EP1208318A1 - Over-running clutch pulley with coating material - Google Patents
Over-running clutch pulley with coating materialInfo
- Publication number
- EP1208318A1 EP1208318A1 EP01941714A EP01941714A EP1208318A1 EP 1208318 A1 EP1208318 A1 EP 1208318A1 EP 01941714 A EP01941714 A EP 01941714A EP 01941714 A EP01941714 A EP 01941714A EP 1208318 A1 EP1208318 A1 EP 1208318A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheave
- clutch
- hub
- over
- pulley
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/32—Friction members
- F16H55/36—Pulleys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D41/00—Freewheels or freewheel clutches
- F16D41/20—Freewheels or freewheel clutches with expandable or contractable clamping ring or band
- F16D41/206—Freewheels or freewheel clutches with expandable or contractable clamping ring or band having axially adjacent coils, e.g. helical wrap-springs
Definitions
- This invention relates generally to devices in the over-running clutch field, and more specifically to an improved over-running clutch pulley for use with an accessory device driven by an automotive engine with a belt drive.
- a drive belt is typically used to power and operate various accessory devices.
- One of these accessory devices is typically an automotive alternator, which provides electrical power to the automobile.
- the serpentine arrangement which drives several accessory devices, is currently most favored.
- Serpentine arrangements typically include a drive pulley connected to the crankshaft of the engine (the “output device") and a drive belt trained about the drive pulley.
- the drive belt is also trained about one or more conventional driven pulleys, which are connected to the input shafts of various accessories devices (the "input device").
- the drive belt may experience many instances of sudden deceleration relative to the input shaft. This situation may occur, for example, during a typical shift from first gear to second gear under wide open throttle acceleration. This situation is worsened if the throttle is closed or "back off immediately after the shift. In these situations, the drive belt decelerates very quickly while the driven pulley, with the high inertia from the accessory device, maintains a high rotational speed, despite the friction between the drive belt and the driven pulley.
- the drive belt may experiences other situations that cause audible vibration and undue wear.
- a serpentine arrangement with conventional driven pulleys may be used with an automobile engine that has an extremely low idle engine speed (which may increase fuel economy).
- the arrangement typically experiences "belt flap" of the drive belt as the periodic cylinder firing of the automotive engine causes the arrangement to resonate within a natural frequency and cause an audible vibration and an undue wear on the drive belt.
- the disadvantage of the conventional driven pulleys namely the audible squeal, the undue wear, and the vibration of the drive belt, may be avoided by the use of an over-running clutch pulley instead of the conventional driven pulley.
- An over-running clutch pulley allows the pulley to continue to rotate at the same rotational speed and in a same rotational direction after a sudden deceleration of the drive belt.
- the over-running clutch pulley functions like the rear hub of a typical bicycle; the rear hub and rear wheel of a conventional bicycle continue to rotate at the same rotational speed and in the same rotational direction even after a sudden deceleration of the pedals and crankshaft of the bicycle.
- An example of an over-running clutch pulley is described in U.S. Patent No. 5,598,913 issued to the same assignee of this invention and hereby incorporated in its entirety by this reference.
- This invention provides an over-running clutch pulley with features intended to increase wear resistance, while minimizing the costs of the over-running clutch pulley.
- FIG. 1 is a perspective view of an over-running clutch pulley of the invention, shown with a drive belt as the input device and a cylindrical shaft as the output device; and
- FIG. 2 is a partial cross-section view, taken along the line 2-2 of FIG. 1 , of the overrunning clutch pulley of the preferred embodiment.
- the invention includes an over-running clutch pulley 10 for rotationally engaging an input device 12 and an output device 14.
- the over-running clutch pulley 10 has been designed for use with a drive belt 16 as the input device 12, and with a cylindrical shaft 18 as the output device 14. More specifically, the over-running clutch pulley 10 has been particularly designed for use with a drive belt 16 with a grooved surface and a cylindrical shaft 18 of an automotive alternator.
- the over-running clutch pulley 10 may be used, however, in other environments, with other suitable input devices, such as smooth belt, a toothed belt, a V- shaped belt, or even a toothed gear, and with other suitable output devices, such as a polygonal shaft.
- the over-running clutch pulley 10 may be used in an environment with two devices that alternate their rotational input responsibilities, and in an environment with an "output device” that actually provides rotational input and with an "input device” that actually receives rotational input.
- the terms “input device” and “output device” are interchangeable.
- the over-running clutch pulley 10 of the preferred embodiment includes a sheave member 20, a hub member 22 located substantially concentrically within the sheave member 20, a clutch member 24, and a coating 26, which cooperate to rotationally engage the drive belt and the cylindrical shaft.
- the sheave member 20 preferably includes a sheave input section 28 defining a sheave input surface 30 adapted to the engage the input device, and a sheave clutch section 32 defining a sheave clutch surface 34.
- the hub member 22 preferably includes a hub output section 36 defining a hub output surface 38 adapted to engage the output device, and a hub clutch section 40 defining a hub clutch surface 42.
- the coating 26 is disposed on the sheave input surface 30, the sheave clutch surface 34, the hub output surface 38, and the hub clutch surface 42.
- the coating 26, which is disposed on these surfaces instead of selectively avoiding one or more of these surfaces, protects against substantial corrosion and increases the wear resistance, while minimizing the cost of the over-running clutch pulley.
- the sheave input section 28 of the sheave member 20 of the preferred embodiment functions to engage the drive belt.
- the sheave input section 28 preferably defines the sheave input surface 30 with two sheave input shoulders 44 and at least one sheave input groove 46.
- the sheave input section 28 may alternatively define other suitable surfaces, such as toothed surfaces or ribbed surfaces, to engage the input device.
- the sheave input surface 30 is preferably outwardly directed (away from the rotational axis of the over-running clutch pulley 10) and is preferably substantially cylindrically shaped.
- the sheave input section 28 is preferably made from conventional structural materials, such as steel, and with conventional methods, but may alternatively be made from other suitable materials and from other suitable methods.
- the hub output section 36 of the hub member 22 of the preferred embodiment functions to engage the cylindrical shaft.
- the hub output section 36 preferably defines the hub output surface 38 with a smooth section 48 (which functions to ease and center the assembly of the over-running clutch pulley 10 onto the cylindrical shaft), a threaded section 50 (which functions to substantially prevent rotation and to axially retain the hub member 22 to the cylindrical shaft), and a hexagonal section 52 (which functions to mate with an alien wrench for easy tightening and loosening of the over-running clutch pulley 10 onto and off of the cylindrical shaft).
- the hub output section 36 may include other suitable devices or define other surfaces to prevent rotational and axial slippage, to engage the cylindrical shaft, and to engage a tool for tightening or loosening the over-running clutch pulley 10 onto and off of the cylindrical shaft.
- the hub output surface 38 is preferably inwardly directed (toward the rotational axis of the overrunning clutch pulley 10) and is preferably substantially cylindrically shaped.
- the hub output section 36 is preferably made from conventional structural materials, such as steel, and with conventional methods, but may alternatively be made from other suitable materials and from other suitable methods.
- the over-running clutch pulley 10 of the preferred embodiment also includes a bearing member 54, which functions to allow relative rotational movement of the sheave member 20 and the hub member 22.
- the bearing member 54 which is preferably a rolling element type, preferably includes an outer race element 58 preferably press-fit mounted onto a sheave bearing surface 60 of the sheave member 20, an inner race element 62 preferably press-fit mounted onto a hub bearing surface 64 of the hub member 22, ball bearing elements 66 preferably located between the outer race element 58 and the inner race element 62, and bearing seals 68 preferably extending between the outer race element 58 and the inner race element 62 on either side of the ball bearing elements 66.
- the bearing member 54 may alternatively be of other suitable types, such as a journal bearing or a roller bearing, may alternatively include other suitable elements, and may alternatively be mounted to other suitable surfaces with other suitable manners.
- the bearing member 54 is a conventional device and, as such, is preferably made from conventional materials and with conventional methods, but may alternatively be made from other suitable materials and with other suitable methods.
- the sheave clutch section 32 and the hub clutch section 40 of the preferred embodiment function to provide the sheave clutch surface 34 and the hub clutch surface 42, respectively, for the engagement with the clutch member 24.
- the sheave clutch section 32 preferably extends radially inward from the sheave member 20. In this manner, the sheave clutch section 32 is preferably made from the same material and with the same methods as the sheave input section 28, but may alternatively be made from other suitable materials and with other suitable methods.
- the hub clutch section 40 preferably extends radially outward from and axially over the hub output section 36. In this manner, the hub clutch section 40 is preferably made from the same material and with the same methods as the hub output section 36, but may alternatively be made from other suitable materials and with other suitable methods.
- the hub clutch section 40 preferably partially defines a clutch cavity 54 to contain the clutch member 24.
- the sheave clutch surface 34 and the hub clutch surface 42 are located substantially adjacent with an axial gap 70 between each other.
- the sheave clutch surface 34 and the hub clutch surface 42 are preferably inwardly directed (toward the rotational axis of the over-running clutch pulley 10) and are preferably substantially cylindrically shaped.
- the sheave clutch surface 34 and the hub clutch surface 42 preferably have a similar radial diameter, and a similar axial length. These features allow optimum performance of the clutch member 24.
- the sheave clutch surface 34 and the hub clutch surface 42 may alternatively have differences with each other on these, or other, design specifications.
- the clutch member 24 functions to engage the sheave clutch surface 34 and the hub clutch surface 42 upon the acceleration of the sheave member 20 in a first rotational direction relative to the hub member 22, and to disengage the sheave clutch surface 34 and the hub clutch surface 42 upon the deceleration of the sheave member 20 in the first rotational direction relative to the hub member 22.
- the clutch member 24 is a coil spring 72.
- the coil spring 72 which is made from conventional materials and with conventional methods, accomplishes the above features by the particular size and orientation of the coil spring 72 within the clutch cavity 54.
- the clutch member 24 may include other suitable devices that accomplish the above features.
- the coil spring 72 is preferably designed with a relaxed spring radial diameter that is sized slightly greater than an inner diameter of the sheave clutch surface 34 and the hub clutch surface 42.
- the coil spring 72 frictionally engages with and exerts an outward force on both the sheave clutch surface 34 and the hub clutch surface 42.
- the coil spring 72 is preferably oriented within the clutch cavity 54 such that the coils extend axially in the first rotational direction from the sheave clutch surface 34 to the hub clutch surface 42. With this orientation, relative rotational movement of the sheave member 20 and the hub member 22 will result in an unwinding or winding of the clutch member 24.
- acceleration of the sheave member 20 in the first rotational direction relative to the hub member 22 will bias an unwinding of the coil spring 72 and deceleration of the sheave member 20 in the first rotational direction relative to the hub member 22 will bias a winding of the coil spring 72.
- the unwinding of the coil spring 72 tends to increase the outward force of the coil spring 72 on the sheave clutch surface 34 and the hub clutch surface 42, thereby providing engagement, or "lock", of the sheave member 20 and the hub member 22.
- This engagement condition preferably occurs upon the acceleration of the sheave member 20 in the first rotational direction relative to the hub member 22.
- the winding of the coil spring 72 tends to decrease the outward force of the coil spring 72 on the sheave clutch surface 34 and the hub clutch surface 42, thereby allowing disengagement, or "slip", of the sheave member 20 and the hub member 22.
- This disengagement condition preferably occurs upon the deceleration of the sheave member 20 in the first rotational direction relative to the hub member 22.
- the coil spring 72 will lightly rub across the sheave clutch surface 34 or the hub clutch surface 42, which may cause wear of these surfaces.
- the coil spring 72 will forcefully engage with the sheave clutch surface 34 and the hub clutch surface 42, which may also cause wear of these surfaces.
- the coating 26 on the sheave clutch surface 34 and the hub clutch surface 42 in addition to providing protection against substantial corrosion, also provides a sufficient surface hardness to resist the wear of these surfaces by the clutch member 24.
- the sheave member 20 of the preferred embodiment includes a sheave collar section 74 defining a sheave collar surface 76, and the hub clutch section 40 of the preferred embodiment defines a hub flange surface 78.
- the sheave collar section 74 preferably extends radially inward from the sheave input section 28 and adjacent the sheave clutch section 32.
- the sheave collar surface 76 and the hub flange surface 78 are preferably located on opposite ends of the clutch cavity 54. In this manner, the sheave collar surface 76 and the hub flange surface 78 cooperate with the sheave clutch surface 34 and the hub clutch surface 42 to actually define the clutch cavity 54.
- the over-running clutch pulley 10 of the preferred embodiment may, of course, use other suitable devices to insure the proper placement of the clutch member 24 within the clutch cavity 54. These devices may be surfaces defined by other sections of the sheave member 20 or the hub member 22, or surfaces defined by other suitable elements.
- the coating 26 is disposed on the sheave input surface 30, the sheave clutch surface 34, the hub output surface 38, and the hub clutch surface 42, which protects against substantial corrosion and provides a sufficient surface hardness to resist wear of these surfaces.
- the coating 26 is also preferably disposed on the sheave collar surface 76 and the hub flange surface 78, which similarly protects against substantial corrosion and provides a sufficient surface hardness to resist wear of these surfaces.
- the coating 26, however, is also preferably disposed on every surface of the sheave member 20 and the hub member 22, including the sheave bearing surface 60 and the hub bearing surface 64, which minimizes the cost and difficulty in the application of the coating 26.
- the coating 26 may alternatively be disposed on fewer surfaces.
- the preferred embodiments of the invention substantially avoid forming, treating, or coating 26 specific surfaces or sections of the overrunning clutch pulley to have a sufficient surface hardness.
- the coating 26 preferably includes a first layer made from a zinc material, a second layer made from a zinc chromate material and a coloring agent material, and a third layer made from a zinc chromate material.
- the preferred composition and preferred layering of the coating 26 is well known in the metallurgical field.
- the coating 26 may alternatively include other suitable compositions and other suitable layering to increase corrosion and wear resistance.
- the coating 26 is preferably applied to the surfaces of the over-running clutch pulley with conventional methods, but may be alternatively applied with any suitable method.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pulleys (AREA)
- Mechanical Operated Clutches (AREA)
- Transmissions By Endless Flexible Members (AREA)
- Transmission Devices (AREA)
- Sealing Devices (AREA)
- Lubricants (AREA)
- Rolling Contact Bearings (AREA)
- One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US20824400P | 2000-05-31 | 2000-05-31 | |
| US208244P | 2000-05-31 | ||
| PCT/US2001/017520 WO2001092760A1 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with coating material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1208318A1 true EP1208318A1 (en) | 2002-05-29 |
| EP1208318A4 EP1208318A4 (en) | 2006-01-18 |
Family
ID=22773841
Family Applications (10)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP01939729A Withdrawn EP1208314A1 (en) | 2000-05-31 | 2001-05-28 | Over-running clutch pulley with floating spring member |
| EP01939732A Withdrawn EP1208311A1 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with sealing member |
| EP01950264A Withdrawn EP1208316A1 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with closed clutch cavity |
| EP01941714A Withdrawn EP1208318A4 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with coating material |
| EP01944187A Withdrawn EP1284832A1 (en) | 2000-05-31 | 2001-05-31 | Method of manufacturing an over-running clutch pulley with deformable surface |
| EP01950263A Withdrawn EP1285177A1 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with slip influence |
| EP01946024A Withdrawn EP1208315A4 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with increased surface microhardness |
| EP01939788A Withdrawn EP1284831A1 (en) | 2000-05-31 | 2001-05-31 | Method of manufacturing an over-running clutch pulley with retention member |
| EP01941715A Withdrawn EP1208312A1 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with open clutch cavity |
| EP01939683A Withdrawn EP1208310A4 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with clutch and bearing lubricant |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP01939729A Withdrawn EP1208314A1 (en) | 2000-05-31 | 2001-05-28 | Over-running clutch pulley with floating spring member |
| EP01939732A Withdrawn EP1208311A1 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with sealing member |
| EP01950264A Withdrawn EP1208316A1 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with closed clutch cavity |
Family Applications After (6)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP01944187A Withdrawn EP1284832A1 (en) | 2000-05-31 | 2001-05-31 | Method of manufacturing an over-running clutch pulley with deformable surface |
| EP01950263A Withdrawn EP1285177A1 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with slip influence |
| EP01946024A Withdrawn EP1208315A4 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with increased surface microhardness |
| EP01939788A Withdrawn EP1284831A1 (en) | 2000-05-31 | 2001-05-31 | Method of manufacturing an over-running clutch pulley with retention member |
| EP01941715A Withdrawn EP1208312A1 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with open clutch cavity |
| EP01939683A Withdrawn EP1208310A4 (en) | 2000-05-31 | 2001-05-31 | Over-running clutch pulley with clutch and bearing lubricant |
Country Status (3)
| Country | Link |
|---|---|
| EP (10) | EP1208314A1 (en) |
| JP (10) | JP2003535281A (en) |
| WO (10) | WO2001092745A1 (en) |
Families Citing this family (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1534972B1 (en) * | 2002-07-26 | 2008-01-16 | Litens Automotive | Overrunning alternator decoupler pulley with bare wire spring and grease lubrication |
| CN1777765B (en) | 2003-02-04 | 2012-03-21 | 利滕斯汽车公司 | crankshaft torque regulator |
| JP4380234B2 (en) * | 2003-06-19 | 2009-12-09 | Nok株式会社 | Power steering sealing device |
| EP1668267B1 (en) | 2003-09-22 | 2012-10-31 | Litens Automotive Partnership | Crankshaft decoupler |
| JP2007517168A (en) | 2003-12-09 | 2007-06-28 | ライテンズ オートモーティブ パートナーシップ | Spring travel limiter for overrun of alternator decoupler |
| JP5507608B2 (en) * | 2005-10-31 | 2014-05-28 | 三ツ星ベルト株式会社 | Pulley structure |
| JP5008928B2 (en) * | 2005-10-31 | 2012-08-22 | 三ツ星ベルト株式会社 | Pulley structure |
| JP2007139029A (en) * | 2005-11-16 | 2007-06-07 | Ntn Corp | Electric actuator |
| DE102007038209B3 (en) * | 2007-08-13 | 2009-01-15 | Carl Freudenberg Kg | Drive system for vehicle lighting dynamos incorporates belt pulley with hub and helical spring mounted between two, ends of spring fitting into cams on connecting plates attached to pulley and hub |
| CA2798096A1 (en) * | 2010-05-25 | 2011-12-01 | Litens Automotive Partnership | Decoupler assembly with sliding interface between hub and pulley |
| GB201107466D0 (en) | 2011-05-05 | 2011-06-15 | Loktionov Alexandre | Device and method for non-invasive collection of colorectal mucocellular layer and disease detection |
| FR2995056B1 (en) * | 2012-09-04 | 2015-07-03 | Skf Ab | MECHANICAL SYSTEM WITH A UNIDIRECTIONAL CLUTCH, ALTERNATOR AND METHOD FOR MANUFACTURING SUCH A SYSTEM |
| BR102012022803B1 (en) * | 2012-09-10 | 2017-05-02 | Zen S/A Indústria Metalúrgica | decoupler with freewheel system and vibration damping |
| JP6020029B2 (en) * | 2012-10-19 | 2016-11-02 | 株式会社豊田自動織機 | Vane type compressor |
| US9140319B2 (en) | 2012-11-20 | 2015-09-22 | Litens Automotive Partnership | Decoupler with concentric clutching members |
| US9033832B1 (en) | 2014-01-23 | 2015-05-19 | Gates Corporation | Isolating decoupler |
| CN104373552B (en) * | 2014-11-28 | 2017-02-01 | 中国石油天然气股份有限公司 | Pulleys with belt break protection |
| US9291253B1 (en) | 2015-03-24 | 2016-03-22 | Gates Corporation | Isolating decoupler |
| CN107467252B (en) * | 2017-09-08 | 2020-11-13 | 勐海悦朋轩茶业有限公司 | An intelligent black tea fermentation equipment |
| CN112091534A (en) * | 2020-08-12 | 2020-12-18 | 芜湖亿联旋压科技有限公司 | Spinning manufacturing method of clutch hub |
| DE102021104889A1 (en) * | 2020-11-30 | 2022-06-02 | Schaeffler Technologies AG & Co. KG | drive wheel |
| CN116038259B (en) * | 2023-02-09 | 2025-09-09 | 成都青山实业有限责任公司 | Processing method of clutch outer hub gear assembly |
| WO2025243183A1 (en) * | 2024-05-21 | 2025-11-27 | Muviq S.r.l. | Filtering pulley comprising a hub provided with an improved fixation system |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2101130A (en) * | 1935-06-29 | 1937-12-07 | Packard Motor Car Co | Motor vehicle |
| US2794524A (en) * | 1954-09-01 | 1957-06-04 | Curtiss Wright Corp | Spring clutch mechanisms |
| US2906005A (en) * | 1956-03-19 | 1959-09-29 | Racine Ind Plant Inc | Method of securing needle bearings in nylon gears |
| US3047300A (en) * | 1959-07-01 | 1962-07-31 | Lockheed Aircraft Corp | Metal sealing assembly |
| US3926286A (en) * | 1973-02-05 | 1975-12-16 | Reell Precision Mfg | Spring grip clutch |
| US3831723A (en) * | 1973-04-18 | 1974-08-27 | Gen Motors Corp | Electromagnetic spring-wound clutch |
| US4725260A (en) * | 1987-03-24 | 1988-02-16 | Litens Automotive Inc. | Belt tensioner with spring actuated band brake damping |
| JPH01279117A (en) * | 1988-04-28 | 1989-11-09 | Matsushita Electric Ind Co Ltd | Hydrodynamic bearing device |
| US5061090A (en) * | 1990-05-31 | 1991-10-29 | Porter-Cable Corporation | Shaft and bearing assembly |
| US5288683A (en) * | 1990-10-30 | 1994-02-22 | Chuetsu Metal Works Co., Ltd. | Wear-resistant copper alloys and synchronizer rings for automobiles comprising the same |
| US5156573A (en) * | 1991-06-05 | 1992-10-20 | Litens Automotive Partnership | Serpentine drive with coil spring-one-way clutch alternator connection |
| CA2074637C (en) * | 1991-07-31 | 1998-11-10 | Kazuki Kawashima | Belt tension adjusting device |
| JPH0560144A (en) * | 1991-08-29 | 1993-03-09 | Ntn Corp | Grease-sealed rolling bearing |
| JP3114378B2 (en) * | 1991-09-20 | 2000-12-04 | 日本精工株式会社 | Rolling bearing |
| US5325950A (en) * | 1992-08-31 | 1994-07-05 | Ingersoll-Rand Company | Lubricant remover for a wrap spring clutch |
| DE9417045U1 (en) * | 1994-10-22 | 1994-12-15 | INA Wälzlager Schaeffler KG, 91074 Herzogenaurach | Device for damping torsional vibrations in a drive train |
| JPH08317599A (en) * | 1995-05-22 | 1996-11-29 | Mitsubishi Electric Corp | Vehicle generator |
| US5598913A (en) | 1995-06-07 | 1997-02-04 | Ntn Corporation | One-way over-running clutch pulley |
| DE19535889A1 (en) * | 1995-09-27 | 1997-04-03 | Schaeffler Waelzlager Kg | Vibration damping device with freewheel clutch |
| SE9602257L (en) * | 1996-06-07 | 1997-12-08 | Plannja Hardtech Ab | Ways to produce steel detail |
| US5822859A (en) * | 1996-10-07 | 1998-10-20 | General Motors Corporation | Bearing with integrally retained separable race |
| JPH11218144A (en) * | 1997-11-17 | 1999-08-10 | Nippon Seiko Kk | Rolling bearing with built-in one-way clutch |
| JP4327929B2 (en) * | 1999-03-03 | 2009-09-09 | 協同油脂株式会社 | Manufacturing method of urea grease with excellent noise reduction |
-
2001
- 2001-05-28 EP EP01939729A patent/EP1208314A1/en not_active Withdrawn
- 2001-05-28 JP JP2002500122A patent/JP2003535281A/en active Pending
- 2001-05-28 WO PCT/US2001/017514 patent/WO2001092745A1/en not_active Ceased
- 2001-05-31 WO PCT/US2001/017430 patent/WO2001092741A1/en not_active Ceased
- 2001-05-31 WO PCT/US2001/017462 patent/WO2001091938A1/en not_active Ceased
- 2001-05-31 JP JP2002500124A patent/JP2003535283A/en active Pending
- 2001-05-31 JP JP2002500119A patent/JP2003535280A/en active Pending
- 2001-05-31 JP JP2001587941A patent/JP2004514092A/en not_active Withdrawn
- 2001-05-31 EP EP01939732A patent/EP1208311A1/en not_active Withdrawn
- 2001-05-31 EP EP01950264A patent/EP1208316A1/en not_active Withdrawn
- 2001-05-31 WO PCT/US2001/017642 patent/WO2001092747A1/en not_active Ceased
- 2001-05-31 EP EP01941714A patent/EP1208318A4/en not_active Withdrawn
- 2001-05-31 WO PCT/US2001/017640 patent/WO2001092746A1/en not_active Ceased
- 2001-05-31 EP EP01944187A patent/EP1284832A1/en not_active Withdrawn
- 2001-05-31 JP JP2002500118A patent/JP2003535279A/en active Pending
- 2001-05-31 JP JP2002500132A patent/JP2003535287A/en active Pending
- 2001-05-31 WO PCT/US2001/017520 patent/WO2001092760A1/en not_active Ceased
- 2001-05-31 WO PCT/US2001/017639 patent/WO2001092740A1/en not_active Ceased
- 2001-05-31 EP EP01950263A patent/EP1285177A1/en not_active Withdrawn
- 2001-05-31 JP JP2001587940A patent/JP2003535273A/en not_active Withdrawn
- 2001-05-31 WO PCT/US2001/017656 patent/WO2001091939A1/en not_active Ceased
- 2001-05-31 EP EP01946024A patent/EP1208315A4/en not_active Withdrawn
- 2001-05-31 EP EP01939788A patent/EP1284831A1/en not_active Withdrawn
- 2001-05-31 JP JP2002500120A patent/JP2004501326A/en active Pending
- 2001-05-31 JP JP2002500123A patent/JP2003535282A/en active Pending
- 2001-05-31 JP JP2002500117A patent/JP2003535278A/en active Pending
- 2001-05-31 WO PCT/US2001/017522 patent/WO2001092743A1/en not_active Ceased
- 2001-05-31 EP EP01941715A patent/EP1208312A1/en not_active Withdrawn
- 2001-05-31 EP EP01939683A patent/EP1208310A4/en not_active Withdrawn
- 2001-05-31 WO PCT/US2001/017521 patent/WO2001092742A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| EP1208315A4 (en) | 2006-01-18 |
| JP2003535283A (en) | 2003-11-25 |
| EP1208310A1 (en) | 2002-05-29 |
| JP2003535282A (en) | 2003-11-25 |
| JP2003535280A (en) | 2003-11-25 |
| EP1208312A1 (en) | 2002-05-29 |
| JP2004501326A (en) | 2004-01-15 |
| WO2001092740A1 (en) | 2001-12-06 |
| WO2001092760A1 (en) | 2001-12-06 |
| EP1208315A1 (en) | 2002-05-29 |
| JP2003535281A (en) | 2003-11-25 |
| EP1208316A1 (en) | 2002-05-29 |
| WO2001092746A1 (en) | 2001-12-06 |
| WO2001091939A1 (en) | 2001-12-06 |
| WO2001092747A1 (en) | 2001-12-06 |
| EP1208314A1 (en) | 2002-05-29 |
| WO2001092743A1 (en) | 2001-12-06 |
| WO2001091938A1 (en) | 2001-12-06 |
| JP2003535287A (en) | 2003-11-25 |
| EP1208310A4 (en) | 2006-01-18 |
| JP2003535279A (en) | 2003-11-25 |
| WO2001092745A1 (en) | 2001-12-06 |
| JP2004514092A (en) | 2004-05-13 |
| JP2003535278A (en) | 2003-11-25 |
| EP1208311A1 (en) | 2002-05-29 |
| WO2001092741A1 (en) | 2001-12-06 |
| EP1284831A1 (en) | 2003-02-26 |
| EP1285177A1 (en) | 2003-02-26 |
| EP1208318A4 (en) | 2006-01-18 |
| EP1284832A1 (en) | 2003-02-26 |
| WO2001092742A1 (en) | 2001-12-06 |
| JP2003535273A (en) | 2003-11-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7052420B2 (en) | Over-running clutch pulley with coating material | |
| EP1367282B1 (en) | Over-running clutch pulley with clutch cartridge | |
| US7191880B2 (en) | Over-running clutch pulley with increased surface microhardness | |
| WO2001092760A1 (en) | Over-running clutch pulley with coating material | |
| US6691846B2 (en) | Over-running clutch pulley with shortened depth | |
| US6637570B2 (en) | Over-running clutch pulley with composite sealing member | |
| JP4535517B2 (en) | Serpentine belt drive system with improved overrun alternator decoupler | |
| US5598913A (en) | One-way over-running clutch pulley | |
| US6923303B2 (en) | Over-running clutch pulley with clutch and bearing lubricant | |
| WO2002052162A9 (en) | Over-running clutch pulley with tool bores |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KING, RANDALL Owner name: LISTON, MARY-JO |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KING, RANDALL Inventor name: LISTON, MARY-JO |
|
| 17P | Request for examination filed |
Effective date: 20021230 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NTN CORPORATION |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: NTN CORPORATION |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20051205 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: F16H 55/36 19680901ALI20051130BHEP Ipc: F16D 41/20 19680901AFI20051130BHEP Ipc: F02B 67/06 19680901ALI20051130BHEP |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20070301 |