[go: up one dir, main page]

EP1341518A2 - Emulsions cosmetiques et/ou pharmaceutiques - Google Patents

Emulsions cosmetiques et/ou pharmaceutiques

Info

Publication number
EP1341518A2
EP1341518A2 EP01994676A EP01994676A EP1341518A2 EP 1341518 A2 EP1341518 A2 EP 1341518A2 EP 01994676 A EP01994676 A EP 01994676A EP 01994676 A EP01994676 A EP 01994676A EP 1341518 A2 EP1341518 A2 EP 1341518A2
Authority
EP
European Patent Office
Prior art keywords
acid
oil
salts
fatty acids
fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01994676A
Other languages
German (de)
English (en)
Inventor
Rolf Kawa
Achim Ansmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1341518A2 publication Critical patent/EP1341518A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/365Hydroxycarboxylic acids; Ketocarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds

Definitions

  • the invention is in the field of cosmetics and relates to cosmetic and / or pharmaceutical emulsions with long-chain hydroxy fatty acids and / or their salts and their use in waterproof sunscreens and as viscosity regulators.
  • emulsifiers which are frequently used for this purpose are soaps from stearic and / or palmitic acid, the so-called triple-pressed stearic acid, a mixture of palmitin and stearic acid, as sodium, potassium or triethanolamine soap being generally used as a rule.
  • soaps from stearic and / or palmitic acid the so-called triple-pressed stearic acid, a mixture of palmitin and stearic acid, as sodium, potassium or triethanolamine soap being generally used as a rule.
  • the water resistance of a sun protection formulation is usually achieved by adding polymers such as PVP / Hexadecene copolymer achieved.
  • polymers such as PVP / Hexadecene copolymer achieved.
  • these polymers have the disadvantage that the sensor system of the emulsion is significantly deteriorated in terms of its ability to be drawn in, spreadability and stickiness.
  • the object of the present invention was therefore to provide cosmetic and / or pharmaceutical emulsions which, compared to the prior art, have a higher viscosity and phase stability compared to commercial products. Furthermore, the products should have good water resistance and still be easy to distribute on the skin, and be well absorbed into the skin and not sticky. Description of the invention
  • the invention relates to cosmetic and / or pharmaceutical emulsions containing long-chain hydroxy fatty acid, preferably 12-hydroxystearic acid and / or salts thereof.
  • soaps of long-chain hydroxy fatty acids - possibly in combination with the free acid - not only build up higher viscosities in comparison to the known fatty acids in emulsions but also stabilize the phases better and improve the sensory behavior of the emulsions, i.e. are easy to distribute on the skin and are well absorbed by the skin and do not stick. This also applies if only a part of the stearic acid is exchanged for long-chain hydroxy fatty acids.
  • the invention further includes the finding that the addition of long-chain hydroxy fatty acids or their salts leads to a significant improvement in the water resistance of otherwise known sun protection formulations without adversely affecting the sensory assessment of the products.
  • Long-chain hydroxy fatty acids are taken to mean hydroxy fatty acids with fatty acid chain lengths of 6 to 22, preferably 10 to 16 and in particular 12 to 14 (long-chain) carbon atoms which have 1 to 4, preferably 1 to 3 and in particular 1 to 2, hydroxyl groups.
  • long-chain hydroxy fatty acids preferably hydroxystearic acid and in particular 12-hydroxystearic acid
  • their salts in particular the alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium, glucammonium, aluminum and / or zinc salts
  • long-chain hydroxy fatty acids and / or their salts are usually used in amounts of 0.1 to 10, preferably 0.5 to 5 and in particular 1 to 2% by weight, based on the final formulation.
  • Another object of the invention relates to the use of long-chain hydroxy fatty acids, preferably hydroxystearic acid, and / or their salts for the production of waterproof sunscreens, in which they are used in amounts of 0.1 to 10, preferably 0.5 to 5 and in particular 1 to 2 wt .-% - based on the final formulation - may be included.
  • An additional object of the invention relates to the use of long-chain hydroxy fatty acids and / or their salts as viscosity regulators.
  • conventional viscosity regulators such as stearic acid
  • 1.3-10 preferably 1.5 to 5 times higher viscosities (Brookfield RVF spindle 5, 20 rpm, 23 ° C. after 1 week) can be measured.
  • the emulsions according to the invention can be used for creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, and the like and, as further auxiliaries and additives, mild tensides, oil bodies, emulsifiers, pearlescent waxes, Consistency enhancers, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic agents, UV light protection filters, antioxidants, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, insect repellents, self-tanning agents, tyrosine inhibitors, tyrosine inhibitors. Contain solubilizers, preservatives, perfume oils, dyes and the like.
  • Anionic, nonionic, cationic and / or amphoteric or amphoteric surfactants can be present as surface-active substances, the proportion of the agents usually being about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight.
  • anionic surfactants are soaps, alkyl benzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerin ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerin ether sulfates, fatty acid ether sulfates, hydroxymether ether sulfates, hydroxymether ether sulfates, hydroxymether ether sulfates, hydroxymether ether sulfates, hydroxymether
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or alkyl glucoramide acid, vegetable glucoramide acid derivatives, and glucoronic acid protein derivatives Wheat base), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonates, ethercarboxylic acids, alkyl oligoglucosides, fatty acid glucamides, alkylamidobetaines, amphoacetals and / or protein fatty acid condensates, preferably based on wheat proteins.
  • Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms and esters of linear C 6 -C 22 fatty acids are examples of oil bodies with linear or branched C 5 -C 22 fatty alcohols or esters of branched C ⁇ -Ci carboxylic acids with linear or branched C 6 -C 22 fatty alcohols, such as myristyl myristate, myristyl palmitate, myristyl stearate, myristyl isostearate, myristyl oleate, myristyl behenate, myristyl erucate, cetyl myristate, Cetylpa Copy, cetyl stearate, Cetylisostearat, cetyl oleate, cetyl behenate, Cetylerucat, Stearylmyristat, stearyl palmitate, stearyl stearate, Stearyli- sostearat, stearyl
  • dioctyl malates especially dioctyl malates, esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on C 6 -C ⁇ o fatty acids, liquid mono- / di- / Triglyceride mixtures based on C ⁇ -C ⁇ 8 fatty acids, esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, especially benzoic acid, esters of C 2 -C ⁇ 2 dicarboxylic acids with linear or branched alcohols with 1 to 22nd Carbon atoms or polyols with 2 to 10 carbon atoms and 2 to 6 hydroxyl groups, vegetable oils, branched primary alcohols, substituted cyclohexanes, linear and branched C 6 -C 22 fatty alcohol carbonates, such as e.g
  • dicaprylyl carbonates (Cetiol® CC), Guerbet carbonates based on fatty alcohols with 6 to 18, preferably 8 to 10 C atoms, esters of benzoic acid with linear and / or branched C 6 -C 22 alcohols (e.g.
  • Finsolv® TN linear or branched, symmetrical or asymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, such as, for example, dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols, silicone oils (cydomethicones, silicon methicone types, etc.) and / or aliphatic or naphthenic hydrocarbons, such as mineral oil, petroleum jelly, petrolatum, squalane, squalene or dialkylcyclohexane.
  • dicaprylyl ether such as, for example, dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols, silicone oils (cydomethicones, silicon methicone types, etc.) and / or aliphatic or naphthenic hydrocarbons, such as mineral oil, petroleum jelly
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups: > Adducts of 2 to 30 moles of ethylene oxide and / or 0 to 5 moles of propylene oxide with linear fatty alcohols with 8 to 22 carbon atoms, with fatty acids with 12 to 22 carbon atoms, with alkylphenols with 8 to 15 carbon atoms in the Alkyl group and alkylamines with 8 to 22 carbon atoms in the alkyl radical;
  • Partial esters of polyglycerol (average degree of self-condensation 2 to 8), polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (e.g. cellulose ) with saturated and / or unsaturated, linear or branched fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
  • Block copolymers e.g. Polyethylene glycol 30 dipolyhydroxystearate;
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologs whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out.
  • C ⁇ 2 / i 8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • the glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Suitable partial glycerides are long chain monoglyceride HydroxyfettTexre-, long chain Hydroxyfettkladrediglycerid, isostearic acid, Isostearinklarediglycerid, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklare- moglycerid, Ricinolklarediglycerid, Linolklaremonoglycerid, Linolklarediglycerid, Li nolenklaremonoglycerid, Linolenchurediglycerid, Erucaklaremonoglycerid, Erucakla- rediglycerid, Weinklaremonoglycerid, Weinklarediglycerid, Citronenklamonogly- cerid, citric diglyceride, malic acid monoglyceride, malic acid diglyceride and their technical mixtures, which may still contain small amounts of triglyceride from the manufacturing process. Addition products of 1 to 30, preferably
  • sorbitan sorbitan As sorbitan sorbitan, sorbitan sesquiisostearate, sorbitan diisostearate, sorbitan triisostearate, sorbitan monooleate, sorbitan dioleate, trioleate, Sorbitanmonoerucat, Sorbitansesquierucat, sorbitan come dierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, sorbitan tandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, sorbitan - sesquihydroxystearate, sorbitan dihydroxystearate, sorbitan trihydroxystearate, sorbitan monotartrate, sorbitan sesqui-tartrate, sorbitan ditartrate, sorbitan tritanartrate, sorbitan monocitrate, sorbitan sesquic
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearate (Dehymuls® PGPH), polyglycerol-3-diisostearate (Lameform® TGI), polyglyceryl-4 isostearate (Isolan® GI 34), polyglyceryl-3 oleate, diisostearoyl lyglyceryl-3 diisostearate (Isolan® PDI), polyglyceryl-3 methylglucose distearate (Tego Care® 450), polyglyceryl-3 beeswax (Gera Bellina®), polyglyceryl-4 caprate (polyglycerol caprate T2010 / 90), polyglyceryl-3 cetyl ether ( Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate I
  • polystyrene resin examples include the mono-, di- and tri-esters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like which are optionally reacted with 1 to 30 mol of ethylene oxide.
  • Typical anionic emulsifiers are salts, namely the alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium, glucammonium, aluminum and / or zinc salts of aliphatic fatty acids with 12 to 22 carbon atoms, such as, for example, palmitic acid, stearic acid or behenic acid, and dicarboxylic acid - ren with 12 to 22 carbon atoms, such as azelaic acid or sebacic acid.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as the N-alkyl-N, N-dimethylammonium glycinate, for example the cocoalkyldimethylammonumglycinate, N-acylamino propyl-N, N-dimethylammonium glycinate, for example the cocoacylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxylmethyl-3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the cocoalkyldimethylammonumglycinate, N-acylamino propyl-N, N-dimethylammonium glycinate, for
  • fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine is particularly preferred.
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are understood to mean those surface-active compounds which, in addition to a C 8 -C 8 -alkyl or acyl group, contain at least one free amino group and at least one -COOH or -S0 3 H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycine, N-alkylpropionic acid, N-alkylaminobutyric acid, N- alkyliminodipropionic acid, N-hydroxyethyl-N-alkylamidopropylglycine, N-
  • Alkyltaurines N-alkyl sarcosines, 2-alkylaminopropionic acids and alkylamino acetic acids, each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethyl aminopropionate and C ⁇ 2/18 acyl sarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Typical examples of fats are glycerides, ie solid or liquid vegetable or animal products, which essentially consist of mixed glycerol esters of higher fatty acids exist as waxes include natural waxes such as candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, Ozokerite (earth wax), petrolatum, paraffin waxes, micro waxes; chemically modified waxes (hard waxes), such as montan ester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as polyalkylene waxes and polyethylene glycol waxes.
  • natural waxes such as candelilla wax, carnauba wax, japan wax, esparto grass
  • lecithins In addition to fats, fat-like substances such as lecithins and phospholipids can also be used as additives.
  • lecithins to mean those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often used in the professional world as phosphatidylcholines (PC). Examples of natural lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • glycerol phosphates glycerol phosphates
  • sphingosines or sphingolipids are also suitable.
  • Pearlescent waxes that can be used are, for example: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, long-chain hydroxy fatty acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2
  • Possible consistency agents are primarily fatty alcohols or hydroxyfatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids with 12 to 22 carbon atoms or 12-hydroxyfatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, Polyacrylates, (e.g. Carbopole® and Pemulen types from Goodrich; Synthalene® from Sigma; Keltrol types from Kelco; Sepigel types from Seppic; Salcare types from Allied Colloids), polyacrylamides, polymers, polyvinyl alcohol and polyvinyl pyrrolidone.
  • Aerosil types hydrophilic silicas
  • polysaccharides in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl
  • Bentonites such as e.g. Bentone® Gel VS-5PC (Rheox), which is a mixture of cyclopentasiloxane, disteardimonium hectorite and propylene carbonate.
  • Surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride are also suitable.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Metal salts of fatty acids such as magnesium, aluminum and / or zinc stearate or ricinoleate can be used as stabilizers.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as e.g. Amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyaminopolyamides, e.g.
  • cationic chitin derivatives such as, for example, quaternized chitosan, optionally microcrystalline, condensation products from dihaloalkylene, such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane, cationic guar gum, e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanes, quaternized ammonium salt polymers, e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane
  • cationic guar gum e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanes
  • quaternized ammonium salt polymers e.g. Mir
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobomylacrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their polyols, non-reacted aminomethylchloride and polyamides with acrylamides and acrylamides, and non-decomposed polyacrylamide acrylamide and acrylates with non-reacted polyamides and polyamides / Acrylate copolymers, octylacrylamide / methyl methacrylate / tert.Butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers, vinylpyrrolidone
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and / or alkyl-modified silicone compounds at room temperature can be both liquid and resinous.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. To give off heat again.
  • UV-B filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 4-aminobenzoic acid derivatives preferably 2-ethyl-hexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, isoamyl 4-methoxycinnamate, 2-ethylhexyl 2-cyano-3,3-phenylcinnamate (octocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-iso-propylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4 x methylbenzophenone, 2.2 ⁇ - dihydroxy-4-methoxybenzophenone;
  • esters of benzalmalonic acid preferably 4-methoxybenzmalonic acid di-2-ethylhexyl ester;
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2 l -ethyl-f-hexyloxy) -l, 3,5-triazine and octyl triazone, as described in EP 0818450 AI or dioctyl butamido triazone (Uvasorb® HEB);
  • Propane-1,3-diones such as 1- (4-tert-butylphenyl) -3- (4 , methoxyphenyl) propane-1,3-dione;
  • UV-A filters such as l- (4 ⁇ - tert-butylphenyl) -3- (4 , -methoxyphenyl) propane-l, 3-dione, 4-tert-butyl -4-methoxydibenzoylmethane (Parsol® 1789), l-phenyl-3- (4 ⁇ -isopropylphenyl) propane-l, 3-dione and enamine compounds, as described in DE 19712033 AI (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • Particularly favorable combinations consist of the derivatives of benzoylmethane, for example 4-tert-butyl-4 ⁇ -methoxydibenzoylmethane (Parsol® 1789) and 2-cyano-3,3-phenylcinnamic acid-2-ethyl-hexyl ester (octocrylene) in combination with Esters of cinnamic acid, preferably 2-ethylhexyl 4-methoxycinnamate and / or propyl 4-methoxycinnamate and / or isoamyl 4-methoxycinnamate.
  • benzoylmethane for example 4-tert-butyl-4 ⁇ -methoxydibenzoylmethane (Parsol® 1789) and 2-cyano-3,3-phenylcinnamic acid-2-ethyl-hexyl ester (octocrylene) in combination with Esters of cinnamic acid, preferably 2-eth
  • water-soluble filters such as 2-phenylbenzimidazole-5-sulfonic acid and its alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium and glucammonium salts.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized.
  • Typical examples are coated titanium dioxides, such as T ⁇ tand ⁇ oxid T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996) and Parf.Kosm. 3, 11 (1999).
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L-carnosine and their derivatives (e.g. anse- rin), carotenoids, carotenes (e.g.
  • ⁇ -carotene, ß-carotene, lycopene) and their derivatives chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g. dihydroliponic acid), aurothioglucose, propylthiouracil and other thiols (e.g.
  • thioredoxin glutathione, Cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (eg buthioninsulfoximines, homocysteine sulfoximine, butioninsulfones, penta-, hexa-, himinathioninsulfininsulfininsulfoxinsulfoxinsulfoxinsulfoxinsulfoxinsulfoxinsulfoxinsulfoxinsulfoxinsulfoxinsul
  • (metal) chelators e.g. ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, bilirubin , Biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g. ⁇ -linolenic acid, linoleic acid, oleic acid), folic acid and their derivatives, ubiquinone and ubiquinol and their derivatives, vitamin C and derivatives (e.g.
  • ZnO, ZnS0 4 selenium and its derivatives (e.g. selenium-methionine), stilbenes and their derivatives (e.g. stilbene oxide, trans-stilbene oxide) and the derivatives suitable according to the invention (salts, esters, ethers, sugars, nucleotides, Nucleosides, peptides and lipids) of these active ingredients.
  • Biogenic agents e.g. selenium-methionine
  • stilbenes and their derivatives e.g. stilbene oxide, trans-stilbene oxide
  • the derivatives suitable according to the invention salts, esters, ethers, sugars, nucleotides, Nucleosides, peptides and lipids
  • biogenic active ingredients include tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucleic acid and its fragmentation products, ⁇ -glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, essentil oils, pseudoceramides Plant extracts, such as To understand prunus extract, Bambaranus extract and vitamin complexes.
  • Cosmetic deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed. Accordingly, deodorants contain active ingredients which act as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers.
  • germ-inhibiting agents such as.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, tri- sopropyl citrate, tributyl citrate and especially triethyl citrate (Hydagen® CAT). The substances inhibit enzyme activity and thereby reduce odor.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, tri- sopropyl citrate, tributyl citrate and especially triethyl citrate (Hydagen® CAT).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterolsulfates or phosphates, such as, for example, lanosterol, cholesterol, campesterin, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, monoethyl glutarate, Diethyl glutarate, adipic acid, monoethyl adipate, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester, and zinc glycineate.
  • sterolsulfates or phosphates such as, for example, lanosterol, cholesterol, campesterin, stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters such as, for example, glutaric acid, monoethyl gluta
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers and, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butyicyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styra lyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetalde- hyd, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example, the jonones and methylcedryl ketone, and the alcohols Anethole, Citronellol, Eugene nol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are, for example, aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds, for. B. with propylene glycol-1,2.
  • conventional oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants. Examples of such oil-soluble auxiliaries are:
  • water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusters, e.g. Buffer mixtures, water soluble thickeners, e.g. water-soluble natural or synthetic polymers such as e.g. Xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Piroctone olamine (1-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (1H) -pyridinone monoethanolamine salt
  • Baypival® (climbazole), Ketoconazol®, (4-acetyl-l - ⁇ - 4- [2- (2.4-dichlorophenyl) r-2- (lH-imidazol-l-ylmethyl) -l, 3-dioxylan-c-4-yImethoxyphenyI ⁇ piperazine, ketoconazole, elubiol, selenium disulfide, sulfur colloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwefoaraer distillate, salicylic acid (or in combination with hexachlorophene), Undexy- lensäure monoethanolamide sulfosuccinate Na salt, Lamepon® UD (protein undec
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • Possible insect repellents are N, N-diethyl-m-toluamide, 1,2-pentanediol or ethyl butylacetylaminopropionate.
  • Dihydroxyacetone is suitable as a self-tanner.
  • Arbutin, ferulic acid, kojic acid, coumaric acid and ascorbic acid (vitamin C) can be used as tyrosine inhibitors, which prevent the formation of melanin and are used in depigmenting agents.
  • Hydrotropes such as, for example, ethanol, isopropyl alcohol or polyols, can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol; > Lower alkyl glucosides, especially those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Dialcohol amines such as diethanolamine or 2-amino-l, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid, and those under the name
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, cumin, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allylcydohexyl benzylatepylpropylate, stylate propylate styrene.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the joonons, ⁇ -isomethylionone and methylcedryl ketone the alcohols anethole, citronellol, Eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • Suitable flavors are, for example, peppermint oil, spearmint oil, anise oil, star anise oil, caraway oil, eucalyptus oil, fennel oil, lemon oil, wintergreen oil, clove oil, menthol and the like.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. Examples are culinary red A (CI 16255), patent blue V (CI42051), indigotine (CI73015), chlorophyllin (CI75810), quinoline yellow (CI47005), titanium dioxide (CI77891), indanthrene blue RS (CI 69800) and madder varnish (CI 58000). Luminol may also be present as the luminescent dye. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40% by weight, based on the composition.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used. Examples of the use of 12-hydroxystearic acid
  • Examples 4 and 5 according to the invention show that, in comparison with V3 and V4, with a comparable formulation structure, significantly higher viscosities and improved thermal stability are achieved. At the same time, the sensors are significantly improved.
  • Examples 6 and 7 show that the polymer content can also be reduced by 50% by weight in order to build up viscosities comparable to V3 or V4, even if the stearic acid is only partially replaced by 12-hydroxystearic acid. All emulsions according to the invention are stable in storage and have good sensor technology. About 95% by weight of the 12-hydroxystearic acid in the examples is present as the triethanolamine salt. The viscosity was determined according to the Brookfield RVF (spindle 5, 20 rpm, 23 ° C. after 1 week), the stability also according to the school grade scale. The results are summarized in Table 2.
  • Tables 3 and 4 contain a number of sun protection formulations
  • Tables 5 and 6 show examples of care emulsions according to the invention.
  • Table 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

L'invention concerne des émulsions cosmétiques et/ou pharmaceutiques contenant des acides gras hydroxyliques et/ou leur sels.
EP01994676A 2000-11-29 2001-11-20 Emulsions cosmetiques et/ou pharmaceutiques Withdrawn EP1341518A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10059239A DE10059239A1 (de) 2000-11-29 2000-11-29 Kosmetische und/oder pharmazeutische Emulsionen
DE10059239 2000-11-29
PCT/EP2001/013387 WO2002043685A2 (fr) 2000-11-29 2001-11-20 Emulsions cosmetiques et/ou pharmaceutiques

Publications (1)

Publication Number Publication Date
EP1341518A2 true EP1341518A2 (fr) 2003-09-10

Family

ID=7665094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01994676A Withdrawn EP1341518A2 (fr) 2000-11-29 2001-11-20 Emulsions cosmetiques et/ou pharmaceutiques

Country Status (5)

Country Link
US (1) US20040044078A1 (fr)
EP (1) EP1341518A2 (fr)
JP (1) JP2004514688A (fr)
DE (1) DE10059239A1 (fr)
WO (1) WO2002043685A2 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445790B2 (en) 2002-05-09 2008-11-04 Shiseido Company, Ltd. External preparations for skin
DE10250755B4 (de) * 2002-10-31 2007-02-08 Merz Pharma Gmbh & Co. Kgaa Verschäumbare Zusammensetzung auf Basis einer O/W-Emulsion mit einer Kombination aus einem Emulgator auf Silikonbasis und einem anionischen Tensid mit verbesserter Hautwirkung, deren Herstellung und deren Verwendung
DE10307465A1 (de) * 2003-02-21 2004-09-02 Beiersdorf Ag Kosmetische und dermatologische Emulsionen
DE10307467A1 (de) * 2003-02-21 2004-09-02 Beiersdorf Ag Kosmetische und dermatologische Emulsionen
GB0318160D0 (en) * 2003-08-02 2003-09-03 Ssl Int Plc Parasiticidal composition
DE102004025357B4 (de) * 2004-05-19 2007-03-29 Beiersdorf Ag Emulsionskonzentrat mit wasserlöslichen und öllöslichen Polymeren und kosmetische Zubereitung enthaltend Emulsionskonzentrat sowie ein Verfahren zu dessen Herstellung und dessen Verwendung
US8017136B2 (en) * 2004-05-24 2011-09-13 The Procter & Gamble Company Shiny foundation
EP1813311A1 (fr) * 2005-11-25 2007-08-01 Cognis IP Management GmbH Emulsions huile-dans-eau à base d'émulsifiants spéciaux
US20090317341A1 (en) * 2008-06-18 2009-12-24 Conopco, Inc., D/B/A Unilever Compositions for Lightening Skin Color
JP5632129B2 (ja) * 2009-02-05 2014-11-26 株式会社マンダム 整髪用乳化組成物
WO2011036048A1 (fr) 2009-09-24 2011-03-31 Unilever Nv Agent désinfectant comprenant de l'eugénol, du terpinéol et du thymol
WO2011137563A1 (fr) 2010-05-07 2011-11-10 Unilever Plc Émulsions à teneur élevée en solvant
US20120122936A1 (en) * 2010-11-11 2012-05-17 Conopco, Inc., D/B/A Unilever Leave-on nonsolid skin conditioning compositions containing 12-[(12-hydroxyoctadecanoyl)oxy] octadecanoic acid
EA032281B1 (ru) * 2010-11-11 2019-05-31 Унилевер Н.В. Несмываемые нетвердые кондиционирующие композиции для кожи, содержащие 12-гидроксистеариновую кислоту
EP2648681B1 (fr) 2010-12-07 2015-01-07 Unilever N.V. Composition de soins buccaux
US8613939B2 (en) * 2010-12-15 2013-12-24 Conopco, Inc. Leave-on nonsolid skin conditioning compositions containing 12-hydroxystearic acid and ethoxylated hydrogenated castor oil
US20120214871A1 (en) 2011-02-17 2012-08-23 Conopco, Inc., D/B/A Unilever Leave-on nonsolid oil-continuous skin conditioning compositions containing 12-hydroxystearic acid
EP2773315B1 (fr) 2011-11-03 2015-07-08 Unilever N.V. Composition pour hygiène personnelle
BR112014009501B1 (pt) * 2011-11-11 2018-08-28 Unilever Nv organogel e composição cosmética
BR112015013569A2 (pt) 2012-12-20 2017-07-11 Unilever Nv mistura, composição, método para a preparação de uma composição de cuidados pessoais, composição de cuidados pessoais e método de aplicação.
US9511144B2 (en) 2013-03-14 2016-12-06 The Proctor & Gamble Company Cosmetic compositions and methods providing enhanced penetration of skin care actives
US20230414459A1 (en) * 2020-11-20 2023-12-28 Dr. Mpp, Inc. Process for making sanitizing lotion that can be used as a moisturizer, makeup remover and other uses

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1029528A1 (fr) * 1997-11-14 2000-08-23 Fujisawa Pharmaceutical Co., Ltd. Composition emulsifiante huileuse

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665951B2 (ja) * 1988-09-27 1997-10-22 株式会社資生堂 固型状油中水型乳化化粧料
JP3649341B2 (ja) * 1990-06-15 2005-05-18 株式会社資生堂 複合体及び複合体の組成物及び乳化剤組成物並びに乳化組成物
FR2719769B1 (fr) * 1994-05-16 1996-07-19 Oreal Composition cosmétique ou dermatologique sous forme d'huile gélifiée contenant un mélange d'acide hydroxy-12 stéarique ou d'un dialkylamide de l'acide N-lauroylglutamique et d'un copolymère styrène/alcadiène hydrogéné.
TW504387B (en) * 1995-09-06 2002-10-01 Kao Corp Emulsified, water-in-oil type composition and skin cosmetic preparation
US5759524A (en) * 1996-02-09 1998-06-02 The Procter & Gamble Company Photoprotective compositions
JPH09249547A (ja) * 1996-03-18 1997-09-22 Pola Chem Ind Inc 油中水乳化組成物
JP3444329B2 (ja) * 1996-04-03 2003-09-08 ポーラ化成工業株式会社 油中水乳化組成物
AUPO688997A0 (en) * 1997-05-20 1997-06-12 Soltec Research Pty Ltd Sunscreen composition
JPH11130617A (ja) * 1997-10-28 1999-05-18 Pola Chem Ind Inc のびのある皮膚外用剤
DE19825462C2 (de) * 1998-06-08 2001-03-08 Cognis Deutschland Gmbh Emulgatoren
GB9909440D0 (en) * 1999-04-23 1999-06-23 Unilever Plc Package for dispensing a flowable cosmetic composition and product
DE19920555B4 (de) * 1999-05-05 2004-08-26 Cognis Deutschland Gmbh & Co. Kg Verwendung von nanoskaligen Metallseifen
JP4920815B2 (ja) * 2000-06-01 2012-04-18 信越化学工業株式会社 化粧料
US6680285B2 (en) * 2000-12-21 2004-01-20 Unilever Home & Personal Care Usa A Division Of Conopco, Inc. Skin cleansing bar with high levels of liquid emollient

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1029528A1 (fr) * 1997-11-14 2000-08-23 Fujisawa Pharmaceutical Co., Ltd. Composition emulsifiante huileuse

Also Published As

Publication number Publication date
DE10059239A1 (de) 2002-06-06
JP2004514688A (ja) 2004-05-20
WO2002043685A2 (fr) 2002-06-06
US20040044078A1 (en) 2004-03-04
WO2002043685A3 (fr) 2002-09-19

Similar Documents

Publication Publication Date Title
EP1524029B1 (fr) Compositions auto-emuslifiantes
EP1341518A2 (fr) Emulsions cosmetiques et/ou pharmaceutiques
EP1377619A1 (fr) Preparations cosmetiques
DE10212528A1 (de) Ölphasen für kosmetische Mittel
EP1286758A2 (fr) Agents emulsifiants
EP1330230A1 (fr) Utilisation d'alcools gras comme agents de solubilisation
WO2001072264A2 (fr) Preparations encapsulees dans des proliposomes (iv)
EP1414881A2 (fr) Epaississant
DE10254315A1 (de) Emollients und kosmetische Zubereitungen
WO2001074302A1 (fr) Preparations a encapsulation pro-liposomique
WO2002087536A1 (fr) Utilisation de preparations cationiques
EP1254655B1 (fr) Utilisation d'esters quaternaires
WO2001074303A1 (fr) Preparation a encapsulation pro-liposomique
EP1283854A1 (fr) Agent de solubilisation
WO2002087537A1 (fr) Utilisation de preparations cationiques
WO2002100522A1 (fr) Utilisation de phosphates d'alkyle(ether) (i)
EP1309311A2 (fr) Preparations cosmetiques contenant des acides dicarboxyliques
EP1264632A1 (fr) Utilisation d'Alkyl(Ether)Phosphates (III)
EP1374845A1 (fr) Préparations cosmétiques
EP1206428B1 (fr) Utilisation d'hydroxyethers dans des preparations cosmetiques et pharmaceutiques
EP1254909A1 (fr) Esters d'acide phosphorique
EP1374846A1 (fr) Compositions huileuses avec und viscosité élevée
WO2002043674A1 (fr) Micro-emulsions cosmetiques
WO2002100523A1 (fr) Emulsifiants polymeres
WO2002087538A1 (fr) Utilisation de preparations cationiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20030520

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE ES FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

17Q First examination report despatched

Effective date: 20050519

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060531