EP1352028A2 - Reinforced thermoplastic composition and articles derived therefrom - Google Patents
Reinforced thermoplastic composition and articles derived therefromInfo
- Publication number
- EP1352028A2 EP1352028A2 EP01993240A EP01993240A EP1352028A2 EP 1352028 A2 EP1352028 A2 EP 1352028A2 EP 01993240 A EP01993240 A EP 01993240A EP 01993240 A EP01993240 A EP 01993240A EP 1352028 A2 EP1352028 A2 EP 1352028A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight percent
- poly
- fibers
- composition
- thermoplastic composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 139
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 31
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 31
- -1 poly(arylene ether Chemical compound 0.000 claims abstract description 139
- 229920001400 block copolymer Polymers 0.000 claims abstract description 77
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229920001577 copolymer Polymers 0.000 claims abstract description 31
- 239000012763 reinforcing filler Substances 0.000 claims abstract description 28
- 229920000098 polyolefin Polymers 0.000 claims abstract description 15
- 229920005989 resin Polymers 0.000 claims description 54
- 239000011347 resin Substances 0.000 claims description 54
- 150000001993 dienes Chemical class 0.000 claims description 40
- 239000000835 fiber Substances 0.000 claims description 39
- 229920001155 polypropylene Polymers 0.000 claims description 34
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 33
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 28
- 239000005977 Ethylene Substances 0.000 claims description 28
- 229920000578 graft copolymer Polymers 0.000 claims description 27
- 239000004711 α-olefin Substances 0.000 claims description 25
- 239000004793 Polystyrene Substances 0.000 claims description 21
- 229920002223 polystyrene Polymers 0.000 claims description 21
- 239000003365 glass fiber Substances 0.000 claims description 19
- 239000000178 monomer Substances 0.000 claims description 19
- 229920001198 elastomeric copolymer Polymers 0.000 claims description 16
- 229920000642 polymer Polymers 0.000 claims description 16
- 229920001971 elastomer Polymers 0.000 claims description 14
- 229920001519 homopolymer Polymers 0.000 claims description 14
- 239000005060 rubber Substances 0.000 claims description 14
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 150000001336 alkenes Chemical class 0.000 claims description 11
- 125000003118 aryl group Chemical group 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 10
- 239000000454 talc Substances 0.000 claims description 10
- 229910052623 talc Inorganic materials 0.000 claims description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 9
- 229920005604 random copolymer Polymers 0.000 claims description 9
- 238000001125 extrusion Methods 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 239000004743 Polypropylene Substances 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 7
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 claims description 6
- 238000005984 hydrogenation reaction Methods 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 239000010456 wollastonite Substances 0.000 claims description 5
- 229910052882 wollastonite Inorganic materials 0.000 claims description 5
- 229920000181 Ethylene propylene rubber Polymers 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- 239000002174 Styrene-butadiene Substances 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000011115 styrene butadiene Substances 0.000 claims description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 4
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 238000000071 blow moulding Methods 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 238000001746 injection moulding Methods 0.000 claims description 3
- 229920005629 polypropylene homopolymer Polymers 0.000 claims description 3
- 229920000428 triblock copolymer Polymers 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052580 B4C Inorganic materials 0.000 claims description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004760 aramid Substances 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 2
- 238000000748 compression moulding Methods 0.000 claims description 2
- 229920000359 diblock copolymer Polymers 0.000 claims description 2
- 239000010440 gypsum Substances 0.000 claims description 2
- 229910052602 gypsum Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 229920001643 poly(ether ketone) Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920001601 polyetherimide Polymers 0.000 claims description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 238000003856 thermoforming Methods 0.000 claims description 2
- 238000007666 vacuum forming Methods 0.000 claims description 2
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 claims 2
- 229920002972 Acrylic fiber Polymers 0.000 claims 1
- 241000237519 Bivalvia Species 0.000 claims 1
- 239000004697 Polyetherimide Substances 0.000 claims 1
- 235000020639 clam Nutrition 0.000 claims 1
- 229920000141 poly(maleic anhydride) Polymers 0.000 claims 1
- 229940093470 ethylene Drugs 0.000 description 25
- 238000002156 mixing Methods 0.000 description 14
- 229920001955 polyphenylene ether Polymers 0.000 description 13
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 12
- 235000012222 talc Nutrition 0.000 description 11
- 239000004744 fabric Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 7
- 230000009477 glass transition Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 229920002633 Kraton (polymer) Polymers 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- QQOMQLYQAXGHSU-UHFFFAOYSA-N 2,3,6-Trimethylphenol Chemical compound CC1=CC=C(C)C(O)=C1C QQOMQLYQAXGHSU-UHFFFAOYSA-N 0.000 description 4
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 4
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 4
- 125000004103 aminoalkyl group Chemical group 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 239000011256 inorganic filler Substances 0.000 description 4
- 229910003475 inorganic filler Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical group O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920001748 polybutylene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 3
- 229920001384 propylene homopolymer Polymers 0.000 description 3
- 239000012744 reinforcing agent Substances 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- HLOUDBQOEJSUPI-UHFFFAOYSA-N 1-ethenyl-2,3-dimethylbenzene Chemical class CC1=CC=CC(C=C)=C1C HLOUDBQOEJSUPI-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 229920003317 Fusabond® Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical group C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 229920005669 high impact polystyrene Polymers 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 238000005691 oxidative coupling reaction Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- IVIIAEVMQHEPAY-UHFFFAOYSA-N tridodecyl phosphite Chemical compound CCCCCCCCCCCCOP(OCCCCCCCCCCCC)OCCCCCCCCCCCC IVIIAEVMQHEPAY-UHFFFAOYSA-N 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical class C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- ICMZFZGUTLNLAJ-UHFFFAOYSA-N 2,6-dimethyl-7-oxabicyclo[4.1.0]hepta-2,4-diene Chemical group CC1=CC=CC2(C)OC12 ICMZFZGUTLNLAJ-UHFFFAOYSA-N 0.000 description 1
- YMOONIIMQBGTDU-UHFFFAOYSA-N 2-bromoethenylbenzene Chemical class BrC=CC1=CC=CC=C1 YMOONIIMQBGTDU-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- RITONZMLZWYPHW-UHFFFAOYSA-N 3-methylhex-1-ene Chemical compound CCCC(C)C=C RITONZMLZWYPHW-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical compound C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920000914 Metallic fiber Polymers 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910001594 brammallite Inorganic materials 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 229910001596 celadonite Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000004797 high-impact polystyrene Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical group [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229910052627 muscovite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical group [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004010 onium ions Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 238000002464 physical blending Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
- C08L71/123—Polyphenylene oxides not modified by chemical after-treatment
Definitions
- U.S. Patent No. 4,764,559 to Yamauchi et al. generally describes a composition comprising (a) a polyphenylene ether having a low degree of polymerization, with or without a styrene resin, (b) a polyolefm, and (c) a styrene compound conjugated diene block copolymer or a hydrogenation product thereof.
- a polyphenylene ether having a low degree of polymerization with or without a styrene resin
- a polyolefm a polyolefm
- a styrene compound conjugated diene block copolymer or a hydrogenation product thereof a styrene compound conjugated diene block copolymer or a hydrogenation product thereof.
- inorganic fillers such as glass fiber, potassium titanate whiskers, talc, and precipitated calcium carbonate
- U.S. Patent No. 4,863,997 to Shibuya et al. generally describes a composition comprising (a) a polyolefm resin, (b) a polyphenylene ether resin, and (c) a hydrogenated block copolymer of an alkenyl aromatic compound and a conjugated diene that contains 45-80 weight percent of a repeating unit derived from the alkenyl aromatic compound. Addition of fillers, such as glass fiber, wollastonite, potassium titanate whiskers, mica, talc, and calcium carbonate, is described. [0004] U.S. Patent No.
- U.S. Patent No. 5,081,187 to Maruyama et al. generally describes a composition comprising specific amounts of (a) a polyolefm, (b) a polyphenylene ether, (c) a partially hydrogenated alkenyl aromatic compound-isoprene block copolymer, and (d) an alkenyl aromatic compound-conjugated diene block copolymer.
- fillers such as glass fiber, wollastonite, potassium titanate, whisker, mica, talc, and calcium carbonate, is described.
- U.S. Patent No. 5,418,287 to Tanaka et al. generally describes a composition comprising (a) a polyphenylene ether, (b) a crystalline polyolefm resin, and (c) a graft copolymer where the backbone is a copolymer of (i) ethylene or at least one C 3 -C 12 alpha-olefin, and (ii) at least one chain nonconjugated diene.
- reinforcing agents such as glass fibers, mica, talc, precipitated calcium carbonate, silica, wollastonite, and potassium titanate whisker, is described.
- compositions comprising: a poly(arylene ether); a poly(alkenyl aromatic) resin in an amount of at least about 10 weight percent of the total of the poly(arylene ether) and the poly(alkenyl aromatic) resin; a polyolefm; a hydrogenated block copolymer of an alkenyl aromatic compound and a conjugated diene, wherein the hydrogenated block copolymer has an alkenyl aromatic content of about 40 to about 90 weight percent; an unhydrogenated block copolymer of alkenyl aromatic compound and a conjugated diene; and a reinforcing filler.
- poly(arylene ether)s containing moieties prepared by grafting vinyl monomers or polymers such as polystyrenes, as well as coupled poly(arylene ether) in which coupling agents such as low molecular weight polycarbonates, quinones, heterocycles and formals undergo reaction in known manner with the hydroxy groups of two poly(arylene ether) chains to produce a higher molecular weight polymer.
- Poly(arylene ether)s of the present invention further include combinations of any of the above.
- the composition may comprise poly(arylene ether) in an amount of about 10 to about 55 weight percent, based on the total weight of the composition. Within this range, it may be preferred to use the poly(arylene ether) in an amount of at least about 15 weight percent, more preferably at least about 18 weight percent. It may also be preferred to use the poly(arylene ether) in an amount of up to about 55 weight percent, more preferably up to about 50 weight percent.
- the poly(alkenyl aromatic) resins include homopolymers of an alkenyl aromatic monomer; random copolymers of an alkenyl aromatic monomer, such as styrene, with one or more different monomers such as acrylonitrile, butadiene, alpha-methylstyrene, ethylvinylbenzene, divinylbenzene and maleic anhydride; and rubber-modified poly(alkenyl aromatic) resins comprising blends and or grafts of a rubber modifier and a homopolymer of an alkenyl aromatic monomer (as described above), wherein the rubber modifier may be a polymerization product of at least one C -C ⁇ 0 nonaromatic diene monomer, such as butadiene or isoprene.
- the stereoregularity of the poly(alkenyl aromatic) resin may be atactic or syndiotactic.
- Highly preferred poly(alkenyl aromatic) resins include atactic and syndiotactic homopolystyrenes.
- Suitable atactic homopolystyrenes are commercially available as, for example, EB3300 from Chevron, and PI 800 from BASF.
- Suitable syndiotactic homopolystyrenes are commercially available, for example, under the tradename QUESTRA® (e.g., QUESTRA® WA550) from Dow Chemical Company.
- the composition may comprise the poly(alkenyl aromatic) resin in an amount of about 1 to about 50 weight percent, preferably about 3 to about 50 weight percent, based on the total weight of the composition.
- the composition after molding may be deficient in flexural modulus.
- the amount of poly(alkenyl aromatic) resin is greater than about 80 weight percent of the total of the poly(arylene ether) and poly(alkenyl aromatic) resin, the composition after molding may be deficient in heat distortion temperature.
- the relative amounts of poly(alkenyl aromatic) resin and poly(arylene ether) may be chosen so that the poly(arylene ether) and the poly(alkenyl aromatic) resin are present in a single phase having a glass transition temperature of about 130°C to about 180°C.
- the composition further comprises a polyolefm.
- the polyolefm may be a homopolymer or copolymer having at least about 80 weight percent of units derived from polymerization of ethylene, propylene, butylene, or a mixture thereof.
- polyolefm homopolymers include polyethylene, polypropylene, and polybutylene.
- polyolefm copolymers include random, graft, and block copolymers of ethylene, propylene, and butylene with each other, and further comprising up to 20 weight percent of units derived from C 5 -C 10 alpha olefins (excluding aromatic alpha-olefins).
- Polyolefms further include blends of the above homopolymers and copolymers.
- Preferred polyolefms may have a flexural modulus of at least about 100,000 pounds per square inch (psi) at 23°C as measured according to ASTM D790.
- Suitable polyolefms may comprise, for example, the linear low density polyethylene available from ExxonMobil as LL-6201, the low density polyethylene available from ExxonMobil as LMA-027, the high density polyethylene available from ExxonMobil as HD-6605, the ultra-high molecular weight polyethylene available as Type 1900 from Montell Polyolefms, and the polybutylene (polybutene-1) available as PB01 10 from Montell Polyolefms.
- the propylene polymer may have a melt flow index of about 0.1 to about 50 g/10 min, preferably about 1 to about 30 g/10 min when measured according to ASTM D 1238 at 2.16 kg and 200°C.
- the above-described propylene polymers can be produced by various known processes. Commercially available propylene polymers may also be employed.
- Preferred propylene polymers include homopolypropylenes.
- Highly preferred propylene polymers include homopolypropylenes having a crystalline content of at least about 20%, preferably at least about 30%.
- Suitable isotactic polypropylenes are commercially available as, for example, PD403 pellets from Basell (formerly Montell Polyolefms of North America).
- the composition may comprise polyolefm in an amount of about 10 to about 60 weight percent, based on the total weight of the composition. Within this range, a polyolefm amount of at least about 15 weight percent may be preferred. Also within this range, a polyolefm amount of up to about 50 weight percent may be preferred, and an amount of up to about 40 weight percent may be more preferred.
- the composition comprises a hydrogenated alkenyl aromatic compound conjugated diene block copolymer having an alkenyl aromatic content of about 40 to about 90 weight percent (hereinafter referred to as the "hydrogenated block copolymer").
- the hydrogenated block copolymer is a copolymer comprising (A) at least one block derived from an alkenyl aromatic compound and (B) at least one block derived from a conjugated diene, in which the aliphatic unsaturated group content in the block (B) is reduced by hydrogenation.
- the arrangement of blocks (A) and (B) includes a linear structure, a grafted structure, and a radial teleblock structure having a branched chain.
- linear structures embracing diblock (A-B block), triblock (A-B-A block or B-A-B block), tetrablock (A-B-A-B block), and pentablock (A-B-A-B-A block or B-A-B-A-B block) structures as well as linear structures containing 6 or more blocks in total of A and B. More preferred are diblock, triblock, and tetrablock structures, with the A-B-A triblock structure being [0033]
- the alkenyl aromatic compound providing the block (A) is represented by formula
- R and R each independently represent a hydrogen atom, a Cj-C 8 alkyl group, a C -C 8 alkenyl group, or the like;
- R 4 and R 8 each independently represent a hydrogen atom, a C ⁇ -C 8 alkyl group, a chlorine atom, a bromine atom, or the like;
- R -R each independently represent a hydrogen atom, a Cj-C 8 alkyl group, a C -C 8 alkenyl group, or the like, or R 4 and R 5 are taken together with the central aromatic ring to form a naphthyl group, or R and R are taken together with the central aromatic ring to form a naphthyl group.
- alkenyl aromatic compounds include styrene, p-methylstyrene, alpha-methylstyrene, vinylxylenes, vinyltoluenes, vinylnaphthalenes, divinylbenzenes, bromostyrenes, chlorostyrenes, and the like, and combinations comprising at least one of the foregoing alkenyl aromatic compounds.
- styrene, alpha-methylstyrene, p-methylstyrene, vinyltoluenes, and vinylxylenes are preferred, with styrene being more preferred.
- conjugated diene examples include 1,3-butadiene, 2 -methyl- 1,3-butadiene, 2,3-dimethyl- 1,3-butadiene, 1,3-pentadiene, and the like. Preferred among them are 1,3-butadiene and 2-methyl- 1,3-butadiene, with 1,3-butadiene being more preferred.
- the hydrogenated block copolymer may contain a small proportion of a lower olefinic hydrocarbon such as, for example, ethylene, propylene, 1-butene, dicyclopentadiene, a non-conjugated diene, or the like.
- a lower olefinic hydrocarbon such as, for example, ethylene, propylene, 1-butene, dicyclopentadiene, a non-conjugated diene, or the like.
- the content of the repeating unit derived from the alkenyl aromatic compound in the hydrogenated block copolymer may be about 40 to about 90 weight percent, based on the total weight of the hydrogenated block copolymer, with the lower limit of the alkenyl aromatic compound content preferably being about 50 weight percent, more preferably about 55 weight percent, and with the upper limit of the alkenyl aromatic compound content preferably being up to about 85 weight percent, more preferably up to about 75 weight percent, yet more preferably up to about 70 weight percent.
- the hydrogenated block copolymer is preferably hydrogenated to such a degree that fewer than 50%, more preferably fewer than 20%, yet more preferably fewer than 10%, of the unsaturated bonds in the aliphatic chain moiety derived from the conjugated diene remain unreduced.
- the aromatic unsaturated bonds derived from the alkenyl aromatic compound may be hydrogenated to a degree of up to about 25%.
- the hydrogenated block copolymer preferably has a number average molecular weight of about 5,000 to about 500,000 AMU, as determined by gel permeation chromatography (GPC) using polystyrene standards. Within this range, the number average molecular weight is preferably at least about 10,000 AMU, more preferably at least about 30,000 AMU, yet more preferably at least about 45,000 AMU. Also within this range, the number average molecular weight is preferably up to about 300,000 AMU, more preferably up to about 200,000 AMU, yet more preferably up to about 150,000 AMU.
- GPC gel permeation chromatography
- the molecular weight distribution of the hydrogenated block copolymer as measured by GPC is not particularly limited.
- the copolymer may have any ratio of weight average molecular weight to number average molecular weight.
- Some of these hydrogenated block copolymers have a hydrogenated conjugated diene polymer chain to which crystallinity is ascribed. Crystallinity of the hydrogenated block copolymer can be determined by the use of a differential scanning calorimeter (DSC), for example, DSC-LI Model manufactured by Perkin-Elmer Co. Heat of fusion can be measured by a heating rate of, for example, 10°C/min in an inert gas atmosphere such as nitrogen. For example, a sample may be heated to a temperature above an estimated melting point, cooled by decreasing the temperature at a rate of 10°C/min, allowed to stand for about 1 minute, and then heated again at a rate of 10°C/min.
- DSC differential scanning calorimeter
- the hydrogenated block copolymer may have any degree of crystallinity.
- those hydrogenated block copolymers having a melting point of about -40°C to about 160°C or having no definite melting point (i.e., having non-crystallinity), as measured according to the above-described technique are preferred.
- the hydrogenated block copolymer may have any glass transition temperature (T g ) ascribed to the hydrogenated conjugated diene polymer chain. From the standpoint of low-temperature impact strength of the resulting resin composition, it preferably has a T g of up to about -60°C, more preferably up to about -120°C.
- T g glass transition temperature
- the glass transition temperature of the copolymer can be measured by the aforesaid DSC method or from the visco-elastic behavior toward temperature change as observed with a mechanical spectrometer.
- Particularly preferred hydrogenated block copolymers are the styrene-(ethylene-butylene) diblock and styrene-(ethy]ene-butylene)-styrene triblock copolymers obtained by hydrogenation of styrene-butadiene and styrene-butadiene-styrene triblock copolymers, respectively.
- the hydrogenated block copolymer may be synthesized by block polymerization followed by hydrogenation as described, for example, in U.S. Patent No. 4,863,997 to Shibuya et al.
- Suitable hydrogenated block copolymers include the styrene-(ethylene-butylene) diblock and styrene-(ethy]ene-butylene)-styrene triblock copolymers commercially available as, for example, TUFTEC® HI 043 sold by Asahi Chemical.
- the composition may comprise the hydrogenated block copolymer in an amount of about 1 to about 20 weight percent, preferably about 1 to about 15 weight percent, more preferably about 1 to about 10 weight percent, based on the total weight of the composition.
- the reinforcing fillers may be in the form of glass roving cloth, glass cloth, chopped glass, hollow glass fibers, glass mat, glass surfacing mat, and non-woven glass fabric, ceramic fiber fabrics, and metallic fiber fabrics.
- synthetic organic reinforcing fillers may also be used including organic polymers capable of forming fibers.
- Illustrative examples of such reinforcing organic fibers are poly(ether ketone), polyimide benzoxazole, poly(phenylene sulfide), polyesters, aromatic polyamides, aromatic polyimides or polyetherimides, acrylic resins, and poly(vinyl alcohol). Fluoropolymers such as polytetrafluoroethylene, may be used.
- Such reinforcing fillers could be in the form of monofilament or ultifilament fibers and could be used either alone or in combination with another type of fiber, through, for example, coweaving or core- sheath, side-by-side, orange-type or matrix and fibril constructions or by other methods known to one skilled in the art of fiber manufacture. They may be in the form of, for example, woven fibrous reinforcements, non-woven fibrous reinforcements, or papers.
- Preferred reinforcing fillers include glass fibers.
- Preferred glass fibers may have diameters of about 2 to about 25 micrometers, more preferably about 10 to about 20 micrometers, yet more preferably about 13 to about 18 micrometers.
- the length of the glass fibers may be about 0.1 to about 20 millimeters, more preferably about 1 to about 10 millimeters, yet more preferably about 2 to about 8 millimeters.
- Longer glass fibers may also be used, as, for example, in so-called in-line compounding for long fiber filled parts in a one-step process without a pelletization step.
- Equipment for such in-line compounding is commercially available as, for example, the Husky 3000 kiloNewton (330 ton) molding machine from Husky, Ontario, Canada.
- Use of long fiber composites for injection molding is also described in U.S. Patent Nos. 4,559,262 to Cogswell et al. and 6,258,453 Bl to Montsinger.
- Glass fibers comprising a sizing to increase their compatibility with the polyolefm or the poly(arylene ether) are particularly preferred.
- Suitable sizings are described, for example, in U.S. Patent No. 5,998,029 to Adzima et al.
- Suitable glass fibers are commercially available as, for example, product numbers 147A-14P (14 micrometer diameter) and 147A-17P (17 micrometer diameter) from Owens Corning.
- Preferred reinforcing fillers further include talc.
- talc There are no particular limitations on the physical characteristics of the talc.
- Preferred talcs may have an average particle size of about 0.5 to about 25 micrometers. Within this range, it may be preferred to use a talc having an average particle size up to about 10 micrometers, more preferably up to about 5 micrometers.
- a talc that is F.D.A. compliant (i.e., compliant with U.S. Food and Drug Administration regulations).
- Suitable talcs include, for example, the F.D.A. compliant talc having an average particle size of about 3.2 micrometers sold as CIMPACT® 610(C) from Luzenac.
- the compatibility of the reinforcing filler and the polyolefm may be improved not just with sizings on the surface of the reinforcing fillers, but also by adding to the composition a graft copolymer comprising a polyolefm backbone and polar grafts formed from one or more cyclic anhydrides.
- a graft copolymer comprising a polyolefm backbone and polar grafts formed from one or more cyclic anhydrides.
- Such materials include graft copolymers of polyolefms and C 4 -Cj cyclic anhydrides, such as, for example, those available from ExxonMobil under the tradename EXXELOR® and from DuPont under the tradename FUSABOND®.
- polyolefin-graft-cyclic anhydride copolymers examples include the po]ypropylene-graft-po]y(maleic anhydride) materials supplied by ExxonMobil as EXXELOR® PO1020 and by DuPont as FUSABOND® M613-05. Suitable amounts of such materials may be readily determined and are generally about 0.1 to about 10 weight percent, based on the total weight of the composition. Within this range, a polyolefin-graft-cyclic anhydride copolymer amount of at least about 0.5 weight percent may be preferred. Also within this range, a polyolefin-graft-cyclic anhydride copolymer amount of up to about 5 weight percent may be preferred.
- Preferred reinforcing fillers further include organoclays.
- an organoclay is a layered silicate clay, derived from layered minerals, in which organic structures have been chemically incorporated.
- Illustrative examples of organic structures are trimethyldodecylammonium ion and
- N,N'-didodecylimidazolium ion Since the surfaces of clay layers, which have a lattice-like arrangement, are electrically charged, they are capable of binding organic ions.
- layered minerals employed in this invention other than that they are capable of undergoing an ion exchange with the organic ions.
- Preferred organoclays include layered minerals that have undergone cation exchange with organocations and or onium compounds.
- Illustrative of such layered minerals are the kaolinite group, the montmorillonite group, and the illite group which can include hydromicas, phengite, brammallite, glaucomite, celadonite and the like.
- Preferred layered minerals include those often referred to as 2:1 layered silicate minerals like muscovite, vermiculite, saponite, hectorite and montmorillonite, wherein montmorillonite is often preferred.
- the layered minerals described above may be synthetically produced. However, most often they are naturally occurring and commercially available. Organoclays and their preparation are described, for example, in U.S. Patents Nos. 4,569,923, 4,664,842, 5,110,501, and 5,160,454 to Knudson, Jr.
- the composition comprises the reinforcing filler in an amount of about 1 to about 50 weight percent, preferably about 5 to about 50 weight percent, based on the total weight of the composition.
- the reinforcing filler is an organoclay, it may be preferred to use it in an amount of at least about 5 weight percent, more preferably at least about 10 weight percent. Also when the reinforcing filler is an organoclay, it may be preferred to use it in an amount of up to about 45 weight percent, more preferably up to about 50 weight percent.
- the composition may, optionally, further comprise a polypropylene-polystyrene graft copolymer.
- the polypropylene-polystyrene graft copolymer is herein defined as a graft copolymer having a propylene polymer backbone and one or more styrene polymer grafts.
- the propylene polymer material that forms the backbone or substrate of the polypropylene-polystyrene graft copolymer is (a) a homopolymer of propylene; (b) a random copolymer of propylene and an olefin selected from the group consisting of ethylene and C 4 -C 10 olefins, provided that, when the olefin is ethylene, the polymerized ethylene content is up to about 10 weight percent, preferably up to about 4 weight percent, and when the olefin is a C 4 -C J O olefin, the polymerized content of the C 4 -C ⁇ o olefin is up to about 20 weight percent, preferably up to about 16 weight percent; (c) a random terpolymer of propylene and at least two olefins selected from the group consisting of ethylene and C 4 -C ⁇ o alpha-olefins, provided that the polymerized C 4
- the C 4 -C ⁇ 0 olefins include the linear and branched C -C ⁇ 0 alpha-olefins such as, for example, 1-butene, 1-pentene, 3-methyl-l-butene, 4-methyl-l-pentene, 1-hexene, 3,4-dimethyl-l-butene, 1-heptene, 1-octene, 3-methyl-hexene, and the like.
- Propylene homopolymers and impact-modified propylene homopolymers are preferred propylene polymer materials.
- propylene homopolymers and random copolymers impact modified with an ethylene-propylene-diene monomer rubber having a diene content of about 2 to about 8 weight percent also can be used as the propylene polymer material.
- Suitable dienes include dicyclopentadiene, 1,6-hexadiene, ethylidene norbornene, and the like.
- styrene polymer used in reference to the grafted polymer present on the backbone of propylene polymer material in the polypropylene-polystyrene graft copolymer, denotes (a) homopolymers of styrene or of an alkyl styrene having at least one C ⁇ -C linear or branched alkyl ring substituent, especially a p-alkyl styrene; (b) copolymers of the (a) monomers with one another in all proportions; and (c) copolymers of at least one (a) monomer with alpha-methyl derivatives thereof, e.g., alpha-methylstyrene, wherein the alpha-methyl derivative constitutes about 1 to about 40% of the weight of the copolymer.
- polypropylene-polystyrene graft copolymers are described, for example, in U.S. Patent No. 4,990,558 to DeNicola, Jr. et al.
- Suitable polypropylene-polystyrene graft copolymers are also commercially available as, for example, PI 045H1 and P1085Hl from Basell.
- the polypropylene-polystyrene graft copolymer may be used in an amount of about 0.5 to about 20 weight percent, based on the total weight of the composition. Within this range, it may be preferred to use at least about 1.0 weight percent of the polypropylene-polystyrene graft copolymer. Also within this range, it may also be preferred to use up to about 15 weight percent, more preferably up to about 10 weight percent, yet more preferably up to about 8 weight percent, of the polypropylene-polystyrene graft copolymer.
- the composition may, optionally, further comprise an ethyl ene/alpha-olefin elastomeric copolymer.
- the alpha-olefin component of the copolymer may be at least one C -C ⁇ 0 alpha-olefin.
- Preferred alpha-olefins include propylene, 1-butene, and 1-octene.
- the elastomeric copolymer may be a random copolymer having about 25 to about 75 weight percent ethylene and about 75 to about 25 weight percent alpha-olefin. Within these ranges, it may be preferred to use at least about 40 weight percent ethylene; and it may be preferred to use up to about 60 weight percent ethylene.
- the ethylene/alpha-olefm elastomeric copolymer may typically have a melt flow index of about 0.1 to about 20 g/10 min at 2.16 kg and 200°C, and a density of about 0.8 to about 0.9 g/ml.
- Particularly preferred ethylene/alpha-olefin elastomeric copolymer rubbers include ethylene-propylene rubbers, ethyl ene-butylene rubbers, ethylene- octene rubbers, and mixtures thereof.
- the ethylene/alpha-olefm elastomeric copolymer may be prepared according to known methods or obtained commercially as, for example, the neat ethylene-propylene rubber sold as NISTALON® 878 by ExxonMobil Chemical and the ethylene-butylene rubber sold as EXACT® 4033 by ExxonMobil Chemical.
- Ethylene/alpha-olefm elastomeric copolymers may also be obtained commercially as blends in polyolefms such as, for example, the ethylene-propylene rubber pre-dispersed in polypropylene sold as product numbers Profax 7624 and Profax 8623 from Basell, and the ethylene-butylene rubber pre-dispersed in polypropylene sold as Catalloy K021P from Basell.
- the amount of ethylene/alpha-olefin elastomeric copolymer may be expressed as a fraction of the total of polyolefm and ethylene/alpha-olefin elastomeric copolymer.
- its amount may be expressed as about 1 to about 30 weight percent, preferably about 3 to about 30 weight percent, based on the combined weight of polyolefm and ethylene/alpha-olefin elastomeric copolymer.
- the composition further comprises an unhydrogenated block copolymer of alkenyl aromatic compound and a conjugated diene (referred to hereinafter as an "unhydrogenated block copolymer").
- the unhydrogenated block copolymer is a copolymer comprising (A) at least one block derived from an alkenyl aromatic compound and (B) at least one block derived from a conjugated diene, in which the aliphatic unsaturated group content in the block (B) has not been reduced by hydrogenation.
- the alkenyl aromatic compound (A) and the conjugated diene (B) are defined in detail above in the description of the hydrogenated block copolymer.
- the arrangement of blocks (A) and (B) includes a linear structure and a so-called radial teleblock structure having a branched chain.
- Preferred of these structures are linear structures embracing diblock (A-B block), triblock (A-B-A block or B-A-B block), tetrablock (A-B-A-B block), and pentablock (A-B-A-B-A block or B-A-B-A-B block) structures as well as linear structures containing 6 or more blocks in total of A and B. More preferred are diblock, triblock, and tetrablock structures, with the A-B-A triblock structure being particularly preferred.
- the unhydrogenated block copolymer may comprise about 10 to about 90 weight percent of the (A) blocks. Within this range, it may be preferred to use at least about 20 weight percent (A) blocks. Also within this range, it may be preferred to use up to about 50 percent (A) blocks.
- Particularly preferred unhydrogenated block copolymers include styrene-butadiene diblock copolymers and styrene-butadiene-styrene triblock copolymers.
- Suitable unhydrogenated block copolymers may be prepared by known methods or obtained commercially as, for example, KRATON® D series polymers, including KRATON® Dl 101 and Dl 102, from Kraton Polymers (formerly a division of Shell Chemical). Suitable unhydrogenated block copolymers further include the styrene-butadiene radial teleblock copolymers available as, for example, K-RESTN® KR01, KR03, KR05, and KR10 sold by Chevron Phillips Chemical Company.
- the unhydrogenated block copolymers may be used at about 0.5 to about 20 weight percent, based on the total weight of the composition. Within this range, it may be preferred to use at least about 1 weight percent, more preferably at least about 2 weight percent, of the unhydrogenated block copolymers. Also within this range, it may be preferred to use up to about 15 weight percent, preferably up to about 10 weight percent, of the unhydrogenated block copolymers.
- the composition may, optionally, further comprise a hydrogenated block copolymer of an alkenyl aromatic compound and a conjugated diene, wherein the hydrogenated block copolymer has an alkenyl aromatic content of about 10 to less than 40 weight percent.
- the alkenyl aromatic compound and the conjugated diene compound are the same as those defined above for the hydrogenated block copolymer having an alkenyl aromatic content of about 40 to about 90 weight percent.
- Such materials are commercially available as, for example, KRATON® G1650 and G1652 from Kraton Polymers.
- the hydrogenated block copolymer having an alkenyl aromatic content of about 10 to less than 40 weight percent may be used at about 1 weight percent to about 20 weight percent, based on the total weight of the composition.
- the composition may comprise one or more additives known in the art.
- additives may include, for example, stabilizers, mold release agents, processing aids, flame retardants, drip retardants, nucleating agents, UV blockers, dyes, pigments, particulate fillers (i.e., fillers having an aspect ratio less than about 3), antioxidants, anti-static agents, blowing agents, and the like.
- additives are well known in the art and appropriate amounts may be readily determined.
- the composition comprises: about 10 to about 55 weight percent of a poly(arylene ether); about 3 to about 50 weight percent of a poly(alkenyl aromatic) resin; wherein the amount of poly(alkenyl aromatic) resin is at least about 10 weight percent of the total of the poly(arylene ether) and the poly(alkenyl aromatic) resin; about 10 to about 60 weight percent of a polyolefin; about 1 to about 20 weight percent of a hydrogenated block copolymer of alkenyl aromatic compound and a conjugated diene having an alkenyl aromatic content of about 40 to about 90 weight percent; about 1 to about 20 weight percent of an unhydrogenated block copolymer of alkenyl aromatic compound and a conjugated diene; and about 1 to about 50 weight percent of a reinforcing filler; wherein all weight percents are based on the total weight of the composition.
- the composition exhibits improved property balances.
- the composition exhibits an improved balance between stiffness and impact strength.
- the composition may exhibit a flexural modulus at 23°C, measured according to ASTM D790, of at least about 300, preferably at least about 350, kilopounds per square inch (kpsi).
- the composition may exhibit an Izod Notched Impact Strength measured at 23°C according to ASTM D256 of at least about 1 footpound per inch (ft-lb/in), preferably at least about 1.5 ft-lb/in, more preferably at least about 2 ft-lb/in.
- ASTM parts were molded on a 120 tonne molding machine (manufacturer: Van Dorn) at 100-120°F mold temp and a 450-550°F barrel temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (13)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US25884000P | 2000-12-28 | 2000-12-28 | |
| US25883500P | 2000-12-28 | 2000-12-28 | |
| US25889600P | 2000-12-28 | 2000-12-28 | |
| US258896P | 2000-12-28 | ||
| US258835P | 2000-12-28 | ||
| US258840P | 2000-12-28 | ||
| US09/682,928 US6545080B2 (en) | 2000-12-28 | 2001-11-01 | Glass-filled poly(arylene ether)-polyolefin composition and articles derived therefrom |
| US682920 | 2001-11-01 | ||
| US682926 | 2001-11-01 | ||
| US09/682,926 US6660794B2 (en) | 2000-12-28 | 2001-11-01 | Glass-filled poly(arylene ether)-polyolefin composition and articles derived therefrom |
| US682928 | 2001-11-01 | ||
| US09/682,920 US6815491B2 (en) | 2000-12-28 | 2001-11-01 | Reinforced thermoplastic composition and articles derived therefrom |
| PCT/US2001/047701 WO2002057363A2 (en) | 2000-12-28 | 2001-12-11 | Reinforced thermoplastic composition and articles derived therefrom |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1352028A2 true EP1352028A2 (en) | 2003-10-15 |
Family
ID=27559418
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP01993240A Withdrawn EP1352028A2 (en) | 2000-12-28 | 2001-12-11 | Reinforced thermoplastic composition and articles derived therefrom |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP1352028A2 (en) |
| JP (1) | JP2004517998A (en) |
| CN (1) | CN1484676A (en) |
| AU (1) | AU2002245094A1 (en) |
| WO (1) | WO2002057363A2 (en) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7253227B2 (en) | 2002-12-19 | 2007-08-07 | General Electric Company | Poly(arylene ether) composition useful in blow molding |
| US7439284B2 (en) * | 2004-03-31 | 2008-10-21 | Sabic Innovative Plastics Ip B.V. | Method of making poly(arylene ether) compositions |
| US8057873B2 (en) * | 2008-04-28 | 2011-11-15 | Sabic Innovative Plastics Ip B.V. | Injection molded article and method for the manufacture thereof |
| WO2009155294A2 (en) * | 2008-06-17 | 2009-12-23 | Polyone Corporation | Thermoplastic elastomers exhibiting superior abrasion resistance properties |
| US8653167B2 (en) * | 2011-05-26 | 2014-02-18 | Sabic Innovative Plastics Ip | Molding composition for photovoltaic junction boxes and connectors |
| CN102408697A (en) * | 2011-09-20 | 2012-04-11 | 福建奥峰科技有限公司 | Reinforced polyphenylene oxide (PPO) composition and preparation method and application thereof |
| US8975329B2 (en) * | 2011-12-02 | 2015-03-10 | Sabic Global Technologies B.V. | Poly(phenylene ether) articles and compositions |
| CN102850654A (en) * | 2012-09-24 | 2013-01-02 | 吴江市信许塑料鞋用配套有限公司 | Preparation method of rubber plastic sole material |
| JP6175339B2 (en) * | 2013-10-01 | 2017-08-02 | 旭化成株式会社 | Resin composition and molded body thereof |
| CN107207850B (en) * | 2015-03-27 | 2019-08-16 | 旭化成株式会社 | Resin composition, molding, piping machine parts |
| WO2016174534A1 (en) | 2015-04-27 | 2016-11-03 | Sabic Global Technologies B.V. | Poly(phenylene ether) composition and article |
| EP3467034B1 (en) * | 2016-05-31 | 2022-05-11 | Asahi Kasei Kabushiki Kaisha | Resin composition, process for producing resin composition, and molded object |
| JP6763698B2 (en) * | 2016-05-31 | 2020-09-30 | 旭化成株式会社 | Resin composition and molded product |
| CN114502653B (en) * | 2019-10-21 | 2025-02-11 | 旭化成株式会社 | Resin composition and method for producing the same, molded article, mechanical part, and housing |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2011756A1 (en) * | 1989-03-22 | 1990-09-22 | Takashi Maruyama | Resin composition |
| CN1051330C (en) * | 1993-04-30 | 2000-04-12 | 三菱化学株式会社 | Molded article of thermoplastic resin composition |
| JPH07316416A (en) * | 1994-05-25 | 1995-12-05 | Mitsubishi Chem Corp | Polyphenylene ether resin composition |
| US6005050A (en) * | 1994-11-28 | 1999-12-21 | Idemitsu Petrochemical Co., Ltd. | Impact resistant polystyrene composition |
| EP0767211B1 (en) * | 1995-09-08 | 1999-04-21 | Idemitsu Petrochemical Co., Ltd. | Styrene-based resin composition |
-
2001
- 2001-12-11 WO PCT/US2001/047701 patent/WO2002057363A2/en not_active Ceased
- 2001-12-11 AU AU2002245094A patent/AU2002245094A1/en not_active Abandoned
- 2001-12-11 EP EP01993240A patent/EP1352028A2/en not_active Withdrawn
- 2001-12-11 JP JP2002558429A patent/JP2004517998A/en not_active Withdrawn
- 2001-12-11 CN CNA018215831A patent/CN1484676A/en active Pending
Non-Patent Citations (1)
| Title |
|---|
| See references of WO02057363A3 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2002057363A2 (en) | 2002-07-25 |
| JP2004517998A (en) | 2004-06-17 |
| CN1484676A (en) | 2004-03-24 |
| AU2002245094A1 (en) | 2002-07-30 |
| WO2002057363A3 (en) | 2003-02-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6815491B2 (en) | Reinforced thermoplastic composition and articles derived therefrom | |
| EP1404761B1 (en) | Poly(arylene ether)-polyolefin composition, method for the preparation thereof, and articles derived therefrom | |
| US7022765B2 (en) | Method for the preparation of a poly(arylene ether)-polyolefin composition, and composition prepared thereby | |
| EP1352029B1 (en) | Method for the preparation of a poly(arylene ether)-polyolefin composition, and composition prepared thereby | |
| KR101283290B1 (en) | Thermoplastic Method, Composition, and Article | |
| US6861472B2 (en) | Poly(arylene ether)-polyolefin compositions and articles derived therefrom | |
| US6855767B2 (en) | Poly(arylene ether)-polyolefin composition and articles derived therefrom | |
| US20040059042A1 (en) | Underhood components | |
| EP1360239B1 (en) | Poly(arylene ether)-polyolefin composition and articles derived therefrom | |
| WO2002057363A2 (en) | Reinforced thermoplastic composition and articles derived therefrom | |
| US6660794B2 (en) | Glass-filled poly(arylene ether)-polyolefin composition and articles derived therefrom | |
| US6495630B2 (en) | Poly(arylene ether)-polyolefin compositions and articles derived therefrom | |
| US6919399B2 (en) | Articles and sheets containing glass-filled poly(arylene ether)-polyolefin composition | |
| TW583270B (en) | Reinforced thermoplastic composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20030813 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HAYLOCK, JOHN, C. Inventor name: HARTLE, THOMAS, J. Inventor name: ADEDEJI, ADEYINKA |
|
| 17Q | First examination report despatched |
Effective date: 20031127 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB IT NL |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20040608 |