EP1288011B1 - Ink jet recording element and printing method - Google Patents
Ink jet recording element and printing method Download PDFInfo
- Publication number
- EP1288011B1 EP1288011B1 EP20020078431 EP02078431A EP1288011B1 EP 1288011 B1 EP1288011 B1 EP 1288011B1 EP 20020078431 EP20020078431 EP 20020078431 EP 02078431 A EP02078431 A EP 02078431A EP 1288011 B1 EP1288011 B1 EP 1288011B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- ink jet
- particle size
- recording element
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007639 printing Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 title claims description 7
- 239000002245 particle Substances 0.000 claims description 51
- 239000010954 inorganic particle Substances 0.000 claims description 21
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 16
- 239000011230 binding agent Substances 0.000 claims description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 9
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910001593 boehmite Inorganic materials 0.000 claims description 6
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 6
- 239000011164 primary particle Substances 0.000 claims description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- 239000004927 clay Substances 0.000 claims description 4
- 229910052570 clay Inorganic materials 0.000 claims description 4
- 238000007641 inkjet printing Methods 0.000 claims description 4
- 238000011068 loading method Methods 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052909 inorganic silicate Inorganic materials 0.000 claims description 3
- 239000011146 organic particle Substances 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- 239000000976 ink Substances 0.000 description 39
- 239000010410 layer Substances 0.000 description 35
- -1 poly(vinyl alcohol) Polymers 0.000 description 23
- 239000011248 coating agent Substances 0.000 description 21
- 238000000576 coating method Methods 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 239000000975 dye Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 230000000740 bleeding effect Effects 0.000 description 7
- 238000004581 coalescence Methods 0.000 description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000007787 solid Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 150000005846 sugar alcohols Polymers 0.000 description 4
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000004971 Cross linker Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000001041 dye based ink Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000007767 slide coating Methods 0.000 description 2
- 239000011115 styrene butadiene Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- YLVACWCCJCZITJ-UHFFFAOYSA-N 1,4-dioxane-2,3-diol Chemical compound OC1OCCOC1O YLVACWCCJCZITJ-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000640882 Condea Species 0.000 description 1
- 244000303965 Cyamopsis psoralioides Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 244000151018 Maranta arundinacea Species 0.000 description 1
- 235000010804 Maranta arundinacea Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000012419 Thalia geniculata Nutrition 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- 239000004775 Tyvek Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5218—Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
Definitions
- Control Element C-1 Matture of particles with greatly different particle sizes in the image-receiving layer (WO 00/01539)
- a coating solution for a base layer was prepared by mixing 100 dry g of precipitated calcium carbonate Albagloss-s® (Specialty Minerals Inc.) as a 70% solution and 8.5 dry g of silica gel Gasil® 23F (Crosfield Ltd.) with 0.5 dry g of poly(vinyl alcohol) Gohsenol® GH-17 (Nippon Gohsei Co., Ltd.) as a 10% solution and 5 dry g of styrene-butadiene latex CP692NA® (Dow Chemicals) as a 50% solution. The solids of the coating solution was adjusted to 35% by adding water.
- the base layer coating solution was bead-coated at 25°C on a base paper, Nekoosa Solutions Smooth ® (Georgia Pacific), Grade 5128 (Carrara White ®, Color 9220), basis weight 150 g/m 2 , and dried at 60°C by forced air.
- the thickness of the base coating was 25 ⁇ m or 27 g/m 2 .
- This element is the same as Element 1 of the invention except that the amount of Cab-O-Sperse® PG003 was 10 dry g.
- This element is the same as Element 1 of the invention except that the amount of Cab-O-Sperse® PG003 was 20 dry g.
- This element was prepared the same as Element 1 of the invention except that it omitted the Dispal® 14N4-80.
- the above recording elements were measured for 60° specular glossiness using a Gardener® Gloss Meter.
- a piece of bond paper was placed over the printed image and rolled with a smooth, heavy weight. Then the bond paper was separated from the printed image. The length of the color strip transferred to the bond paper was measured and is proportional to the time needed for the printed image to dry. The dry time is rated as 1 when there is no transfer of the inks to the bond paper, and is considered acceptable. If there is a full transfer of at least one color strip, the dry time is rated as 5, and is unacceptable. Intermediate transfer lengths are rated between 1 and 5.
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Ink Jet (AREA)
Description
- This invention relates to an ink jet recording element, more particularly to a porous ink jet recording element and a printing method using the element.
- In a typical ink jet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium. The ink droplets, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water and an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
- An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-receiving layer, and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
- An important characteristic of ink jet recording elements is their need to dry quickly after printing. To this end, porous recording elements have been developed which provide nearly instantaneous drying as long as they have sufficient thickness and pore volume to effectively contain the liquid ink. For example, a porous recording element can be manufactured by cast coating, in which a particulate-containing coating is applied to a support and is dried in contact with a polished smooth surface.
- In addition, when a porous recording element is printed with dye-based inks, the dye molecules penetrate the coating layers. However, there is a problem with such porous recording elements in that the optical densities of images printed thereon are lower than one would like. The lower optical densities are believed to be due to optical scatter that occurs when the dye molecules penetrate too far into the porous layer.
- World Publication 00/01539 discloses a porous ink jet recording element containing first and second group particles, the first group comprising metal oxide particles which are aggregates of smaller, primary particles with a mean diameter of the aggregates from 100 nm to 500 nm and the second group comprising of particles with a mean diameter less than 50% of the mean diameter of the aggregates in the first group. However, there is a problem with this recording element in that it has a poor dry time as will be shown hereinafter.
- JP(A) 2000085242, in particular Example 7, discloses an inkjet recording element having aggregated silica fine particles and colloidal silica particles which, respectively, have a mean aggregate particle size of 45 nm and a mean particle size of 45 nm. The aggregated silica fine particles preferably comprise 50% or more by weight of the pigment and the colloidal represents 50% or less by weight.
- It is an object of this invention to provide a porous ink jet recording element that has a good image quality with good gloss and has an excellent dry time.
- Another object of the invention is to provide a printing method using the above-described element.
- These and other objects are achieved in accordance with the invention which comprise an ink jet recording element comprising a support having thereon a porous image-receiving layer comprising at least 50% by weight of particles and less than 20% by weight of a binder, the particles comprising a mixture of
- (a) inorganic particles having a primary particle size of from 7 to 40 nm in diameter which may be aggregated to provide a mean aggregate particle size of 50 to 200 nm, wherein said (a) inorganic particles are fumed alumina and comprise from 5 to 25% by weight of said mixture; and
- (b) colloidal particles having a mean particle size of from 50 to 200 nm, wherein said (a) inorganic particles and said (b) colloidal particles are positively charged;
- By use of the invention, a porous ink jet recording element is obtained that has a good image quality with good gloss and has an excellent dry time.
- Another embodiment of the invention relates to an ink jet printing method comprising the steps of:
- I) providing an ink jet printer that is responsive to digital data signals;
- II) loading the printer with the ink jet recording described above;
- III) loading the printer with an ink jet ink composition; and
- IV) printing on the image-receiving layer using the ink jet ink composition in response to the digital data signals.
- The porous image-receiving layer useful in the invention comprises at least 50% by weight of particles, preferably from 80-90% by weight, and less than 20% by weight of binder. This amount of binder will insure that the layer is porous, i.e., have interconnecting voids so that a solvent in the ink jet ink used in printing on the recording element can travel through the image-receiving layer to a support or base layer if one is present.
- Examples of (a) inorganic particles include alumina, boehmite, hydrated alumina, titanium dioxide, zirconium dioxide, clay, calcium carbonate, inorganic silicates or barium sulfate. The particles may be porous or nonporous. In the invention, the (a) inorganic particles are alumina fumed oxides. Fumed oxides are available in dry form or as dispersions of the aggregates.
- In the invention, the (a) inorganic particles are in the form of aggregated particles. The aggregates are comprised of smaller primary particles 7 to 40 nm in diameter, and are aggregated up to 200 nm in diameter. In a preferred embodiment, the (a) inorganic particles have a mean aggregate particle size of from 50 nm to 200 nm.
- Examples of (b) colloidal particles useful in the invention include alumina, boehmite, hydrated alumina, titanium dioxide, zirconium dioxide, clay, calcium carbonate, inorganic silicates, barium sulfate or organic particles such as polymeric beads. Examples of organic particles useful in the invention are disclosed and claimed in U.S. Patent Application Serial Numbers: 09/458,401, filed Dec. 10, 1999; 09/608,969, filed June 30, 2000; 09/607,417, filed June 30, 2000; 09/608,466 filed June 30,2000; 09/607,419, filed June 30, 2000; and 9/822,731, filed March 30, 2001. In a preferred embodiment of the invention, the (b) colloidal particles are alumina, boehmite or hydrated alumina. The particles may be porous or nonporous. In another preferred embodiment of the invention, the (b) colloidal particles may be in the form of primary particles. In yet another preferred embodiment of the invention, the mean particle size of the primary particles may range from 50 nm to 200 nm.
- In the invention, the first (a) inorganic particles comprise from 5 to 25% by weight of the particle mixture. The first (a) inorganic particles have a mean aggregate particle size of from 50 nm to 200 nm and the (b) colloidal particles have a mean particle size of from 50 nm to 200 nm.
- The above particles are preferred for ink jet recording elements because they possess positively charged surfaces, which are capable of binding anionic ink jet printing dyes, rendering printed images resistant to dye migration due to water and high humidity conditions.
- It has been found that the size difference between the (a) first inorganic particles and the (b) colloidal particles determines the dry time of the ink jet recording element. If the mean particle size of the (b) particles is much smaller than the mean aggregate particle size of the (a) first inorganic particles, then the (b) colloidal particles may fill in the void space between the (a) first inorganic particles in the dry coating, which would reduce the porosity of the image-receiving layer. A reduction in porosity of the image-receiving layer would reduce the dry time of the image-recording element.
- In general, any binder may be used in the image-receiving layer of the invention. In a preferred embodiment, the binder is a hydrophilic polymer such as poly(vinyl alcohol), poly(vinyl pyrrolidone), gelatin, cellulose ethers, poly(oxazolines), poly(vinylacetamides), partially hydrolyzed poly(vinyl acetate/vinyl alcohol), poly(acrylic acid), poly(acrylamide), poly(alkylene oxide), sulfonated or phosphated polyesters and polystyrenes, casein, zein, albumin, chitin, chitosan, dextran, pectin, collagen derivatives, collodian, agar-agar, arrowroot, guar, carrageenan, tragacanth, xanthan, rhamsan and the like. In another preferred embodiment, the hydrophilic binder is poly(vinyl alcohol). The polymeric binder should be chosen so that it is compatible with the aforementioned particles.
- The thickness of the image-receiving layer may range from 5 to 40 µm, preferably from 10 to 20 µm. The coating thickness required is determined through the need for the coating to act as a sump for absorption of ink solvent and the need to hold the ink near the coating surface. The coating may be applied in a single layer or in multiple layers so the functionality of each coating layer may be specified; for example, a two-layer structure can be created wherein the base coat functions as a sump for absorption of ink solvent while the top coat holds the ink.
- In a preferred embodiment, the recording element also contains a base layer having at least 50% by weight of inorganic particles. The base layer is coated between the support and the image-receiving layer. In another preferred embodiment, the inorganic particles in the base layer comprise calcium carbonate, magnesium carbonate, barium sulfate, silica, alumina, boehmite, hydrated alumina, clay or titanium oxide. In another preferred embodiment, the inorganic particles in the base layer have an anionic surface charge. In yet another preferred embodiment, the inorganic particles in the base layer have a mean particle size of from 100 nm to 5 µm.
- In still another preferred embodiment, the base layer contains a binder such as a polymeric material and/or a latex material, such as poly(vinyl alcohol) and/or styrene-butadiene latex. In still another preferred embodiment, the binder in the base layer is present in an amount of from 5 to 20 weight %. In still another preferred embodiment, the thickness of the base layer may range from 5 µm to 50 µm, preferably from 20 to 40 µm.
- After coating, the ink jet recording element may be subject to calendering or supercalendering to enhance surface smoothness. In a preferred embodiment of the invention, the ink jet recording element is subject to hot, soft-nip calendering at a temperature of 65°C and pressure of 14000 kg/m at a speed of from 0.15 m/s to 0.3 m/s.
- The support for the ink jet recording element used in the invention can be any of those usually used for ink jet receivers, such as resin-coated paper, paper, polyesters, or microporous materials such as polyethylene polymer-containing material sold by PPG Industries, Inc., Pittsburgh, Pennsylvania under the trade name of Teslin ®, Tyvek ® synthetic paper (DuPont Corp.), and OPPalyte® films (Mobil Chemical Co.) and other composite films listed in U.S. Patent 5,244,861. Opaque supports include plain paper, coated paper, synthetic paper, photographic paper support, melt-extrusion-coated paper, and laminated paper, such as biaxially oriented support laminates. Biaxially oriented support laminates are described in U.S. Patents 5,853,965; 5,866,282; 5,874,205; 5,888,643; 5,888,681; 5,888,683; and 5,888,714. These biaxially oriented supports include a paper base and a biaxially oriented polyolefin sheet, typically polypropylene, laminated to one or both sides of the paper base. Transparent supports include glass, cellulose derivatives, e.g., a cellulose ester, cellulose triacetate, cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate; polyesters, such as poly(ethylene terephthalate), poly(ethylene naphthalate), poly(1,4-cyclohexanedimethylene terephthalate), poly(butylene terephthalate), and copolymers thereof; polyimides; polyamides; polycarbonates; polystyrene; polyolefins, such as polyethylene or polypropylene; polysulfones; polyacrylates; polyetherimides; and mixtures thereof. The papers listed above include a broad range of papers, from high end papers, such as photographic paper to low end papers, such as newsprint.
- The support used in the invention may have a thickness of from 50 to 500 µm, preferably from 75 to 300 µm. Antioxidants, antistatic agents, plasticizers and other known additives may be incorporated into the support, if desired.
- Coating compositions employed in the invention may be applied by any number of well known techniques, including dip-coating, wound-wire rod coating, doctor blade coating, gravure and reverse-roll coating, slide coating, bead coating, extrusion coating, curtain coating and the like. Known coating and drying methods are described in further detail in Research Disclosure no. 308119, published Dec. 1989, pages 1007 to 1008. Slide coating is preferred, in which the base layers and overcoat may be simultaneously applied. After coating, the layers are generally dried by simple evaporation, which may be accelerated by known techniques such as convection heating.
- In order to impart mechanical durability to an ink jet recording element, crosslinkers which act upon the binder discussed above may be added in small quantities. Such an additive improves the cohesive strength of the layer. Crosslinkers such as carbodiimides, polyfunctional aziridines, aldehydes, isocyanates, epoxides, polyvalent metal cations, and the like may all be used.
- To improve colorant fade, UV absorbers, radical quenchers or antioxidants may also be added to the image-receiving layer as is well known in the art. Other additives include adhesion promoters, rheology modifiers, biocides, lubricants, dyes, optical brighteners, matte agents, antistatic agents, etc.
- The coating composition can be coated so that the total solids content will yield a useful coating thickness, and for particulate coating formulations, solids contents from 10-60% are typical.
- Ink jet inks used to image the recording elements of the present invention are well-known in the art. The ink compositions used in ink jet printing typically are liquid compositions comprising a solvent or carrier liquid, dyes or pigments, humectants, organic solvents, detergents, thickeners, preservatives, and the like. The solvent or carrier liquid can be solely water or can be water mixed with other water-miscible solvents such as polyhydric alcohols. Inks in which organic materials such as polyhydric alcohols are the predominant carrier or solvent liquid may also be used. Particularly useful are mixed solvents of water and polyhydric alcohols. The dyes used in such compositions are typically water-soluble direct or acid type dyes. Such liquid compositions have been described extensively in the prior art including, for example, U.S. Patents 4,381,946; 4,239,543 and 4,781,758.
- The following examples further illustrate the invention.
- A coating solution for a base layer was prepared by mixing 100 dry g of precipitated calcium carbonate Albagloss-s® (Specialty Minerals Inc.) as a 70% solution and 8.5 dry g of silica gel Gasil® 23F (Crosfield Ltd.) with 0.5 dry g of poly(vinyl alcohol) Gohsenol® GH-17 (Nippon Gohsei Co., Ltd.) as a 10% solution and 5 dry g of styrene-butadiene latex CP692NA® (Dow Chemicals) as a 50% solution. The solids of the coating solution was adjusted to 35% by adding water.
- The base layer coating solution was bead-coated at 25°C on a base paper, Nekoosa Solutions Smooth ® (Georgia Pacific), Grade 5128 (Carrara White ®, Color 9220), basis weight 150 g/m2, and dried at 60°C by forced air. The thickness of the base coating was 25 µm or 27 g/m2.
- A coating solution for the image-receiving layer was prepared by mixing 100 dry g of colloidal silica Ludox® C1 (DuPont Corp.) as a 30% solution and 30 dry g of fumed alumina Cab-O-Sperse® PG003 (Cabot Corp.) as a 40% solution with 4 dry g of poly(vinyl alcohol) Gohsenol® GH-17 (Nippon Gohsei Co. Ltd.) as a 10% solution and 0.1 dry g of 2,3-dihydroxy-1,4-dioxane (Clariant Corp). The solids of the coating solution was adjusted to 20% by adding water. The mean particle size of the Ludox® C1 colloidal silica was only 10 nm while the mean aggregate size of the Cab-O-Sperse® PG003fumed alumina was 130 nm.
- The image-receiving layer coating solution was coated on top of the base layer described above. The recording element was then dried at 60°C by forced air to yield a two-layer recording element. The thickness of the image-receiving layer was 8 µm or 8.6 g/m2.
- The recording element was then calendared at 0.15 (m/min) with a 14000 (kg/m) pressure at 60° C.
- This element was prepared the same as Control Element C-1 except that 100 dry g of alumina Dispal® 14N4-80 (Condea Vista Co.) as 20% solution was added in place of Ludox® C1 to the image-receiving layer coating solution. The mean particle size of the Dispal® 14N4-80 was 120 nm and the mean aggregate size of the Cab-O-Sperse® PG003 was 130 nm (the size difference is within 10%).
- This element is the same as Element 1 of the invention except that the amount of Cab-O-Sperse® PG003 was 10 dry g.
- This element is the same as Element 1 of the invention except that the amount of Cab-O-Sperse® PG003 was 20 dry g.
- This element was prepared the same as Element 1 of the invention except that it omitted the Dispal® 14N4-80.
- This element was prepared the same as Element 1 of the invention except that it omitted the Cab-O-Sperse® PG003.
- The above recording elements were measured for 60° specular glossiness using a Gardener® Gloss Meter.
- Images were printed using an Epson Stylus Color 740 printer for dye-based inks using Color Ink Cartridge S020191/IC3CL01. The images comprised a series of cyan, magenta, yellow, black, green, red and blue strips, each strip being in the form of a rectangle 0.8 cm in width and 20 cm in length.
- Immediately after ejection from the printer, a piece of bond paper was placed over the printed image and rolled with a smooth, heavy weight. Then the bond paper was separated from the printed image. The length of the color strip transferred to the bond paper was measured and is proportional to the time needed for the printed image to dry. The dry time is rated as 1 when there is no transfer of the inks to the bond paper, and is considered acceptable. If there is a full transfer of at least one color strip, the dry time is rated as 5, and is unacceptable. Intermediate transfer lengths are rated between 1 and 5.
- The image quality was evaluated subjectively. Coalescence refers to the non-uniformity or puddling of the ink in solid filled areas. Bleeding refers to the inks flowing out of its intended boundaries. The following results were obtained:
Table Element Gloss Dry Time Image Quality 1 (Invention) 47 1 No coalescence and no bleeding 2 (Invention) 48 1 No coalescence and no bleeding 3 (Invention) 48 1 No coalescence and no bleeding C-1 (Control) 40 3 Bad coalescence and bad bleeding C-2 (Comparison) 10 1 No coalescence and no bleeding C-3 (Comparison) 45 2 Some coalescence and some bleeding - The above data show that the Elements of the invention had high gloss, good dry time and good image quality, as compared to the control and comparison elements which did not have all of these properties at the same time.
Claims (4)
- An ink jet recording element comprising a support having thereon a porous image-receiving layer comprising at least 50% by weight of particles and less than 20% by weight of a binder, said particles comprising a mixture of(a) inorganic particles having a primary particle size of from 7 to 40 nm in diameter which are aggregated to provide a mean aggregate particle size from 50 nm to 200 nm, wherein said inorganic particles are fumed alumina and comprise from 5 to 25% by weight of said mixture; and(b) colloidal particles having a mean particle size of from 50 nm to 200 nm; wherein said (a) inorganic particles and said (b) colloidal particles are positively charged; and wherein the difference between said mean aggregate particle size of said inorganic particles and said mean particle size of said colloidal particles is within 10%.
- The recording element of Claim 1 wherein said (b) colloidal particles are alumina, boehmite, hydrated alumina, titanium dioxide, zirconium dioxide, clay, calcium carbonate, inorganic silicates, barium sulfate or organic particles.
- The recording element of Claim 1 wherein said (b) colloidal particles comprise alumina, boehmite, or hydrated alumina.
- An ink jet printing method comprising the steps of:I) providing an ink jet printer that is responsive to digital data signals;II) loading said printer with the ink jet recording of Claim 1;III) loading said printer with an ink jet ink composition; andIV) printing on said image-receiving layer using said ink jet ink composition in response to said digital data signals.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US944619 | 2001-08-31 | ||
| US09/944,618 US6641875B2 (en) | 2001-08-31 | 2001-08-31 | Ink jet recording element |
| US09/944,619 US6443570B1 (en) | 2001-08-31 | 2001-08-31 | Ink jet printing method |
| US944618 | 2001-08-31 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP1288011A2 EP1288011A2 (en) | 2003-03-05 |
| EP1288011A3 EP1288011A3 (en) | 2003-10-15 |
| EP1288011B1 true EP1288011B1 (en) | 2006-03-22 |
Family
ID=27130209
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP20020078431 Expired - Lifetime EP1288011B1 (en) | 2001-08-31 | 2002-08-19 | Ink jet recording element and printing method |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP1288011B1 (en) |
| JP (1) | JP4149765B2 (en) |
| DE (1) | DE60209997T2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB0415211D0 (en) * | 2004-07-07 | 2004-08-11 | Eastman Kodak Co | Ink-jet receiver having improved crack resistance |
| GB0415212D0 (en) * | 2004-07-07 | 2004-08-11 | Eastman Kodak Co | Ink-jet receiver having improved gloss |
| EP2734379B8 (en) * | 2011-07-21 | 2019-06-19 | Hewlett-Packard Development Company, L.P. | Print medium |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5244861A (en) | 1992-01-17 | 1993-09-14 | Eastman Kodak Company | Receiving element for use in thermal dye transfer |
| JPH06183134A (en) * | 1992-12-16 | 1994-07-05 | Mitsubishi Paper Mills Ltd | Ink jet recording sheet |
| US5888683A (en) | 1997-05-23 | 1999-03-30 | Eastman Kodak Company | Roughness elimination by control of strength of polymer sheet in relation to base paper |
| US5874205A (en) | 1997-05-23 | 1999-02-23 | Eastman Kodak Company | Photographic element with indicia on oriented polymer back sheet |
| US5888643A (en) | 1997-05-23 | 1999-03-30 | Eastman Kodak Company | Controlling bending stiffness in photographic paper |
| US5888681A (en) | 1997-05-23 | 1999-03-30 | Eastman Kodak Company | Photographic element with microvoided sheet of opalescent appearance |
| US5866282A (en) | 1997-05-23 | 1999-02-02 | Eastman Kodak Company | Composite photographic material with laminated biaxially oriented polyolefin sheets |
| US5888714A (en) | 1997-12-24 | 1999-03-30 | Eastman Kodak Company | Adhesives such as metallocene catalyzed ethylene plastomers for bonding biaxially oriented polyolefin sheets to paper |
| JP4237409B2 (en) * | 1998-07-01 | 2009-03-11 | キャボット コーポレイション | Coating composition and recording medium |
| JP2000085242A (en) * | 1998-09-10 | 2000-03-28 | Oji Paper Co Ltd | Inkjet recording paper |
| ATE262418T1 (en) * | 1998-12-28 | 2004-04-15 | Canon Kk | RECORDING MEDIUM AND METHOD FOR PRODUCING IT |
-
2002
- 2002-08-19 EP EP20020078431 patent/EP1288011B1/en not_active Expired - Lifetime
- 2002-08-19 DE DE2002609997 patent/DE60209997T2/en not_active Expired - Lifetime
- 2002-08-28 JP JP2002248939A patent/JP4149765B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| DE60209997T2 (en) | 2006-12-21 |
| EP1288011A2 (en) | 2003-03-05 |
| EP1288011A3 (en) | 2003-10-15 |
| JP2003145927A (en) | 2003-05-21 |
| DE60209997D1 (en) | 2006-05-11 |
| JP4149765B2 (en) | 2008-09-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6641875B2 (en) | Ink jet recording element | |
| US6689430B2 (en) | Ink jet recording element | |
| US6447110B1 (en) | Ink jet printing method | |
| US6770336B2 (en) | Ink jet recording element | |
| US6908191B2 (en) | Ink jet printing method | |
| EP1288012B1 (en) | Ink jet recording element and printing method | |
| EP1386751B1 (en) | Ink jet recording element and printing method | |
| US6443570B1 (en) | Ink jet printing method | |
| EP1288011B1 (en) | Ink jet recording element and printing method | |
| US6527388B1 (en) | Ink jet printing method | |
| EP1319516B1 (en) | Ink jet recording element and printing method | |
| US6692123B2 (en) | Ink jet printing method | |
| US6565205B2 (en) | Ink jet printing method | |
| JP2008260299A (en) | Inkjet recording element | |
| EP1226962B1 (en) | Ink jet recording element and printing method | |
| EP1319518B1 (en) | Ink jet recording element and printing method | |
| EP1288009B1 (en) | Ink jet recording element and printing method | |
| EP1426195B1 (en) | Ink jet recording element | |
| US6623831B2 (en) | Ink jet printing method | |
| US20030108691A1 (en) | Ink jet printing method | |
| EP1288010B1 (en) | Ink jet recording element and printing method | |
| US6431701B1 (en) | Ink jet printing method | |
| EP1319519A2 (en) | Ink jet recording element and printing method | |
| EP1318026A2 (en) | Ink jet recording element and printing method | |
| US6815020B2 (en) | Ink jet recording element |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| 17P | Request for examination filed |
Effective date: 20040315 |
|
| AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
| 17Q | First examination report despatched |
Effective date: 20040806 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REF | Corresponds to: |
Ref document number: 60209997 Country of ref document: DE Date of ref document: 20060511 Kind code of ref document: P |
|
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20061227 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120809 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130726 Year of fee payment: 12 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140430 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130902 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140901 Year of fee payment: 13 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140819 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140819 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60209997 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160301 |