EP1341537A2 - Pharmaceutically active isoindoline derivatives - Google Patents
Pharmaceutically active isoindoline derivativesInfo
- Publication number
- EP1341537A2 EP1341537A2 EP01273992A EP01273992A EP1341537A2 EP 1341537 A2 EP1341537 A2 EP 1341537A2 EP 01273992 A EP01273992 A EP 01273992A EP 01273992 A EP01273992 A EP 01273992A EP 1341537 A2 EP1341537 A2 EP 1341537A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- carbon atoms
- dioxo
- compound according
- amino
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
Definitions
- the present invention pertains to non-polypeptide isoindoline derivatives that decrease the levels of tumor necrosis factor alpha (TNF ⁇ ) and to the treatment of disease states mediated thereby.
- the compounds inhibit angiogenesis and are useful in the treatment of cancer, inflammatory, and autoimmune diseases.
- compounds that selectively inhibit TNF ⁇ are useful in treating inflammation and effecting relaxation of airway smooth muscle with a minimum of unwanted side effects, e.g., cardiovascular or anti-platelet effects.
- the present invention also relates to methods of treatment and pharmaceutical compositions utilizing such com- pounds.
- Tumor necrosis factor ⁇ is a cytokine which is released primarily by mononuclear phagocytes in response to a number immunostimulators. When administered to animals or humans, it causes inflammation, fever, cardiovascular effects, hemorrhage, coagulation, and acute phase responses similar to those seen during acute infections and shock states. Excessive or unregulated TNF ⁇ production thus has been implicated in a number of disease conditions. These include endotoxemia and/or toxic shock syndrome ⁇ Tracey et al., Nature 330, 662-664 (1987) and Hinshaw et al., Circ.
- TNF ⁇ appears to be involved in bone resorption diseases, including arthritis. When activated, leukocytes will produce bone-resorption, an activity . to which the data suggest TNF ⁇ contributes. ⁇ Bertolini et al., Nature 319, 516-518 (1986) and Johnson et al., Endocrinology 124(3), 1424-1427 (1989) ⁇ . TNF ⁇ also has been shown to stimulate bone resorption and inhibit bone formation in vitro and in vivo through stimulation of osteoblast formation and activation combined with inhibition of osteoblast function. Although TNF ⁇ may be involved in many bone resorption diseases, including arthritis, a most compelling link with disease is the association between production of TNF ⁇ by tumor or host tissues and malignancy associated hypercalcemia ⁇ Calci.
- Cerebral malaria is a lethal hyperacute neurological syndrome associated with high blood levels of TNF ⁇ and the most severe complication occurring in malaria patients. Levels of serum TNF ⁇ correlated directly with the severity of disease and the prognosis in patients with acute malaria attacks ⁇ Grau et al., N. Engl. J. Med.
- Unregulated angiogenesis is pathologic and sustains progression of many neo- plastic and non-neoplastic diseases including solid tumor growth and metastases, arthritis, some types of eye disorders, and psoriasis. See, e.g., Moses et al., 1991 , Biotech. 9:630-634; Folkman et al., 1995, N. Engl. J. Med., 333:1757-1763; Auer- bach et al., 1985, J. Microvasc. Res. 29:401-411 ; Folkman, 1985, Advances in Cancer Research, eds. Klein and Weinhouse, Academic Press, New York, pp. 175- 203; Patz, 1982, Am. J. Opthalmol.
- Angiogenesis thus is encountered in various disease states, tumor metastasis, and abnormal growth by endothelial cells.
- Pathological states created by unregulated angiogenesis have been grouped together as angiogenic dependent or angio- genic associated diseases. Control of the angiogenic processes could lead to the mitigation of these conditions.
- angiogenesis relating to vascular endothelial cell prolifera- tion, migration and invasion, have been found to be regulated in part by polypeptide growth factors.
- Endothelial cells exposed to a medium containing suitable growth factors can be induced to evoke some or all of the angiogenic responses.
- Polypep- tides with in vitro endothelial growth promoting activity nclude acidic and basic fibroblast growth factors, transforming growth factors ⁇ and ⁇ , platelet-derived endothelial cell growth factor, granulocyte colony-stimulating factor, interleukin-8, hepatocyte growth factor, proliferin, vascular endothelial growth factor and placental growth factor. Folkman et al., 1995, N. Engl. J. Med., 333:1757-1763.
- TNF ⁇ induces in vivo capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membranes at very low doses and suggest TNF ⁇ is a candidate for inducing angio- genesis in inflammation, wound repair, and tumor growth.
- TNF ⁇ production also has been independently associated with cancerous conditions, particularly induced tumors ⁇ Ching et al., Brit. J. Cancer, (1955) 72, 339- 343, and Koch, Progress in Medicinal Chemistry, 22, 166-242 (1985) ⁇ .
- angiogenesis is prominent in solid tumor forma- tion and metastasis and angiogenic factors have been found associated with several solid tumors such as rhabdomyosarcomas, retinoblastoma, Ewing sarcoma, neuroblastoma, and osteosarcoma.
- Tumors in which angiogenesis is important include solid tumors, and benign tumors such as acoustic neuroma, neurofibroma, trachoma and pyogenic granulomas. Independent of its action on TNF ⁇ production, the prevention of angiogenesis could halt the growth of these tumors and the resultant damage to the animal due to the presence of the tumor.
- Angiogenesis has been associated with blood-born tumors such as leukemias and various acute or chronic neoplastic diseases of the bone marrow. In such conditions, unrestrained proliferation of white blood cells occurs, usually accompanied by anemia, impaired blood clotting, and enlargement of the lymph nodes, liver, and spleen.
- Angiogenesis also is involved in tumor metastasis.
- angiogenesis stimulation occurs in vascularization of the tumor, allowing tumor cells to enter the blood stream and circulate throughout the body. After the tumor cells have left the primary site, and have settled into the secondary, metastasis site, angiogenesis must occur before the new tumor can grow and expand.
- All of the various cell types of the body can be transformed into benign or malignant tumor cells.
- the most frequent tumor site is lung, followed by colorectal, breast, prostate, bladder, pancreas, and then ovary.
- Other prevalent types of cancer include leukemia, central nervous system cancers, including brain cancer, melanoma, lymphoma, erythroleukemia, uterine cancer, and head and neck cancer.
- TNF ⁇ also plays a role in the area of chronic pulmonary inflammatory diseases.
- the deposition of silica particles leads to silicosis, a disease of progressive respiratory failure caused by a fibrotic reaction.
- Antibody to TNF ⁇ completely blocked the silica-induced lung fibrosis in mice ⁇ Pignet et al., Nature, 344:245-247 (1990) ⁇ .
- High levels of TNF ⁇ production have been demonstrated in animal models of silica and asbestos induced fibrosis ⁇ Bis- sonnette et al., Inflammation 13(3), 329-339 (1989) ⁇ .
- TNF ⁇ is also implicated in the inflammatory response which follows reperfusion, called reperfusion injury, and is a major cause of tissue damage after loss of blood flow ⁇ Vedder et al., PNAS 87, 2643-2646 (1990) ⁇ .
- TNF ⁇ also alters the properties of endothelial cells and has various pro-coagulant activities, such as producing an increase in tissue factor pro-coagulant activity and suppression of the anticoagulant protein C pathway as well as down-regulating the expression of thrombomodulin ⁇ Sherry et al., J. Cell Biol. 107, 1269-1277 (1988) ⁇ .
- TNF ⁇ has pro-inflammatory activities which together with its early production (during the initial stage of an inflammatory event) make it a likely mediator of tissue injury in several important disorders including but not limited to, myocardial infarction, stroke and circulatory shock.
- TNF ⁇ -induced expression of adhesion mole- cules such as intercellular adhesion molecule (ICAM) or endothelial leukocyte adhesion molecule (ELAM) on endothelial cells ⁇ Munro et al., Am. J Path. 135(1),
- TNF ⁇ blockage with monoclonal anti-TNF ⁇ antibodies has been shown to be beneficial in rheumatoid arthritis ⁇ Elliot et al., Int. J. Pharmac. 1995 17(2), 141-145 ⁇ and Crohn's disease ⁇ von Dullemen et al., Gastroenterology, 1995 109(1), 129-135 ⁇
- TNF ⁇ is a potent activator of retrovirus replica- tion including activation of HIV-1.
- HIV Human Immunodeficiency Virus
- HIV-1 HIV-1
- HIV-2 HIV-2
- HIV-3 HIV-3
- T-cell mediated immunity is impaired and infected individuals manifest severe opportunistic infections and/or unusual neoplasms.
- HIV entry into the T lymphocyte requires T lymphocyte activation.
- Other viruses, such as HIV-1 , HIV-2 infect T lymphocytes after T cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation.
- the T lymphocyte must continue to be maintained in an activated state to permit HIV gene expression and/or HIV replication.
- Cytokines are implicated in activated T-cell mediated HIV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with cytokine activity such as by prevention or inhibition of cytokine production, notably TNF ⁇ , in an HIV-infected individual assists in limiting the maintenance of T lymphocyte caused by HIV infection.
- Monocytes, macrophages, and related cells have been implicated in maintenance of the HIV infection. These cells, like T cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells. ⁇ Rosenberg et al., The Immunopathogenesis of HIV
- AIDS viral replication of latent HIV in T cell and macrophage lines can be induced by TNF ⁇ ⁇ Folks et al., PNAS 86, 2365-2368 (1989) ⁇ .
- a molecular mechanism for the virus inducing activity is suggested by TNF ⁇ 's ability to activate a gene regulatory protein (NFKB) found in the cytoplasm of cells, which promotes HIV replication through binding to a viral regulatory gene sequence (LTR) ⁇ Osbom et al., PNAS 86, 2336-2340 (1989) ⁇ .
- TNF ⁇ in AIDS associated cachexia is suggested by elevated serum TNF ⁇ and high levels of spontaneous TNF ⁇ production in peripheral blood monocytes from patients ⁇ Wright et al., J. Immunol.
- TNF ⁇ has been implicated in various roles with other viral infections, such as the cytomegalia virus (CMV), influenza virus, adenovirus, and the herpes family of viruses for similar reasons as those noted.
- CMV cytomegalia virus
- NFKB nuclear factor KB
- NFKB has been implicated as a transcriptional activator in a variety of disease and inflammatory states and is thought to regulate cytokine levels including but not limited to TNF ⁇ and also to be an activator of HIV transcription (Dbaibo, et al., J Biol. Chem.
- the compounds described herein can inhibit the action of NFKB in the nucleus and thus are useful in the treatment of a variety of diseases including but not limited to rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, cancer, septic shock, sepsis, endotoxic shock, graft versus host disease, wasting, Crohn's disease, inflammatory bowel disease, ulcerative colitis, multiple sclerosis, systemic lupus erythrematosis, ENL in leprosy, HIV, AIDS, and opportunistic infections in AIDS.
- TNF ⁇ and NFKB levels are influenced by a reciprocal feedback loop.
- the compounds of the present invention affect the levels of both TNF ⁇ and NFKB. Decreasing TNF ⁇ levels thus constitute valuable therapeutic strategies for the treatment of many inflammatory, infectious, immunological or malignant diseases. These include but are not restricted to septic shock, sepsis, endotoxic shock, hemodynamic shock and sepsis syndrome, post ischemic reperfusion injury, malaria, mycobacterial infection, meningitis, psoriasis, congestive heart failure, fibrotic disease, cachexia, graft rejection, cancer, autoimmune disease, opportunistic infections in AIDS, rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, Crohn's disease, ulcerative colitis, multiple sclerosis, systemic lupus erythrematosis, ENL in leprosy, radiation damage, and hyperoxic alveolar injury.
- the present invention pertains to compounds of Formula I in which the carbon atoms designated * constitute centers of chirality:
- X is -C(O)- or -CH 2 -;
- R 1 is alkyl of 1 to 8 carbon atoms or -NHR 3 ;
- R 2 is hydrogen, alkyl of 1 to 8 carbon atoms, or halogeno;
- R 3 is hydrogen, alkyl of 1 to 8 carbon atoms, cycloalkyl of 3 to 18 carbon atoms, phenyl, unsubstituted or substituted with halo, amino, or alkylamino of 1 to 4 carbon atoms, benzyl, unsubstituted or substituted with halo, amino, or alkylamino of 1 to 4 carbon atoms, or -COR 4 in which
- R 4 is hydrogen, alkyl of 1 to 8 carbon atoms, unsubstituted or substituted with halo, amino, or alkylamino of 1 to 4 carbon atoms, cycloalkyl of 3 to 18 carbon atoms, phenyl, unsubstituted or substituted with halo, amino, or alkylamino of 1 to 4 carbon atoms, or benzyl, unsubstituted or substituted with halo, amino, or alkylamino of 1 to 4 carbon atoms.
- the present invention also pertains to the acid addition salts of these isoindoline derivatives which are susceptible of protonation.
- Such salts include those derived from organic and inorganic acids such as, without limitation, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulfonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, embonic acid, enanthic acid, and the like.
- organic and inorganic acids such as, without limitation, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulfonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, embonic acid, enanthic
- the compounds can be prepared through a number of methods. For example, a suitably protected 3,5-disubstituted piperidine-2,6-dione of Formula II is allowed to react with a 4-substituted 1 ,3-dihydroisobenzofuran-1 ,3-dione of Formula III to yield the protected compounds of Formula IA:
- R 1 is as defined above, X is -CH 2 -, R 2' is hydrogen or alkyl, and Z and Y are protecting groups, as for example benzyloxycarbonyl and alkanoyloxy.
- Compounds of Formulas III and IIIA are known.
- Compounds of Formula II in which R 2 is hydrogen can be prepared by treating an amino protected lactone of 2- amino-4-hydroxyglutaric acid of Formula IIA with ammonia in methanol to yield the corresponding protected 2-amino-4-hydroxy-4-carboxybutanamide of Formula IIB which is then subjected to cyclization in acetic acid:
- R 2' is alkyl
- it can be introduced by treating the lactone of Formula IIA with two equivalents of a strong base, as for example ⁇ -butyl lithium, to form the dianion, and then alkylating, as for example with methyl iodide.
- a strong base as for example ⁇ -butyl lithium
- alkylating as for example with methyl iodide.
- the unprotected lactone IIC is converted to the f.-butyl ester which in turn is treated with benzaldehyde to form the amidine I ID.
- R 2 is halogeno, as for example fluoro, it can be introduced by treating a compound of Formula IA or IB with sodium fo/s(trimethylsilyl)amide and N- fluorobenzenesulfonimide:
- Removal of the protecting group Y can be achieved through appropriate hydrolysis; e.g., treatment with p-toluenesulfonic acid to cleave an alkanoyloxy group.
- protected groups including but not limited to functional groups convertible to the desired group.
- Protecting groups utilized herein denote groups which generally are not found in the final therapeutic compounds but which are intentionally introduced at some stage of the synthesis in order to protect groups which otherwise might be altered in the course of chemical manipulations. Such protecting groups are removed or converted to the desired group at a later stage of the synthesis and compounds bearing such protecting groups thus are of importance primarily as chemical intermediates (although some derivatives also exhibit biological activity). Accordingly the precise structure of the protecting group is not critical. Numerous reactions for the formation and removal of such protecting groups are described in a number of standard works including, for example, "Protective Groups in Organic Chemistry", Plenum Press, London and New York, 1973; Greene, Th. W.
- An amino group thus can be protected as an amide utilizing an acyl group which is selectively removable under mild conditions, especially formyl, a lower alkanoyl group which is branched in 1- or ⁇ position to the carbonyl group, particularly tertiary alkanoyl such as pivaloyl, or a lower alkanoyl group which is substituted in the position ⁇ to the carbonyl group, as for example trifluoroacetyl.
- an acyl group which is selectively removable under mild conditions, especially formyl, a lower alkanoyl group which is branched in 1- or ⁇ position to the carbonyl group, particularly tertiary alkanoyl such as pivaloyl, or a lower alkanoyl group which is substituted in the position ⁇ to the carbonyl group, as for example trifluoroacetyl.
- a carboxy group can be converted to an ester which is selectively removable under sufficiently mild conditions not to disrupt the desired structure of the molecule, especially a lower alkyl ester of 1 to 12 carbon atoms such as methyl or ethyl and particularly one which is branched at the 1- or posi- tion such as t-butyl; and such lower alkyl ester substituted in the 1- or 2-position with (/) lower alkoxy, such as for example, methoxymethyl, 1-methoxyethyl, and ethoxymethyl, (i) lower alkylthio, such as for example methylthiomethyl and 1-ethy- Ithioethyl; (Hi) halogen, such as 2,2,2-trichloroethyl, 2-bromoethyl, and 2-iodoeth- oxycarbonyl; (iv) one or two phenyl groups each of which can be unsubstituted or mono-, di- or tri-substitute
- R 1 is amino
- the reactions described herein can be performed with intermediates in which R 1 is a nitro group with the nitro group then being catalytically reduced (hydrogenated) to an amine.
- R 1 is derivative of an amino group, such as N-acylamino or N-alkylamino it can be formed from the corresponding unsubstituted amino compound.
- the compounds contain two centers of chirality (designated by * in Formula I) and thus can exist as enantiomers and diastereoisomers.
- the compounds can be administered as a substantially chirally pure (S,S)-, (S,R)-, (R,R)-, or (R,S)- isomer or as mixtures of two or more of these isomers and all are within the scope of the present invention. Mixtures can be used as such or can be separated into their individual isomers mechanically as by chromatography using a chiral absorbent.
- the individual isomers can be prepared in chiral form or separated chemically from a mixture by forming salts with a chiral acid, or have such as the individual enantiomers of 10-camphorsulfonic acid, camphoric acid, bromocampho- ric acid, methoxyacetic acid, tartaric acid, diacetyltartaric acid, malic acid, pyrrolid- one-5-carboxylic acid, and the like, and then freeing one or both of the resolved bases, optionally repeating the process, so as obtain either or both substantially free of the other; i.e., in a form having an optical purity of >95%.
- a first preferred subgroup are those compounds of Formula I in which R 2 is hydrogen, methyl, or fluoro, particularly hydrogen.
- a second preferred subgroup are those compounds of Formula I in which R is amino.
- a third preferred subgroup are those compounds of Formula I in which R is methyl.
- a fourth preferred subgroup are those compounds of Formula I in which X is - C(O)-.
- a fifth preferred subgroup are those compounds of Formula I in which X is -CH 2 -
- a further preferred subgroup are those compounds of Formula I in which R 2 is hydrogen, methyl, or fluoro, particularly hydrogen, R 1 is methyl, amino, alkylamino, or acylamino, and X is -C(O)- or -CH 2 -.
- TNF ⁇ and NFKB by these compounds can be conveniently assayed using methods known in the art, e.g., enzyme immunoassay, radioimmunoassay, immunoelectrophoresis, affinity labeling, etc., of which the following are typical.
- Representative compounds include 2-(2,6-dioxo-3-hydroxy-5-fluoropiperidin-5-yl)- 4-(N-benzylamino)isoindoline-1 ,3-dione; 2-(2,6-dioxo-3-hydroxy-5-fluoropiperidin-5- yl)-4-(N-benzylamino)isoindolin-1-one; 2-(2,6-dioxo-3-hydroxy-5-fluoropiperidin-5- yl)-4-acetamidoisoindoline-1 ,3-dione; 2-(2,6-dioxo-3-hydroxy-5-fluoropiperidin-5-yl)- 4-acetamidoisoindolin-1-one; 2-(2,6-dioxo ⁇ 3-hydroxy-5 ⁇ fluoropiperidin-5-yl)-4-ami- noisoindolin-1-one; 2-(2,6-dioxo-3-hydroxy-5-fluoropiperidin-5-yl)-4-
- PBMC from normal donors are obtained by Ficoll-Hypaque density centrifugation.
- Cells are cultured in RPMI supplemented with 10% AB+ serum, 2mM L-glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin.
- test compounds are dissolved in dimethylsulfoxide (Sigma Chemical), further dilutions are done in supplemented RPMI.
- the final dimethylsulfoxide concentration in the presence or absence of drug in the PBMC suspensions is 0.25 wt %.
- the test compounds are assayed at half-log dilutions starting at 50 mg/mL.
- the test compounds are added to PBMC (10 6 cells/mL) in 96 wells plates one hour before the addition of LPS.
- PBMC peripheral blood mononuclear cells
- test compound 1 mg/mL of LPS from Salmonella minnesota R595 (List Biological Labs, Campbell, CA). Cells are then incubated at 37°C for 18-20 hours. Super- natants areharvested and assayed immediately for TNF ⁇ levels or kept frozen at -
- the concentration of TNF ⁇ in the supernatant is determined by human TNF ⁇ ELISA kits (ENDOGEN, Boston, MA) according to the manufacturer's directions.
- the compounds can be used, under the supervision of qualified professionals, to inhibit the undesirable effects of TNF ⁇ and NFKB.
- the compounds can be admin- istered orally, rectally, or parenterally, alone or in combination with other therapeutic agents including antibiotics, steroids, etc., to a mammal in need of treatment.
- Oral dosage forms include tablets, capsules, dragees, and similar shaped, compressed pharmaceutical forms.
- Isotonic saline solutions containing 20-100 milli- grams/milliliter can be used for parenteral administration which includes intramuscular, intrathecal, intravenous and intra-arterial routes of administration. Rectal administration can be effected through the use of suppositories formulated from conventional carriers such as cocoa butter.
- Dosage regimens must be titrated to the particular indication, the age, weight, and general physical condition of the patient, and the response desired but generally doses will be from about 1 to about 1000 milligrams/day as needed in single or multiple daily administration.
- an initial treatment regimen can be copied from that known to be effective in interfering with TNF ⁇ activity for other TNF ⁇ mediated disease states by the compounds of the present invention.
- Treated individuals will be regularly checked for T cell numbers and T4/T8 ratios and/or measures of viremia such as levels of reverse transcriptase or viral proteins, and/or for progression of cyto- kine-mediated disease associated problems such as cachexia or muscle degeneration. If no effect is observed following the normal treatment regimen, then the amount of cytokine activity interfering agent administered is increased, e.g., by fifty percent a week.
- the compounds of the present invention can also be used topically in the treatment or prophylaxis of topical disease states mediated or exacerbated by excessive TNF ⁇ production, such as viral infections, for example those caused by the herpes viruses or viral conjunctivitis, psoriasis, other skin disorders and diseases, etc.
- the compounds can also be used in the veterinary treatment of mammals other than humans in need of prevention or inhibition of TNF ⁇ production.
- TNF ⁇ mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted above, but in particular viral infections. Examples include feline immunodeficiency virus, equine infectious anaemia virus, caprine arthritis virus, visna virus, and maedi virus, as well as other lentiviruses.
- the invention thus includes various methods of treatment including the method of reducing or inhibiting undesirable levels of TNF ⁇ , method of reducing or inhibiting undesirable levels of matrix metalloproteinases, the method of treating undesirable angiogenesis, the method of treating cancer, the method of treating inflammatory disease, the method of treating autoimmune disease, the method of treating arthritis, the method of treating rheumatoid arthritis, the method of treating inflammatory bowel disease, the method of treating Crohn's disease, the method of treating aph- thous ulcers, the method of treating cachexia, the method of treating graft versus host disease, the method of treating asthma, the method of treating adult respiratory distress syndrome, and the method of treating acquired immune deficiency syndrome, by administering to a mammalan an effective amount of a substantially chi- rally pure (R)- or (S)-isomer of a compound of Formula I or a mixture of those isomers. While these methods may overlap, they also may differ in terms of method of administration, dose level, dosage regimen (such as single or multiple
- the invention also includes pharmaceutical compositions in which (/ ' ) a quantity of a substantially chirally pure (R)- or (S)-isomer of a compound of Formula I or a mixture of those isomers, that upon administration in a single or multiple dose regimen is pharmaceutically effective is combined with (if) a pharmaceutically acceptable carrier .
- compositions can be typified by oral dosage forms that include tablets, capsules, dragees, and similar shaped, compressed pharmaceutical forms containing from 1 to 100 mg of drug per unit dosage. Mixtures containing from 20 to
- 100 mg/mL can be formulated for parenteral administration which includes intra- muscular, intrathecal, intravenous and intra-arterial routes of administration. Rectal administration can be effected through the use of suppositories formulated from conventional carriers such as cocoa butter.
- compositions will comprise one or more compounds of the present invention associated with at least one pharmaceutically acceptable carrier, diluent or excipient.
- the active ingredients are usually mixed with or diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule or sachet.
- the excipient serves as a diluent, it may be a solid, semi-solid, or liquid material which acts as a vehicle, carrier, or medium for the active ingredient.
- the compositions can be in the form of tablets, pills, powders, elixirs, suspensions, emulsions, solutions, syrups, soft and hard gelatin capsules, suppositories, sterile injectable solutions and sterile packaged powders.
- excipients examples include lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidinone polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose
- the formulations can additionally include lubricating agents such as talc, magnesium stearate and mineral oil, wetting agents, emulsifying and suspending agents, preserving agents such as methyl- and propylhydroxybenzoates, sweetening agents or flavoring agents.
- compositions preferably are formulated in unit dosage form, meaning physically discrete units suitable as a unitary dosage, or a predetermined fraction of a unitary dose to be administered in a single or multiple dosage regimen to human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with a suitable pharmaceutical excipient.
- the compositions can be formulated so as to provide an immediate, sustained or delayed release of active ingredient after administration to the patient by employing procedures well known in the art.
- the following examples will serve to further typify the nature of this invention but should not be construed as a limitation in the scope thereof, which scope is defined solely by the appended claims.
- Example 2 4-Amino-2-(5-hydroxy-2,6-dioxopiperid ⁇ 3-yl)isoindoline-1,3-dione A 5-(1 ,3-dioxo-4-nitro-1 ,3-dihvdro-isoindol-2-yl .-2,6-dioxo-piperidin-3-yl acetate
- Example 4 4-Amino-2-(5-hvdroxy-2,6-dioxo iperid-3-yl)isoindoline-1-one A. 3-,4-Amino-1-oxoisoindolin-2-yl . -2,6-dioxo-5-acetoxypiperidine
- Example 12 Tablets each containing 50 mg of 2-(2,6-dioxo-3-hydroxypiperidin-5-yl)-4- aminoisoindoline-1 ,3-dione, can be prepared in the following manner: Constituents (for 1000 tablets)
- the solid ingredients are first forced through a sieve of 0.6 mm mesh width.
- the active ingredient, lactose, talc, magnesium stearate and half of the starch then are mixed.
- the other half of the starch is suspended in 40 mL of water and this sus- pension is added to a boiling solution of the polyethylene glycol in 100 mL of water.
- the resulting paste is added to the pulverulent substances and the mixture is granulated, if necessary with the addition of water.
- the granulate is dried overnight at 35°C, forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 6 mm diameter which are concave on both sides.
- Tablets each containing 100 mg of 2-(2,6-dioxo-3-hydroxypiperidin-5-yl)-4-meth- ylaminoisoindolin-1-one, can be prepared in the following manner:
- All the solid ingredients are first forced through a sieve of 0.6 mm mesh width.
- the active ingredient, lactose, magnesium stearate and half of the starch then are mixed.
- the other half of the starch is suspended in 40 mL of water and this suspen- sion is added to 100 mL of boiling water.
- the resulting paste is added to the pulverulent substances and the mixture is granulated, if necessary with the addition of water.
- the granulate is dried overnight at 35°C, forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 6 mm diameter which are concave on both sides.
- Example 14 Tablets for chewing each containing 75 mg of 2-(2,6-dioxo-3-hydroxy-5-methyl- piperidin-5-yl)-4-methylisoindoline-1 ,3-dione, can be prepared in the following manner:
- composition for 1000 tablets
- All the solid ingredients are first forced through a sieve of 0.25 mm mesh width.
- the mannitol and the lactose are mixed, granulated with the addition of gelatin solution, forced through a sieve of 2 mm mesh width, dried at 50°C and again forced through a sieve of 1.7 mm mesh width.
- 3-(3-Ethoxy-4-methoxyphenyl)-N- hydroxy-3-phthalimidopropionamide, the glycine and the saccharin are carefully mixed, the mannitol, the lactose granulate, the stearic acid and the talc are added and the whole is mixed thoroughly and compressed to form tablets of approximately 10 mm diameter which are concave on both sides and have a breaking groove on the upper side.
- Tablets each containing 10 mg 2-(2,6-dioxo-3-hydroxypiperidin-5-yl)-4-amino- isoindolin-1-one, can be prepared in the following manner: Composition (for 1000 tablets)
- the solid ingredients are first forced through a sieve of 0.6 mm mesh width. Then the active imide ingredient, lactose, talc, magnesium stearate and half of the starch are intimately mixed. The other half of the starch is suspended in 65 mL of water and this suspension is added to a boiling solution of the polyethylene glycol in 260 mL of water. The resulting paste is added to the pulverulent substances, and the whole is mixed and granulated, if necessary with the addition of water. The granulate is dried overnight at 35°C, forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 10 mm diameter which are concave on both sides and have a breaking notch on the upper side.
- Gelatin dry-filled capsules each containing 100 mg of 2-(2,6-dioxo-3-hydroxy-5- fluoropiperidin-5-yl)-4-aminoisoindolin-1-one, can be prepared in the following man- ner:
- Composition for 1000 capsules
- the sodium lauryl sulfate is sieved into the 2-(2,6-dioxo-3-hydroxy-5-fluoro- piperidin-5-y!)-4-aminoisoindolin-1-one through a sieve of 0.2 mm mesh width and the two components are intimately mixed for 10 minutes.
- the microcrystalline cellulose is then added through a sieve of 0.9 mm mesh width and the whole is again intimately mixed for 10 minutes.
- the magnesium stearate is added through a sieve of 0.8 mm width and, after mixing for a further 3 minutes, the mixture is introduced in portions of 140 mg each into size 0 (elongated) gelatin dry-fill capsules.
- a 0.2% injection or infusion solution can be prepared, for example, in the following manner:
- 2-(2,6-Dioxo-3-hydroxypiperidin-5-yl)-4-aminoisoindolin-1 -one hydrochloride is dissolved in 1000 mL of water and filtered through a microfilter. The buffer solution is added and the whole is made up to 2500 mL with water. To prepare dosage unit forms, portions of 1.0 or 2.5 mL each are introduced into glass ampoules (each containing respectively 2.0 or 5.0 mg of imide).
Landscapes
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pulmonology (AREA)
- Rheumatology (AREA)
- Virology (AREA)
- Oncology (AREA)
- Diabetes (AREA)
- AIDS & HIV (AREA)
- Tropical Medicine & Parasitology (AREA)
- Molecular Biology (AREA)
- Physical Education & Sports Medicine (AREA)
- Communicable Diseases (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pain & Pain Management (AREA)
- Hematology (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Indole Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP06014827A EP1733726B1 (en) | 2000-11-14 | 2001-11-14 | Pharmaceutically active isoindoline derivatives |
| SI200130690T SI1341537T1 (en) | 2000-11-14 | 2001-11-14 | Pharmaceutically active isoindoline derivatives |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/712,550 US6458810B1 (en) | 2000-11-14 | 2000-11-14 | Pharmaceutically active isoindoline derivatives |
| US712550 | 2000-11-14 | ||
| PCT/US2001/044107 WO2002094180A2 (en) | 2000-11-14 | 2001-11-14 | Pharmaceutically active isoindoline derivatives |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP06014827A Division EP1733726B1 (en) | 2000-11-14 | 2001-11-14 | Pharmaceutically active isoindoline derivatives |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP1341537A2 true EP1341537A2 (en) | 2003-09-10 |
| EP1341537A4 EP1341537A4 (en) | 2004-01-28 |
| EP1341537B1 EP1341537B1 (en) | 2007-01-24 |
Family
ID=24862586
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP06014827A Expired - Lifetime EP1733726B1 (en) | 2000-11-14 | 2001-11-14 | Pharmaceutically active isoindoline derivatives |
| EP01273992A Expired - Lifetime EP1341537B1 (en) | 2000-11-14 | 2001-11-14 | Pharmaceutically active isoindoline derivatives |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP06014827A Expired - Lifetime EP1733726B1 (en) | 2000-11-14 | 2001-11-14 | Pharmaceutically active isoindoline derivatives |
Country Status (18)
| Country | Link |
|---|---|
| US (4) | US6458810B1 (en) |
| EP (2) | EP1733726B1 (en) |
| JP (1) | JP4328536B2 (en) |
| KR (2) | KR20080107480A (en) |
| CN (1) | CN1290501C (en) |
| AT (2) | ATE352303T1 (en) |
| AU (1) | AU2001297762B2 (en) |
| CA (1) | CA2427619A1 (en) |
| CY (1) | CY1106453T1 (en) |
| DE (2) | DE60126324T2 (en) |
| DK (1) | DK1341537T3 (en) |
| ES (2) | ES2278685T3 (en) |
| IL (1) | IL155758A0 (en) |
| MX (1) | MXPA03004219A (en) |
| NO (1) | NO327125B1 (en) |
| NZ (2) | NZ528078A (en) |
| PT (1) | PT1341537E (en) |
| WO (1) | WO2002094180A2 (en) |
Families Citing this family (125)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6228879B1 (en) * | 1997-10-16 | 2001-05-08 | The Children's Medical Center | Methods and compositions for inhibition of angiogenesis |
| US6518281B2 (en) | 1995-08-29 | 2003-02-11 | Celgene Corporation | Immunotherapeutic agents |
| HU228769B1 (en) * | 1996-07-24 | 2013-05-28 | Celgene Corp | Substituted 2(2,6-dioxopiperidin-3-yl)phthalimides and -1-oxoisoindolines and their use for production of pharmaceutical compositions for mammals to reduce the level of tnf-alpha |
| US6281230B1 (en) * | 1996-07-24 | 2001-08-28 | Celgene Corporation | Isoindolines, method of use, and pharmaceutical compositions |
| US5635517B1 (en) * | 1996-07-24 | 1999-06-29 | Celgene Corp | Method of reducing TNFalpha levels with amino substituted 2-(2,6-dioxopiperidin-3-YL)-1-oxo-and 1,3-dioxoisoindolines |
| KR20070040423A (en) * | 1998-03-16 | 2007-04-16 | 셀진 코포레이션 | 2- (2,6-dioxopiperidin-3-yl) isoindolin derivatives for inflammatory cytokine inhibitors, preparations thereof and uses thereof |
| US7629360B2 (en) | 1999-05-07 | 2009-12-08 | Celgene Corporation | Methods for the treatment of cachexia and graft v. host disease |
| US8030343B2 (en) * | 2000-06-08 | 2011-10-04 | Celgene Corporation | Pharmaceutically active isoindoline derivatives |
| US6458810B1 (en) | 2000-11-14 | 2002-10-01 | George Muller | Pharmaceutically active isoindoline derivatives |
| MXPA03004699A (en) * | 2000-11-30 | 2005-01-25 | Childrens Medical Center | Synthesis of 3-amino-thalidomide and its enantiomers. |
| JP4361273B2 (en) * | 2001-02-27 | 2009-11-11 | アメリカ合衆国 | Thalidomide analogs as potential angiogenesis inhibitors |
| EP1423115B9 (en) * | 2001-08-06 | 2009-09-02 | The Children's Medical Center Corporation | Antiangiogenic activity of nitrogen substituted thalidomide analogs |
| US7087768B2 (en) * | 2001-09-27 | 2006-08-08 | Equispharm Co., Ltd. | Fumagillol derivatives and preparing method thereof |
| US7968569B2 (en) * | 2002-05-17 | 2011-06-28 | Celgene Corporation | Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione |
| USRE48890E1 (en) | 2002-05-17 | 2022-01-11 | Celgene Corporation | Methods for treating multiple myeloma with 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione after stem cell transplantation |
| US7393862B2 (en) | 2002-05-17 | 2008-07-01 | Celgene Corporation | Method using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias |
| US20100129363A1 (en) * | 2002-05-17 | 2010-05-27 | Zeldis Jerome B | Methods and compositions using pde4 inhibitors for the treatment and management of cancers |
| NZ570777A (en) * | 2002-05-17 | 2009-04-30 | Celgene Corp | Methods and compositions using selective cytokine inhibitory drugs for treatment and management of cancers and other diseases |
| ES2521672T3 (en) * | 2002-05-17 | 2014-11-13 | Celgene Corporation | Pharmaceutical formulations for cancer treatment |
| US7323479B2 (en) | 2002-05-17 | 2008-01-29 | Celgene Corporation | Methods for treatment and management of brain cancer using 1-oxo-2-(2,6-dioxopiperidin-3-yl)-4-methylisoindoline |
| US8404716B2 (en) | 2002-10-15 | 2013-03-26 | Celgene Corporation | Methods of treating myelodysplastic syndromes with a combination therapy using lenalidomide and azacitidine |
| US7189740B2 (en) | 2002-10-15 | 2007-03-13 | Celgene Corporation | Methods of using 3-(4-amino-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myelodysplastic syndromes |
| CA2501936A1 (en) * | 2002-10-15 | 2004-04-29 | Celgene Corporation | Selective cytokine inhibitory drugs for treating myelodysplastic syndrome |
| US11116782B2 (en) | 2002-10-15 | 2021-09-14 | Celgene Corporation | Methods of treating myelodysplastic syndromes with a combination therapy using lenalidomide and azacitidine |
| US8404717B2 (en) * | 2002-10-15 | 2013-03-26 | Celgene Corporation | Methods of treating myelodysplastic syndromes using lenalidomide |
| US20050203142A1 (en) * | 2002-10-24 | 2005-09-15 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for treatment, modification and management of pain |
| US20040087558A1 (en) * | 2002-10-24 | 2004-05-06 | Zeldis Jerome B. | Methods of using and compositions comprising selective cytokine inhibitory drugs for treatment, modification and management of pain |
| US20040091455A1 (en) * | 2002-10-31 | 2004-05-13 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for treatment and management of macular degeneration |
| US7563810B2 (en) | 2002-11-06 | 2009-07-21 | Celgene Corporation | Methods of using 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myeloproliferative diseases |
| MXPA05004780A (en) | 2002-11-06 | 2005-10-05 | Celgene Corp | Methods and compositions using selective cytokine inhibitory drugs for treatment and management of cancers and other diseases. |
| US8034831B2 (en) | 2002-11-06 | 2011-10-11 | Celgene Corporation | Methods for the treatment and management of myeloproliferative diseases using 4-(amino)-2-(2,6-Dioxo(3-piperidyl)-isoindoline-1,3-dione in combination with other therapies |
| CA2506232A1 (en) * | 2002-11-18 | 2004-06-03 | Celgene Corporation | Methods of using and compositions comprising (+)-3-(3,4-dimethoxy-phenyl)-3-(1-oxo-1,3-dihydro-isoindol-2-yl)-propionamide |
| EP1569599A2 (en) * | 2002-11-18 | 2005-09-07 | Celgene Corporation | Methods of usig and compositions comprising (-)-3-(3,4-dimethoxy-phenyl)-3-(1-oxo-1,3-dihydro-isoindol-2-yl)-propionamide |
| UA83504C2 (en) | 2003-09-04 | 2008-07-25 | Селджин Корпорейшн | Polymorphic forms of 3-(4-amino-1-oxo-1,3 dihydro-isoindol-2-yl)-piperidine-2,6-dione |
| CA2808646C (en) | 2003-09-17 | 2016-08-23 | The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services | Thalidomide analogs as tnf-alpha modulators |
| US8952895B2 (en) | 2011-06-03 | 2015-02-10 | Apple Inc. | Motion-based device operations |
| US20080027113A1 (en) * | 2003-09-23 | 2008-01-31 | Zeldis Jerome B | Methods of Using and Compositions Comprising Immunomodulatory Compounds for Treatment and Management of Macular Degeneration |
| US7612096B2 (en) * | 2003-10-23 | 2009-11-03 | Celgene Corporation | Methods for treatment, modification and management of radiculopathy using 1-oxo-2-(2,6-dioxopiperidin-3yl)-4-aminoisoindoline |
| OA13284A (en) * | 2003-11-06 | 2007-01-31 | Corporation Celgene | Methods and compositions using thalidomide for thetreatment and management of cancers and other dis eases. |
| US20050100529A1 (en) * | 2003-11-06 | 2005-05-12 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of asbestos-related diseases and disorders |
| EP2065383A1 (en) | 2003-11-19 | 2009-06-03 | Signal Pharmaceuticals, Inc. | Indazole compounds and methods of use thereof as protein kinase inhibitors |
| US20050143344A1 (en) * | 2003-12-30 | 2005-06-30 | Zeldis Jerome B. | Methods and compositions using immunomodulatory compounds for the treatment and management of central nervous system disorders or diseases |
| ZA200607799B (en) * | 2004-03-22 | 2008-06-25 | Celgene Corp | Methods of using and compositions comprising immuno-modulatory compounds for the treatment and management of skin diseases or disorders |
| US20050222209A1 (en) * | 2004-04-01 | 2005-10-06 | Zeldis Jerome B | Methods and compositions for the treatment, prevention or management of dysfunctional sleep and dysfunctional sleep associated with disease |
| WO2005110085A2 (en) * | 2004-04-14 | 2005-11-24 | Celgene Corporation | Use of selective cytokine inhibitory drugs in myelodysplastic syndromes |
| WO2005110408A1 (en) * | 2004-04-14 | 2005-11-24 | Celgene Corporation | Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of myelodysplastic syndromes |
| BRPI0510110A (en) * | 2004-04-23 | 2007-09-25 | Celgene Corp | method for treating, preventing or controlling pulmonary hypertension, and pharmaceutical composition |
| EP1797068B1 (en) * | 2004-09-03 | 2013-10-09 | Celgene Corporation | Processes for the preparation of substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines |
| AU2005302523A1 (en) * | 2004-10-28 | 2006-05-11 | Celgene Corporation | Methods and compositions using PDE4 modulators for treatment and management of central nervous system injury |
| CA2588597A1 (en) * | 2004-11-23 | 2006-06-01 | Celgene Corporation | Methods and compositions using immunomodulatory compounds for treatment and management of central nervous system injury |
| US20060270707A1 (en) * | 2005-05-24 | 2006-11-30 | Zeldis Jerome B | Methods and compositions using 4-[(cyclopropanecarbonylamino)methyl]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione for the treatment or prevention of cutaneous lupus |
| WO2007005807A2 (en) * | 2005-06-30 | 2007-01-11 | Anthrogenesis Corporation | Repair of tympanic membrane using placenta derived collagen biofabric |
| RS52704B (en) | 2005-06-30 | 2013-08-30 | Celgene Corporation | Processes for the preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl) isoindoline-1,3-dione compounds |
| US20070021762A1 (en) * | 2005-07-13 | 2007-01-25 | Qing Liu | Ocular plug formed from placenta derived collagen biofabric |
| WO2007009062A2 (en) * | 2005-07-13 | 2007-01-18 | Anthrogenesis Corporation | Treatment of leg ulcers using placenta derived collagen biofabric |
| HRP20110348T1 (en) | 2005-09-01 | 2011-07-31 | Celgene Corporation | IMMUNOLOGICAL APPLICATIONS OF IMMUNOMODULATORY COMPOUNDS FOR THE VACCINE AND FOR THE TREATMENT OF INFECTIVE DISEASES |
| RU2428983C2 (en) * | 2005-09-02 | 2011-09-20 | Санесис Фармасьютикалз, Инк. | Methods of applying (+)-1,4-dihydro-7-[(3s,4s)-3-methoxy-4-(methylamino)-1-pyrrolidinyl]-4-oxo-1-(2-thuasolyl)-1,8-naphthydirine-3-carboxylic acid for treatment of cancer |
| KR20140057409A (en) * | 2005-09-02 | 2014-05-12 | 선에시스 파마슈티컬스 인코포레이티드 | (+) - 1,4-dihydro-7 - [(3S, 4S) -3-methoxy- 4- (methylamino) -1- pyrrolidinyl] 2-thiazolyl) -1,8-naphthyridine-3-carboxylic acid |
| US20080138295A1 (en) * | 2005-09-12 | 2008-06-12 | Celgene Coporation | Bechet's disease using cyclopropyl-N-carboxamide |
| US20070066512A1 (en) * | 2005-09-12 | 2007-03-22 | Dominique Verhelle | Methods and compositions using immunomodulatory compounds for the treatment of disorders associated with low plasma leptin levels |
| CA2624925C (en) | 2005-10-13 | 2014-09-30 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
| AU2006332680A1 (en) | 2005-12-29 | 2007-07-12 | Anthrogenesis Corporation | Improved composition for collecting and preserving placental stem cells and methods of using the composition |
| US20070155791A1 (en) * | 2005-12-29 | 2007-07-05 | Zeldis Jerome B | Methods for treating cutaneous lupus using aminoisoindoline compounds |
| WO2007120669A1 (en) * | 2006-04-13 | 2007-10-25 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Tetrahalogenated compounds useful as inhibitors of angiogenesis |
| WO2007136640A2 (en) * | 2006-05-16 | 2007-11-29 | Celgene Corporation | Processes for the preparation of substituted 2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione |
| CL2007002218A1 (en) * | 2006-08-03 | 2008-03-14 | Celgene Corp Soc Organizada Ba | USE OF 3- (4-AMINO-1-OXO-1,3-DIHIDRO-ISOINDOL-2-IL) -PIPERIDINE 2,6-DIONA FOR THE PREPARATION OF A USEFUL MEDICINAL PRODUCT FOR THE TREATMENT OF LAYER CELL LYMPHOMA. |
| US8105634B2 (en) * | 2006-08-15 | 2012-01-31 | Anthrogenesis Corporation | Umbilical cord biomaterial for medical use |
| WO2008042441A1 (en) * | 2006-10-03 | 2008-04-10 | Anthrogenesis Corporation | Use of umbilical cord biomaterial for ocular surgery |
| WO2008060377A2 (en) | 2006-10-04 | 2008-05-22 | Anthrogenesis Corporation | Placental or umbilical cord tissue compositions |
| KR20190112868A (en) | 2006-10-06 | 2019-10-07 | 안트로제네시스 코포레이션 | Native(telopeptide) Placental Collagen Compositions |
| MX2009008559A (en) | 2007-02-12 | 2009-08-21 | Anthrogenesis Corp | Hepatocytes and chondrocytes from adherent placental stem cells; and cd34+, cd45- placental stem cell-enriched cell populations. |
| NZ612888A (en) | 2007-02-12 | 2015-02-27 | Anthrogenesis Corp | Treatment of inflammatory diseases using placental stem cells |
| EP3101017B1 (en) | 2007-03-20 | 2019-06-12 | Celgene Corporation | 4'-o-substituted isoindoline derivatives and compositions comprising and methods of using the same |
| WO2009020590A1 (en) * | 2007-08-07 | 2009-02-12 | Celgene Corporation | Methods for treating lymphomas in certain patient populations and screening patients for said therapy |
| PT2203176E (en) | 2007-09-28 | 2015-03-02 | Anthrogenesis Corp | TUMOR SUPPRESSION USING HUMAN PLACENTARY PERFUSION AND INTERMEDIATE NATURAL MURDER CELLS DERIVED FROM HUMAN PLACENTA |
| US7964354B2 (en) * | 2007-12-20 | 2011-06-21 | Celgene Corporation | Use of micro-RNA as a biomarker of immunomodulatory drug activity |
| US20090171093A1 (en) * | 2007-12-28 | 2009-07-02 | Yoshio Takeuchi | 3'-Fluoro-5'-hydroxythalidomide and derivatives thereof |
| US20090232796A1 (en) * | 2008-02-20 | 2009-09-17 | Corral Laura G | Method of treating cancer by administering an immunomodulatory compound in combination with a cd40 antibody or cd40 ligand |
| WO2009111948A1 (en) * | 2008-03-13 | 2009-09-17 | 天津和美生物技术有限公司 | The salts of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)piperidine-2,6-dione or its derivatives, their polymorphs, preparation methods and uses thereof |
| US20110060010A1 (en) * | 2008-03-13 | 2011-03-10 | Tianjin Hemay Bio-Tech Co., Ltd | Salts of 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)piperidine-2,6-dione and derivatives thereof, or polymorphs of salts, process for preparing same and use thereof |
| CA3110964A1 (en) | 2009-03-25 | 2010-09-30 | Xiaokui Zhang | Preventing a symptom of graft-versus-host disease using human placenta-derived intermediate natural killer cells |
| EP2436387B1 (en) | 2009-05-25 | 2018-07-25 | Celgene Corporation | Pharmaceutical composition comprising crbn for use in treating a disease of the cerebral cortex |
| WO2011084968A1 (en) | 2010-01-05 | 2011-07-14 | Celgene Corporation | A combination of an immunomodulatory compound and an artemisinin or a derivative thereof for treating cancer |
| UA114856C2 (en) | 2010-02-11 | 2017-08-10 | Селджин Корпорейшн | METHODS OF TREATMENT WITH THE APPLICATION OF ARYLMETOXISOINDOLINE DERIVATIVES |
| MX341050B (en) | 2010-04-07 | 2016-08-05 | Celgene Corp * | Methods for treating respiratory viral infection. |
| AR093183A1 (en) | 2010-12-31 | 2015-05-27 | Anthrogenesis Corp | INCREASE IN THE POWER OF PLACENTA MOTHER CELLS USING MODULATING RNA MOLECULES |
| AU2012236655B2 (en) | 2011-03-28 | 2016-09-22 | Deuterx, Llc, | 2',6'-dioxo-3'-deutero-piperdin-3-yl-isoindoline compounds |
| MX2013012083A (en) | 2011-04-18 | 2014-04-16 | Celgene Corp | Biomarkers for the treatment of multiple myeloma. |
| EP2702410A2 (en) | 2011-04-29 | 2014-03-05 | Celgene Corporation | Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor |
| CN113559126A (en) | 2011-06-01 | 2021-10-29 | 人类起源公司 | Treating pain with placental stem cells |
| US8927725B2 (en) | 2011-12-02 | 2015-01-06 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Thio compounds |
| EP3967323A3 (en) | 2012-06-06 | 2022-05-04 | Bionor Immuno AS | Hiv vaccine |
| EP3904875B1 (en) | 2012-06-29 | 2024-11-20 | Celgene Corporation | Methods for determining drug efficacy using ikzf3 (aiolos) |
| US9587281B2 (en) | 2012-08-14 | 2017-03-07 | Celgene Corporation | Cereblon isoforms and their use as biomarkers for therapeutic treatment |
| EP2943201B2 (en) | 2013-01-14 | 2020-07-29 | Deuterx, LLC | 3-(5-substituted-4-oxoquinazolin-3(4h)-yl)-3-deutero-piperidine-2,6-dione derivatives |
| CN115282165A (en) | 2013-02-05 | 2022-11-04 | 细胞结构公司 | Natural killer cells from placenta |
| US9290475B2 (en) | 2013-03-14 | 2016-03-22 | Deuterx, Llc | 3-(substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same |
| CN105358177B (en) | 2013-04-17 | 2018-11-23 | 西格诺药品有限公司 | Combination therapies comprising TOR kinase inhibitors and IMID compounds for the treatment of cancer |
| WO2015007337A1 (en) | 2013-07-19 | 2015-01-22 | Bionor Immuno As | Method for the vaccination against hiv |
| US10092555B2 (en) | 2014-06-27 | 2018-10-09 | Celgene Corporation | Compositions and methods for inducing conformational changes in cereblon and other E3 ubiquitin ligases |
| EP3166633A1 (en) | 2014-07-11 | 2017-05-17 | Bionor Immuno AS | Method for reducing and/or delaying pathological effects of human immunodeficiency virus i (hiv) or for reducing the risk of developing acquired immunodeficiency syndrome (aids) |
| SMT202300081T1 (en) | 2014-08-22 | 2023-05-12 | Celgene Corp | Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies |
| KR102191256B1 (en) | 2014-10-30 | 2020-12-15 | 강푸 바이오파마슈티칼즈 리미티드 | Isoindoline derivative, intermediate, preparation method, pharmaceutical composition and use thereof |
| WO2016177833A1 (en) | 2015-05-04 | 2016-11-10 | Bionor Immuno As | Dosage regimen for hiv vaccine |
| ES2970117T3 (en) | 2015-06-26 | 2024-05-27 | Celgene Corp | Methods for the treatment of Kaposi sarcoma or lymphoma induced by KSHV using immunomodulatory compounds, and uses of biomarkers |
| US9809603B1 (en) | 2015-08-18 | 2017-11-07 | Deuterx, Llc | Deuterium-enriched isoindolinonyl-piperidinonyl conjugates and oxoquinazolin-3(4H)-yl-piperidinonyl conjugates and methods of treating medical disorders using same |
| WO2017117118A1 (en) | 2015-12-28 | 2017-07-06 | Celgene Corporation | Compositions and methods for inducing conformational changes in cereblon and other e3 ubiquitin ligases |
| MA46961A (en) | 2016-12-03 | 2019-10-09 | Juno Therapeutics Inc | CAR MODIFIED T LYMPHOCYTES MODULATION PROCESSES |
| CN118948892A (en) | 2017-05-01 | 2024-11-15 | 朱诺治疗学股份有限公司 | Combination of cell therapy with immunomodulatory compounds |
| MX2019014268A (en) | 2017-06-02 | 2020-08-03 | Juno Therapeutics Inc | Articles of manufacture and methods for treatment using adoptive cell therapy. |
| MX2019015155A (en) | 2017-06-29 | 2020-08-03 | Juno Therapeutics Inc | MOUSE MODEL TO ASSESS TOXICITIES ASSOCIATED WITH IMMUNOTHERAPIES. |
| WO2019067792A1 (en) | 2017-09-28 | 2019-04-04 | Celularity, Inc. | Tumor suppression using human placenta-derived intermediate natural killer (pink) cells in combination with an antibody |
| US12031975B2 (en) | 2017-11-01 | 2024-07-09 | Juno Therapeutics, Inc. | Methods of assessing or monitoring a response to a cell therapy |
| MA49911A (en) | 2017-11-01 | 2020-06-24 | Juno Therapeutics Inc | ANTIBODIES AND CHEMERICAL ANTIGENIC RECEPTORS SPECIFIC TO THE B-LYMPHOCYTE MATURATION ANTIGEN |
| CN112204048A (en) | 2017-12-15 | 2021-01-08 | 朱诺治疗学股份有限公司 | Anti-CCT5 binding molecules and methods of use |
| AU2019223076A1 (en) | 2018-02-21 | 2020-10-08 | Celgene Corporation | BCMA-binding antibodies and uses thereof |
| KR20210111247A (en) | 2018-11-08 | 2021-09-10 | 주노 쎄러퓨티크스 인코퍼레이티드 | Methods and Combinations for Treatment and Modulation of T Cells |
| CN113423701A (en) | 2018-11-13 | 2021-09-21 | 拜欧斯瑞克斯公司 | Substituted isoindolinones |
| MX2021005734A (en) | 2018-11-16 | 2021-09-10 | Juno Therapeutics Inc | METHODS OF DOSING MODIFIED T CELLS FOR THE TREATMENT OF B CELL MALIGNANCIES. |
| EP3886875B1 (en) | 2018-11-30 | 2024-05-08 | Juno Therapeutics, Inc. | Methods for treatment using adoptive cell therapy |
| JP7678753B2 (en) | 2019-01-29 | 2025-05-16 | ジュノー セラピューティクス インコーポレイテッド | Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase-like orphan receptor 1 (ROR1) |
| CN111499623B (en) * | 2020-04-01 | 2022-07-08 | 南京缘聚医药科技有限公司 | Thiazolone urea derivatives of non-nucleoside antitumor drugs and pharmaceutical application thereof |
| KR20250029137A (en) | 2022-06-22 | 2025-03-04 | 주노 쎄러퓨티크스 인코퍼레이티드 | Treatment methods for second-line therapy with CD19-targeted CAR T cells |
| KR20240001071A (en) * | 2022-06-24 | 2024-01-03 | 주식회사 아이비스바이오 | Novel thalidomide derivatives and manufacturing methods thereof |
| WO2024097905A1 (en) | 2022-11-02 | 2024-05-10 | Celgene Corporation | Methods of treatment with t cell therapy and immunomodulatory agent maintenance therapy |
Family Cites Families (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4054654A (en) | 1972-03-16 | 1977-10-18 | Rhone-Poulenc, S.A. | Isoindolin-1-one derivatives |
| AU1531492A (en) * | 1991-02-14 | 1992-09-15 | Rockefeller University, The | Method for controlling abnormal concentration tnf alpha in human tissues |
| US6228879B1 (en) | 1997-10-16 | 2001-05-08 | The Children's Medical Center | Methods and compositions for inhibition of angiogenesis |
| US20010056114A1 (en) | 2000-11-01 | 2001-12-27 | D'amato Robert | Methods for the inhibition of angiogenesis with 3-amino thalidomide |
| US5629327A (en) | 1993-03-01 | 1997-05-13 | Childrens Hospital Medical Center Corp. | Methods and compositions for inhibition of angiogenesis |
| US5698579A (en) | 1993-07-02 | 1997-12-16 | Celgene Corporation | Cyclic amides |
| US6281230B1 (en) | 1996-07-24 | 2001-08-28 | Celgene Corporation | Isoindolines, method of use, and pharmaceutical compositions |
| HU228769B1 (en) | 1996-07-24 | 2013-05-28 | Celgene Corp | Substituted 2(2,6-dioxopiperidin-3-yl)phthalimides and -1-oxoisoindolines and their use for production of pharmaceutical compositions for mammals to reduce the level of tnf-alpha |
| US5635517B1 (en) | 1996-07-24 | 1999-06-29 | Celgene Corp | Method of reducing TNFalpha levels with amino substituted 2-(2,6-dioxopiperidin-3-YL)-1-oxo-and 1,3-dioxoisoindolines |
| US5798368A (en) * | 1996-08-22 | 1998-08-25 | Celgene Corporation | Tetrasubstituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines and method of reducing TNFα levels |
| JP4065567B2 (en) | 1996-07-24 | 2008-03-26 | セルジーン コーポレイション | Substituted 2- (2,6-dioxopiperidin-3-yl) phthalimides and -1-oxoisoindolines and methods for reducing TNFα levels |
| SK17799A3 (en) | 1996-08-12 | 1999-11-08 | Celgene Corp | Cyano and carboxy derivatives of substituted styrenes, pharmaceutical composition containing same and their use |
| DK0963200T3 (en) | 1996-11-05 | 2005-10-24 | Childrens Medical Center | Preparations for inhibiting angiogenesis comprising thalidomide and an NSAID |
| US5998438A (en) * | 1996-11-26 | 1999-12-07 | Allelix Biopharmaceuticals, Inc. | 5-cyclo indole compounds |
| US5955476A (en) * | 1997-11-18 | 1999-09-21 | Celgene Corporation | Substituted 2-(2,6-dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing inflammatory cytokine levels |
| US5874448A (en) | 1997-11-18 | 1999-02-23 | Celgene Corporation | Substituted 2-(2,6 dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing TNFα levels |
| KR20070040423A (en) | 1998-03-16 | 2007-04-16 | 셀진 코포레이션 | 2- (2,6-dioxopiperidin-3-yl) isoindolin derivatives for inflammatory cytokine inhibitors, preparations thereof and uses thereof |
| US6673828B1 (en) | 1998-05-11 | 2004-01-06 | Children's Medical Center Corporation | Analogs of 2-Phthalimidinoglutaric acid |
| RU2001121987A (en) | 1999-03-18 | 2004-02-27 | Селджин Корпорейшн (Us) | Substituted 1-oxo- and 1,3-dioxoisoindolines and their use in pharmaceutical compositions to reduce inflammatory cytokines |
| US7182953B2 (en) | 1999-12-15 | 2007-02-27 | Celgene Corporation | Methods and compositions for the prevention and treatment of atherosclerosis restenosis and related disorders |
| JP2003528918A (en) | 2000-03-31 | 2003-09-30 | セルジーン コーポレイション | Inhibition of cyclooxygenase-2 activity |
| US6458810B1 (en) | 2000-11-14 | 2002-10-01 | George Muller | Pharmaceutically active isoindoline derivatives |
| MXPA03004699A (en) | 2000-11-30 | 2005-01-25 | Childrens Medical Center | Synthesis of 3-amino-thalidomide and its enantiomers. |
| US20030045552A1 (en) | 2000-12-27 | 2003-03-06 | Robarge Michael J. | Isoindole-imide compounds, compositions, and uses thereof |
| US7091353B2 (en) | 2000-12-27 | 2006-08-15 | Celgene Corporation | Isoindole-imide compounds, compositions, and uses thereof |
| JP4361273B2 (en) | 2001-02-27 | 2009-11-11 | アメリカ合衆国 | Thalidomide analogs as potential angiogenesis inhibitors |
| EP1423115B9 (en) | 2001-08-06 | 2009-09-02 | The Children's Medical Center Corporation | Antiangiogenic activity of nitrogen substituted thalidomide analogs |
| US7498171B2 (en) | 2002-04-12 | 2009-03-03 | Anthrogenesis Corporation | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
| US7968569B2 (en) | 2002-05-17 | 2011-06-28 | Celgene Corporation | Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione |
| US7189740B2 (en) | 2002-10-15 | 2007-03-13 | Celgene Corporation | Methods of using 3-(4-amino-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myelodysplastic syndromes |
| US20050203142A1 (en) | 2002-10-24 | 2005-09-15 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for treatment, modification and management of pain |
| US20040091455A1 (en) | 2002-10-31 | 2004-05-13 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for treatment and management of macular degeneration |
| US7563810B2 (en) | 2002-11-06 | 2009-07-21 | Celgene Corporation | Methods of using 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myeloproliferative diseases |
| UA83504C2 (en) | 2003-09-04 | 2008-07-25 | Селджин Корпорейшн | Polymorphic forms of 3-(4-amino-1-oxo-1,3 dihydro-isoindol-2-yl)-piperidine-2,6-dione |
| US20050100529A1 (en) | 2003-11-06 | 2005-05-12 | Zeldis Jerome B. | Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of asbestos-related diseases and disorders |
| ZA200604815B (en) | 2003-12-02 | 2007-10-31 | Celgene Corp | Methods and compositions for the treatment and management of hemoglobinopathy and anemia |
| US20050143344A1 (en) | 2003-12-30 | 2005-06-30 | Zeldis Jerome B. | Methods and compositions using immunomodulatory compounds for the treatment and management of central nervous system disorders or diseases |
| ZA200607799B (en) | 2004-03-22 | 2008-06-25 | Celgene Corp | Methods of using and compositions comprising immuno-modulatory compounds for the treatment and management of skin diseases or disorders |
| US20050222209A1 (en) | 2004-04-01 | 2005-10-06 | Zeldis Jerome B | Methods and compositions for the treatment, prevention or management of dysfunctional sleep and dysfunctional sleep associated with disease |
-
2000
- 2000-11-14 US US09/712,550 patent/US6458810B1/en not_active Expired - Lifetime
-
2001
- 2001-11-14 PT PT01273992T patent/PT1341537E/en unknown
- 2001-11-14 CN CNB018187919A patent/CN1290501C/en not_active Expired - Fee Related
- 2001-11-14 AT AT01273992T patent/ATE352303T1/en not_active IP Right Cessation
- 2001-11-14 AT AT06014827T patent/ATE432704T1/en not_active IP Right Cessation
- 2001-11-14 ES ES01273992T patent/ES2278685T3/en not_active Expired - Lifetime
- 2001-11-14 AU AU2001297762A patent/AU2001297762B2/en not_active Ceased
- 2001-11-14 ES ES06014827T patent/ES2324174T3/en not_active Expired - Lifetime
- 2001-11-14 CA CA002427619A patent/CA2427619A1/en not_active Abandoned
- 2001-11-14 NZ NZ528078A patent/NZ528078A/en unknown
- 2001-11-14 KR KR1020087026617A patent/KR20080107480A/en not_active Ceased
- 2001-11-14 IL IL15575801A patent/IL155758A0/en unknown
- 2001-11-14 NZ NZ526319A patent/NZ526319A/en not_active Application Discontinuation
- 2001-11-14 DE DE60126324T patent/DE60126324T2/en not_active Expired - Lifetime
- 2001-11-14 EP EP06014827A patent/EP1733726B1/en not_active Expired - Lifetime
- 2001-11-14 MX MXPA03004219A patent/MXPA03004219A/en active IP Right Grant
- 2001-11-14 EP EP01273992A patent/EP1341537B1/en not_active Expired - Lifetime
- 2001-11-14 DE DE60138932T patent/DE60138932D1/en not_active Expired - Lifetime
- 2001-11-14 DK DK01273992T patent/DK1341537T3/en active
- 2001-11-14 JP JP2002590901A patent/JP4328536B2/en not_active Expired - Fee Related
- 2001-11-14 KR KR1020037006537A patent/KR100881797B1/en not_active Expired - Fee Related
- 2001-11-14 WO PCT/US2001/044107 patent/WO2002094180A2/en active IP Right Grant
-
2002
- 2002-09-30 US US10/262,210 patent/US6762195B2/en not_active Expired - Lifetime
-
2003
- 2003-05-09 NO NO20032074A patent/NO327125B1/en not_active IP Right Cessation
- 2003-12-09 US US10/732,858 patent/US7005438B2/en not_active Expired - Fee Related
-
2005
- 2005-11-04 US US11/267,607 patent/US7834033B2/en not_active Expired - Lifetime
-
2007
- 2007-03-01 CY CY20071100294T patent/CY1106453T1/en unknown
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1733726B1 (en) | Pharmaceutically active isoindoline derivatives | |
| AU2001297762A1 (en) | Pharmaceutically active isoindoline derivatives | |
| EP1163219B1 (en) | Substituted 1-oxo- and 1,3-dioxoisoindolines and their use in pharmaceutical compositions for reducing inflammatory cytokine levels | |
| EP1064277B1 (en) | 2-(2,6-dioxopiperidin-3-yl)isoindoline derivatives, their preparation and their use as inhibitors of inflammatory cytokines | |
| US5955476A (en) | Substituted 2-(2,6-dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing inflammatory cytokine levels | |
| WO2001045702A1 (en) | SUBSTITUTED ACYLHYDROXAMIC ACIDS AND METHOD OF REDUCING TNFα LEVELS | |
| AU2006236037B2 (en) | Pharmaceutically active isoindoline derivatives | |
| HK1100277A (en) | Pharmaceutically active isoindoline derivatives | |
| HK1060281B (en) | Pharmaceutically active isoindoline derivatives | |
| NZ539071A (en) | Pharmaceutically active isoindoline derivatives | |
| EP1710242A1 (en) | Substituted 2-(2,6-Dioxo-3-Fluoropiperidine-3-YL)-Isoindolines and their use to reduce TNF-alpha levels | |
| HK1035180B (en) | 2-(2,6-dioxopiperidin-3-yl)isoindoline derivatives, their preparation and their use as inhibitors of inflammatory cytokines |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20030605 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7C 07D 307:00 K Ipc: 7A 61K 31/445 A Ipc: 7C 07D 211:00 J Ipc: 7C 07D 209:00 K Ipc: 7C 07D 405/14 B Ipc: 7C 07D 209:00 J Ipc: 7C 07D 405/14 K Ipc: 7C 07D 401/04 B Ipc: 7C 07D 401/04 J Ipc: 7C 07D 211:00 K |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20031212 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1060281 Country of ref document: HK |
|
| 17Q | First examination report despatched |
Effective date: 20040908 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07D 401/04 20060101ALI20060515BHEP Ipc: A61K 31/445 20060101AFI20060515BHEP Ipc: C07D 405/14 20060101ALI20060515BHEP |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CELGENE CORPORATION |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CELGENE CORPORATION |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SAEGER & PARTNER Ref country code: CH Ref legal event code: EP Ref country code: GR Ref legal event code: EP Ref document number: 20070400277 Country of ref document: GR |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REF | Corresponds to: |
Ref document number: 60126324 Country of ref document: DE Date of ref document: 20070315 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20070305 |
|
| ET | Fr: translation filed | ||
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2278685 Country of ref document: ES Kind code of ref document: T3 |
|
| REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1060281 Country of ref document: HK |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20071025 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: MANFRED SAEGER;POSTFACH 5;7304 MAIENFELD (CH) |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20081117 Year of fee payment: 8 Ref country code: DK Payment date: 20081114 Year of fee payment: 8 Ref country code: IE Payment date: 20081114 Year of fee payment: 8 Ref country code: LU Payment date: 20081119 Year of fee payment: 8 Ref country code: MC Payment date: 20081029 Year of fee payment: 8 Ref country code: NL Payment date: 20081103 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20081112 Year of fee payment: 8 Ref country code: PT Payment date: 20081106 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20081110 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20081113 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CY Payment date: 20081113 Year of fee payment: 8 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: CELGENE CORPORATION Free format text: CELGENE CORPORATION#86 MORRIS AVENUE#SUMMIT, NJ 07901 (US) -TRANSFER TO- CELGENE CORPORATION#86 MORRIS AVENUE#SUMMIT, NJ 07901 (US) |
|
| REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20100514 |
|
| BERE | Be: lapsed |
Owner name: CELGENE CORP. Effective date: 20091130 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100601 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100514 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091114 |
|
| REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20100721 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091114 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100602 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091116 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100601 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091114 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20081103 Year of fee payment: 8 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091114 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20141128 Year of fee payment: 14 Ref country code: GB Payment date: 20141127 Year of fee payment: 14 Ref country code: FI Payment date: 20141128 Year of fee payment: 14 Ref country code: DE Payment date: 20141128 Year of fee payment: 14 Ref country code: ES Payment date: 20141126 Year of fee payment: 14 Ref country code: FR Payment date: 20141118 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20141127 Year of fee payment: 14 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60126324 Country of ref document: DE |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151114 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151114 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151115 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151114 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160601 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151114 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151115 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180706 |