EP1387797B1 - Conteneurs solubles dans l'eau comprenant un systeme de liberation de gaz - Google Patents
Conteneurs solubles dans l'eau comprenant un systeme de liberation de gaz Download PDFInfo
- Publication number
- EP1387797B1 EP1387797B1 EP02769512A EP02769512A EP1387797B1 EP 1387797 B1 EP1387797 B1 EP 1387797B1 EP 02769512 A EP02769512 A EP 02769512A EP 02769512 A EP02769512 A EP 02769512A EP 1387797 B1 EP1387797 B1 EP 1387797B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- container
- composition
- container according
- water
- compartment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 239000000203 mixture Substances 0.000 claims abstract description 174
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 238000003856 thermoforming Methods 0.000 claims abstract description 22
- 238000001746 injection moulding Methods 0.000 claims abstract description 17
- 230000000717 retained effect Effects 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 52
- 238000007789 sealing Methods 0.000 claims description 51
- -1 poly(vinyl alcohol) Polymers 0.000 claims description 22
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 239000007844 bleaching agent Substances 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 16
- 238000004851 dishwashing Methods 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 13
- 239000003599 detergent Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 230000003993 interaction Effects 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 239000004744 fabric Substances 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 229920002472 Starch Polymers 0.000 claims description 2
- 230000000844 anti-bacterial effect Effects 0.000 claims description 2
- 230000002421 anti-septic effect Effects 0.000 claims description 2
- 239000000645 desinfectant Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims 1
- 239000002736 nonionic surfactant Substances 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 17
- 102000004190 Enzymes Human genes 0.000 description 17
- 229940088598 enzyme Drugs 0.000 description 17
- 239000004094 surface-active agent Substances 0.000 description 15
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- 150000008051 alkyl sulfates Chemical class 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- 150000002191 fatty alcohols Chemical class 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 7
- 150000001298 alcohols Chemical class 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- 239000011591 potassium Substances 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 229920002125 Sokalan® Polymers 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000002979 fabric softener Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical class C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical group 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000003349 gelling agent Substances 0.000 description 3
- 238000010412 laundry washing Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 238000007666 vacuum forming Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 108010056079 Subtilisins Proteins 0.000 description 2
- 102000005158 Subtilisins Human genes 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000000855 fungicidal effect Effects 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 230000002363 herbicidal effect Effects 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 238000010102 injection blow moulding Methods 0.000 description 2
- 239000002917 insecticide Substances 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical class OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- 125000004398 2-methyl-2-butyl group Chemical group CC(C)(CC)* 0.000 description 1
- BYHQTRFJOGIQAO-GOSISDBHSA-N 3-(4-bromophenyl)-8-[(2R)-2-hydroxypropyl]-1-[(3-methoxyphenyl)methyl]-1,3,8-triazaspiro[4.5]decan-2-one Chemical compound C[C@H](CN1CCC2(CC1)CN(C(=O)N2CC3=CC(=CC=C3)OC)C4=CC=C(C=C4)Br)O BYHQTRFJOGIQAO-GOSISDBHSA-N 0.000 description 1
- MXMWUQAFMKOTIQ-UHFFFAOYSA-N 4-(carboxymethoxy)-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)OCC(O)=O MXMWUQAFMKOTIQ-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 230000000895 acaricidal effect Effects 0.000 description 1
- 239000000642 acaricide Substances 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 239000012872 agrochemical composition Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001069 nematicidal effect Effects 0.000 description 1
- 239000005645 nematicide Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000000963 oxybis(methylene) group Chemical group [H]C([H])(*)OC([H])([H])* 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000005648 plant growth regulator Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 239000011814 protection agent Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
- C11D17/042—Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0052—Gas evolving or heat producing compositions
Definitions
- the present invention relates to a water-soluble container and to a process for the preparation of such a container.
- WO 89/12587 discloses a package which comprises an envelope of a water soluble material which comprises a flexible wall and a water-soluble heat seal.
- the package may contain an organic liquid comprising, for example, a pesticide, fungicide, insecticide or herbicide.
- WO 90/12864 discloses a packaged non-aqueous liquid cleaning product comprising a container and a non-aqueous liquid cleaning composition therein, the container being closed by a water-soluble or water-dispersible closure member.
- EP 0 414 462 A2 discloses a laundry treatment product, in the form of a single-compartment or multi-compartment sachet capable of releasing its contents into the wash liquor during the laundry process.
- EP 0 479 404 A2 discloses a composite packaging film, capable of dispersing in lightly agitated water substantially without visible residues.
- the composite film is advantageously used for packaging detergents and other washing, cleaning or laundry treatment products.
- WO 92/17382 discloses a package containing an agrochemical comprising a first sheet of non-planar water-soluble or water-dispersible material and a second sheet of water-soluble or water-dispersible material superposed on the first sheet and sealed to it.
- the packages cannot contain compositions which generate a gas because the gas inflates the packages, particularly if they are flexible, and bursts them.
- Such packages are especially susceptible to bursting at weak points such as the seals.
- compositions which are not normally considered to generate a gas may occur even with compositions which are not normally considered to generate a gas. For example it can occur with compositions which generate a gas only on contacting another component if that component can permeate either the outside wall or any internal wall of the package.
- the present invention provides a water-soluble container formed by injection moulding or thermoforming which contains a composition which generates a gas, the composition being retained in the container until the container is dissolved in water, wherein the container has a gas release means.
- the water-soluble container comprises a first compartment and a second compartment separated from said first compartment by a water-permeable wall, wherein said first compartment contains a first composition comprising water and the second compartment contains a second composition which generates a gas when contacted with the first composition, the composition being retained in the container until the container is dissolved in water, said second compartment having a gas release means.
- the present invention further provides a water-soluble container which contains a composition which generates a gas, said composition comprising a bleach, the composition being retained in the container until the container is dissolved in water, wherein the container has a gas release means.
- the containers of the present invention do not suffer from bursting due to the internal generation of a gas because the gas is allowed to escape into the surrounding atmosphere. However, the composition is retained in the container until the container is dissolved in water.
- the gas may be generated inside the container by a variety of means.
- the composition held inside the container may generate a gas by chemical interaction with the walls of the container.
- the composition may also generate a gas by interaction with one or more components of the atmosphere, especially water vapour or oxygen, which diffuse through the container walls, or by interaction with one or more components held in other parts of the container which diffuse through one or more internal walls of the container.
- the composition may also generate a gas by itself without any interaction with any other components, such as by decomposition, for example when exposed to high temperatures or light.
- water-soluble containers may not be completely water-impermeable, but may have a degree of water-permeability. While the degree of water-permeability may be slight, it may be sufficient to allow a small amount of water to permeate through the wall. Since water-soluble containers may be stored for some time, for example for several months or even years, a gas may gradually be generated by contact of another component with this water, which may consequently cause the container to burst. The container may burst by means of a tear through the wall or by failure of a seal. It may also burst internally, allowing different compositions held within the container to mix.
- the gas may be any gas but is usually one or more of O 2 , CO 2 , N 2 , Cl 2 , HCl or the volatile ingredients of a fragrance.
- the present invention is particularly suitable for a container which comprises at least a first compartment and a second compartment (and possible further compartments) separated from said first compartment by a water-permeable wall, wherein said first compartment contains a first composition, especially a component comprising water, and the second compartment contains a second composition which generates a gas when contacted with the first composition.
- the second compartment is provided with the gas release means.
- water-soluble is taken to include water dispersible.
- the gas release means may take any form which allows the escape of gas generated inside the container.
- a vent may comprise a one-way valve, for example one or more holes covered with one or more flaps. Most desirably, however, it is simply one or more holes. Desirably a single hole is provided, although an array, either regular or irregular, may also be provided.
- the hole or holes each have a maximum dimension of 0.1 to 2 mm. The maximum dimension is the diameter of the hole if the hole is circular.
- the hole or holes have a maximum dimension of 0.2 to 1.5 mm, especially about 0.5 to 1 mm, more especially about 0.8 mm.
- the vent may be provided simply by forming a hole or holes in the container, for example by use of a needle.
- Other means such as a laser, a strong gas beam or a projectile such as a particle may also be used.
- the hole or holes are generally provided after the container has been formed, although it may also be provided earlier in the process if desired. It is also possible to include a hole or holes at the time of forming the container, for example by providing a mould with means of an appropriate shape to form the hole or holes at the same time that the container is formed.
- the gas release means may also, for example, comprise a permeable wall or wall section of the container.
- An example is a permeable wall or wall section which has microchannels therein.
- Such microchannels can be formed by any means.
- they may be provided by the inclusion of particles in the wall or wall section which provide the permeability.
- Suitable particles are polyethylene, polypropylene or starch particles.
- Desirably the particles are water-soluble. These particles are simply included in the polymer composition which is used to form the walls of the container.
- Such particles can be included by, for example, using a bi-injection moulding process. In general the particles have a diameter of at least the wall thickness, or the amount of particles included should be such that agglomerates form.
- Another possibility is to use a polymer which has a natural gas permeability to constitute one or more walls, or parts of walls, of the container. It is, of course, necessary that the polymer is permeable to the gas being generated inside the container.
- a polymer is a cellulose derivative.
- a further possibility is to generate a gas pressure sensitive membrane, for example comprising areas of weakness in the container designed to open as the gas pressure rises in the container. Areas of weakness can easily be generated by, for example, pressing a dimpled stamp onto the surface.
- the containers of the present invention can be formed by any suitable method.
- they can, for example, be formed by injection moulding, blow moulding, vertical form fill sealing, thermoforming or vacuum forming.
- the present invention also provides a process for preparing a container as defined above which comprises forming an open container, filling the container with the composition and sealing the container, wherein the container has a gas release means.
- the container of the present invention can simply have one compartment or two or more compartments.
- it can comprise an outer compartment enclosing a composition containing a component capable of generating a gas and an inner compartment containing a composition which interacts with the component which generates a gas, for example a composition comprising water.
- the containers which contain two or more compartments or composition can have a particularly attractive appearance because they contain two compositions, which are advantageously held in a fixed position in relation to each other.
- the compositions can be easily differentiated to accentuate their difference.
- the compositions can have a different physical appearance, or can be coloured differently.
- the containers can have an appearance of a fried egg or eyeball.
- Such a container may contain two components which are incompatible with each other. It may also contain a component which is incompatible with the part of the container enclosing the other component. For example, one composition may be incompatible with the part of the container enclosing another composition.
- the inner compartment may be fixed to the outer compartment, or may be free.
- Such containers can be produced by any method, for example by forming the outer compartment, filling it with the desired composition and the pre-prepared inner compartment, and then sealing the outer compartment.
- the outer compartment and the inner compartment can be produced by any method. Examples of suitable methods by which each compartment may be independently prepared are vertical form fill sealing, thermoforming and injection moulding.
- containers in which the two or more compartments are held in a fixed spatial relationship to each other.
- Such containers may be prepared by, for example, thermoforming or injection moulding, or a combination thereof.
- the container of the present invention may have at least two compartments, for example 2, 3 or 4 or more. At least one of the compartments may, for example, contain a composition which comprises water.
- the composition may comprise any amount of water such that at least some, over time, permeates through the internal wall of the container.
- Another compartment of the container comprises a component which generates a gas, for example when it is contacted with the water permeating through the wall. Examples of such components are bleaches, for example oxygen bleaches or chlorine bleaches.
- effervescent systems which may be single component systems or multi-component systems such as a mixture of an acid such as citric acid and a carbonate or bicarbonate such as sodium bicarbonate
- one composition can be released immediately the container is added to water, whereas the other may be released later.
- This may be achieved by having a compartment which takes longer to dissolve surrounding one of the compositions.
- This may be achieved, for example, by having different compartment wall thicknesses.
- the one composition may simply be held on the outside of the container, for example on the receptacle part or on the sealing member, in which case it can start to dissolve as soon as the article is added to water. It may also be achieved by choosing compartment walls which dissolve at different temperatures, for example the different temperatures encountered during the cycle of a laundry or dish washing machine.
- Injection moulding can, for example, be used to form a container, which is then filled with the desired composition and sealed, for example with a film or injection-moulded rigid closure. Desirably the film or closure dissolves before the rest of the container to release the composition. It is possible to incorporate more than one compartment in the container by use of a suitably shaped injection mould.
- the walls of the injection moulded container generally have a thickness greater than 100 ⁇ m, for example greater than 150 ⁇ m or greater than 200 ⁇ m, 300 ⁇ m, 500 ⁇ m, 750 ⁇ m or 1mm. Desirably, however, the walls have a thickness of from 200 to 1500 ⁇ m, preferably 300 ⁇ m to 800 ⁇ m. If different compartments having different dissolution times are required, different wall thicknesses for each compartment may be used. A thickness difference of from 100 ⁇ m to 500 ⁇ m, preferably 250 ⁇ m to 350 ⁇ m, would give a suitable difference in release times.
- PVOH poly(vinyl alcohol) sold in the form of granules under the name CP1210T05 by Soltec Development S.A. Paris, France.
- a PVOH may be moulded at temperatures of, for example, from 180 to 220°C, depending upon the formulation selected and the melt flow index required.
- Containers produced by injection moulding can be provided with two or more compartments by an appropriate mould shape.
- the container can be sealed with, for example, one or more water-soluble films or other sealing means as described below.
- Thermoforming techniques have been described in, for example, WO 92/17382 and WO 00/55068. It is possible to incorporate more than one compartment by a variety of techniques, for example by the technique disclosed in WO 93/08095. It is also possible to use a film incorporating a second compartment or component as a closure film, or to place a previously prepared compartment or component at the bottom of a thermoforming mould before the main container is prepared.
- the container may, for example, be formed of a film.
- the film may be a single film, or a laminated film as disclosed in GB-A-2,244,258. While a single film may have pinholes, the two or more layers in a laminate are unlikely to have pinholes which coincide.
- the film may be produced by any process, for example by extrusion and blowing or by casting.
- the film may be unoriented, monoaxially oriented or biaxially oriented.
- the layers in the film are oriented, they usually have the same orientation, although their planes of orientation may be different if desired.
- the layers in a laminate may be the same or different. Thus they may each comprise the same polymer or a different polymer.
- thermoforming or vacuum forming process an initial pocket is formed to contain the composition.
- the thickness of the film used to produce the pocket is preferably 40 to 300 ⁇ m, more preferably 80 to 200 ⁇ m, especially 100 to 160 ⁇ m, more especially 100 to 150 ⁇ m and most especially 120 to 150 ⁇ m.
- the film may be drawn down or blown down into a mould.
- the film is heated to the thermoforming temperature using a thermoforming heater plate assembly, and then drawn down under vacuum or blown down under pressure into the mould. Plug-assisted thermoforming and pre-stretching the film, for example by blowing the film away from the mould before thermoforming, may, if desired, be used.
- thermoforming temperature used depend on the thickness and porosity of the film and on the polymer or mixture of polymers being used. Thermoforming of PVOH films is known and described in, for example, WO 00/55045.
- a suitable forming temperature for PVOH or ethoxylated PVOH is, for example, from 90 to 130°C, especially 90 to 120°C.
- a suitable forming pressure is, for example, 69 to 138kPa (10 to 20 p.s.i.), especially 83 to 117 kPa (12 to 17 p.s.i.).
- a suitable forming vacuum is 0 to 4 kPa (0 to 40 mbar), especially 0 to 2 kPa (0 to 20 mbar) .
- a suitable dwell time is, for example, 0.4 to 2.5 seconds, especially 2 to 2.5 seconds.
- the secondary component can stick to the container.
- the secondary component may, for example, be a compressed particulate solid or a container containing a secondary composition.
- a suitable container comprises a polymeric film containing a particulate solid, a gel or a liquid. It is especially desirable in the context of the present invention that the secondary component comprises a bleach and, if it is in the form of a container enclosing the bleach, is provided with the gas release means.
- the compartment is then filled with the desired composition.
- the compartment may be completely filled or only partially filled.
- the composition may be a solid.
- it may be a particulate or granulated solid, or a tablet.
- It may also be a liquid, which may be thickened or gelled if desired.
- the liquid composition may be non-aqueous or aqueous, for example comprising less than or more than 5% total or free water.
- the composition may have more than one phase.
- it may comprise an aqueous composition and a liquid composition which is immiscible with the aqueous composition.
- It may also comprise a liquid composition and a separate solid composition, for example in the form of a ball, pill or speckles.
- the walls of the container may comprise a PVOH.
- PVOH polymers
- Such polymers are generally considered to be water-soluble, depending on their degree of hydrolysis. However, they are known to be able to contain compositions comprising water if steps are taken to ensure that the composition does not dissolve the PVOH or if the composition contains only a small amount of water. For example, compositions comprising up to about 5 wt% free water can be held in a PVOH container without any additional steps to protect the PVOH.
- compositions comprising more than 5 wt% water can also be held in such a container so long as steps are taken to ensure that the water is not generally able to attack the PVOH, for example by adding an electrolyte to the composition, by gelling the composition or by coating the PVOH to stop the water from contacting the container walls. Similar precautions can be taken for other water-soluble polymers.
- a sealing member is may be placed on top of the compartment and sealed thereto.
- the sealing member may be produced by, for example, injection moulding or blow moulding. It may also be in the form of a film.
- the sealing member may simply consist of a water-soluble polymer. If it is desired to produce a multi-compartment container, in an embodiment of this invention the sealing member comprises a second composition at the time it is placed on top of the first compartment. This may be held or otherwise adhered on the sealing member.
- it can be in the form of a solid composition such as a ball or pill held on the sealing member by an adhesive or mechanical means. This is especially appropriate when the sealing member has a degree of rigidity, such as when it has been produced by injection moulding.
- a previously prepared container containing the second composition to be adhered to the sealing member.
- a sealing member in the form of a film may have a filled compartment containing a composition attached thereto. The second composition or compartment may be held on either side of the sealing member such that it is inside or outside the first compartment.
- the second composition is held within a second compartment in the sealing member. This is especially appropriate when the sealing member is flexible, for example in the form of a film.
- the sealing member is placed on top of the first compartment and sealed thereto.
- the sealing member in the form of a film may be placed over a filled pocket and across the sealing portion, if present, and the films sealed together at the sealing portion.
- there is no or only one second compartment or composition in or on the sealing member but it is possible to have more than one second compartment or composition if desired, for example 2 or 3 second compartments or compositions.
- the second compartment in the sealing member may be formed by any technique.
- it can be formed by vertical form fill sealing the second composition within a film, such as by the process described in WO 89/12587. It can also be formed by having an appropriate shape for an injection moulding.
- a vacuum forming or thermoforming techniques such as that previously described in relation to the first compartment of the container of the present invention.
- a pocket surrounded by a sealing portion is formed in a film, the pocket is filled with the second composition, a film is placed on top of the filled pocket and across the sealing portion and the films are sealed together at the sealing portion.
- the film placed on top of the filled pocket to form the second compartment does not itself comprise a further compartment.
- thermoforming process is generally the same as those given above in relation to the first compartment of the container of the present invention. All of the above details are incorporated by reference to the second compartment, with the following differences:
- the second compartment is generally smaller than the first compartment since the film containing the second composition is used to form a lid on the pocket. Generally the second compartment does not extend across the sealing portion.
- the first compartment and the second compartment (or composition if not held within a compartment) have a volume ratio of from 2:1 to 20:1, preferable 4:1 to 10:1.
- the smaller compartment may, for example, comprise a bleach and the larger compartment may, for example, comprise a composition which comprises water, such as a detergent composition.
- the thickness of the film comprising the second compartment may also be less than the thickness of the film making up the first compartment of the container of the present invention, because the film is not subjected to as much localised stretching in the thermoforming step. It is also desirable to have a thickness which is less than that of the film used to form the first compartment to ensure a sufficient heat transfer through the film to soften the base web if heat sealing is used.
- the thickness of the covering film is generally from 20 to 160 ⁇ m, preferably from 40 to 100 ⁇ m, such as 40 to 80 ⁇ m or 50 to 60 ⁇ m.
- This film may be a single-layered film but is desirably laminated to reduce the possibility of pinholes allowing leakage through the film.
- the film may be the same or different as the film forming the first compartment. If two or more films are used to form the film comprising the second compartment, the films may be the same or different. Examples of suitable films are those given for the film forming the first compartment.
- the first compartment and the sealing member may be sealed together by any suitable means, for example by means of an adhesive or by heat sealing.
- Mechanical means is particularly appropriate if both have been prepared by injection moulding.
- Other methods of sealing include infra-red, radio frequency, ultrasonic, laser, solvent, vibration, electromagnetic, hot gas, hot plate, insert bonding or friction sealing and spin welding.
- An adhesive such as water or an aqueous solution of PVOH may also be used.
- the seal desirably is water-soluble if the containers are water-soluble.
- a suitable sealing temperature is, for example, 120 to 195°C, for example 140 to 150°C.
- a suitable sealing pressure is, for example, from 250 to 600 kPa. Examples of sealing pressures are 276 to 552 kPa (40 to 80 p.s.i.), especially 345 to 483 kPa (50 to 70 p.s.i.) or 400 to 800 kPa (4 to 8 bar), especially 500 to 700 kPa (5 to 7 bar) depending on the heat sealing machine used. Suitable sealing dwell times are 0.4 to 2.5 seconds.
- One skilled in the art can use an appropriate temperature, pressure and dwell time to achieve a seal of the desired integrity. While desirably conditions are chosen within the above ranges, it is possible to use one or more of these parameters outside the above ranges, although it might be necessary to compensate by changing the values of the other two parameters.
- the sealing member does not comprise the second composition at the time it is placed on top of the first component. Instead the second composition is added afterwards.
- it may be adhered to the sealing member by means of an adhesive. It may also be adhered by mechanical means, particularly when the sealing member has a degree of rigidity, for example when it has been produced by injection moulding.
- Another possibility is for the sealing member to contain an indentation which is filled, either before or after sealing, by a liquid composition which is allowed to gel in-situ.
- the containers may then be separated from each other, for example by cutting the sealing portions, or flanges. Alternatively, they may be left conjoined and, for example, perforations provided between the individual containers so that they can be easily separated a later stage, for example by a consumer. If the containers are separated, the flanges may be left in place. However, desirably the flanges are partially removed in order to provide an even more attractive appearance. Generally the flanges remaining should be as small as possible for aesthetic purposes while bearing in mind that some flange is required to ensure the two films remain adhered to each other.
- a flange having a width of 1 mm to 8 mm is desirable, preferably 2 mm to 7 mm, most preferably about 5 mm.
- Such containers may comprise, for example, two or more injection moulded containers, two or more thermoformed containers or one or more injection moulded containers and one or more thermoformed containers.
- Such containers are desirably joined across their lids to protect the relatively weak lids from damage.
- water-soluble polymers which may be used to form the containers of the present invention, especially which may be used in a single layer film or in one or more layers of a laminate or which may be used for injection moulding or blow moulding are poly(vinyl alcohol) (PVOH), cellulose derivatives such as hydroxypropyl methyl cellulose (HPMC) and gelatin.
- PVOH poly(vinyl alcohol)
- HPMC hydroxypropyl methyl cellulose
- An example of a preferred PVOH is ethoxylated PVOH.
- the PVOH may be partially or fully alcoholised or hydrolysed. For example it may be from 40 to 100%, preferably from 70 to 92%, more preferably about 88% or about 92%, alcoholised or hydrolysed.
- the degree of hydrolysis is known to influence the temperature at which the PVOH starts to dissolve in water. 88% hydrolysis corresponds to a film soluble in cold (ie room temperature) water, whereas 92% hydrolysis corresponds to a film soluble in warm water.
- the composition held inside the container does not escape form the gas release means, particularly when it is a hole.
- the particle size should be greater than the maximum dimension of the hole.
- the composition is a liquid, it should be treated such that is does not flow easily, for example by forming it into a gel.
- a gelling agent can, for example, be added. Suitable gelling agents are, for example, gums such as xanthan gum and polyacrylate thickeners such as those sold under the trademark Carbopol. It is also possible to coat the inside surface of the gas release means with a hydrophilic or lipophilic coating, depending on the nature of the liquid, so as to prevent or reduce passage of liquid therethrough.
- the composition contained in the containers of the present invention may be any composition which is intended to be released in an aqueous environment, although at least one component must be capable of generating a gas in the finished containers.
- the composition may, for example, be an agrochemical composition such as a plant protection agent, for instance a pesticide such as an insecticide, fungicide, herbicide, acaricide, or nematocide, a plant growth regulator or a plant nutrient.
- a plant protection agent for instance a pesticide such as an insecticide, fungicide, herbicide, acaricide, or nematocide, a plant growth regulator or a plant nutrient.
- Such compositions are generally packaged in amounts of from 0.1 g to 7 kg, preferably 1 to 5 kg, when in solid form.
- When in liquid or gelled form such compositions are generally packaged in amounts of from 1 ml to 10 litres, preferably 0.1 to 6 litres, especially from 0.5 to 1.5 litres.
- the composition may also be a fabric care, surface care or dishwashing composition. Thus, for example, it may be a dishwashing, water-softening, laundry or detergent composition, or a rinse aid. Such compositions may be suitable for use in a domestic washing machine.
- the composition may also be a disinfectant, antibacterial or antiseptic composition, or a refill composition for a trigger-type spray.
- Such compositions are generally packaged in amounts of from 5 to 100 g, especially from 15 to 40 g.
- a dishwashing composition may weigh from 15 to 30 g and a water-softening composition may weigh from 15 to 40 g.
- composition if in liquid form, may be anhydrous or comprise water, for example at least 5 wt %, preferably at least 10 wt%, water based on the weight of the aqueous composition. Desirably the composition contains less than 80 wt% water.
- the composition may contain surface active agents such as an anionic, nonionic, cationic, amphoteric or zwitterionic surface active agents or mixtures thereof.
- anionic surfactants are straight-chained or branched alkyl sulfates and alkyl polyalkoxylated sulfates, also known as alkyl ether sulfates. Such surfactants may be produced by the sulfation of higher C 8 -C 20 fatty alcohols.
- Examples of primary alkyl sulfate surfactants are those of formula: ROSO 3 - M + wherein R is a linear C 8 -C 20 hydrocarbyl group and M is a water-solubilising cation.
- R is C 10 -C 16 alkyl, for example C 12 -C 14
- M is alkali metal such as lithium, sodium or potassium.
- secondary alkyl sulfate surfactants are those which have the sulfate moiety on a "backbone" of the molecule, for example those of formula: CH 3 (CH 2 ) n (CHOSO 3 - M + ) (CH 2 ) m CH 3 wherein m and n are independently 2 or more, the sum of m+n typically being 6 to 20, for example 9 to 15, and M is a water-solubilising cation such as lithium, sodium or potassium.
- Especially preferred secondary alkyl sulfates are the (2,3) alkyl sulfate surfactants of formulae: CH 3 (CH 2 ) x (CHOSO 3 - M + ) CH 3 and CH 3 (CH 2 ) x (CHOSO 3 - M + ) CH 2 CH 3 for the 2-sulfate and 3-sulfate, respectively.
- x is at least 4, for example 6 to 20, preferably 10 to 16.
- M is cation, such as an alkali metal, for example lithium, sodium or potassium.
- alkoxylated alkyl sulfates are ethoxylated alkyl sulfates of the formula: RO (C 2 H 4 O) n SO 3 - M + wherein R is a C 8 -C 20 alkyl group, preferably C 10 -C 18 such as a C 12 -C 16 , n is at least 1, for example from 1 to 20, preferably 1 to 15, especially 1 to 6, and M is a salt-forming cation such as lithium, sodium, potassium, ammonium, alkylammonium or alkanolammonium. These compounds can provide especially desirable fabric cleaning performance benefits when used in combination with alkyl sulfates.
- alkyl sulfates and alkyl ether sulfates will generally be used in the form of mixtures comprising varying alkyl chain lengths and, if present, varying degrees of alkoxylation.
- anionic surfactants which may be employed are salts of fatty acids, for example C 8 -C 18 fatty acids, especially the sodium or potassium salts, and alkyl, for example C 8- C 18 , benzene sulfonates.
- nonionic surfactants are fatty acid alkoxylates, such as fatty acid ethoxylates, especially those of formula: R(C 2 H 4 O) n OH wherein R is a straight or branched C 8 -C 16 alkyl group, preferably a C 9 -C 15 , for example C 10 -C 14 , alkyl group and n is at least 1, for example from 1 to 16, preferably 2 to 12, more preferably 3 to 10.
- the alkoxylated fatty alcohol nonionic surfactant will frequently have a hydrophilic-lipophilic balance (HLB) which ranges from 3 to 17, more preferably from 6 to 15, most preferably from 10 to 15.
- HLB hydrophilic-lipophilic balance
- fatty alcohol ethoxylates are those made from alcohols of 12 to 15 carbon atoms and which contain about 7 moles of ethylene oxide. Such materials are commercially marketed under the trademarks Neodol 25-7 and Neodol 23-6.5 by Shell Chemical Company.
- Other useful Neodols include Neodol 1-5, an ethoxylated fatty alcohol averaging 11 carbon atoms in its alkyl chain with about 5 moles of ethylene oxide; Neodol 23-9, an ethoxylated primary C 12 -C 13 alcohol having about 9 moles of ethylene oxide; and Neodol 91-10, an ethoxylated C 9 -C 11 primary alcohol having about 10 moles of ethylene oxide.
- Dobanol 91-5 is an ethoxylated C 9 -C 11 fatty alcohol with an average of 5 moles ethylene oxide
- Dobanol 25-7 is an ethoxylated C 12 -C 15 fatty alcohol with an average of 7 moles of ethylene oxide per mole of fatty alcohol.
- Suitable ethoxylated alcohol nonionic surfactants include Tergitol 15-S-7 and Tergitol 15-S-9, both of which are linear secondary alcohol ethoxylates available from Union Carbide Corporation.
- Tergitol 15-S-7 is a mixed ethoxylated product of a C 11 -C 15 linear secondary alkanol with 7 moles of ethylene oxide and Tergitol 15-S-9 is the same but with 9 moles of ethylene oxide.
- Neodol 45-11 is a similar ethylene oxide condensation products of a fatty alcohol having 14-15 carbon atoms and the number of ethylene oxide groups per mole being about 11. Such products are also available from Shell Chemical Company.
- nonionic surfactants are, for example, C 10 -C 18 alkyl polyglycosides, such s C 12 -C 16 alkyl polyglycosides, especially the polyglucosides. These are especially useful when high foaming compositions are desired.
- Further surfactants are polyhydroxy fatty acid amides, such as C 10 -C 18 N-(3-methoxypropyl) glycamides and ethylene oxide-propylene oxide block polymers of the Pluronic type.
- cationic surfactants are those of the quaternary ammonium type.
- the total content of surfactants in the composition is desirably 60 to 95 wt%, especially 75 to 90 wt%.
- an anionic surfactant is present in an amount of 50 to 75 wt%
- the nonionic surfactant is present in an amount of 5 to 50 wt%
- the cationic surfactant is present in an amount of from 0 to 20 wt%.
- the amounts are based on the total solids content of the composition, i.e. excluding any solvent which may be present.
- compositions may also independently comprise enzymes, such as protease, lipase, amylase, cellulase and peroxidase enzymes.
- enzymes such as protease, lipase, amylase, cellulase and peroxidase enzymes.
- Such enzymes are commercially available and sold, for example, under the registered trade marks Esperase, Alcalase and Savinase by Nova Industries A/S and Maxatase by International Biosynthetics, Inc.
- the enzymes are independently present in the compositions in an amount of from 0.5 to 3 wt%, especially 1 to 2 wt%, when added as commercial preparations they are not pure and this represents an equivalent amount of 0.005 to 0.5 wt% of pure enzyme.
- compositions may, if desired, independently comprise a thickening agent or gelling agent.
- suitable thickeners are polyacrylate polymers such as those sold under the trade mark CARBOPOL, or the trade mark ACUSOL by Rohm and Haas Company.
- Other suitable thickeners are xanthan gums.
- the thickener if present, is generally present in an amount of from 0.2 to 4 wt%, especially 0.5 to 2 wt%.
- compositions used in dishwashing independently usually comprise a detergency builder.
- the builders counteract the effects of calcium, or other ion, water hardness.
- examples of such materials are citrate, succinate, malonate, carboxymethyl succinate, carboxylate; polycarboxylate and polyacetyl carboxylate salts, for example with alkali metal or alkaline earth metal cations, or the corresponding free acids.
- Specific examples are sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, C 10 -C 22 fatty acids and citric acid.
- organic phosphonate type sequestering agents such as those sold by Monsanto under the trade mark Dequest and alkylhydroxy phosphonates. Citrate salts and C 12 -C 18 fatty acid soaps are preferred.
- Further builders are; phosphates such as sodium, potassium or ammonium salts of mono-, di- or tri-poly or oligo-phosphates; zeolites; silicates, amorphous or structured, such as sodium, potassium or ammonium salts.
- Suitable builders are polymers and copolymers known to have builder properties.
- such materials include appropriate polyacrylic acid, polymaleic acid, and polyacrylic/polymaleic and copolymers and their salts, such as those sold by BASF under the trade mark Sokalan.
- the builder is desirably present in an amount of up to 90 wt%, preferably 15 to 90 wt%, more preferable 15 to 75 wt%, relative to the total weight of the composition. Further details of suitable components are given in, for example, EP-A-694,059, EP-A-518,720 and WO 99/06522.
- compositions can also optionally comprise one or more additional ingredients.
- additional ingredients include conventional detergent composition components such as further surfactants, bleaches, bleach enhancing agents, builders, suds boosters or suds suppressors, anti-tarnish and anticorrosion agents, organic solvents, co-solvents, phase stabilisers, emulsifying agents, preservatives, soil suspending agents, soil release agents, germicides, pH adjusting agents or buffers, non-builder alkalinity sources, chelating agents, clays such as smectite clays, enzyme stabilizers, anti-limescale agents, colourants, dyes, hydrotropes, dye transfer inhibiting agents, brighteners, and perfumes. If used, such optional ingredients will generally constitute no more than 10 wt%, for example from 1 to 6 wt%, the total weight of the compositions.
- compositions which comprise an enzyme may optionally contain materials which maintain the stability of the enzyme.
- enzyme stabilizers include, for example, polyols such as propylene glycol, boric acid and borax. Combinations of these enzyme stabilizers may also be employed. If utilized, the enzyme stabilizers generally constitute from 0.1 to 1 wt% of the compositions.
- compositions may optionally comprise materials which serve as phase stabilizers and/or co-solvents.
- materials which serve as phase stabilizers and/or co-solvents are C 1 -C 3 alcohols such as methanol, ethanol and propanol.
- C 1 -C 3 alkanolamines such as mono-, di- and triethanolamines can also be used, by themselves or in combination with the alcohols.
- the phase stabilizers and/or co-solvents can, for example, constitute 0 to 1 wt%, preferably 0.1 to 0.5 wt%, of the composition.
- compositions may optionally comprise components which adjust or maintain the pH of the compositions at optimum levels.
- the pH may be from, for example, 1 to 13, such as 8 to 11 depending on the nature of the composition.
- a dishwashing composition desirably has a pH of 8 to 11
- a laundry composition desirable has a pH of 7 to 9
- a water-softening composition desirably has a pH of 7 to 9.
- pH adjusting agents are NaOH and citric acid.
- dish washing formulations are preferred which are adapted to be used in automatic dish washing machines. Due to their specific requirements specialised formulation is required and these are illustrated below
- Amounts of the ingredients can vary within wide ranges, however preferred automatic dishwashing detergent compositions herein (which typically have a 1% aqueous solution pH of above 8, more preferably from 9.5 to 12, most preferably from 9.5 to 10.5) are those wherein there is present: from 5% to 90%, preferably from 5% to 75%, of builder; from 0.1% to 40%, preferably from 0.5% to 30%, of bleaching agent; from 0.1% to 15%, preferably from 0.2% to 10%, of the surfactant system; from 0.0001% to 1%, preferably from 0.001% to 0.05%, of a metal-containing bleach catalyst; and from 0.1% to 40%, preferably from 0.1% to 20% of a water-soluble silicate.
- Such fully-formulated embodiments typically further comprise from 0.1% to 15% of a polymeric dispersant, from 0.01% to 10% of a chelant, and from 0.00001% to 10% of a detersive enzyme, though further additional or adjunct ingredients may be present.
- Detergent compositions herein in granular form typically limit water content, for example to less than 7% free water, for better storage stability.
- Non-ionic surfactants useful in ADW (Automatic Dish Washing) compositions of the present invention desirably include surfactant(s) at levels of from 2% to 60% of the composition.
- surfactant(s) at levels of from 2% to 60% of the composition.
- bleach-stable surfactants are preferred.
- Non-ionic surfactants generally are well known, being described in more detail in Kirk Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 22, pp. 360-379, "Surfactants and Detersive Systems", incorporated by reference herein.
- the ADW composition comprises at least one non-ionic surfactant.
- non-ionics are ethoxylated non-ionic surfactants prepared by the reaction of a monohydroxy alkanol or alkylphenol with 6 to 20 carbon atoms with preferably at least 12 moles particularly preferred at least 16 moles, and still more preferred at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol.
- non-ionic surfactants are the non-ionic from a linear chain fatty alcohol with 16-20 carbon atoms and at least 12 moles particularly preferred at least 16 and still more preferred at least 20 moles of ethylene oxide per mole of alcohol.
- the non-ionic surfactant additionally comprise propylene oxide units in the molecule.
- this PO units constitute up to 25% by weight, preferably up to 20% by weight and still more preferably up to 15% by weight of the overall molecular weight of the non-ionic surfactant.
- Particularly preferred surfactants are ethoxylated monohydroxy alkanols or alkylphenols, which additionally comprises polyoxyethylene-polyoxypropylene block copolymer units.
- the alcohol or alkylphenol portion of such surfactants constitutes more than 30%, preferably more than 50%, more preferably more than 70% by weight of the overall molecular weight of the non-ionic surfactant.
- non-ionic surfactants includes reverse block copolymers of polyoxyethylene and polyoxypropylene and block copolymers of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane.
- R 1 O[CH 2 CH(CH 3 )O] X [CH 2 CH 2 O] Y [CH 2 CH(OH)R 2 ]
- R 1 represents a linear or branched chain aliphatic hydrocarbon group with 4-18 carbon atoms or mixtures thereof
- R 2 represents a linear or branched chain aliphatic hydrocarbon rest with 2-26 carbon atoms or mixtures thereof
- x is a value between 0.5 and 1.5
- y is a value of at least 15.
- R 1 and R 2 are preferably linear or branched chain, saturated or unsaturated, aliphatic or aromatic hydrocarbon groups with 6-22 carbon atoms, where group with 8 to 18 carbon atoms are particularly preferred.
- group R 3 H methyl or ethyl are particularly preferred.
- Particularly preferred values for x are comprised between 1 and 20, preferably between 6 and 15.
- each R 3 in the formula can be different.
- the value 3 for x is only an example and bigger values can be chosen whereby a higher number of variations of (EO) or (PO) units would arise.
- mixtures of different non-ionic surfactants is particularly preferred in ADW formulations for example mixtures of alkoxylated alcohols and hydroxy group containing alkoxylated alcohols.
- compositions may be the same or different. If they are different, they may, nevertheless, have one or more individual components in common.
- the containers may themselves be packaged in outer containers if desired, for example non-water soluble containers which are removed before the water-soluble containers are used.
- the containers of the present invention may have a maximum dimension of 5 cm, excluding any flanges.
- a container may have a length of 1 to 5 cm, especially 3.5 to 4.5 cm, a width of 1.5 to 3.5 cm, especially 2 to 3 cm, and a height of 1 to 2 cm, especially 1.25 to 1.75 cm.
- the primary composition and the secondary composition may be appropriately chosen depending on the desired use of the article.
- the first composition may comprise, for example, a detergent
- the second composition may comprise a bleach, stain remover, water-softener, enzyme or fabric conditioner.
- the article may be adapted to release the compositions at different times during the laundry wash. For example, a bleach or fabric conditioner is generally released at the end of a wash, and a water-softener is generally released at the start of a wash. An enzyme may be released at the start or the end of a wash.
- the first composition may comprise a fabric conditioner and the second composition may comprise an enzyme which is released before or after the fabric conditioner in a rinse cycle.
- the first composition may comprise a detergent and the second composition may comprise a water-softener, salt, enzyme, rinse aid, bleach or bleach activator.
- the article may be adapted to release the compositions at different times during the laundry wash. For example, a rinse aid, bleach or bleach activator is generally released at the end of a wash, and a water-softener, salt or enzyme is generally released at the start of a wash.
- the article may also have more than two compartments adapted to release compositions at different times. For example a three compartment container may contain a bleach, a bleach activator and an enzyme in different compartments. A four compartment container may also contain a salt in a fourth compartment.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Packages (AREA)
- Detergent Compositions (AREA)
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
- Farming Of Fish And Shellfish (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
Claims (34)
- Conteneur hydrosoluble formé par moulage par injection ou thermoformage, contenant une composition génératrice de gaz, la composition étant retenue dans le conteneur jusqu'à la solubilisation du conteneur dans de l'eau, dans lequel le conteneur possède un moyen de libération de gaz.
- Conteneur hydrosoluble selon la revendication 1, comprenant un premier compartiment et un deuxième compartiment séparé dudit premier compartiment par une paroi perméable à l'eau, dans lequel ledit premier compartiment contient une première composition comprenant de l'eau et le deuxième compartiment contient une deuxième composition génératrice de gaz lors de sa mise en contact avec la première composition, la composition étant retenue dans le conteneur jusqu'à la solubilisation du conteneur dans de l'eau, ledit deuxième compartiment possédant le moyen de libération de gaz.
- Conteneur selon la revendication 2, dans lequel la composition génère le gaz par une interaction chimique avec les parois du conteneur.
- Conteneur selon la revendication 2, dans lequel la composition génère le gaz par une interaction avec un ou plusieurs composants de l'atmosphère diffusant à travers les parois du conteneur.
- Conteneur selon la revendication 2, dans lequel la composition génère le gaz sans interaction avec d'autres composants.
- Conteneur selon la revendication 2, dans lequel ladite paroi perméable à l'eau comprend un poly(alcool vinylique).
- Conteneur selon la revendication 2, dans lequel la première composition comprend de l'eau dans une composition détergente.
- Conteneur selon l'une quelconque des revendications précédentes, dans lequel le composant générateur de gaz comprend un javellisant.
- Conteneur hydrosoluble selon la revendication 8, dans lequel le javellisant est un javellisant à l'oxygène.
- Conteneur selon l'une quelconque des revendications précédentes, qui possède des parois externes comprenant un poly(alcool vinylique).
- Conteneur selon l'une quelconque des revendications précédentes, qui a été formé par thermoformage.
- Conteneur selon l'une quelconque des revendications 1 à 10, qui a été formé par moulage par injection.
- Conteneur selon l'une quelconque des revendications précédentes, dans lequel le moyen de libération de gaz est un évent.
- Conteneur selon la revendication 13, dans lequel l'orifice est constitué d'un ou plusieurs orifices.
- Conteneur selon la revendication 14, dans lequel chaque orifice a une dimension maximale de 0,1 à 2 mm.
- Conteneur selon la revendication 15, dans lequel chaque orifice a une dimension maximale de 0,5 à 1,5 mm.
- Conteneur selon l'une quelconque des revendications 1 à 12, dans lequel le moyen de libération de gaz est une paroi ou section de paroi perméable du conteneur.
- Conteneur selon la revendication 17, dans lequel la paroi ou section de paroi perméable contient des microcanaux en son sein.
- Conteneur selon la revendication 17 ou 18, dans lequel la paroi ou section de paroi perméable comprend des particules qui procurent la perméabilité.
- Conteneur selon la revendication 19, dans lequel les particules sont des particules de polyéthylène, de polypropylène ou d'amidon.
- Conteneur selon l'une quelconque des revendications précédentes, qui possède au moins deux compartiments, dans lequel le premier compartiment est fermé par un élément de fermeture comprenant le deuxième compartiment au sein dudit élément de fermeture.
- Conteneur selon la revendication 21, dans lequel l'élément de fermeture est un film.
- Conteneur selon la revendication 22, dans lequel le film contient un deuxième compartiment qui a été formé par une méthode verticale de formage-ensachage-scellage.
- Conteneur selon la revendication 22, dans lequel le film contient un deuxième compartiment qui a été formé par thermoformage.
- Conteneur selon l'une quelconque des revendications précédentes, dans lequel la composition générant un gaz est un solide particulaire, un gel, un liquide ou un solide comprimé.
- Conteneur selon la revendication 25, comprenant une deuxième composition qui est un solide particulaire, un gel, un liquide ou un solide comprimé.
- Conteneur selon l'une quelconque des revendications précédentes, comprenant une composition d'entretien des tissus, d'entretien des surfaces ou pour vaisselle.
- Conteneur selon la revendication 27, comprenant une composition pour vaisselle, d'adoucissement d'eau, de blanchisserie ou détergente, ou un produit de rinçage.
- Conteneur selon la revendication 27, comprenant une composition désinfectante, antibactérienne ou antiseptique ou une composition de recharge pour un vaporisateur de type à pompe.
- Conteneur selon l'une quelconque des revendications 1 à 26, comprenant une composition agricole.
- Procédé de préparation d'un conteneur tel que défini selon l'une quelconque des revendications précédentes, comprenant le formage d'un conteneur ouvert, le remplissage du conteneur par la composition et la fermeture du conteneur, dans lequel le conteneur possède un moyen de libération de gaz.
- Procédé selon la revendication 31, dans lequel le moyen de libération de gaz est formé par l'insertion d'une aiguille à travers la paroi du conteneur, ou par un laser.
- Procédé selon la revendication 32, dans lequel le laser est appliqué ou l'aiguille est insérée à travers la paroi du conteneur une fois le conteneur formé.
- Procédé selon la revendication 31, dans lequel le moyen de libération de gaz est constitué d'un ou plusieurs orifices formés en même temps que la formation du conteneur par moulage.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0111963A GB2375515B (en) | 2001-05-17 | 2001-05-17 | Water-soluble containers |
| GB0111963 | 2001-05-17 | ||
| PCT/GB2002/002226 WO2002092453A1 (fr) | 2001-05-17 | 2002-05-16 | Conteneurs solubles dans l'eau comprenant un systeme de liberation de gaz |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1387797A1 EP1387797A1 (fr) | 2004-02-11 |
| EP1387797B1 true EP1387797B1 (fr) | 2006-07-26 |
Family
ID=9914752
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP02769512A Revoked EP1387797B1 (fr) | 2001-05-17 | 2002-05-16 | Conteneurs solubles dans l'eau comprenant un systeme de liberation de gaz |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US20040144681A1 (fr) |
| EP (1) | EP1387797B1 (fr) |
| AT (1) | ATE334073T1 (fr) |
| CA (1) | CA2446071A1 (fr) |
| DE (2) | DE20220721U1 (fr) |
| ES (1) | ES2266569T3 (fr) |
| GB (1) | GB2375515B (fr) |
| WO (1) | WO2002092453A1 (fr) |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0122665D0 (en) * | 2001-09-20 | 2001-11-14 | Cussons Int Ltd | Dispenser for personal care composition |
| GB2390840A (en) * | 2002-07-17 | 2004-01-21 | Reckitt Benckiser | Water-soluble container with plural compartments |
| GB2391532B (en) * | 2002-08-07 | 2004-09-15 | Reckitt Benckiser | Water-soluble container with spacer between compartments |
| GB0320997D0 (en) * | 2003-09-09 | 2003-10-08 | Stanelco Fibre Optics Ltd | Food sachets |
| GB2419864A (en) * | 2003-12-19 | 2006-05-10 | Reckitt Benckiser Nv | Injection moulded water-soluble container containing a detergent |
| MX2007005815A (es) * | 2004-11-16 | 2007-12-12 | Tbs Technologies Llc | Aparato para generacion de dioxido de cloro. |
| GB0914702D0 (en) * | 2009-08-22 | 2009-09-30 | Reckitt Benckiser Nv | Method |
| CA2842774A1 (fr) * | 2013-02-13 | 2014-08-13 | Multi-Pack Solutions | Systemes et methodes de formation d'ouvertures dans les emballages hydrosolubles |
| GB2531973B (en) | 2013-09-06 | 2018-12-26 | Procter & Gamble | Pouches comprising water-soluble fibrous wall materials and methods for making same |
| MX383769B (es) * | 2013-09-06 | 2025-03-14 | Procter & Gamble | Bolsitas que comprenden materiales de pared de película perforados y métodos para su fabricación. |
| US9670440B2 (en) * | 2013-10-07 | 2017-06-06 | Monosol, Llc | Water-soluble delayed release capsules, related methods, and related articles |
| EP3055403B1 (fr) * | 2013-10-07 | 2020-08-26 | Monosol, LLC | Capsules hydrosolubles à libération retardée, procédés et articles associés |
| CA2871901C (fr) | 2014-10-24 | 2021-07-20 | Multi-Pack Solutions | Systemes et methodes de formation de paquets hydrosolubles a double couche |
| US11697905B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles that exhibit consumer acceptable article in-use properties |
| US11697906B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles and product-shipping assemblies for containing the same |
| US11697904B2 (en) | 2017-01-27 | 2023-07-11 | The Procter & Gamble Company | Active agent-containing articles that exhibit consumer acceptable article in-use properties |
| EP3434758B1 (fr) * | 2017-07-28 | 2022-05-25 | Henkel IP & Holding GmbH | Procédés de fabrication de produits à dose unitaire à surfusion |
| US11257597B2 (en) * | 2018-12-31 | 2022-02-22 | Global Nuclear Fuel—Americas, LLC | Systems and methods for debris-free nuclear component handling |
| DE102019131454A1 (de) * | 2019-11-21 | 2021-05-27 | Henkel Ag & Co. Kgaa | Wirkstoffsachet, Verfahren zur Herstellung eines Wirkstoffsachets und Verwendung eines Wirkstoffsachets |
| WO2022051839A1 (fr) * | 2020-09-11 | 2022-03-17 | Bonne O Inc. | Système de carbonatation de boisson, procédé de carbonatation d'une boisson et dosette de carbonatation |
| TWI747613B (zh) | 2020-11-16 | 2021-11-21 | 台灣松下電器股份有限公司 | 用於洗衣機的抗菌劑盒 |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2595708A (en) * | 1948-09-01 | 1952-05-06 | Ivers Lee Co | Vented package |
| US2633284A (en) * | 1949-03-28 | 1953-03-31 | Howard J Moffett | Sealed cooking container for comestibles |
| US3186869A (en) * | 1961-02-23 | 1965-06-01 | Friedman Jack | Coated film for laundry package |
| US3208192A (en) * | 1962-09-06 | 1965-09-28 | Procter & Gamble | Formation of firm flat packets of granular substance |
| US4039611A (en) * | 1972-02-11 | 1977-08-02 | Deutsche Gesellschaft Fur Schadlingbekampfung | Method for treating residues, left over after the gas release, of pest control agents that contain earth metal phosphides and/or alkaline earth metal phosphides |
| US3937396A (en) * | 1974-01-18 | 1976-02-10 | Schneider William S | Valve for vented package |
| US4416791A (en) * | 1981-11-11 | 1983-11-22 | Lever Brothers Company | Packaging film and packaging of detergent compositions therewith |
| US4659496A (en) * | 1986-01-31 | 1987-04-21 | Amway Corporation | Dispensing pouch containing premeasured laundering compositions |
| NZ228311A (en) * | 1988-03-31 | 1990-11-27 | Hercules Inc | Fresh produce package with gas permeable panel |
| US4820435A (en) * | 1988-05-02 | 1989-04-11 | E. I. Du Pont De Nemours And Company | Liquid-dispensing pouch |
| IL90584A (en) * | 1988-06-15 | 1994-12-29 | May & Baker Ltd | Package releasing its contents on contact with water |
| GB8909253D0 (en) * | 1989-04-24 | 1989-06-07 | Unilever Plc | Packaged liquid cleaning product |
| TR24867A (tr) * | 1989-08-23 | 1992-07-01 | Unilever Nv | CAMASIR MUAMELE MAMULü |
| GB9021516D0 (en) * | 1990-10-03 | 1990-11-14 | Unilever Plc | Packaging film and sachet product |
| AP348A (en) * | 1991-04-05 | 1994-07-28 | Rhone Poulenc Agrochimie | Package for agrochemicals. |
| CA2130896C (fr) * | 1992-04-27 | 2004-10-05 | Jose Porchia | Pellicule microperforee et sac d'emballage fabrique avec ladite pellicule |
| JPH07507998A (ja) * | 1992-05-29 | 1995-09-07 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | 配合禁忌の作物防護用化学物質の輸送のための水溶性ポリマー包装物 |
| US5419638A (en) * | 1993-05-06 | 1995-05-30 | Jamison; Mark D. | Pressure sensitive gas valve for flexible pouch |
| JPH072272A (ja) * | 1993-06-15 | 1995-01-06 | Nippon Chibagaigii Kk | 水溶性フィルムを用いた薬剤包装材料及び包装容器 |
| US5534178A (en) * | 1994-12-12 | 1996-07-09 | Ecolab Inc. | Perforated, stable, water soluble film container for detersive compositions |
| JPH10245075A (ja) * | 1997-03-04 | 1998-09-14 | Hiroshi Kawai | 発泡製剤を包んだ包装体 |
| US7125828B2 (en) * | 2000-11-27 | 2006-10-24 | The Procter & Gamble Company | Detergent products, methods and manufacture |
| WO2002050240A1 (fr) * | 2000-12-20 | 2002-06-27 | Unilever N.V. | Article de lavage |
-
2001
- 2001-05-17 GB GB0111963A patent/GB2375515B/en not_active Expired - Lifetime
-
2002
- 2002-05-16 DE DE20220721U patent/DE20220721U1/de not_active Expired - Lifetime
- 2002-05-16 EP EP02769512A patent/EP1387797B1/fr not_active Revoked
- 2002-05-16 DE DE60213397T patent/DE60213397T2/de not_active Revoked
- 2002-05-16 CA CA002446071A patent/CA2446071A1/fr not_active Abandoned
- 2002-05-16 AT AT02769512T patent/ATE334073T1/de not_active IP Right Cessation
- 2002-05-16 WO PCT/GB2002/002226 patent/WO2002092453A1/fr not_active Ceased
- 2002-05-16 US US10/477,656 patent/US20040144681A1/en not_active Abandoned
- 2002-05-16 ES ES02769512T patent/ES2266569T3/es not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| DE20220721U1 (de) | 2004-06-03 |
| GB0111963D0 (en) | 2001-07-04 |
| GB2375515B (en) | 2003-11-19 |
| GB2375515A (en) | 2002-11-20 |
| EP1387797A1 (fr) | 2004-02-11 |
| ATE334073T1 (de) | 2006-08-15 |
| US20040144681A1 (en) | 2004-07-29 |
| WO2002092453A1 (fr) | 2002-11-21 |
| DE60213397T2 (de) | 2007-07-26 |
| DE60213397D1 (de) | 2006-09-07 |
| CA2446071A1 (fr) | 2002-11-21 |
| ES2266569T3 (es) | 2007-03-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1379445B1 (fr) | Recipients solubles dans l'eau contenant au moins deux compartiments | |
| EP1539605B1 (fr) | Recipient hydrosoluble | |
| US7105478B2 (en) | Water-soluble container having at least two openings | |
| US7578114B2 (en) | Water-soluble container comprising at least two compartments | |
| EP1387797B1 (fr) | Conteneurs solubles dans l'eau comprenant un systeme de liberation de gaz | |
| US7891515B2 (en) | Water soluble container with rigid spacer | |
| US20090196892A1 (en) | Process for preparing water soluble articles | |
| US20060016716A1 (en) | Injection moulded containers | |
| WO2002092456A1 (fr) | Contenant moule par injection soluble dans l'eau | |
| CA2444730C (fr) | Procede de preparation d'un recipient thermoforme hydrosoluble | |
| EP1390271B1 (fr) | Recipient hydrosoluble moule par injection | |
| GB2387598A (en) | Water-soluble container and a process for its preparation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20031017 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| 17Q | First examination report despatched |
Effective date: 20041004 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH CY DE DK ES FI FR GR IE IT LI LU MC NL PT SE TR |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GR IE IT LI LU MC NL PT SE TR |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060726 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060726 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060726 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060726 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060726 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060726 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060726 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REF | Corresponds to: |
Ref document number: 60213397 Country of ref document: DE Date of ref document: 20060907 Kind code of ref document: P |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061026 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061026 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061226 |
|
| NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
| ET | Fr: translation filed | ||
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2266569 Country of ref document: ES Kind code of ref document: T3 |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| 26 | Opposition filed |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN Effective date: 20070425 |
|
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| 26 | Opposition filed |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN Effective date: 20070425 Opponent name: THE PROCTER & GAMBLE COMPANY Effective date: 20070426 |
|
| PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061027 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070516 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080526 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080527 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080630 Year of fee payment: 7 |
|
| RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
| RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
| 27W | Patent revoked |
Effective date: 20090206 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060726 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070516 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060726 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080519 Year of fee payment: 7 |