EP1353854A2 - Aerosol mdi overcap containing desiccant - Google Patents
Aerosol mdi overcap containing desiccantInfo
- Publication number
- EP1353854A2 EP1353854A2 EP01939031A EP01939031A EP1353854A2 EP 1353854 A2 EP1353854 A2 EP 1353854A2 EP 01939031 A EP01939031 A EP 01939031A EP 01939031 A EP01939031 A EP 01939031A EP 1353854 A2 EP1353854 A2 EP 1353854A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- housing
- radially oriented
- sealant
- moisture
- metered dose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002274 desiccant Substances 0.000 title claims abstract description 19
- 239000000443 aerosol Substances 0.000 title claims description 4
- 229940071648 metered dose inhaler Drugs 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 19
- 239000000565 sealant Substances 0.000 claims description 11
- 239000011888 foil Substances 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 8
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 239000006096 absorbing agent Substances 0.000 claims description 5
- -1 polypropylene Polymers 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229940057282 albuterol sulfate Drugs 0.000 claims description 4
- BNPSSFBOAGDEEL-UHFFFAOYSA-N albuterol sulfate Chemical compound OS(O)(=O)=O.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1.CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 BNPSSFBOAGDEEL-UHFFFAOYSA-N 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 4
- 229910002027 silica gel Inorganic materials 0.000 claims description 4
- 239000011094 fiberboard Substances 0.000 claims description 3
- 239000004593 Epoxy Substances 0.000 claims description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 238000002788 crimping Methods 0.000 claims description 2
- 229940079593 drug Drugs 0.000 abstract description 5
- 239000003814 drug Substances 0.000 abstract description 5
- 239000002245 particle Substances 0.000 abstract description 2
- 239000003380 propellant Substances 0.000 description 4
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000009517 secondary packaging Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D83/00—Containers or packages with special means for dispensing contents
- B65D83/14—Containers for dispensing liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant
- B65D83/40—Closure caps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D51/00—Closures not otherwise provided for
- B65D51/24—Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes
- B65D51/28—Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials
- B65D51/30—Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes with auxiliary containers for additional articles or materials for desiccators
Definitions
- HFC MDI's moisture ingress into HFC MDI's is problematic, particularly for MDI's containing agroscopic drug particles which readily adsorb and/or absord water and form aggregates.
- One solution to the problem has been to incorporate a dessicant to absorb moisture that in its absence would ingress into the MDI.
- the manner in which the desiccant is employed can, however, impact to varying degrees several factors.
- the structures employed for the desiccant can affect the cost of manufacturing. Complex and difficult mechanisms may reduce throughput, decrease efficiencies, and increase material costs.
- the form of desiccant packaging can also affect the visual and commercial appeal of the MDI. For example, to some vendors and customers, an internal, unseen desiccant may be more appealing than the overrap and loose desiccant pouch disclosed in the above-referenced application.
- HFC propellant MDI's there is a strong need for effective prevention of moisture ingress in HFC propellant MDI's. It is well established that non-CFC propellants, especially HFC 134a, have much greater water solubility that the CFC propellants traditionally used in MDI's.
- the maximum water solubility in HFC 134a is about 2200 ppm (and about 1000 ppm in pressurized/stored MDI's) compared to about 130 ppm (and 50-100 ppm in pressurized/stored MDI's) for CFC 1 1 , 12 and 114.
- the maximum solubility may be further increased where co-solvents such as ethanol are employed in the aerosol formulation.
- HFC MDI's The mechanism of moisture ingress into HFC MDI's may be found in Williams, G. and Tcherevatchenkoff, A. (1999), "Moisture Transport Into CFC-Free MDI's,” Respiratory Drug Deleivery VI, Hilton Head, SC, USA.
- moisture ingress is influenced by the elastomeric nature of the valve gaskets as well as the type of HFA formulation and storage conditions emoloyed. It may be appropriate under some circumstances to control moisture ingress into Hr ' C-based MDI's.
- One example is where hygroscopic drug substance are used, such as albuterol sulfate.
- the present invention advantageously reduces moisture ingress into MDI's to suitable levels.
- the present invention employs a desiccant in a manner that is visually appealing and commercially advantageous.
- the design and structure of the present invention is also advantageously simple, efficient to manufacture, cost effective, smaller and less bulky that other secondary packaging systems.
- One aspect of the invention is an overcap including an outer housing fitted with a moisture absorber structure having a housing containing a desiccant.
- the housing of the absorber is preferably constructed from a radially oriented material connected to a moisture permeable material.
- the radially oriented material is preferably an injection moldable plastic.
- the moisture permeable material is preferably fiberboard or TYVEKTM available from DuPont.
- the moisture permeable material is connected to the radially oriented material by crimping over a portion of the radially oriented material.
- the injection moldable plastic is preferably a polypropylene.
- the desiccant preferably includes a granular silica gel, preferably 2-10 grams.
- the housing of the absorber includes at least one radially oriented fin.
- the radially oriented fin may be a circumferential fin.
- the absorber may also include a plurality of circumferential fins or a combination of radial and circumferential fins.
- the outer housing is preferably constructed from an injection moldable plastic, and more preferably a polypropylene.
- the overcap is connected to a metered dose inhaler by a sealant.
- the sealant is preferably constructed from an epoxy material, such as DEVCON 2- TON EPOXYTM.
- the overcap and sealant seals off a valve stem, ferrule, valve housing and neck of the metered dose inhaler.
- the sealant is preferably a foil label.
- the foil label may be a structural laminate including an oriented ployamide layer, an aluminum foil layer and a pressure sensitive adhesive.
- the foil label preferably has a thickness in the range of 9-20 ⁇ m.
- the sealant may provide a hermetic seal between the metered dose inhaler and the outer housing.
- the metered dose inhaler may contain a drug such as albuterol sulfate.
- Fig. 1 is a cross-sectional, cut-away view of the overcap of the present invention in combination with a portion of the metered dose inhaler.
- Fig. 1 Shown in Fig. 1 is a cross-sectional, cut-away view of an overcap 10 connected to a portion of an MDI 12.
- the overcap 10 is connected to the MD1 12 by a sealant 14.
- the portion of the MDI 12 shown in Fig. 1 includes a stem 16, a ferrule 18, a valve housing 20, a neck assembly 22 and a cannister 24.
- the overcap 10 includes an outer housing 26 fitted with a desiccant container 28 containing a desiccant 30.
- the desiccant container 28 includes a fitment housing 31 connected to a moisture-permeable overlay 32 to contain the desiccant 30.
- the fitment 31 is connected to the overlay 32 by a crimp 34 in the fitment 31.
- the fitment 31 also includes a radial fin 36 for friction fitting the desiccant container 28 within the outer housing 26.
- the sealant was DEVCON 2-TON EPOXYTM; the injection moldable plastic was polypropylene, the desiccant was 10 g silica gel, and the overlay material was fiberboard.
- the results are shown in Table 1. The numerical values are the mean moisture content (ppm) of the MDI contents after storage at 40°C and 85% RH.
- the overcap was compared to a conventional shrink wrap seal and adhesive band seal.
- the overcap was exceptionally effective at reducing the rate of moisure ingress into the MDI.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Packages (AREA)
- Closures For Containers (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The subject matter relates to an overcap (10) containing a desiccant (30) for use with a metered dose inhaler (12) to adsorb moisture. The overcap advantageously reduces the amount and rate of moisture ingress into the metered dose inhaler. The operation of metered dose inhalers containing agroscopic drug particles is improved by reducing moisture ingress.
Description
AEROSOL MDI OVERCAP CONTAINING DESICCANT
Cross Reference to Related Applications
U.S. Application having serial no. 60/204,252 filed on May 15, 2000, entitled "Method and Package for Storing A Pressurized Container Containing A Drug" is hereby incorporated herein by reference in its entirety.
Background of the Invention
As discussed in the above-referenced application, moisture ingress into HFC MDI's is problematic, particularly for MDI's containing agroscopic drug particles which readily adsorb and/or absord water and form aggregates. One solution to the problem has been to incorporate a dessicant to absorb moisture that in its absence would ingress into the MDI. The manner in which the desiccant is employed can, however, impact to varying degrees several factors.
For example, the structures employed for the desiccant can affect the cost of manufacturing. Complex and difficult mechanisms may reduce throughput, decrease efficiencies, and increase material costs. The form of desiccant packaging can also affect the visual and commercial appeal of the MDI. For example, to some vendors and customers, an internal, unseen desiccant may be more appealing than the overrap and loose desiccant pouch disclosed in the above-referenced application.
Moreover, there is a strong need for effective prevention of moisture ingress in HFC propellant MDI's. It is well established that non-CFC propellants, especially HFC 134a, have much greater water solubility that the CFC propellants traditionally used in MDI's. The maximum water solubility in HFC 134a is about 2200 ppm (and about 1000 ppm in pressurized/stored MDI's) compared to about 130 ppm (and 50-100 ppm in pressurized/stored MDI's) for CFC 1 1 , 12 and 114. The maximum solubility may be further increased where co-solvents such as ethanol are employed in the aerosol formulation. The mechanism of moisture ingress into HFC MDI's may be found in Williams, G. and Tcherevatchenkoff, A. (1999), "Moisture Transport Into CFC-Free MDI's," Respiratory Drug Deleivery VI, Hilton Head, SC, USA.
They concluded that moisture ingress is influenced by the elastomeric nature of the valve gaskets as well as the type of HFA formulation and storage conditions emoloyed. It may be appropriate under some circumstances to control moisture ingress into Hr'C-based MDI's. One example is where hygroscopic drug substance are used, such as albuterol sulfate.
The present invention advantageously reduces moisture ingress into MDI's to suitable levels. The present invention employs a desiccant in a manner that is visually appealing and commercially advantageous. The design and structure of the present invention is also advantageously simple, efficient to manufacture, cost effective, smaller and less bulky that other secondary packaging systems.
Summary of the Invention
One aspect of the invention is an overcap including an outer housing fitted with a moisture absorber structure having a housing containing a desiccant. The housing of the absorber is preferably constructed from a radially oriented material connected to a moisture permeable material. The radially oriented material is preferably an injection moldable plastic. The moisture permeable material is preferably fiberboard or TYVEK™ available from DuPont.
Preferably, the moisture permeable material is connected to the radially oriented material by crimping over a portion of the radially oriented material. The injection moldable plastic is preferably a polypropylene. The desiccant preferably includes a granular silica gel, preferably 2-10 grams.
In another aspect of the invention, the housing of the absorber includes at least one radially oriented fin. The radially oriented fin may be a circumferential fin. The absorber may also include a plurality of circumferential fins or a combination of radial and circumferential fins. The outer housing is preferably constructed from an injection moldable plastic, and more preferably a polypropylene.
In another aspect of the invention, the overcap is connected to a metered dose inhaler by a sealant. The sealant is preferably constructed from an epoxy material, such as DEVCON 2- TON EPOXY™. Preferably, the overcap and sealant seals off a valve stem, ferrule, valve housing and neck of the metered dose inhaler. The sealant is preferably a foil label. The foil label may be a structural laminate including an oriented ployamide layer, an aluminum foil layer and a pressure sensitive adhesive. The foil label preferably has a thickness in the range of 9-20 μm. The sealant may provide a hermetic seal between the metered dose inhaler and the outer housing. The metered dose inhaler may contain a drug such as albuterol sulfate.
Brief Description of the Drawing
The present invention will become more fully understood from the detailed description herein and the accompanying drawing which are provided by way of illustration only and are not to be construed as limiting the full scope of the invention.
Fig. 1 is a cross-sectional, cut-away view of the overcap of the present invention in combination with a portion of the metered dose inhaler.
Detailed Description of the Preferred Embodiments of the Invention
Shown in Fig. 1 is a cross-sectional, cut-away view of an overcap 10 connected to a portion of an MDI 12. The overcap 10 is connected to the MD1 12 by a sealant 14. The portion of the MDI 12 shown in Fig. 1 includes a stem 16, a ferrule 18, a valve housing 20, a neck assembly 22 and a cannister 24.
The overcap 10 includes an outer housing 26 fitted with a desiccant container 28 containing a desiccant 30. The desiccant container 28 includes a fitment housing 31 connected to a moisture-permeable overlay 32 to contain the desiccant 30. The fitment 31 is connected to the overlay 32 by a crimp 34 in the fitment 31. The fitment 31 also includes a radial fin 36 for friction fitting the desiccant container 28 within the outer housing 26.
An MDI containing albuterol sulfate and HFC 134a propellant was evaluated for moisture ingress using the overcap of the present invention. The sealant was DEVCON 2-TON EPOXY™; the injection moldable plastic was polypropylene, the desiccant was 10 g silica gel, and the overlay material was fiberboard. The results are shown in Table 1. The numerical values are the mean moisture content (ppm) of the MDI contents after storage at 40°C and 85% RH. The overcap was compared to a conventional shrink wrap seal and adhesive band seal.
Table 1
As the data demonstrates, the overcap was exceptionally effective at reducing the rate of moisure ingress into the MDI.
Claims
1. An apparatus comprising: a first housing fitted with a moisture absorber comprising a second housing containing a desiccant.
2. The apparatus of claim 1 wherein the second housing is constructed from a radially oriented material connected to a moisture permeable material.
3. The apparatus of claim 2 wherein the radially oriented material is an injection moldable plastic.
4. The apparatus of claim 2 wherein the moisture permeable material is fiberboard.
5. The apparatus of claim 2 wherein the moisture permeable material is TYNEK™.
6. The apparatus of claim 2 wherein the moisture permeable material is connected to the radially oriented material by crimping over a portion of the radially oriented material.
7. The apparatus of claim 3 wherein the injection moldable plastic is a polypropylene.
8. The apparatus of claim 1 wherein the desiccant comprises granular silica gel.
9. The apparatus of claim 2 wherein the second housing includes at least one radially oriented fin.
10. The apparatus of claim 9 wherein the radially oriented fin is a circumferential fin.
11. The apparatus of claim 10 comprising a plurality of circumferential fins.
12. The apparatus of claim 1 wherein the first housing is constructed from an injection moldable plastic.
13. The apparatus of claim 12 wherein the injection moldable plastic is a polypropylene.
14. The apparatus of claim 1 further comprising a metered dose inhaler connected to the first housing by a sealant.
15. The apparatus of claim 14 wherein the sealant is constructed from an epoxy material.
16. The apparatus of claim 14 wherein a valve stem, ferrule, valve housing and neck are contained and sealed withing the first housing.
17. The apparatus of claim 14 wherein the sealant is a foil label.
18. The apparatus of claim 17 wherein the foil label is a structural laminate comprising an oriented ployamide layer, an aluminum foil layer and a pressure sensitive adhesive.
19. The apparatus of claim 18 wherein the foil label has a thickness in the range of 9-20 μm.
20. The apparatus of claim 14 wherein the sealant provides a hermetic seal between the metered dose inhaler and the first housing.
21. The apparatus of claim 8 comprising 2-10 g granular silica gel.
22. The apparatus of claim 14 wherein the metered dose inhaler contains albuterol sulfate.
23. An overcap for an aerosol container comprising: a first housing fitted with a means for absorbing moisture.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US20425200P | 2000-05-15 | 2000-05-15 | |
| US204252P | 2000-05-15 | ||
| PCT/US2001/015551 WO2001087731A2 (en) | 2000-05-15 | 2001-05-15 | Aerosol mdi overcap containing desiccant |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1353854A2 true EP1353854A2 (en) | 2003-10-22 |
Family
ID=22757204
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP01939031A Withdrawn EP1353854A2 (en) | 2000-05-15 | 2001-05-15 | Aerosol mdi overcap containing desiccant |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP1353854A2 (en) |
| JP (1) | JP2004501032A (en) |
| AU (1) | AU2001264594A1 (en) |
| WO (1) | WO2001087731A2 (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6390291B1 (en) | 1998-12-18 | 2002-05-21 | Smithkline Beecham Corporation | Method and package for storing a pressurized container containing a drug |
| US7617932B2 (en) | 2003-09-19 | 2009-11-17 | Diabetes Diagnostics, Inc. | Medical device package, kit and associated methods |
| US7516845B2 (en) | 2004-03-31 | 2009-04-14 | Inverness Medical Limited | Medical device package with deformable projections |
| ES2739352T3 (en) | 2009-02-26 | 2020-01-30 | Glaxo Group Ltd | Pharmaceutical formulations comprising 4 - {(1R) -2 - [(6- {2 - [(2,6-dichlorobenzyl) oxy] ethoxy} hexyl) amino] -1-hydroxyethyl} -2- (hydroxymethyl) phenol |
| EP2482797B1 (en) * | 2009-09-29 | 2018-09-12 | Glaxo Group Limited | Improvements to pressurised metered dose inhalers |
| GB0921075D0 (en) | 2009-12-01 | 2010-01-13 | Glaxo Group Ltd | Novel combination of the therapeutic agents |
| WO2014052263A1 (en) | 2012-09-27 | 2014-04-03 | 3M Innovative Properties Company | A dispensing assembly |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1962685U (en) * | 1962-07-31 | 1967-06-22 | Sanner Kg Friedr | Stopper with drying insert |
| DE3610345C2 (en) * | 1986-03-27 | 1998-07-09 | Rathor Ag | Device for producing polyurethane assembly foam |
| DE3715938A1 (en) * | 1987-05-13 | 1988-11-24 | Boehringer Mannheim Gmbh | CONTAINER FOR TEST STRIP |
| US5186775A (en) * | 1988-10-05 | 1993-02-16 | Cullen John S | Method of fabrication of a container for bulk material |
| AP960A (en) * | 1995-04-14 | 2001-04-20 | Glaxo Wellcome Inc | Metered dose inhaler for fluticasone propionate. |
| US5749496A (en) * | 1996-06-19 | 1998-05-12 | Primary Delivery Systems, Inc. | Squeeze and rotate to lift captive cap dispenser |
-
2001
- 2001-05-15 JP JP2001584137A patent/JP2004501032A/en active Pending
- 2001-05-15 AU AU2001264594A patent/AU2001264594A1/en not_active Abandoned
- 2001-05-15 WO PCT/US2001/015551 patent/WO2001087731A2/en not_active Ceased
- 2001-05-15 EP EP01939031A patent/EP1353854A2/en not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| See references of WO0187731A3 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2004501032A (en) | 2004-01-15 |
| WO2001087731A2 (en) | 2001-11-22 |
| AU2001264594A1 (en) | 2001-11-26 |
| WO2001087731A3 (en) | 2003-08-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1222450C (en) | Pressurized container storage package and packaging method for storing pressurized containers | |
| US8163299B2 (en) | Stabilized pharmaceutical product | |
| US6390291B1 (en) | Method and package for storing a pressurized container containing a drug | |
| US20060257325A1 (en) | Method and Package for Storing a Pressurized Container Containing a Drug | |
| WO2010005946A2 (en) | Cover for metered dose inhaler aerosol cans | |
| JP2007504277A6 (en) | Stabilized pharmaceutical products | |
| EP1353854A2 (en) | Aerosol mdi overcap containing desiccant | |
| WO2001097888A2 (en) | Method and package for storing a pressurized container containing a drug | |
| US20030051727A1 (en) | Aerosol mdi overcap containing desiccant | |
| US20040168950A1 (en) | Method and packaging for pressurized containers | |
| US20060032763A1 (en) | Method and package for storing a pressurized container containing a drug | |
| US20040089561A1 (en) | Method and package for storing a pressurized container containing a drug | |
| SA03240184B1 (en) | Drug delivery assembly | |
| CN1665559B (en) | Method and package for pressurizing containers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20021105 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20061201 |