EP1299592A1 - Procede de traitement enzymatique de textiles tels que la laine - Google Patents
Procede de traitement enzymatique de textiles tels que la laineInfo
- Publication number
- EP1299592A1 EP1299592A1 EP01949656A EP01949656A EP1299592A1 EP 1299592 A1 EP1299592 A1 EP 1299592A1 EP 01949656 A EP01949656 A EP 01949656A EP 01949656 A EP01949656 A EP 01949656A EP 1299592 A1 EP1299592 A1 EP 1299592A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- enzyme
- wool
- treated
- textile goods
- transglutaminase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 239000004753 textile Substances 0.000 title claims abstract description 47
- 238000011282 treatment Methods 0.000 title claims description 113
- 210000002268 wool Anatomy 0.000 title claims description 86
- 230000002255 enzymatic effect Effects 0.000 title description 9
- 102000004190 Enzymes Human genes 0.000 claims abstract description 58
- 108090000790 Enzymes Proteins 0.000 claims abstract description 58
- 239000000835 fiber Substances 0.000 claims abstract description 33
- 239000013543 active substance Substances 0.000 claims abstract description 25
- 150000001875 compounds Chemical class 0.000 claims abstract description 23
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 18
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 16
- 239000011575 calcium Substances 0.000 claims abstract description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims abstract description 9
- 230000001419 dependent effect Effects 0.000 claims abstract description 8
- 230000009471 action Effects 0.000 claims abstract description 6
- 108060008539 Transglutaminase Proteins 0.000 claims description 100
- 102000003601 transglutaminase Human genes 0.000 claims description 100
- 108091005804 Peptidases Proteins 0.000 claims description 40
- 239000004365 Protease Substances 0.000 claims description 34
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims description 26
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 claims description 22
- 210000004209 hair Anatomy 0.000 claims description 19
- 239000003599 detergent Substances 0.000 claims description 18
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical group [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 claims description 18
- 235000018102 proteins Nutrition 0.000 claims description 15
- 241001465754 Metazoa Species 0.000 claims description 11
- 239000005700 Putrescine Substances 0.000 claims description 11
- 239000005018 casein Substances 0.000 claims description 9
- 150000003141 primary amines Chemical class 0.000 claims description 9
- 235000010265 sodium sulphite Nutrition 0.000 claims description 9
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims description 8
- 235000021240 caseins Nutrition 0.000 claims description 8
- 239000000975 dye Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- 102000011782 Keratins Human genes 0.000 claims description 4
- 108010076876 Keratins Proteins 0.000 claims description 4
- 239000012634 fragment Substances 0.000 claims description 4
- 239000005905 Hydrolysed protein Substances 0.000 claims description 3
- 239000004902 Softening Agent Substances 0.000 claims description 3
- 239000004599 antimicrobial Substances 0.000 claims description 3
- -1 silk Proteins 0.000 claims description 3
- 102000008186 Collagen Human genes 0.000 claims description 2
- 108010035532 Collagen Proteins 0.000 claims description 2
- 102000016359 Fibronectins Human genes 0.000 claims description 2
- 108010067306 Fibronectins Proteins 0.000 claims description 2
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 229920001436 collagen Polymers 0.000 claims description 2
- 239000000077 insect repellent Substances 0.000 claims description 2
- 239000002304 perfume Substances 0.000 claims description 2
- 239000005871 repellent Substances 0.000 claims description 2
- 230000002940 repellent Effects 0.000 claims description 2
- 230000000475 sunscreen effect Effects 0.000 claims description 2
- 239000000516 sunscreening agent Substances 0.000 claims description 2
- 229920002994 synthetic fiber Polymers 0.000 claims description 2
- 102000011632 Caseins Human genes 0.000 claims 1
- 108010076119 Caseins Proteins 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000000413 hydrolysate Substances 0.000 claims 1
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 5
- 125000000524 functional group Chemical group 0.000 abstract description 2
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 2
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 abstract 1
- 229940088598 enzyme Drugs 0.000 description 46
- 239000004744 fabric Substances 0.000 description 36
- 108010020132 microbial serine proteinases Proteins 0.000 description 32
- 239000000872 buffer Substances 0.000 description 30
- 229920000642 polymer Polymers 0.000 description 21
- 230000000694 effects Effects 0.000 description 19
- 230000008569 process Effects 0.000 description 17
- 102000035195 Peptidases Human genes 0.000 description 14
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 12
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 12
- 230000000813 microbial effect Effects 0.000 description 12
- 238000005406 washing Methods 0.000 description 12
- 229910001424 calcium ion Inorganic materials 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000006872 improvement Effects 0.000 description 9
- 239000000523 sample Substances 0.000 description 7
- 239000012137 tryptone Substances 0.000 description 7
- 241000700199 Cavia porcellus Species 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 235000004879 dioscorea Nutrition 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 239000007983 Tris buffer Substances 0.000 description 4
- 238000009950 felting Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 101000666165 Cavia cutleri Protein-glutamine gamma-glutamyltransferase 2 Proteins 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 108700039882 Protein Glutamine gamma Glutamyltransferase 2 Proteins 0.000 description 3
- 102100038095 Protein-glutamine gamma-glutamyltransferase 2 Human genes 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000008366 buffered solution Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 150000003973 alkyl amines Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229920013822 aminosilicone Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000238424 Crustacea Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000219823 Medicago Species 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000010624 Medicago sativa Nutrition 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108010081873 Persil Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 241000224485 Physarum Species 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 108010056079 Subtilisins Proteins 0.000 description 1
- 102000005158 Subtilisins Human genes 0.000 description 1
- 206010042618 Surgical procedure repeated Diseases 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- GEHJBWKLJVFKPS-UHFFFAOYSA-N bromochloroacetic acid Chemical compound OC(=O)C(Cl)Br GEHJBWKLJVFKPS-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910000462 iron(III) oxide hydroxide Inorganic materials 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 208000020442 loss of weight Diseases 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- SJOXEWUZWQYCGL-DVOMOZLQSA-N menthyl salicylate Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OC(=O)C1=CC=CC=C1O SJOXEWUZWQYCGL-DVOMOZLQSA-N 0.000 description 1
- 229960004665 menthyl salicylate Drugs 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical class OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 1
- SJOXEWUZWQYCGL-UHFFFAOYSA-N salicylic acid menthyl ester Natural products CC(C)C1CCC(C)CC1OC(=O)C1=CC=CC=C1O SJOXEWUZWQYCGL-UHFFFAOYSA-N 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229960003500 triclosan Drugs 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- 229940117960 vanillin Drugs 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M16/00—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
- D06M16/003—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic with enzymes or microorganisms
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/10—Animal fibres
- D06M2101/12—Keratin fibres or silk
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/20—Treatment influencing the crease behaviour, the wrinkle resistance, the crease recovery or the ironing ease
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/45—Shrinking resistance, anti-felting properties
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/50—Modified hand or grip properties; Softening compositions
Definitions
- the present invention relates to a method of treating fibrous textile goods, such as wool, wool fibres or animal hair with an enzyme, such as a transglutaminase, preferably either including or in the absence of a protease enzyme.
- This treatment can be used to trap one or more active functional compounds within, by linking either covalently or non-covently such compounds onto, the fibrous textile goods.
- enzymes find industrial applicability in the dcsizing of fabric, in enzymatic stone-wasliing of denim to create an aged look, and in numerous other treatments to impart enhanced fiibric properties, such as a clean fabric surface, free of microhairs and fibres, or improved pilling properties or fabric hand.
- enzymes In domestic laundry products, enzymes arc employed to assist in the cleaning of goods, 1o remove soils and stains an also to counter the formation of surface fibre, which gives a wow appearance.
- proteases have been widely employed in the industrial treatment of wool goods to impart desirable properties.
- the enzymatic processes that are currently being used, however, are difficult to control and can lead to results that are not sufficiently predictable and reproducible and cause significant damage to the fibre cuticle with consequent strength loss.
- the major problems associated with wool goods are its tendency to shrink and its handle (prickliness).
- the scalar structure of the wool fibre is partly responsible for the tendency of wool goods to dimensional instability.
- One idea to reduce wool shrinkage is to remove or alter me scales of the wool fibre surface using, for example, proteases. Ideally, a commercial process would remove the surface scales to a limited extent, reducing the fibre coefficient of f iction without significantly reducing wool fibre strength.
- the use of proleases alone is not yet widely used industrially, the main reasons being the significant losses of weight and strength that result and also the relatively low degree of reprodueibility.
- Many methods based on the degradation of the structure of scales are destructive, causing molecular degradation of the proteins, which is ultimately responsible for the macroscopic reduction in weight and strength of the processed wool or animal hair textiles,
- Enzymatic treatments have also been suggested to improve the handle of wool textiles as an alternative to the use of various chemical agents, such as silicone softeners. Protease treatments may however, if not closely controlled, cause undesirable levels of weight and strength loss on the wool textiles.
- Protease treatments of wool goods invariably lead to a reduction, however slight, in fabric properties such as tensile or bursting strength. There is also a measurable weight loss arising from enzyme treatments. Such reductions must be balanced against the enhancement of properties such as pilling performance or fabric hand, and processing conditions and enzyme type are carefully selected 1o maximise the desirable benefiis whilst controlling losses in strength and weight.
- Transglutaminase is an enzyme which is found in a number of organisms and different organs and tissues. It is responsible Por cross-linking proteins by forming covatcnt bonds between lysine and glutamine residues. Transglutaminases usually have a higher affinity for glutamine residues than lysine residues.
- transglutaminasc A variety of amines have been reported as substrates for transglutaminasc, including dansyicadaverine, methyl aminc, butyl a ine, histamine and putrescine and hydroxylaroine.
- Hydroxylamine is in fact the amine donor in a standard assay for transglutaminase activity wherein hydroxylamine is covalently bound to an N-terminal blocked peptide containing glutamine and glycine to produce hydroxamate, which is detected by colour formation in the presence of ferric chloride and acid.
- One Unit of transglutaminase is defined as that amount which will form 1 ⁇ M of hydroxamate per minute at 37°C.
- Transglutaminases may be used in combination with proteases to optimise an enzyme system that minimises the effect of such less desirable effects like a reduction in weight and strength, whilst achieving various desirable finishing effects, such as shrink-resistance.
- Enzyme processing can be carried out in a variety of machinery types, which are commonly available in the industry. The characteristics of these machines are varied in terms of capacity, mechanical action and agitation and liquor-to-goods ratio, etc.
- the fabric to be treated Prior to an enzymatic teeatment, the fabric to be treated preferably should be clean and free of any impurities, such as oils and waxes or softening agents, which may interfere with the action of the enzyme. Fabrics are preferably scoured prior to the enzyme treatment. It is of benefit, therefore to optimise both all process parameters and enzyme system in order to minimise these losses and to improve the quality of the finished textile goods.
- US 5529928 describes a method using an initial oxidative step or an enzyme treatment (e.g. a peroxidasc, a catalase, or a lipase) followed by a protease 1 ⁇ *eatme ⁇ 1, followed by heat treatment to obtain wool textiles with improved handle and shrihk-resistant properties,
- an enzyme treatment e.g. a peroxidasc, a catalase, or a lipase
- US 5490980 describe a method using transglutaminases to cross-link beneficial substances containing an amine moiety to glutamine residues in skin, hair or nails, but not to fibrous textile goods. While wool fibre (in the form of tops, yams or fabrics) is dead , , human hah- is still growing and has a living root. As a consequence, the type of active agents that can be applied to living hair in a scalp are different from those applicable to wool fibres, which can be treated in industrial conditions, Treatment temperature, pH, type and harshness of chemicals are very different.
- the active agents applicable to wool and hair are generally different, and the process of applying transglutaminase and any active agent are also generally different (for example, by using tcrobial transglutaminase, which has ait optimum temperature of 50°C).
- Both human hair and wool consist mainly of keratins and have approximately the same basic morphology. Human hair is, however, more resistant to chemical and enzymatic attack 1han wool.
- Wool fibres are available in large quantities and are more flexible than hair and are therefore easy to spin into threads and make garments. Because of the protruding scales in the wool fibre felting shrinkage is a major problem, mainly in knitted garments.
- Japanese patent JP 3213574 describes a process to treat wool or animal hair using a calcium independent transglutaminase of microbial origin by cross-linking the amino acid functional groups of the cuticle of animal hair so as to produce hair or hair fibre containing material having improved slu wesistance, pilling resistance and hydropbobic property.
- the invention provides a method of treating fibrous textile goods, preferably derived from wool or animal hair, comprising treating the fibrous textile goods with an enzyme to either covalently or non-covalently bind one or more active functional compounds to the fibres and/or to trap one or more functional compounds within an inter-fibre matrix and/or within an intra-fibre matrix formed by the enzyme.
- a second aspect of the invention provides a method of protecting fibrous textile goods, preferably derived from wool or animal hair, from attack by biological detergents comprising treating the fibrous textile goods with an enzyme to covalently tink one or more fibres of the fibrous textile goods.
- a tltird aspect of the invention provides a method of treating fibrous textile goods to improve dimensional stability and/or improve yarn strength comprising treating the fibrous textile goods with a calcium-dependent tiansglutaminase.
- Such a treatment also may improve tensile and burst strength, shrinkage resistance, handle, reduces pilling, improves softness, improves dye uptake and washfastness, especially when used together with a protease.
- the fibrous textile goods are derived from wool fibre blended with one or more cellulosic or synthetic fibres.
- the enzyme is a transglutaminase (TGase), especially a calcium-dependent transglutaminase such as tissue type II t ⁇ ansglu ⁇ ninase.
- TGase transglutaminase
- a calcium-dependent transglutaminase such as tissue type II t ⁇ ansglu ⁇ ninase.
- the biological detergent may be one containing a protease.
- the inventors have unexpectedly found that using an enzyme to cross-link the fibres reduces the amount of damage from biological detergents such as those containing proteases, and effectively reduces the amoiint of dye released during washing.
- Fibrous textile goods obtainable by the methods of the invention are also provided.
- a pretreatment with reducing agents may be applied with the intent of breaking cystine bonds on wool to make it more accessible to further action by enzymes.
- an oxidative treatment may be used.
- Proteolytic enzymes may be used to break down 1b.e cuticle structure in the fibre surface in such a way to render it more accessible to tiansglutaminases, without excessive fibre damage and loss of weight and strength.
- Transglutaminases form intra- and inter-isopeptide bonds in the keratin molecule, stabilising the protein molecules. Their use results in an increase in total fibre and fabric strength, as well as rendering the fabrics less prone to felt.
- transglutaminases prevent excessive molecular breakdown associated with, protease treatments, preventing thereby a reduction in weight and strength loss.
- proteases may be used before, during or after the use of transglutaminase.
- the processing of wool textiles with tmnsglutaminases may involve a treatment with calcium-dependent lor isglutaminases such as tissue transglutaminase, alone or after a pretreatment with a protease.
- Incubation with transglutaminases carried out prior to a protease treatment leads to a reduction in the loss of yarn and fabric strength compared to a protease treatment only (under the same conditions).
- the same benefits may also result from processing by pre-soaking the wool or animal hair fibres with TGases in the absence of Ca 2+ to allow a better penetration of the enzyme into the fibre.
- the enzyme may then be activated in a later stage by the addition of the Ca 2+ ions.
- Transglutaminase or its optimised derivatives can be used to improve, for example, fabric handle, pilling performance, wrinkle resistance, the setting process, improve dm-able press finishing,
- the active agents may be attached to the fibrous textile goods by means of using a transglutaminase to react a primary amine group with a peptide bound ⁇ -glutamine or a y-glutamine with s-lysinc residue on the fibres and form a covalent bond.
- the active agents may be trapped within a matrix of inter-cross-linked fibres or, indeed, within an intra-fibre cross-linked matrix. That is, within a matrix by cross-linking adjacent fibres or by cross-linl ing within the same fibre.
- the active agents may be modified by addition of a primary amine to the active agent.
- the active agent comprises the group -R'NHz where -R' is an aliphatic branched or unbranched hydrocarbon chain containing 1 to 8, preferably 2 1o 6, more preferably at least 5 carbon atoms.
- the ' is unbranched.
- the primary amine of general formula of -R'NH 2 may be linked to a different functional group which imparts further functionalities to the fibrous goods. These may, in turn, be used to link further active agents, such as commercial polymers for improving shrink and improving softness, to the fibrous goods.
- the active agent may have several alkylamine moieties. These may be used to cross-link fibres or to bond the fibres to further active agents.
- Putrescine (1, 4-diamdnobutane) may be used as the active agent
- Transgiulaminase or its optimised derivatives can also be used to incorporate either covalently or non-covalently active agents that, once attached into the fibre surface, improve the binding and consequently the performance of active agents (e.g. commercial polymers used for shrinlt resistance - such as silicone oils and cationic polymers - and improving softness - such as amino silicones).
- active agents e.g. commercial polymers used for shrinlt resistance - such as silicone oils and cationic polymers - and improving softness - such as amino silicones.
- Suitable active compounds include but are not limited to perfumes, insect repellents, dyeing agents, softening agents, water repellents, antimicrobial agents, sunscreens and mixtures thereof.
- the active agents include but are not limited to intact proteins, hydrolysed proteins and modified hydrolysates, such as peptides and peptide derivatives, keratin, silk, casein, fibronectin and hydrolysed collagen.
- Preferred fragrances include vanillin, thymol and menthylsalicylate.
- Preferred antimicrobials include phenol, cresoJ, hydroxybenzoates, triclosan and cinnamic acid.
- the active compounds may, in a first step, be linked to a protein or a. protein fragment diemically, and in a second step, the protein or a protein fragment containing the active agent is crosslinked to the fibres using transglutaminase.
- the protein or protein fragment may be casein, for example.
- the compound may be a shrinkage prevention compound.
- TGase cross-linld ⁇ g of polyamines to wool also provides additional amine groups that may be used as a platform to link other compounds (using e.g, carbodimides - B. F. Erlanger, ] 980, Preparation of Antigenic Haptcn- ⁇ Carrier Conjugates, Methods in Enzy ology, 70, 85-104).
- carbodimides - B. F. Erlanger ] 980, Preparation of Antigenic Haptcn- ⁇ Carrier Conjugates, Methods in Enzy ology, 70, 85-104.
- the ability of TGase to give wool specific and desired functions using these methods presents considerable advantages.
- All compounds that produce a beneficial finishing effect on wool or animal hair textiles can also be used in the present invention given that the compound can be modified to contain at least one primary amine.
- proteolytic enzyme to be used in the context of the present invention may be from plant, animal, bacterial or fungal origin.
- the proteases used are most preferably subtilisins, such as Savinase 16L (ex. Novo Norclisk).
- transglutaminase types include the following: guinea pig liver, human origin, maize, alfalfa (Medicago sativa), slime mould (Physarum pofycepftal m), Pl ⁇ tophtora cact ⁇ rum and bacteria (Bacillus s bttl s, StreptoverticiUium mobaraense).
- Ajinomoto Inc. patented a method for production of a commercial tiansglutaminase by a batch fermentation process using bacteria containing genes from StreptoverticiUium sp.
- a Ca 2+ activated tissue fransglut ⁇ minase should be used.
- transglutaminase preparation may be derived from genetic manipulation of one of any number of naturally occurring sources.
- suitable transglutaminases may be derived from mammals, insects, crustaceans, plants and microorganisms.
- the enzyme used for such a treatment may be chosen from mammalian, plant or microbial source, but to optimise the properties of the treated fabric, it may be advantageous to employ an enzyme system specifically manufactured to achieve good dimensional stability and whose activity is easily controllable.
- a calcium dependent tiansglutaminase such as tissue (type II) transglutaminase
- This enzyme is activated by the presence of calcium ions, which renders it easily controllable. It is active at room temperature, being most active at 37°C, which allows a wide range of processing methods to be used, as well as significant energy savings to be made. It is also readily inactivated by heating to 60°C or by removal of Ca 1" * either by washing or with addition of chelating agents for divalent metal ions, e.g. EDTA.
- the treatment liquor may contain suitable pH-buffering agents to maintain a constant pH in the range appropriate for optimum activity of the enzyme being employed.
- the solution may also contain a suitable reducing agent and an appropriate concentration of calcium ions if the mammalian transglutaminasc is to be used.
- Other auxiliaries may be present in the treatment liquor - for example surfactants, provided that their presence does not interfere with the action of the enzyme.
- the co-application of the enzyme treatment with other finishes from the same liquor is not to be excluded, provided that the enzyme treatment and any other co-applied treatments) are mutually compatible.
- the impregnation of the wool goods with transglutaminase may be carried out at a temperature of 15 - 70 °C, especially 15 - 60 °C, most preferably 30 - 40 ⁇ C,
- the enzymes may be dissolved in water at concentrations between 0.5 - 10.0 ⁇ g of enzyme per ml of treatment liquor, most preferably 1.0 - 5.0 ⁇ g of enzyme per ml of liquor.
- the incubation time should be from at least 30 minutes up to 18 hours, depending on the enzyme concentration and treatment temperature.
- a proteolytic enzyme is to be used, it is most preferably applied at temperatures between 45 - 55 °C during 15 to 60 minutes. The process can, however, be carried out at lower temperatures for a longer treatment time.
- Enzyme processing can be carried out in a variety of machinery types, which are commonly available in the industry.
- Fabrics derived from wool fibres are suited to this process. Further, fabrics constructed from wool / synthetic blends or wool / celhtlosic fibre blends (such as cotton/wool) are also suitable for treatment by this process.
- the textile samples may be submitted, for example, to a pretreatment with a reducing agent prior to the application of teansglutaminasc.
- Textile samples may also be pretreated with a proteolytic enzyme before applying the transglutaminase enzyme.
- the guinea pig liver transglutaminase (a tissue transglutaminase, which is commercially available from Sigma) may be applied to a wool yarn by immersion in a solution containing the enzyme.
- the reaction may be carried out in a media with or without a reducing agent, such as ithiotlireitol, 2-mercaptocthanol, and glutatbione.
- This enzyme may be activated by the presence of calcium ions, and is most active at 37°C, and it is readily inactivated by washing with chelating agents or heating to ⁇ 50°C,
- transglutaminases may be used, the treatment parameters depending on which specific enzyme is to be applied.
- microbial transglutaminase obtainable from Ajinomoto Ino, may be used.
- TGase refers to tissue fransglutar ⁇ inase from guinea pig liver.
- microbial tiansglutamiuase is denoted by mTGase obtained from StreploverticilJum by Ajinomoto Inc,
- Figure la shows that yarn strength change (from control) of samples treated with TGase/Ca for several treatment times (control treated in Tris-HCJ buffer without TGase (-*-)).
- control treated in Tris-HCJ buffer without TGase (-*-)
- Figure lb shows yam elongation change (from control) of samples treated with TGase/Ca for several treatment times (control treated in Tris-HCl buffer without TGase).
- One set of samples was pretreated with Savinase 16L (- ⁇ ⁇ ) and a second set in buffer alone with no Savinase added (Savinase control (- ⁇ -)).
- Figure 2 shows yarn strength change from control of samples treated during 6 hours with a range of concentrations of TGase (-"-) (controls - ⁇ - were treated in the same manner except without adding TGase), Tire samples were pre-treated with Savinase 16L and buffer only control.
- Figure 3a shows yam strength change from control of samples treated with TGase/Ca 2+ during 18 hours (controls were treated in the same manner except without adding TGase),
- the samples were pre-treated with sodium carbonate (Carb) and sodium sulphite (Sul).
- the samples were also treated with Savinase 16L (Sav) with respective buffer only controls (Ct).
- Figure 3b shows percentage strength gain from control versus percentage elongation gain from control of yarn samples treated with 1,0 and 5.0 ⁇ g/ml, of tTGase (corresponding to 1 and 5 in the graphic) for samples pretreated with sulphite, chlorine and PMS (controls were treated in tire same manner except without adding TGase).
- Figure 3c shows percentage strength gain from control versus percentage elongation gain from control of yarn samples treated with 10.0, 100.0 and 1000.0 ⁇ g/ml. of TGase (corresponding to 10, 100 and 1000 in the graphic) for samples pretreated with sulphite, chlorine and. PMS (controls were treated in the same manner except without adding TGase).
- Figure 4 shows yarn strength loss caused by a protease treatment (change from, control samples).
- Samples were treated with Savinase prior (SavCtTG and SavTG - red) and after (CtTGSav and TGSav - blue) an 18-hour tTG treatment (control « Ct, Sav - Sav).
- Savinase controls were treated in the same manner except without Savinase 16L and tTG controls without tTG),
- Figure 5a shows absorption at 511 nm of the washing liquor after each cycle of detergent washes of samples submitted to different TGase treatments after several washes with a biodetergent (the percentage reduction in absorbance relative to the control is shown as percentage values).
- Cycles of detergent wash followed by a transglutaminase treatment were repeated 3 times (tTG5 - tTG at 5.0 ⁇ gml; tTG5 tryptone - tTG at 5.0 ⁇ g/ml. with 1.0 mg/ml. of tryptone (casein digest)-, TGlOO - TG at 100.0 ⁇ g/ml.). Controls were treated in buffer without adding TGase.
- Figure 5b shows tensile strength of yarns unraveled from fabrics submitted to different TGase treatments for cycles 1 and 3 (the percentage strength gain relative to the control is shown as percentage values).
- the yarn strength of the control samples is 2.19N (black line).
- Figure 6 shows a table indicating felting shrinkage after three 5A washes of samples treated with transglutaminase and an active agent followed by a treatment with a commercial polymer.
- Figure 7 shows softness of wool samples after a treatment with tissue and microbial transglutaminasc and an active agent followed by a treatment with a commercial softener.
- Figure 8 shows subjective analysis of residual scent after a treatment with 5.0 and 20.0 ⁇ g of tTGase per ml. of liquor and an added scent by a panel of 12 judges (2 and 5 days after treatment). The panel graded the samples from the least to the most intense residual scent. A control was treated in the same manner but without tTGase.
- Figure 9a shows wool fibres treated with transglutaminase in the presence of calcium ions and flnurescinc cadaverine.
- Figure 9b shows wool fibres treated with fransglutaminase in the presence of EDTA and fionrcscine cadaverine.
- the treated samples were washed with a non-ionic detergent at pH 5, and then in boil ⁇ ng water for 15 minutes to deactivate the proteolytic enzyme. Finally, the samples were rinsed before submitted to further treatment.
- sulphite washed yarn samples were also treated with buffer only.
- the guinea pig liver tiansglutaminase (ex. Sigma) was then applied to the Savinase treated and respective buffer control samples at 1,0 ⁇ g of transglutaminase per ml of liquor in a buffered solution with 0.05 M TRIS buffer (the pH was adjusted to 8,5 with hydrochloric acid).
- the liquor also contained 5mM ditl othreitol (DTT) and 5mM of calcium ion.
- DTT ditl othreitol
- the liquor to yarn ratio applied was 1:12.
- the yarn samples were then incubated in a shaker rotating at 100 rpm for a period of time between 2 to 18 hours 8 hours at approximately 37 °C.
- yarn samples were treated under exactly the same parameters hi a solution containing buffer. 5mM DTT and 5mM calcium ion.
- the enzymatic reaction was stopped after the specified time and the yarn samples were washed in a brvffercd phosphate saline solution (PBS) pH 7.4 and 1.0 % of Tween 80 detergent.
- PBS brvffercd phosphate saline solution
- Tween 80 detergent 1.0 % of Tween 80 detergent.
- the yarn samples were washed in three consecutive cycles with this solution.
- the yarn samples were then rinsed in water in three consecutive cycles and then dried and conditioned at the standard temperature and humidity.
- the tensile strength or breaking load of the yarn samples and elongation at break were determined by the method BS EN ISO 2062:1995, and the transglutaminase treatments were compared to a buffer alone treated control (no TGase added) for both the Savinase treated samples and the Savinase controls (no Savinase added).
- Samples of 100 % wool yarn previously treated with sodium sulphite (as described in Example 1 ) were treated with Savinase 16L in exactly the same manner as described above. All samples were treated with 5.0, 20-0 and 100.0 ⁇ g of guinea pig liver transglutaminase per ml of liquor, and incubated for 6 hours at 37°C, All other treatment parameters were the same as in Example 1. To a second set of samples pretreated exactly in the same manner 1/3 of the total transglutaminase was added to the treatment bath every two hours (all other treatment parameters were the same). The samples were washed and dried as described in Example 1.
- Example 1 The four resulting sets of yarn samples were then treated with J.O ⁇ g of transglutaminase per ml of liquor, and incubated for a period of time between 2 to 18 hours at ambient temperature. All other treatment parameters were the same as in Example 1 , As a control to the transglutaminase treatments yam samples were treated as in Example 1.
- transglutaminase treatment for the samples pre-treated with a reducing agent such as sodium sulphite result in a greater increase in yarn strength than ibose treated with sodium carbonate (for both Savinase treatment and respective buffer control - Figure 3).
- a reducing agent such as sodium sulphite
- the sulphite treatment followed by Savinase and finally by transglutaminase results in an increase in strength of 37%.
- a second set of samples was treated with microbial transglutaminase from Ajinomoto Inc.
- Samples from each type of pretreatment were treated with 10.0, 100.0 and 1000,0 ⁇ g of microbial transglutaminase per ml of liquor.
- the treatments were carried out in a TRIS-HC1 buffered solution pH 7.0 at 50°C for 2 hours.
- the liquor also contained 5mM DTT.
- the liquor to yarn ratio applied was 1:12,
- Tlie gain in strength is greater for tlie PMS treated fabric and tlie percentage elongation gain is greater for ibs> sulphite treated yarns, for both tissue and microbial fransglutaminases.
- Strength gains as high as 30% comparing to the control can be achieved for PMS treated fabrics, and elongation gain of up to 35% comparing to the control were obtained for the sulphite pretreatment using the microbial TG,
- the absorbancc of the washing solutions was used as a measure of tlie amount of dye released inl the washing bath after each washing cycle (Figure 5a).
- the percentage values shown in Figure 5a illustrate the reduction in absorbance at 511nm, which was calculated as the percentage difference in the measured absorbance between control samples treated only with buffer and the transglutaminase treated samples. After 3 detergent wasb/transglutaminase treatment cycles the treated fabrics still release significantly less dye than the control treated only with buffer.
- samples of a 100 % wool knitted fabric were treated with Savinase 16L using the same procedure as described in Example 1.
- a pancreatic digest of milk casein (Tryptone) and putrescine were incorporated into wool fibres using teansglutaminase.
- Commercial polymers used for wool shrinkage prevention were added to fabric samples treated only with Savinase 16L and to fabrics treated with tansglutar ⁇ inase and an active agent (polymers used included MRSM, XM and TM - see Table 6). Control samples treated only with buffer and treated only with the commercial polymers were included (treatments 4, 5 and 6).
- the polymer treatments were carried out by exhaustion subsequently to the TG-casein digest/putreascine treatments at pH 5.5 and 40°C, according to manufacturer recommendations.
- the samples were tested for felti g shrinkage according to the IWS TM 31, except that the dimension of tlie samples tested was reduced to 120x100 mm. After drying, all samples were sewn around the edges. Three fabric samples of each experiment were tested for felling shrinkage by washing in an Electrolux Wascator washing machine with ECE standard detergent at 40 ⁇ C, according to the ISO 5A programme.
- mTG alone 36%) or polymer TM alone (26.5%) and the added effect of applying the polymer together with mTG (12.2%).
- Example 7 Effect of transglutaminasc mediated incorporation of active compounds into wool fibres on the handle of wool fabrics
- a commercial softener an amino silicone, supplied by Precision Processes Textiles, UK was added to untreated fabric samples and to samples treated with transglutaminase and an active agent (tryptone and putrescine - see Figure 7) according to the manufacturers recommendations.
- Control samples treated only with buffer (without adding TGase) under exactly the same conditions of the tTGase treatments (Example 1) and controls treated under tile conditions of application of tl e softener were included.
- a control treated only with ihe commercial softener was also included.
- the mTGase treatment was carried out using 100 ⁇ g of microbial transglutammase per ml of liquor, for 1 hovtr, 55°C and pH 5.5, together with the commercial softener. All other treatment parameters were the same as in Example 3.
- Tlie results shown in Figure 7 arc the mean scores and respective standard deviations,
- the score obtained for tlie sample treated only with the softener was 7.26, very similar to the score of the sample treated with tTGase and tryptone followed by tlie softener (7.23), and was significantly softer than tl e control sample treated with buffer alone witliout adding TGase additive or polymer (5.0).
- the sample treated with tTGase and putrescine followed by the softener was given a score of 8.39, which was found to be significantly different from the sample treated, only with softener (with 95% confidence level).
- the sample treated with TGase together with tlie softener was found to be the softest, with a, score of 9.2 (tlie difference to tlie significant sample treated only with softener was significant for a 95% confidence level).
- Example 8 The use of transglutaminase to extend the life of a desired scent on wool fibres
- Wool fibres with approximately 21 ⁇ m diameter were washed in a solution with 0.5 g L sodium carbonate and 1,0 g L non-ionic detergent.
- the fibres were subsequently treated in a 0,05 M TRIS buffer solution (the pH was adjusted to 8,0 with hydrochloric acid) containing 20 mg of proteinasc VDT per g of fibre in a shaker rotating at 100 rp for 60 minutes at 37"C.
- the proteolytic reaction was stopped by washing the samples with a non-ionic detergent at pH 5 and then in hot water at 80°C for 15 minutes. Finally, the samples were rinsed before submitted to further treatment.
- As a control to lite protease treatment fibre samples were also treated. with buffer alone.
- the guinea pig liver TGase was men applied to the Savinase treated and respective buffer control samples at 1.0 ⁇ g of TGase per ml of liquor In a TRIS buffered solution pH 8.5.
- the liquor also contained 0.5 mM fiuoresc ⁇ in cadaverine, 5mM DTT and 5mM of calcium ion.
- the liquor to yarn ratio applied was 1 :2 0.
- fibre samples were incubated in a shalccr rotating at 100 rpm for 18 hours at approximately 37 ⁇ C.
- a control to tlie transglutaminase/calcjum treatments fibre samples were treated under exactly d e same manner in a solution containing buffer, 5mM DTT and 5mM EDTA, as a negative control.
- the fibre samples were first washed in PBS pH 7.4 and 1.0 % of Tween 80. Further washing with methanol was carried out to remove non-bound fluorescein cadaverine from the surface of the wool fibres. The samples were then air-dried.
- Figures 9a and 9b illustrate the pictures obtained from fibre samples submitted to a protease treatment followed by a fratisglutaminase treatment. It Is clear from Figures 9a and 9b that there is a significant difference in the amount of fluorescein cadaverine incorporated by the transglutaminase between positive and negative controls.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
L'invention concerne un procédé de traitement de matières textiles fibreuses, ce traitement s'effectuant au moyen d'une enzyme. Cette enzyme peut être utilisée pour lier par covalence un ou plusieurs composés fonctionnels actifs avec les fibres et/ou pour piéger un ou plusieurs composés fonctionnels actifs dans une matrice inter-fibres et/ou dans une matrice inter-fibres formée par l'action de l'enzyme. De préférence, l'enzyme est une transglutaminase, en particulier, une transglutaminase dépendante du calcium. L'enzyme peut être utilisée pour ajouter auxdites matières textiles des agents actifs contenant des amines primaires, ainsi que pour l'addition de protéines ou de peptides présentant des groupes fonctionnels liés à ceux-ci.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0016914 | 2000-07-10 | ||
| GB0016914A GB0016914D0 (en) | 2000-07-10 | 2000-07-10 | A method for enzymatic treatment of wool |
| PCT/GB2001/003095 WO2002004739A1 (fr) | 2000-07-10 | 2001-07-10 | Procede de traitement enzymatique de textiles tels que la laine |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1299592A1 true EP1299592A1 (fr) | 2003-04-09 |
Family
ID=9895371
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP01949656A Withdrawn EP1299592A1 (fr) | 2000-07-10 | 2001-07-10 | Procede de traitement enzymatique de textiles tels que la laine |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP1299592A1 (fr) |
| AU (1) | AU2001270777A1 (fr) |
| GB (1) | GB0016914D0 (fr) |
| WO (1) | WO2002004739A1 (fr) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8119599B2 (en) * | 2001-08-31 | 2012-02-21 | Orthopeutics, L.P. | Direct application of non-toxic crosslinking reagents to resist progressive spinal degeneration and deformity |
| US10278947B2 (en) | 2007-02-28 | 2019-05-07 | Orthopeutics, L.P. | Crosslinker enhanced repair of connective tissues |
| GB2483886A (en) * | 2010-09-23 | 2012-03-28 | Univ Montfort | Treating wool with animal fibre derived polypeptide extract, to impart shrink resistance |
| CN109610180B (zh) * | 2018-11-30 | 2020-03-24 | 江南大学 | 一种提高羊毛角蛋白酶促改性效率的方法 |
| JP6889962B1 (ja) * | 2021-01-07 | 2021-06-18 | ミテジマ化学株式会社 | 獣毛の改質方法 |
| CN115897002A (zh) * | 2022-11-24 | 2023-04-04 | 桐乡市华家那羊绒服饰有限公司 | 一种壳聚糖/羊绒混纺纱粗纺生产工艺 |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB8626357D0 (en) * | 1986-11-04 | 1986-12-03 | Reading University Of | Treatment of wool textiles |
| JPH03213574A (ja) * | 1990-01-10 | 1991-09-18 | Ajinomoto Co Inc | 獣毛繊維の改質方法 |
| US5490980A (en) * | 1994-09-28 | 1996-02-13 | Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. | Covalent bonding of active agents to skin, hair or nails |
| JPH093773A (ja) * | 1995-06-16 | 1997-01-07 | Toray Ind Inc | 繊維構造物およびその製造方法 |
| AU7470998A (en) * | 1998-05-01 | 1999-11-23 | Procter & Gamble Company, The | Laundry detergent and/or fabric care compositions comprising a modified transferase |
| AU757109B2 (en) * | 1998-05-20 | 2003-02-06 | Novozymes North America, Inc. | A method for enzymatic treatment of wool |
-
2000
- 2000-07-10 GB GB0016914A patent/GB0016914D0/en not_active Ceased
-
2001
- 2001-07-10 AU AU2001270777A patent/AU2001270777A1/en not_active Abandoned
- 2001-07-10 EP EP01949656A patent/EP1299592A1/fr not_active Withdrawn
- 2001-07-10 WO PCT/GB2001/003095 patent/WO2002004739A1/fr not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO0204739A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2001270777A1 (en) | 2002-01-21 |
| WO2002004739A1 (fr) | 2002-01-17 |
| GB0016914D0 (en) | 2000-08-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6258129B1 (en) | Method for enzymatic treatment of wool | |
| Tesfaw et al. | Applications of transglutaminase in textile, wool, and leather processing | |
| US20060042019A1 (en) | Method of treating polyester fabrics | |
| US6051033A (en) | Method for enzymatic treatment of wool | |
| CN100554569C (zh) | 纤维处理液、改性纤维织物及其制造方法 | |
| US6099588A (en) | Method for treatment of wool | |
| Bishop | Physical and chemical effects of domestic laundering processes | |
| US20030154555A1 (en) | Method for enzymatic treatment of textiles such as wool | |
| Ammayappan | Application of enzyme on woolen products for its value addition: An overview | |
| JPH08503752A (ja) | セルラーゼを用いたセルロース布帛の処理方法 | |
| EP1299592A1 (fr) | Procede de traitement enzymatique de textiles tels que la laine | |
| JP2001506323A (ja) | ウールの耐収縮性を改善する方法 | |
| CN1332817A (zh) | 改进舒适性且随意洗涤的阴离子改性棉 | |
| AU757109B2 (en) | A method for enzymatic treatment of wool | |
| El-Sayed | Antishrink finishing of woolens: shrink-resist treatment on woolens using various physical and chemical methods | |
| JPH03213574A (ja) | 獣毛繊維の改質方法 | |
| AU2002309359B2 (en) | Treatment of animal hair fibers with modified proteases | |
| EP1573117B1 (fr) | Procede de finissage biotechnique de la laine | |
| Mowafi et al. | Functional finishing of wool | |
| US6140109A (en) | Method for enzymatic treatment of wool | |
| Kettlewell et al. | Commercial shrink-resist finishes for wool | |
| Rehman et al. | Revolution of biotechnology in finishing sector of textile | |
| Zhang et al. | Transglutaminase in textile, wool, silk, and leather processing | |
| Heine et al. | Bioprocessing for smart textiles and clothing | |
| Banerjee et al. | In-Situ Polymerization of Maleic Acid in Presence of Aloe vera Gel for Development of Eco-Friendly Eri Silk-based Handlooms |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20030124 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20070201 |