IR sensitive layer is image-wise removed by e.g. a semiconductor laser followed by exposure of the photosensitive layer using a back flash UV exposure and a top UV exposure using the image-wise ablated opaque layer as a mask.
- the plate is then developed to obtain the finished flexographic printing plate.
- the top layer (black mask), the barrier layer and unexposed parts of the photosensitive layer are removed.
- the obtained printing plate can then be mounted onto a press or it is possible to mount it on a sleeve adapted to be quickly mounted onto a printing press.
- the plate itself has a cylindrical shape for printing the endless image.
- Fig. 1 illustrates a drawback of prior art flexographic printing plates.
- the resulting reproduction 3 of a solid 2 on the plate 1 tend to show halo effects 4 as illustrated in the upper side of Fig. 1.
- a possible cause for this is that the edges of a solid 2 tend to have a lower printing pressure and thus not squeeze the ink from between the flexographic plate 1 and the printed material as hard as in the middle of the solid areas. Smaller dots 5 are less susceptible to this effect.
- Another drawback is that the overall processing time is long. Especially the development and drying time can take a lot of time. In EP-A-654 150 drying times up to two hours are mentioned. Total time for making a plate can take up to 4 hours. Elaborate steps are needed to get the final result.
- the obtained printing plate has the same properties (hardness, roughness) over the entire area and depth. This can result in difficulties in adjusting the printing press settings in order to obtain a good final image without halo effect and with good reproduction of small dots. Further drawbacks of the state of the art systems is that during fabrication of the plate brushing in presence of a solvent is performed to remove non-printing parts of the plate.
- EP-A-641 648 a system is described which gives the possibility to make a flexographic printing plate using an inkjet system.
- a photopolymeric ink is jetted onto a substrate to form a positive or negative image which is afterwards cured by UV radiation to form a positive or negative printing plate.
- a printing plate is directly obtained without processing and there is no need to development or after processing etc.. It is possible to produce printing plates having a desired hardness and thickness.
- a drawback of the system described in EP-A-641 648 is that there is no control of the finished product and thus the resulting quality is not ensured. No control is provided over the overall topography of the produced plate neither the surface finish of the top layer. Another problem is that during printing of the image the drops of the polymeric ink are not stable and a sharp image is difficult to form. It is impossible to obtain sharp edges as the drops are still mobile and tend to deform. No attention is given to the problem of stability of reproducing small dots using the plate.
- the produced printing plate has the same properties over the entire area of the plate.
- the present invention provides a system capable of controlling the plate during production of it. Several properties of the generated flexographic printing plate can be controlled during fabrication. A plate having better properties can be produced.
- FIG. 2A A possible apparatus using an X-Y table for making flexographic printing plates using a method according to the present invention is shown in FIG. 2A.
- the apparatus comprises an X-Y table 6 which can be controlled in the directions X and Y.
- a printing plate 7, comprising a support and intermediate layers, is provided on the table 6 .
- a frame 8 carrying an inkjet printhead 9 which can also be controlled in the Z direction.
- a light source 10 is mounted next to and after the printhead in the fast scan direction for generating curing radiation after jetting, and a laser profilometer 11. These elements will be described later on.
- FIG. 2B An alternative apparatus using a fast scan printhead 9 shuttling in the Y direction over a plate 7 on a slow scan table 6 moving in the X direction for making flexographic printing plates using a method according to the present invention is shown in FIG. 2B. Movements in X and Y direction are performed by two separate translation systems 12. The printhead 9 can be controlled in the Z direction. A light source 10 and profilometer are also provided.
- FIG. 2C An apparatus using a drum principle for making flexographic printing plates using a method according to the present invention is shown in FIG. 2C.
- the drum 13 can be rotated by motor 14 thus moving the plate 7 past the printhead 9.
- the rotation provides the fast scan movement.
- the printhead 9 can move along the drum 13 in the X direction.
- the distance of the printhead 9 from the drum 13 can be regulated and provides movement in the Z direction.
- Coupled to the printhead 9 is provided the light source 10 while here the profilometer 11 is mounted separately above the drum 13.
- An extra light source 15 can be provided.
- Fig 2c also some of the control modules of the recorder are shown which will be described later.
- Printing is performed on a appropriate substrate comprising a support.
- the support can be mounted onto the drum 13 or the support can be a sleeve fitting over the drum 13.
- the advantage of a drum system is that the flexographic printing plate 7 is prepared in the geometric form wherein it will be used. Plates made on a table have to be deformed to mount them on a printing press. Registering sleeves is less difficult because sleeves can be recorded versus a fixed reference and the strain which occurs during tensioning is more under control compared to flat flexoplates
- a curable ink composition preferably containing an elastomer component
- the ink has a composition providing easy jetting and resulting in the desired elastic or viscoelastic properties resilience properties of the jetted layers afterwards.
- a possible inkjet printhead 9 which can be used typically has a print resolution of 720dpi and has a multilevel capability. This means that each drop printed by the printhead 9 can have a variable but controllable volume, e.g. each drop is produced by a number of small sub-drops with a constant volume of 3pl(picoliter) which merge in flight and become one drop.
- the current head 9 can produce 16 levels of volumes, 0, 3, 6,9,...
- Another head of the same product family produces droplets of 7pl and could be used for building op the rough base structure as described later on. Even binary heads only capable of producing drops of 80pl can be used to produce the base structure of the printing plate which carries no image information.
- the printing plate 7 comprises usually a support which can be e.g.
- a possible type of layer functions is an elastic layer provided on the support which serves as the base of the flexographic printing plate.
- the elastic layer may also be a visco-elastic layer and may be formed by a layer containing a elastomer, but also other types of elastic layers can be used.
- Foam layers having a cell structure, preferably a open cell structure can provide a good base layer.
- Another possibility is the use of a thermoplastic elastomer. It is only important that the appropriate elasticity and resilience parameters are obtained.
- This layer can provide control over the overall thickness and elasticity of the printing plate. This provides several advantages :
- a further advantage is that due to the harder upper layer the small dots are more stable during printing and the number of prints which can be obtained with the plate is higher due to better wear resistance.
- these base layers are preferably covered with a thin (e.g. 5 ⁇ m) intermediate impermeable visco-elastic layer having also desirable properties regarding chemical compatibility.
- This layer can be applied to the base layer by e.g. coating, laminating, glueing etc.. Alternatively such a layer could also be jetted on top of the base layer.
- the jetted curable ink compositions may typically comprise :
- the elastomer binder may comprise a single component or can contain a mixture of several components.
- an appropriate component or mixture can be used.
- the ink composition need not to be curable.
- the most important property is that drops of the ink can be immobilised before they tend to run out. This immobilisation provides the capability to form higher, more rigid structures to obtain a printing plate.
- a 3pl drop (level 1 in the multilevel system) becomes a dot with a diameter of about 30 ⁇ m and a height of less than 4 ⁇ m depending upon the type of curing, the viscosity ( and temperature of substrate).
- the drop volume has a range of 3pl to 100pl.
- Fig. 3 gives the relation of the number of drops per dot which corresponds to the driving signal given to the actuator and the dot height. Dots are mainly formed by firing multiple drops which merge in flight to obtain a bigger drop.
- the dot placement is very important to achieve small, fine structures such as for example a 3% point on a 1501pi printer.
- a dot position accuracy of 3 ⁇ m can be achieved.
- the print head can address every desired location on the substrate .
- the inkjet recording process is controlled from a computing device steering the print head and the actuators generating the droplets.
- the drops are jetted according to the desired pattern to be generated on the printing plate, resulting in a layer formed by the drops. Upon this layer a second layer can later be added.
- the time between jetting and curing is especially important a the drop tend to spread after it has settled on the substrate.
- the e.g. the source of the curing radiation is provided immediately after the recording head. This can be done by mounting the radiation source at the side of the recording head. As drops are jetted they are immediately immobilised afterwards. This is called in-line curing.
- the combined jetting and immobilisation step are closely intertwined and are performed simultaneously.
- Fig. 4a Illustrated in Fig. 4a is a UV lamp 15 forming a spot 16 for curing jetted dots. The size of the spot is sufficient to cover the length of the nozzle array so that all jetted dots can be cured by the UV spot.
- Fig. 4b illustrates the intensity profile from the UV spot. The intensity curve has the form of a gaussian curve.
- Fig. 4C illustrates the effect on the jetted dots. Centre dots 17 receiving a high intensity radiation are rapidly immobilised and form high sharp dots while side dots 18 will be immobilised slower and exhibit more run-out, forming lower and broader dots. Lamp power is preferably in the 10-200W range.
- UV-A Long wavelength radiation
- UV-C short wavelength radiation
- the curing is preferably not complete in order to obtain a good cohesion between the jetted drops of the consecutive layers deposited by the inkjet print head.
- H The basic mercury bulb, denoted by H, has a widespread distribution of energy, but with strong emission in the short wavelength region. This makes it especially useful in curing clear coatings and thin layers of inks.
- the D bulb has it's mass of output in the longer wavelength region making it more suited to curing thicker coatings and ink systems. It should also allow better transmission of UV light through plastic materials.
- the D bulb can be used to achieve a good cure depth. In general cure doses may be reduced somewhat as higher intensity sources are used.
- superior cure may be obtained by use of combinations of UV sources.
- Longer wavelength sources iron or gallium doped
- a typical dose required with an iron doped medium pressure mercury lamp ("D" bulb/spectrum) when curing an 8-15 ⁇ m thick layer is about 300-700mJ/cm 2 .
- Jetted liquids or substrates can cause scattering of the curing radiation (UV,). If scattered radiation reaches the nozzle plate of the inkjet print head. Nozzles will tend to block easily. Therefore the bundle of curing radiation preferably is kept away from the print head and has an orientation pointing away from the printhead.
- the ink is heated above room temperature in order to improve the jettability of the ink.
- thermoplastic materials are included in the ink, it is advantageously to heat the ink to obtain a lower viscosity.
- the substrate i.e. support and intermediate layers, including previously jetted and immobilised layers
- the substrate is cooled before and/or during recording.
- the lower temperature of the substrate on which the drops are jetted helps in temporarily immobilising the drops by cooling them down, preventing further runout before the immobilisation step fixes the drop by e.g. curing radiation.
- the substrate is preferable cooled to a temperature between 5 and 25 °C. In view of the temperature factor it is desirable that curing radiation, e.g. UV radiation, is generated using a cold UV source.
- IR Infrared radiation
- the filtering can be done using appropriate optical filters in reflection or transmission mode absorbing IR radiation.
- Recording can be done layer after layer, gradually building the flexographic printing plate.
- the distance of the print head to the plate can also be controlled.
- the exact positioning of the drop may vary upon the distance between the inkjet nozzle plate and the receiver, therefor it is necessary to maintain the correct distance if a reliable positioning of the drops is required. Inexact positioning may be caused by nozzles having a deviating firing direction.
- Another important feature is that the positioning of a drop in a scanning inkjet system depends greatly on the time of flight a drop has before it hits the recording surface, this is the time between firing of the droplet and the moment the droplet hits the receiving surface. This is due to the fact that the droplet not only has a movement towards the receiver but also a transversal speed over the receiver. In order to ensure good registration of the layers subsequently recorded on a receiver several approaches can be used :
- the printing plate structure is gradually built layer by layer. First the bottom layers of the plate are recorded, the distance of the print head is corrected for taking into account the thickness of the preciously recorded layers and subsequent layers are added on top of the others. However in order to obtain different plate structures it is possible to record a partial bottom layer using a first type of ink whereafter a continuous layer is recorded over the first one.
- the distance of the print head has to be dynamically controlled during recording of the continuous layer over the image-wise layer to maintain a correct distance above the areas having layers of the first ink recorded and the areas without a first ink coverage.
- a further aspect of the present invention relates to control of the topography of the printed layers.
- This can be the overall topography regarding image content or to micro-topography elements such as the surface finish of the printed layers or the finished product.
- the printed image can be checked by e.g. a laser profilometer in order to control the correctness of the obtained product.
- the measurements can be done only at the final stage or regular checks can be made to detect defects in the printing plate being built by the subsequent layers.
- the micro-topography can be measured using commercial available measurement systems.
- This information can be obtained by measuring directly the height of the build layers or by measuring the layer thickness.
- a possible measurement system is described in : "Koaxiale interferometrische Schichtendickenier" Photonik 9/2000 by Dr. Gerd Jakob JURCA Optoelektronik GmbH. The system has shown measurement ranges of up to 300 ⁇ m with a resolution of 10 nm and even details within an area of 0,1mm x 0,1mm can be imaged.
- Measurement systems are normally based upon a contactless measuring process wherein thickness or distance is calculated based upon detected reflections of (laser) light upon layer boundaries.
- known system can be adapted or new system can be designed to provide fast and reliable assessment of the height of the jetted layers over the whole surface of the plate with the needed resolution and speed.
- the profilometer 11 can be mounted with the printhead on the same shuttling carriage as indicated in Fig. 2a and 2b. A separate profilometer 11 can also be provided as indicated in Fig 2c.
- the measured data is fed back to the recorder where the plate profile is compared to the desired profile for the printing plate. Out of the difference for each location of the printing plate it can be determined how many additional layers need to be jetted on that location.
- the measurements can be performed during the jetting of the plate or measurements can be done in between the several recording steps.
- the frequency of measurements steps can be set at any desired level. Preferably more measurements will needed during the final steps of recording the plate in order to obtain the desired profile.
- Fig. 2c For each location on the printing plate 7 the height is measured by the profilometer 11. Preferably this information is fed back to the recording device where the measured values are compared with the target values from the image input device for the printing plates. Further data for the inkjet printing system can be generated by the recorder to correct the printing plate (in pattern and height) by printing successive correction layers until the desired profile is obtained. The topography of a generated plate 7 can be accurately controlled and adjusted.
- the printing system has multilevel capabilities it is possible to use large drops to obtain quickly a profile close to the desired final profile whereafter small drops are used for fine tuning the height and roughness of the plate elements and the surface roughness. It is also possible to use a binary print head jetting drops of 80pl to quickly obtain a profile close to the desired profile and later on switch to an other print head to record the desired details.
- Fig. 1 illustrates the fixed slope angle of the prior art photomechanical printing plates.
- differential curing of several layers can also provide different properties of these layers. As mentioned earlier this can be done by changing curing wavelength (UV spectrum), curing time, intensity of the radiation, time interval between applying the layer and curing, ...
- the elasticity or hardness characteristics can also be influenced by changing the internal structure of recorded layers. Certain characteristics can be obtained by building a layer only using small droplets on top of each other while using only large drops or a mixture of small and large drops will result in clearly different characteristics. Even methods for drop deposition using certain patterns and drop sizes can be constructed resulting in structure having a certain porosity.
- the obtained structure is a result of the recording method, drop placement, types of inks used and curing parameters. It is clearly an advantage that differential characteristics may not only differ in layers above each other, but also in parts of the plate next to each other, eventually depending upon image content.
- a special type of structure is making use of at least one ink for finally forming the plate, and at least one ink as temporary filler whereon other plate-forming layers can be jetted.
- the temporary filler forms a sacrificial layer 21 enabling forming of structures which could not be possible using a single ink.
- An example of a possible combination is shown in Fig. 7.
- the filler substance of the sacrificial layer 21 can then later be removed by an appropriate process, e.g. melting, dissolving, etc.. This method can be used for forming special cavities in the final product influencing the plate characteristics.
- the temporary filler can be used to support small dots during the fabrication of the plate preventing run-out of the fresh jetted dots or collapse of the jetted structures before final curing. After final curing the small dots are more stable and the filler can be removed.
- a jetted composition giving oleophilic properties to the top layer can be used.
- Other layers having desirable characteristics can be applied.
- An extra layer on top of the image areas or even over the whole plate can of course be applied by any coating method. By using other methods such as Chemical vapour deposition, overall spraying, etc..., many more coatings types and characteristics are possible than when using only jettable coatings.
- Another possibility is the application of an overall oleophobic layer over the entire printing plate. Afterwards the oleophobic layer is grazed away from the top layer to reveal the original jetted layers. This results in a ink repellent printing plate having ink accepting image-wise top layer. Such a structure is less vulnerable to smearing i.e. the spreading of ink over areas of the plate and/or substrate where it is not wanted.
- a final curing step is performed to ensure that the properties of the plate will remain constant.
- the plate characteristics will normally change in time due to the curing process which will gradually proceed. This is usually avoided by the final curing process.
- curing radiation with a long wavelength e.g. UVA
- UVA a long wavelength
- a PET layer of 200 ⁇ m is coated with a 1,2mm thick layer of SantopreneTM B100 to form a elastic, resilient base layer.
- SantopreneTM layer ink layers were jetted using an inkjet printhead 9 with a resolution of 720dpi and using drops having a volume of 3pl.
- the ink used was an UV curable ink Crystal UFE 7577TM ink of Sun chemicals having an enhanced elasticity.
- Subsequent layers are jetted upon each other while preliminary curing is performed in between the jetting of subsequent layers using a "D" bulb radiation.
- the resulting relief upon the base layer was gradually recorded obtaining a relief difference of a least 0,15mm to avoid fogging of large non-printing areas during printing using the obtained plate.
- the obtained relief was measured using a Jurca CHR 150 NTM 3-axis measurement system and final correction were made to the plate by jetting extra layers to areas where the measured topography did not yet match the desired relief.
- Final curing was performed using "D" Bulb radiation exceeding 300 mJ/cm 2
- a 175 ⁇ m thick support of Polycarbonate is coated with a 1,5mm layer of PoronTM to obtain a elastic base layer.
- layers are jetted using a multilevel inkjet recording head having a resolution of 720 dpi with variable drop volume of 3 to 50 pl.
- a printing relief is created by jetting subsequent layers of an UV curable ink Crystal UFE 7577 TM ink of Sun chemicals forming a layer of about 0,2mm having a relief of at least 0,15 mm.
- a supplementary layer of 0,5mm is jetted of the top of the printing portions using an ink Crystal UGE 7537 of Sun chemicals.
- the jetted drops are preliminary cured using "D" bulb radiation.
- After finishing the recording printing plate having a relief of more than 0,2mm was obtained.
- a final curing step was performed using a radiation dose of more than 700 mJ/cm 2 .
- Fig 8 Another known problem is that small dots next to a solid area or in between two solids tend to disappear in the printed product because, due to lateral cohesion of the printing plate, the compression of the plate at the location of the solids also caused a certain compression of the plate under the nearby dots rendering them less stable during printing.
- Shown in Fig 8 is a possible method to lower the lateral cohesion of the printing plate is by creating a physical separation between the areas in the printing plate. This can be done by a calandering process.
- the foam or elastomeric layer provided on a substrate can be easily cut into small islands using a special calander roll.
- a drawback in this method could be that the top side of the base layer now has a fine mesh of cuts wherein the ink infiltrate of be drawn by e.g. capillary forces. This can be avoided by calandering a separate foam or base layer and laminating or gluing the base layer to the substrate with the cuts oriented to the substrate to the top side of the base layer has no voids due to the calandering process.
- Curing of certain photosensitive compositions can be done by using electron beam curing, IR curing.
- the droplets can be immobilised in another way until final curing is done.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
- Coating Apparatus (AREA)
- Ink Jet (AREA)
- Printing Plates And Materials Therefor (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP02102717A EP1428666B1 (fr) | 2002-12-11 | 2002-12-11 | Préparation des plaques d'impression flexographiques utilisant l'enregistrement à jet d'encre |
| DE60219807T DE60219807T2 (de) | 2002-12-11 | 2002-12-11 | Bereitung von Flexodruckplatten mittels Tintenstrahlaufzeichnung |
| JP2003410730A JP2004188983A (ja) | 2002-12-11 | 2003-12-09 | インキジェット記録を用いるフレキソ印刷版の製造 |
| US10/732,072 US7875321B2 (en) | 2002-12-11 | 2003-12-10 | Preparation of flexographic printing plates using ink jet recording |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP02102717A EP1428666B1 (fr) | 2002-12-11 | 2002-12-11 | Préparation des plaques d'impression flexographiques utilisant l'enregistrement à jet d'encre |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1428666A1 true EP1428666A1 (fr) | 2004-06-16 |
| EP1428666B1 EP1428666B1 (fr) | 2007-04-25 |
Family
ID=32319675
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP02102717A Expired - Lifetime EP1428666B1 (fr) | 2002-12-11 | 2002-12-11 | Préparation des plaques d'impression flexographiques utilisant l'enregistrement à jet d'encre |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP1428666B1 (fr) |
| JP (1) | JP2004188983A (fr) |
| DE (1) | DE60219807T2 (fr) |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1637322A2 (fr) | 2004-09-16 | 2006-03-22 | Agfa-Gevaert | Procédé de fabrication d'une une plaque d'impression flexographique |
| US7401552B2 (en) | 2004-09-16 | 2008-07-22 | Agfa Graphics N.V. | Method for manufacturing a flexographic printing master |
| WO2009097092A1 (fr) * | 2008-01-28 | 2009-08-06 | Eastman Kodak Company | Utilisation ou correction d'un élément d'impression flexographique |
| US7625959B2 (en) | 2004-09-16 | 2009-12-01 | Agfa Graphics, N.V. | Curable jettable liquid for flexography |
| WO2010003921A1 (fr) * | 2008-07-10 | 2010-01-14 | Agfa Graphics Nv | Procédé et dispositif de revêtement d’une surface périphérique d’une partie centrale de manchon |
| EP2153991A1 (fr) | 2008-08-11 | 2010-02-17 | Agfa Graphics N.V. | Appareil d'imagerie et procédé pour la fabrication de supports d'impression flexographique |
| EP2191969A1 (fr) | 2008-11-26 | 2010-06-02 | Agfa Graphics N.V. | Gainages et segments de gainages pour flexographie |
| EP2199082A1 (fr) | 2008-12-19 | 2010-06-23 | Agfa Graphics N.V. | Appareil d'imagerie et procédé pour la fabrication de supports d'impression flexographique |
| EP2199066A1 (fr) | 2008-12-19 | 2010-06-23 | Agfa Graphics N.V. | Procédé de réduction des artéfacts de qualité d'image dans une impression tridimensionnelle |
| EP2199065A1 (fr) | 2008-12-19 | 2010-06-23 | Agfa Graphics N.V. | Procédé de traitement d'images pour impression tridimensionnelle |
| EP2199081A1 (fr) | 2008-12-19 | 2010-06-23 | Agfa Graphics N.V. | Appareil d'impression à jet d'encre et procédé pour la fabrication de supports d'impression flexographique |
| EP2223803A1 (fr) | 2009-02-26 | 2010-09-01 | Xerox Corporation | Préparation de supports d'impression flexographiques utilisant un procédé additif |
| WO2011144596A1 (fr) | 2010-05-18 | 2011-11-24 | Agfa Graphics Nv | Procédé pour réaliser une matrice d'impression flexographique |
| EP2285584A4 (fr) * | 2008-02-25 | 2012-01-25 | Prittie Family Trust 89 | Construction de plaque d'image en relief comportant des régions d'épaisseurs de support variables sous les zones d'image |
| EP2420383A1 (fr) * | 2010-08-20 | 2012-02-22 | Agfa Graphics N.V. | Système numérique pour créer un support d'impression flexographique |
| US8142860B2 (en) | 2006-12-21 | 2012-03-27 | Agfa Graphics Nv | 3D-inkjet printing methods |
| EP2466380A1 (fr) | 2010-12-20 | 2012-06-20 | Agfa Graphics N.V. | Fluide durcissable et jettable pour fabriquer un modèle d'impression flexographique |
| WO2012084811A1 (fr) | 2010-12-20 | 2012-06-28 | Agfa Graphics Nv | Fluide approprié au jet et durcissable pour la fabrication d'une matrice d'impression flexographique |
| WO2012084786A1 (fr) | 2010-12-20 | 2012-06-28 | Agfa Graphics Nv | Fluide approprié au jet durcissable pour la fabrication d'une matrice d'impression flexographique |
| EP2537675A1 (fr) | 2011-06-21 | 2012-12-26 | Agfa Graphics N.V. | Fluide durcissable jetable pour fabriquer un support d'impression flexographique |
| WO2012175525A1 (fr) | 2011-06-21 | 2012-12-27 | Agfa Graphics Nv | Fluide pulvérisable durcissable pour fabrication d'une matrice d'impression flexographique |
| EP2574458A1 (fr) | 2011-09-30 | 2013-04-03 | Agfa Graphics N.V. | Procédé pour la préparation d'un support d'impression flexographique |
| EP2746058A1 (fr) | 2012-12-18 | 2014-06-25 | Agfa Graphics Nv | Procédé pour la préparation d'un support d'impression flexographique |
| US9085129B2 (en) | 2010-08-20 | 2015-07-21 | Aqfa Graphics NV | System and method for digital creation of a print master using a multiple printhead unit |
| US9199272B2 (en) | 2010-03-30 | 2015-12-01 | Agfa Graphics Nv | System and method for digital creation of a print master using a multiple printhead unit |
| US9393771B2 (en) | 2010-12-16 | 2016-07-19 | Agfa Graphics Nv | System and method for the digital creation of a print master by means of a liquid droplet deposition apparatus |
| EP3159740A1 (fr) * | 2015-10-22 | 2017-04-26 | Flint Group Germany GmbH | Procede de fabrication generative de formes d'impression en relief |
| WO2017108649A1 (fr) * | 2015-12-21 | 2017-06-29 | Flint Group Germany Gmbh | Procédé de fabrication additive de plaques d'impression en relief par diffusion d'un monomère à travers une couche de masquage intégrale |
| WO2018177500A1 (fr) * | 2017-03-27 | 2018-10-04 | Flint Group Germany Gmbh | Procédé servant à fabriquer des structures en relief sous forme d'images |
| US10864718B2 (en) | 2011-05-11 | 2020-12-15 | Hp Indigo B.V. | Embossing with printed relief pattern |
| US11667115B2 (en) | 2017-10-27 | 2023-06-06 | Agfa Offset Bv | Digital halftoning with spiral dots |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPWO2006090541A1 (ja) * | 2005-02-24 | 2008-07-24 | コニカミノルタエムジー株式会社 | インクジェット記録装置、インクジェット記録方法及び紫外線硬化性インク |
| WO2009042869A1 (fr) * | 2007-09-27 | 2009-04-02 | Gerber Scientific International, Inc. | Procédé et appareil pour améliorer la flexibilité de l'encre imprimée sur des substrats par contrôle du séchage par irradiation |
| CA2629661C (fr) | 2007-12-11 | 2015-01-06 | Sumita Company Ltd. | Cliche typographique |
| JP2010179505A (ja) * | 2009-02-04 | 2010-08-19 | Tokyo Ohka Kogyo Co Ltd | 凸版印刷版の製造方法及びその製造方法によって製造された凸版印刷版 |
| JP2010221556A (ja) * | 2009-03-24 | 2010-10-07 | Fujifilm Corp | 刷版作成方法及び刷版作成装置 |
| EP2623331A4 (fr) * | 2010-09-30 | 2014-07-09 | Toray Industries | Procédé de production d'un original de plaque flexographique pour gravure au laser |
| JP2012078445A (ja) * | 2010-09-30 | 2012-04-19 | Asahi Kasei E-Materials Corp | マスクフィルム、感光性樹脂印刷版の製造方法、感光性樹脂印刷版 |
| EP3181357B1 (fr) | 2015-12-15 | 2018-10-10 | Agfa Nv | Procédé de fabrication additif au moyen de projection de lumière dynamique pour des matrices d'impression flexographique |
| EP3608721B1 (fr) | 2015-12-15 | 2021-06-30 | Agfa Nv | Masque digital pour la fabrication d'un modèle d'impression flexographique |
| CN110382235A (zh) | 2016-12-20 | 2019-10-25 | 爱克发有限公司 | 柔性版制版机和制造柔性版的方法 |
| JP7315731B2 (ja) * | 2017-03-27 | 2023-07-26 | エクシス ジャーマニー ゲーエムベーハー | 画像レリーフ構造の製造方法 |
| WO2020038951A1 (fr) * | 2018-08-20 | 2020-02-27 | Esko-Graphics Imaging Gmbh | Système et procédé additifs de fabrication de plaque |
| US11602947B2 (en) * | 2020-07-23 | 2023-03-14 | Macdermid Graphics Solutions Llc | Method of making a flexographic printing plate |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4323637A (en) | 1971-04-01 | 1982-04-06 | E. I. Du Pont De Nemours And Company | Use of cover sheet and interposed flexible film with block copolymer composition |
| US4427759A (en) | 1982-01-21 | 1984-01-24 | E. I. Du Pont De Nemours And Company | Process for preparing an overcoated photopolymer printing plate |
| EP0641648A1 (fr) * | 1993-09-03 | 1995-03-08 | Uri Adler | Procédé et appareil pour la fabrication de plaques d'impression photopolymères |
| EP0654150A1 (fr) | 1992-08-07 | 1995-05-24 | Du Pont | Element d'impression flexographique presentant une couche separable par infrarouge et procede de fabrication d'une planche d'impression flexographique. |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61137744A (ja) * | 1984-12-11 | 1986-06-25 | Asahi Chem Ind Co Ltd | レリ−フ作成用母型の作成法 |
| JPH02283452A (ja) * | 1989-04-25 | 1990-11-20 | Seiko Epson Corp | インクジェットプリンタ |
| JP2697138B2 (ja) * | 1989-05-24 | 1998-01-14 | ブラザー工業株式会社 | 三次元成形装置 |
| JP2697136B2 (ja) * | 1989-05-23 | 1998-01-14 | ブラザー工業株式会社 | 三次元成形装置 |
| JPH0915837A (ja) * | 1995-06-30 | 1997-01-17 | Jinichiro Maeda | フレキソ印刷用樹脂版及びその形成方法 |
| JP2002018967A (ja) * | 2000-07-11 | 2002-01-22 | Canon Inc | 目的物生成装置 |
| JP2002067171A (ja) * | 2000-08-25 | 2002-03-05 | Canon Inc | 目的物生成装置、目的物生成方法、及び記憶媒体 |
-
2002
- 2002-12-11 DE DE60219807T patent/DE60219807T2/de not_active Expired - Lifetime
- 2002-12-11 EP EP02102717A patent/EP1428666B1/fr not_active Expired - Lifetime
-
2003
- 2003-12-09 JP JP2003410730A patent/JP2004188983A/ja active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4323637A (en) | 1971-04-01 | 1982-04-06 | E. I. Du Pont De Nemours And Company | Use of cover sheet and interposed flexible film with block copolymer composition |
| US4427759A (en) | 1982-01-21 | 1984-01-24 | E. I. Du Pont De Nemours And Company | Process for preparing an overcoated photopolymer printing plate |
| EP0654150A1 (fr) | 1992-08-07 | 1995-05-24 | Du Pont | Element d'impression flexographique presentant une couche separable par infrarouge et procede de fabrication d'une planche d'impression flexographique. |
| EP0641648A1 (fr) * | 1993-09-03 | 1995-03-08 | Uri Adler | Procédé et appareil pour la fabrication de plaques d'impression photopolymères |
Cited By (74)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7401552B2 (en) | 2004-09-16 | 2008-07-22 | Agfa Graphics N.V. | Method for manufacturing a flexographic printing master |
| US7625959B2 (en) | 2004-09-16 | 2009-12-01 | Agfa Graphics, N.V. | Curable jettable liquid for flexography |
| EP1637322A2 (fr) | 2004-09-16 | 2006-03-22 | Agfa-Gevaert | Procédé de fabrication d'une une plaque d'impression flexographique |
| EP2097247B1 (fr) * | 2006-12-21 | 2016-03-09 | Agfa Graphics NV | Procédés d'impression à jet d'encre et jeux d'encre |
| US8142860B2 (en) | 2006-12-21 | 2012-03-27 | Agfa Graphics Nv | 3D-inkjet printing methods |
| WO2009097092A1 (fr) * | 2008-01-28 | 2009-08-06 | Eastman Kodak Company | Utilisation ou correction d'un élément d'impression flexographique |
| EP2285584A4 (fr) * | 2008-02-25 | 2012-01-25 | Prittie Family Trust 89 | Construction de plaque d'image en relief comportant des régions d'épaisseurs de support variables sous les zones d'image |
| WO2010003921A1 (fr) * | 2008-07-10 | 2010-01-14 | Agfa Graphics Nv | Procédé et dispositif de revêtement d’une surface périphérique d’une partie centrale de manchon |
| EP2153991A1 (fr) | 2008-08-11 | 2010-02-17 | Agfa Graphics N.V. | Appareil d'imagerie et procédé pour la fabrication de supports d'impression flexographique |
| EP2191969A1 (fr) | 2008-11-26 | 2010-06-02 | Agfa Graphics N.V. | Gainages et segments de gainages pour flexographie |
| US8621995B2 (en) | 2008-11-26 | 2014-01-07 | Agfa Graphics Nv | Sleeves and sleeve segments for flexography |
| EP2463112A1 (fr) | 2008-11-26 | 2012-06-13 | Agfa Graphics N.V. | Gainages et segments de gainages pour flexographie |
| US9216566B2 (en) | 2008-12-19 | 2015-12-22 | Agfa Graphics Nv | Imaging apparatus and method for making flexographic printing masters |
| EP2199081A1 (fr) | 2008-12-19 | 2010-06-23 | Agfa Graphics N.V. | Appareil d'impression à jet d'encre et procédé pour la fabrication de supports d'impression flexographique |
| WO2010069748A1 (fr) * | 2008-12-19 | 2010-06-24 | Agfa Graphics Nv | Appareil et procédé d'imagerie pour réaliser des matrices d'impression flexographiques |
| WO2010069762A3 (fr) * | 2008-12-19 | 2010-09-10 | Agfa Graphics Nv | Procédé pour réduire des artéfacts de qualité d'image dans une impression en trois dimensions |
| US8985019B2 (en) | 2008-12-19 | 2015-03-24 | Agfa Graphics Nv | Inkjet printing apparatus and method for making flexographic printing masters |
| CN102256769A (zh) * | 2008-12-19 | 2011-11-23 | 爱克发印艺公司 | 用于减少三维印刷中的图像质量伪影的方法 |
| EP2644362A3 (fr) * | 2008-12-19 | 2015-03-18 | Agfa Graphics Nv | Procédé de réduction des artéfacts de qualité d'image dans une impression tridimensionnelle |
| WO2010069749A1 (fr) * | 2008-12-19 | 2010-06-24 | Agfa Graphics Nv | Appareil et procédé d'impression à jet d'encre pour réaliser des matrices d'impression flexographiques |
| US8848233B2 (en) | 2008-12-19 | 2014-09-30 | Agfa Graphics Nv | Method for reducing image quality artifacts in three-dimensional printing |
| US8705144B2 (en) | 2008-12-19 | 2014-04-22 | Agfa Graphics Nv | Image processing method for three-dimensional printing |
| EP2199065A1 (fr) | 2008-12-19 | 2010-06-23 | Agfa Graphics N.V. | Procédé de traitement d'images pour impression tridimensionnelle |
| EP2199066A1 (fr) | 2008-12-19 | 2010-06-23 | Agfa Graphics N.V. | Procédé de réduction des artéfacts de qualité d'image dans une impression tridimensionnelle |
| CN102256790B (zh) * | 2008-12-19 | 2014-04-09 | 爱克发印艺公司 | 用于制造柔版印刷母版的成像设备和方法及台面凸版的使用 |
| CN102256791B (zh) * | 2008-12-19 | 2014-01-29 | 爱克发印艺公司 | 用于制备柔性版印刷底版的喷墨印刷装置和方法 |
| EP2199082A1 (fr) | 2008-12-19 | 2010-06-23 | Agfa Graphics N.V. | Appareil d'imagerie et procédé pour la fabrication de supports d'impression flexographique |
| EP2644362A2 (fr) | 2008-12-19 | 2013-10-02 | Agfa Graphics Nv | Procédé de réduction des artéfacts de qualité d'image dans une impression tridimensionnelle |
| CN101876787B (zh) * | 2009-02-26 | 2013-07-10 | 施乐公司 | 采用加成法制备柔性印刷底版 |
| EP2223803A1 (fr) | 2009-02-26 | 2010-09-01 | Xerox Corporation | Préparation de supports d'impression flexographiques utilisant un procédé additif |
| CN101876787A (zh) * | 2009-02-26 | 2010-11-03 | 施乐公司 | 采用加成法制备柔性印刷底版 |
| JP2010195045A (ja) * | 2009-02-26 | 2010-09-09 | Xerox Corp | フレキソプレート上に印刷マスターを形成する方法 |
| US9199272B2 (en) | 2010-03-30 | 2015-12-01 | Agfa Graphics Nv | System and method for digital creation of a print master using a multiple printhead unit |
| CN103003071B (zh) * | 2010-05-18 | 2016-05-25 | 爱克发印艺公司 | 制备柔性版印刷母版的方法 |
| US9126394B2 (en) | 2010-05-18 | 2015-09-08 | Agfa Graphics Nv | Method of preparing a flexographic printing master |
| WO2011144596A1 (fr) | 2010-05-18 | 2011-11-24 | Agfa Graphics Nv | Procédé pour réaliser une matrice d'impression flexographique |
| CN103003071A (zh) * | 2010-05-18 | 2013-03-27 | 爱克发印艺公司 | 制备柔性版印刷母版的方法 |
| US20130059089A1 (en) * | 2010-05-18 | 2013-03-07 | Chris Gullentops | Method of preparing a flexographic printing master |
| US9085129B2 (en) | 2010-08-20 | 2015-07-21 | Aqfa Graphics NV | System and method for digital creation of a print master using a multiple printhead unit |
| AU2011290830B2 (en) * | 2010-08-20 | 2013-11-21 | Agfa Nv | Digital system for creating a flexographic printmaster |
| CN103052506A (zh) * | 2010-08-20 | 2013-04-17 | 爱克发印艺公司 | 用于创建柔性版印刷母版的数字系统 |
| CN103052506B (zh) * | 2010-08-20 | 2015-04-08 | 爱克发印艺公司 | 用于制备圆柱凸版对象的设备 |
| WO2012022650A1 (fr) * | 2010-08-20 | 2012-02-23 | Agfa Graphics Nv | Système numérique pour la création d'une matrice d'impression flexographique |
| KR101505971B1 (ko) * | 2010-08-20 | 2015-03-25 | 아그파 그래픽스 엔브이 | 플렉소그래픽 프린트마스터의 생성을 위한 디지털 시스템 |
| EP2420383A1 (fr) * | 2010-08-20 | 2012-02-22 | Agfa Graphics N.V. | Système numérique pour créer un support d'impression flexographique |
| US8960121B2 (en) | 2010-08-20 | 2015-02-24 | Agfa Graphics Nv | Digital system for creating a flexographic printmaster |
| US9393771B2 (en) | 2010-12-16 | 2016-07-19 | Agfa Graphics Nv | System and method for the digital creation of a print master by means of a liquid droplet deposition apparatus |
| WO2012084706A1 (fr) | 2010-12-20 | 2012-06-28 | Agfa Graphics Nv | Fluide thermodurcissable pulvérisable servant à fabriquer un original d'impression flexographique |
| US9309341B2 (en) | 2010-12-20 | 2016-04-12 | Agfa Graphics Nv | Curable jettable fluid for making a flexographic printing master |
| WO2012084786A1 (fr) | 2010-12-20 | 2012-06-28 | Agfa Graphics Nv | Fluide approprié au jet durcissable pour la fabrication d'une matrice d'impression flexographique |
| EP2466380A1 (fr) | 2010-12-20 | 2012-06-20 | Agfa Graphics N.V. | Fluide durcissable et jettable pour fabriquer un modèle d'impression flexographique |
| WO2012084811A1 (fr) | 2010-12-20 | 2012-06-28 | Agfa Graphics Nv | Fluide approprié au jet et durcissable pour la fabrication d'une matrice d'impression flexographique |
| US10864718B2 (en) | 2011-05-11 | 2020-12-15 | Hp Indigo B.V. | Embossing with printed relief pattern |
| EP2694291B1 (fr) * | 2011-05-11 | 2021-10-20 | HP Indigo B.V. | Travail en relief avec motif en relief imprimé |
| WO2012175445A1 (fr) | 2011-06-21 | 2012-12-27 | Agfa Graphics Nv | Fluide pulvérisable durcissable pour fabrication d'une matrice d'impression flexographique |
| EP2537675A1 (fr) | 2011-06-21 | 2012-12-26 | Agfa Graphics N.V. | Fluide durcissable jetable pour fabriquer un support d'impression flexographique |
| WO2012175525A1 (fr) | 2011-06-21 | 2012-12-27 | Agfa Graphics Nv | Fluide pulvérisable durcissable pour fabrication d'une matrice d'impression flexographique |
| WO2013045349A1 (fr) | 2011-09-30 | 2013-04-04 | Agfa Graphics Nv | Procédé de préparation d'une matrice d'impression flexographique |
| EP2574458A1 (fr) | 2011-09-30 | 2013-04-03 | Agfa Graphics N.V. | Procédé pour la préparation d'un support d'impression flexographique |
| CN104918792A (zh) * | 2012-12-18 | 2015-09-16 | 爱克发印艺公司 | 制备柔性凸版印刷母版的方法 |
| EP2746058A1 (fr) | 2012-12-18 | 2014-06-25 | Agfa Graphics Nv | Procédé pour la préparation d'un support d'impression flexographique |
| WO2014095361A1 (fr) * | 2012-12-18 | 2014-06-26 | Agfa Graphics Nv | Procédé de préparation d'une matrice d'impression flexographique |
| EP3159740A1 (fr) * | 2015-10-22 | 2017-04-26 | Flint Group Germany GmbH | Procede de fabrication generative de formes d'impression en relief |
| CN108369372A (zh) * | 2015-10-22 | 2018-08-03 | 富林特集团德国有限公司 | 凸版印板的增材制造方法 |
| CN108369372B (zh) * | 2015-10-22 | 2021-06-01 | 富林特集团德国有限公司 | 凸版印板的增材制造方法 |
| WO2017068125A1 (fr) * | 2015-10-22 | 2017-04-27 | Flint Group Germany Gmbh | Procédé de production générative de blocs d'impression en relief |
| US11498325B2 (en) | 2015-10-22 | 2022-11-15 | Flint Group Germany Gmbh | Method for the additive production of relief printing plates |
| US10824072B2 (en) | 2015-12-21 | 2020-11-03 | Flint Group Germany Gmbh | Method for generative production of relief printing plates by monomer diffusion through an integral mask layer |
| WO2017108649A1 (fr) * | 2015-12-21 | 2017-06-29 | Flint Group Germany Gmbh | Procédé de fabrication additive de plaques d'impression en relief par diffusion d'un monomère à travers une couche de masquage intégrale |
| WO2018177500A1 (fr) * | 2017-03-27 | 2018-10-04 | Flint Group Germany Gmbh | Procédé servant à fabriquer des structures en relief sous forme d'images |
| CN110678332A (zh) * | 2017-03-27 | 2020-01-10 | 富林特集团德国有限公司 | 制造图形凸纹结构的方法 |
| CN110678332B (zh) * | 2017-03-27 | 2021-11-26 | 富林特集团德国有限公司 | 制造图形凸纹结构的方法 |
| US11325368B2 (en) | 2017-03-27 | 2022-05-10 | Flint Group Germany Gmbh | Method for producing pictorial relief structures |
| US11667115B2 (en) | 2017-10-27 | 2023-06-06 | Agfa Offset Bv | Digital halftoning with spiral dots |
Also Published As
| Publication number | Publication date |
|---|---|
| DE60219807T2 (de) | 2008-01-17 |
| DE60219807D1 (de) | 2007-06-06 |
| EP1428666B1 (fr) | 2007-04-25 |
| JP2004188983A (ja) | 2004-07-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1428666B1 (fr) | Préparation des plaques d'impression flexographiques utilisant l'enregistrement à jet d'encre | |
| US7875321B2 (en) | Preparation of flexographic printing plates using ink jet recording | |
| CN102256767B (zh) | 用于三维印刷的图像处理方法 | |
| EP2356513B1 (fr) | Plaque d'impression en relief | |
| US10175580B2 (en) | Method for producing a flexographic printing frame through multiple exposures using UV LEDS | |
| EP2083325B1 (fr) | Procédé pour l'impression d'un motif sur un substrat | |
| US6312872B1 (en) | Composite relief image printing plates | |
| CN102119080B (zh) | 用于制造柔性版印刷母版的成像装置和方法 | |
| EP2240321B1 (fr) | Utilisation ou correction d'un élément d'impression flexographique | |
| JP2000501662A (ja) | 平版印刷版での画像形成 | |
| US5278027A (en) | Method and apparatus for making print imaging media | |
| US6861203B2 (en) | Non-permanent inkjetted flexographic mask | |
| JP6219954B2 (ja) | 凸版印刷版の製造方法 | |
| EP2678159B1 (fr) | Relief de sol pour l'amélioration de points | |
| JPH07117207A (ja) | 製版方法 | |
| US20250244674A1 (en) | Method for imaging a mask layer and associated imaging system | |
| US11433690B2 (en) | Method of making a film negative | |
| JP2006088526A (ja) | スクリーン印刷製版装置 | |
| JP2005035183A (ja) | 製版装置 | |
| US8474944B2 (en) | Matching imaging data to flexographic plate surface | |
| US20120152137A1 (en) | Matching imaging data to flexographic plate surface | |
| CA2407381A1 (fr) | Traitement de bordure pour elements d'impression flexographique | |
| MXPA99000388A (es) | Placas compuestas de impresion de imagen de relieve y metodos para preparar las mismas |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
| 17P | Request for examination filed |
Effective date: 20041216 |
|
| AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
| 17Q | First examination report despatched |
Effective date: 20050623 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGFA GRAPHICS N.V. |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REF | Corresponds to: |
Ref document number: 60219807 Country of ref document: DE Date of ref document: 20070606 Kind code of ref document: P |
|
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20080128 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 60219807 Country of ref document: DE Owner name: AGFA NV, BE Free format text: FORMER OWNER: AGFA GRAPHICS N.V., MORTSEL, BE |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20171114 Year of fee payment: 16 Ref country code: DE Payment date: 20171114 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171116 Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: AGFA NV, BE Effective date: 20180628 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60219807 Country of ref document: DE |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181211 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190702 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181211 |