EP1277012A1 - Combustion device - Google Patents
Combustion deviceInfo
- Publication number
- EP1277012A1 EP1277012A1 EP01924045A EP01924045A EP1277012A1 EP 1277012 A1 EP1277012 A1 EP 1277012A1 EP 01924045 A EP01924045 A EP 01924045A EP 01924045 A EP01924045 A EP 01924045A EP 1277012 A1 EP1277012 A1 EP 1277012A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- combustion
- combustion chamber
- air
- ignition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 124
- 239000000446 fuel Substances 0.000 claims abstract description 105
- 239000002956 ash Substances 0.000 claims abstract description 66
- 238000010438 heat treatment Methods 0.000 claims abstract description 59
- 238000007664 blowing Methods 0.000 claims abstract description 33
- 235000002918 Fraxinus excelsior Nutrition 0.000 claims abstract description 24
- 239000008188 pellet Substances 0.000 claims abstract description 21
- 239000002893 slag Substances 0.000 claims abstract description 15
- 239000000567 combustion gas Substances 0.000 claims abstract description 11
- 239000004449 solid propellant Substances 0.000 claims abstract description 6
- 235000013312 flour Nutrition 0.000 claims abstract description 4
- 239000002023 wood Substances 0.000 claims abstract description 4
- 230000006698 induction Effects 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 3
- 238000005245 sintering Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000010881 fly ash Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000003517 fume Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B50/00—Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone
- F23B50/12—Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel being fed to the combustion zone by free fall or by sliding along inclined surfaces, e.g. from a conveyor terminating above the fuel bed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B90/00—Combustion methods not related to a particular type of apparatus
- F23B90/02—Start-up techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J1/00—Removing ash, clinker, or slag from combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K3/00—Feeding or distributing of lump or pulverulent fuel to combustion apparatus
- F23K3/16—Over-feed arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L5/00—Blast-producing apparatus before the fire
- F23L5/02—Arrangements of fans or blowers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23Q—IGNITION; EXTINGUISHING-DEVICES
- F23Q7/00—Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
- F23Q7/02—Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs for igniting solid fuel
- F23Q7/04—Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs for igniting solid fuel with fans for transfer of heat to fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K2203/00—Feeding arrangements
- F23K2203/20—Feeding/conveying devices
- F23K2203/202—Feeding/conveying devices using screws
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2221/00—Pretreatment or prehandling
- F23N2221/02—Pretreatment or prehandling using belt conveyors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/21—Measuring temperature outlet temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2227/00—Ignition or checking
- F23N2227/38—Electrical resistance ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2231/00—Fail safe
- F23N2231/20—Warning devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2239/00—Fuels
- F23N2239/02—Solid fuels
Definitions
- the present invention relatesrto a device for the combustion of granular solid fuel, for example wood flour pellets, chippings and the like, comprising a combustion chamber, an air inlet having a fen for providing air to the combustion chamber and for creating a predetermined through blowing of air through the combustion chamber before, during and after the combustion of the fuel, a dosing unit for feeding of the fuel to the combustion chamber, an ignition device for ignition of the fuel, a control and checking unit for operation of associated or cooperating parts arranged in or at the combustion device and also an outlet for hot combustion gases from the combustion of the fuel from the combustion chamber to a boiler section in a heating boiler for transfer of the heat to the heating system of the heating boiler, for example through water-cooled surfaces in the heating boiler.
- a device for the combustion of granular solid fuel for example wood flour pellets, chippings and the like
- a combustion chamber comprising a combustion chamber, an air inlet having a fen for providing air to the combustion chamber and for creating a predetermined through blowing of
- Combustion devices also called burners below, of the type specified above are known in different designs, for example by way of the Swedish patent document SE-B-450 734, which shows a burner having a rotary combustion chamber for solid granular fuel, for instance in the form of pellets, or through the Swedish patent SE-C-63 193, which shows an oven for combustion of especially city waste.
- the latter combustion device comprises a rotating drum that serves as a fuel grate, Consequently, in such combustion devices, the fuel is rotated during a simultaneous combustion of the same. At the combustion are partly combustion gases, partly ash and other slag products formed.
- the largest portion of the ashes follows the airflow through the burner as fly ash, which falls out from the combustion gases inside the actual heating boiler.
- the desire is that 100 % of the ashes shall fall out on the outside of the burner, which normally happens if the melting point of the ashes lies over the temperature interval in which the burner is intended to work, i.e. if the melting point of the ashes lies over a normal operation temperature of approx. 1100 °C.
- the originally powdered and alleviated ashes are transformed to pieces of together melted materials, so called sinter.
- the sintering cause an obstruction of the openings, which are necessary for the air flowing through the fuel bed, and that an accretion of ash, unburned pellets and sinter slag is formed.
- combustion devices that are without any rotating combustion chamber increases the problems mentioned above very obviously.
- the accretion of ashes, pellets, and slag grows fairly soon, why a larger heap is formed from it, which can cause the position of the fuel bed to be transferred to a position that is unfavourable for the function, simultaneously as the risk for backfire increases dramatically as well, i.e. that the seat of fire is lifted up towards and into the feeding tube for the fuel, which causes the sintering to be both technical difficult and in addition dangerous as well.
- heating boiler for a small house boilers that have burners with effects in the region of approx. 5-20 kW.
- the pellet burners used today are normally intended for higher effects, approx. 30 kW, while they are needlessly large in order to be used in standard heating boilers for smaller houses. Consequently, it is realised that the clearly dominant problem for pellet burners is the sinter formation inside the actual burner.
- a detachable grate is arranged, which grate constitutes a shelf with through going holes and on tgp of which shelf the pellets fall down through a feeding conduit.
- the object of the present invention is to achieve a device for combustion of solid granular fuel, which device eliminates or at least substantially reduces said problems mentioned above of accretion of ashes, unburned residues of fuel and other slag products as sinter.
- the device is characterised by that the combustion device also comprises a movably arranged ash feeder with a drive unit, controlled by the control and checking unit for automatic out-feeding out of the combustion chamber of ashes, unburned fuel and slag products, which are created during the combustion of the fuel.
- central heating system beyond said heating boiler with accompanying heating system, comprises at least another fuel supply and at least one fuel conveyer for a automatic feeding of the fuel from the fuel supply to the dosing device.
- the combustion device beyond or instead of the fuel conveyer and the fuel supply, has a fuel supply, which is built into the dosing device.
- the dosing device comprises a fuel feeder for dosing of the fuel from the dosing _. device and further into the combustion chamber via a feeding tube.
- the feeding tube has the form of a preferably somewhat inclined fall shaft, along which the fuel falls freely a certain, determined length for prevention of backfire.
- thermo guard which gives the alarm if the heat is spreading in the tube, and/or one or more slide valves, for shutting of the feeding tube.
- the fuel feeder comprises a feeding screw, which is pivotally arranged between and in the proximity of the upper end of said feeding tube at the dosing device and either an inlet to.the dosing device or to the base of the built in fuel supply.
- the blowing fan comprises a variable-speed controlled motor and is mounted at the rear part of the combustion chamber for blowing and circulation of air through said air inlet and forward and further out through the outlet of the front part of the combustion chamber.
- the combustion chamber comprises outer walls, inner limiting walls and a movable inner bottom, the latter of which is arranged on a determined distance from the outer walls for division of the consequently double- walled combustion chamber in a front, a rear and a lower air chamber and two air-ducts along the longitudinal sides of the combustion chamber.
- One, several or preferably all the limiting walls have perforations in the form of smaller apertures, holes and/or larger openings for through blowing of air.
- the limiting walls enclose an inner part of the combustion chamber, which inner part, together with the bottom, constitutes a fireplace for the combustion of the fuel.
- the ignition device is arranged in the rear air chamber at the rear limiting wall.
- the ignition device is arranged in the lower air chamber and is arranged in cooperation with thejeh feeder.
- the ignition device is arranged within the ash feeder, wherein the ignition device follows the reciprocating movements of the ash feeder.
- the rear limiting wall has air holes into the ignition device for through blowing of air from the blowing, fan through the ignition device and further into the fireplace.
- the ignition device comprises an ignition coil for electrical heating of the ignition device.
- the ignition coil is provided as an induction heater.
- the ignition device has a casing with an air inlet for blowing of air from the blowing fan.
- the ash feeder comprises a front part and one or several elongated rods that are attached at and between the front part and the drive unit for the ash feeding.
- each rod is arranged in the lower air chamber, while the drive unit and the rear end of each rod are arranged in a casing of their own.
- the casing is arranged outside the heat-insulated combustion chamber at the rear outer wall and with each rod running through an aperture in said rear outer wall.
- the front portion has the form of an upside down box, open backwards, with three sides and one perforated bottom arranged upwards, which bottom simultaneously constitutes the movable inner bottom mentioned above, in which one side constitutes a front edge from which the bottom and the other two sides are arranged in the backward direction towards the drive unit and in which the sides are arranged at a distance from the longitudinal outer walls of the combustion chamber for forming of a continuation downwards of the air ducts mentioned above.
- the ash feeder comprises two end positions, one front position, the drive position, at which the ont portion shuts the lower end of the fireplace and a reajL position, the ash evacuating position, at which the fireplace is open downwards, - and between said end positions the front portion is arranged to be transferred by means of the drive unit via the rods.
- the drive unit comprises a fixed front stop, two sliding sleeve, which are movably arranged along-each rod as a front and a rear sliding sleeve, and a spring, which is arranged between the sliding sleeves, an eccentric and also a fixed rear stop at the rear end part of the rod.
- the eccentric comprises a pivot bar and two link arms, of which one is longer then the other, and that the two link arms are pivotally joined to each other at a mutual end part, that the other end of the shorter link arm is attached to the pivot bar while the other end of the long link arm is pivotally fixed at the rear sliding sleeve.
- the drive unit has a motor for operation of the eccentric by way of the pivot bar and thereby of the reciprocating movements of the front part.
- the solution of constructing an ash feeder which removes the ashes, the sinter deposits and any other unburned residues from the fuel out of the combustion device and over to the ash container of the conventional heating boiler constitutes a very simple construction with few parts.
- the burner is especially intended to replace an oil burner in a conventional, oil fired boiler, i.e. the basic idea is that a pellet burner is mounted in a conventional heating boiler instead of the now so usually frequent oil burner. This results in a burner that is small, easily operated and very effective, which, beyond the ash feeder, substantially only contains a blowing fan, an ignition device and a dosing device, why the burner is both not expensive to manufacture and, furthermore, is very reliable. In addition, the risk for backfire is almost entirely eliminated.
- FIG. 1 is a schematic view of parts of a combustion device for solid fuel, which is installed in a conventional central heating system in a small house, which central heating system also dismays fuel supply, conveyor, boiler and chimney. : ⁇
- Fig. 2 is a schematic cross-section through parts of a combustion device according to the present invention, which is to be used in a central heating system according to Fig. 1.
- Fig. 3 is a schematic cross-section through parts of the combustion device according to Fig. 2, in which the necessary air circulation is shown more closely.
- Fig. 4a-f shows schematically the course of action for an ash and slag evacuation in the combustion device according to Fig. 3.
- FIG. 1 it is shown a schematic view of parts of a device 3 for combustion of solid fuel in the form of granular materials, for instance compressed wood flour pellets or briquettes, chips or the like with a suitable diameter of approx. 0 6- 0 12 mm, which is installed at a conventional central heating system 1 for heating of a building 2, for instance a small house, which central heating system 1 also shows, in relation to the combustion device 3, a free standing fuel supply 4, at least one fuel conveyer 5, a conventional heating boiler 6 with a known heating system (not shown), for instance a waterborne circulation system that is provided with radiators, which system comprise water-cooled surfaces in the heating boiler 6, and a chimney 7 for the fumes that are created.
- a conventional central heating system 1 for heating of a building 2, for instance a small house
- a free standing fuel supply 4 at least one fuel conveyer 5
- a conventional heating boiler 6 with a known heating system (not shown), for instance a waterborne circulation system that is provided with radiators, which system comprise water-cooled
- the fuel feeder comprises a motor 8 with a transmission box for operation of a feed screw 10 which is revolvably arranged in a stiff feed tube 9 for automatic feeding of fuel from the fuel supply 4 through a down pipe 11 , suitably in the form of a flexible hose, to a smaller dosing device 12 in the combustion device 3.
- the fuel feeder 5 can also be provided with several feed screws 10 with an optional length decided from operational and space dependant reasons. Feeding with a feed screw 10 is the best alternative according to expertise in the point of view of operation and safety but also other types of known fuel feeders can of course be used at the combustion device 3 according to the invention. In the embodiment shown in Fig. 2 of the combustion device 3 may this also, or instead of the described fuel feeder 5 with a external fuel supply 4, have a smaller fuel supply 13 which is built-in to the actual dosing device 12, which can be filled manually, and then one to two times per week regularly.
- the dosing device 12 comprises another fuel feeder 14 having a drive motor 15 for the - automatic dosage of the fuel.from the dosing device 12 and further into a substantially horizontal combustion chamber 16, which is arranged underneath said dosing device 12, through a feeding tube 17.
- the feeding tube 17, which emerges into the top part of the combustion chamber 16 is preferably in the form of a somewhat inclined fall shaft along which the fuel, after feeding of the correct fuel dose by the fuel feeder 14, falls freely a certain and determined lengtkfor prevention of backfire.
- Additional safety means are arranged in the proximity of the feeding tube 17. These comprise for instance of a thermo guard 18, which gives the alarm if the heat spreads upwards in the tube 17, and one or more slide walls 19 for closing of the heating tube 17.
- a thermo guard 18 which gives the alarm if the heat spreads upwards in the tube 17, and one or more slide walls 19 for closing of the heating tube 17.
- the additional fuel feeder 14 is comprised of a feeding screw 20, which is arranged substantially horizontal and pivotally between the proximity of the upper end part 21 of said feeding tube 17 at the dosing device 12 and either the inlet 22 of the down pipe 11 to the dosing device 12 or the bottom 23 of the built in smaller fuel supply 13 , if a such is arranged.
- the combustion device 3 comprises beyond said dosing device 12 and combustion chamber 16 an air inlet 24 with a blowing fan 25 for supply of air to the combustion chamber 16 for the combustion of the fuel and for transporting out of the combustion gases and the fly ash, which are produced thereby, through an outlet 26 from the combustion chamber 16 further into a boiler section 27 in the heating boiler 6 for transfer of the combustion heat to the heating system of the heating boiler 6 (not shown), an automatic ignition device 28 for ignition of the fuel, a movably arranged ash feeder 29 with a drive unit 30 for raking out the slag products, the ashes and the unburned fuel 31 out of the combustion chamber 16 and further into the heating boiler 6 and a control and checking unit 32 for a substantially all-automatic operation of the combustion device 3 and certain or all associated or cooperating parts arranged in or at the combustion device 3.
- the control and checking unit 32 constitutes a known microprocessor based device having sensors necessary for the function, for instance the thermo guard 18, and is not described any closer here, however it is to be noticed that by means of said unit 32 and through the boiler 6 drive thermostat a fully automatic system is obtained from the delivery of fuel from the supply 4 to the raking out of the slag products 31 to the ashbin 61 of the heating boiler 6, including the ability to use several pre-programmed power steps, for instance 9, 12, 18, 23 kW.
- the blowing fan 25, which isgtounted at the rear part 33 of the combustion chamber 16. for blowing and for circulation of air in through said air inlet 24 and forward and further out through the outlet 26 at the front upper part 34 of the combustion chamber 16, has a sflent-running, variable-speed controlled motor 35 with a built in thermo switch which switch's off at an overload.
- the combustion chamber 16 comprises partly outer walls 36, which preferably are shaped into a substantially box- shaped combustion chamber 16 on the outside, partly inner limiting walls 37 technicallyand a movable inner bottom 45, which is arranged at a determined distance from the outer walls 36 for a division of the thus double- walled combustion chamber 16 in a front, a rear and a lower air chamber 38, 39, 40 and two air-ducts 41, 42 along the longitudinal sides of the combustion chamber 16.
- the combustion chamber 16 constitutes on its outside a square pipe having a quadratic cross-section with the wideness of approx. 160 mm.
- One, several or preferably all of the limiting walls 37 have perforations in the form of smaller apertures and/or larger openings 43 for the through blowing of air (see Fig. 3).
- the limiting walls 37 of which several or only one is arranged starting from and with a downwards slope from the inside of, and inwards from, the ceiling 48 of the combustion chamber 16 or from one, several or all of the insides of the outer walls 36, are enclosing an inner and suitably downwardly funnel-formed part 44 of the combustion chamber 16, which inner part together with a bottom 45 constitute a fireplace for the combustion of the fuel.
- the bottom 45 of the fireplace 44 constitutes the grate, i.e.
- the muzzle 47 of the feeding tube 17 is suitably arranged in the ceiling 48 of the fireplace 44 and in a near proximity to one or several of the inner insides of the limiting walls 37, of which inner walls 37 one or several have a pitch which is intended to give an alignment towards the fuel bed 46 for the fuel that is falling down in a controlled manner from the dosing device 12 above.
- the upper and wider tunnel end of the fireplace 44 is open at the front upper part 34 of the combustion chamber 16, into the boiler section 27 and, consequently, constitutes said outlet 26 for the combustion gases mentioned above.
- the ignition composition 49 constitutes said fuel bed 46 mentioned above.
- the rear limiting wall 37a has air holes 57 into the ignition device 28 for through blowing of air from the blowing fan 25, through the ignition device 28 and further into the fireplace 44.
- the air holes 57 are oval for allowing of an optimal-airflow.
- the ignition device 28 comprises ⁇ an ignition coil 50 of any known type, for instance comprising a so called kanthal-thread for electrical heating of the ignition device 28 to a temperature of approx. 800 °C, wherein the kanthal-thread has a temperature of around 1100 °C.
- the ignition coil may also be provided as an induction heater (not shown).
- the ash feeder 29 comprises ⁇ jBront part 51, also called rake below, and one or several elongated rods 52 which are attached at and between the front part 51 and the drive unit 30 for feeding of the ashes.
- the rake 51 and the front end of each rod 52 are arranged in the lower air chamber 40, while the drive unit 30 and the rear end of each rod 52 are arranged in a containment 53 of their own, suitably arranged outside the heat insulated combustion chamber 16 at the rear outer wall 36a and having each rod 52 running through a hole 60 in the same 36a.
- the front portion 51 has the shape of an upside down turned box with three sides 5 ⁇ -55, 56, which box is open in the back, and a perforated bottom that is arranged upwards and which bottom simultaneously constitutes the grate 45 mentioned above.
- One side 54 constitutes a front edge which is substantially vertical and from which the bottom 45 and the two other sides 55, 56 extend backwards and towards the drive unit 30.
- the longitudinal sides 55, 56 are arranged at substantially the same distance from the longitudinal outer walls 36 of the combustion chamber 16 as the longitudinal inner limiting walls 37 forming a continuation downwardly of said air- ducts mentioned above.
- the ash feeder 29 comprises two end positions, one front position, the operational position 58, at which the rake 51 shuts the lower end of the fireplace 44, see Fig.
- the ignition device 28 may also be arranged within the ash feeder 29, so that the ignition device 28 follows the ash feeder 29 in its reciprocating movements under the fireplace 44.
- the ignition device 28 has a casing 71 with air inlets 72 for blowing air from the blowing fan 25.
- the drive unit 30, see the figures 3 and 4, comprises a fix front stop 62 at each rod hole 60, suitably consisting of the separating wall 36a between the combustion chamber 16 and the containment 53, sliding sleeves 63, 64, which are arranged movably along said rod 52, and a spring 65, which, in the embodiment shown in Fig. 3 and 4, is arranged around each rod 52 between the sliding sleeves 63, 64, an eccentric 66, which comprises a pivot-bar 67 and two link arms 68, 69, and a fixed rear stop 70 arranged at the rear end of the bar 52.
- the two link arms 68, 69, of which one 68 is substantially twice as long as the other 69, are pivotally Jneorporated with each other at one of their end parts.
- the -- other end of the shorter link sr 69 is attached to the pivot bar 67 while the other end of the long link arm 68 is pivotally attached to the rear sliding sleeve 64. Furthermore, the drive unit has a motor, not shown, for the operation of the eccentric 66 via the pivot bar 67 and thereby of the reciprocating movements of the rake 51.
- the combustion device 3 starts and stops automatically in accordance with the configuration that the operational thermostat of the central heating system 1 has.
- the ash feeder 29 has been transferred to its front operational position 58, see Fig. 4a, so that the bottom 45 of the fireplace 44 is closed and the fuel feeder 14 has fed fuel to the dosing device 12, see Fig. 1.
- a certain, smaller quantity of fuel is automatically fed by the feed screw 10 of the dosing device 12, see Fig.
- the ignition device 28, see Fig. 2 and 3, is initiated and at which the ignition coil 50 is heated considerably to approx. 750-800 °C, which takes approx. 2 min.
- the motor 35 to the blowing fan 25 starts so that air is blown in through the air inlets 24 to the rear air chamber 39 and further in through the air inlet 72 in the casing 71 of the ignition device 28 and beyond and past the ignition coil 50. Consequently, no air is blown during the heating of the ignition coil 50, while this only would cool it off.
- the fuel can also be fed during the time the ignition coil 50 is heated up to the intended temperature and until an ignition composition 49, having a suitable combustion time, has been received on the bottom 45 of the fireplace 44.
- the ignition composition 49 catches fire. More precise, a primary combustion of the fuel occurs on top of the grate 45 at which the fuel emits the combustion gases, which then ignites.
- the ignition normally occurs, but the ignition coil 50 is yet operated up to the full time (5 minutes) just to be sure.
- the fan 25 When it has gone approximately 3.5 minutes from start, the fan 25 is adjusted so that each specific air thrust becomes longer with shorter interruptions between each air thrust. After the ignition of the combustion gases, these are brought to a secondary combustion in the form of a flame of fire out through the outlet 26 created by the airflow from the blowing fan 25, and having a direction determined by the air chambers 38, 39, 40 and the air-ducts Al ⁇ 42. The operation is then continued by the fact that the control and checking unit 32 and the drive thermostat of the heating boiler 6 make the dosing devise 12 to dose out sufficient fuel quantities with a correct interval for achieving a chosen temperature. For example, at a full power drain, well-defined fuel doses are fed into the fireplace 44 with intervals so defined that the fuel bed 46 burns continuously.
- the burner 16 doesn't have to be in operation continuously, why the fuel bed is allowed to go out. Consequently, the automatic ignition of an ignition composition 49 occurs at start of the central heating system 1, at certain defined occasions during the operation of said central heating system 1 and after unscheduled power failures, which ignition is controlled by the control and checking unit 32.
- the desire is that substantially all fuel has been transformed into fumes with merely a small amount of fly ash as a rest, which ash rest follows the fumes out into the boiler section 27 and into the ash bin 61 arranged there.
- the ignition coil 50 becomes approx. 800 °C and the kanthal-thread then attains a temperature of around 1100 °C.
- the kanthal-thread can not endure more then 1200 °C, while the magnesium oxide in the thread melts if it reaches a temperature over 1200 °C.
- the expired fuel bed 46 comprising unburned fuel, the ashes and the sinter 31, which are created during the last production period before the stop, creates a heap on top of the bottom grating 45 of the fireplace 44, i.e. the rake 51, which heap 31 grows larger as the heating boiler 6 is used.
- Each new ignition composition 49 which is being dosed downwards, ends up in a smaller heap somewhat further back on the bottom 45 on top of the sinteiisH. Thereby, the new ignition composition 49 increases the heap 31 and, furthermore it obstructs the holes 43 and the openings 57 additionally, why it becomes increasingly more difficult for the hot airflow to get through and start the ignition of every new ignition composition 49. Consequently, the fuel is free from direct contact with the ignition coil 50.
- a negative pressure is prevailing, why the air must be forced in by means of the blowing fan 25 into the front portion 51 of the ash feeder 29 and then further into the fireplace 44 through the grate holes 43 and up through the fuel bed 46.
- the double walls.36, 37 in the combustion chamber 16 constitutes air-ducts 41, 42 around the box shaped grate rake 51 and through which channels 41, 42 the blowing fan 25 feeds air along the sides 55, 56 of the grate bin 51 to the front air chamber 38 and further inwards from the holes 43 of the front air chamber 38, but also through the holes 43 in the longitudinal sides 37 of the fireplace 44.
- the drive position
- the grate is completely dense along the inner walls 37 in to the fireplace 44, while the grate bin 51 is somewhat wider then the inner walls 37 in order to prevent the fuel to fall outside and beside the grate bin/the rake 51.
- the rake 51 is moved backwards so that the ashes, the slag and the sinter 31 are scraped of against the rear edge of the inner wall 37a, which serves as an anvil, and down in front of the rake 51 while this is moved backwards to its hindmost end position, the ash evacuating position
- substantially the entire rake 51 is pulled back inside the rear limiting wall 37a, after which the rake is made to turn and go back in the forward direction by the drive unit 30, and then at least to its drive position 58 or even further, preferably at least to the level of the front outer wall 36 of the combustion chamber 16, while the ashes, the sinter products and the unburned fuel 31 are pushed in front of the rake and further down into the ashbin 61 of the heating boiler 6.
- the rake 51 is then reverted to the initial position, i.e. the drive position 58.
- Slag feeding is done when the operation is interrupted; normally about approximately every 30 minutes, and after that the temperature has been lowered in the combustion chamber 1 .
- the slag 31 has then become solid and is left behind.
- the thermostat switches on and off maybe 6 times in the summer and up to 24 times in the winter. 30 min. operation ⁇ O min. cooling, 24 hours a day.
- the two link arms 68, 69 of the drive unit 30 eccentric 66 are being arranged forwards, and towards the combustion chamber 16.
- the control and checking unit 32 activates the motoi of the drive unit 30, which rotates the pivot bar 67 (in accordance with Fig. 4a) so that the eccentric 66, by way of the link arms 68, 69, pushes the grate bin 51 backwards from its front drive position 58.
- the two link arms 68, 69 are completely directed backwards.
- the fireplace 44 is fully open and the slag products 31, which were left after the blow cleaning before the withdrawal of the rake 51 started, is now in front of tjje rake 54.
- the pivot bar 67 continues to rotate so that it pulls the bar 52 with it in a forward direction, until the original position, i.e. the drive position 58, once again is taken.
- the ash feeder may be brought all the way forwards and in level with the front outer wall of the combustion chamber before the drive position of the rake is taken, and in which position the link arms in this specific case have an angle between them which is larger than zero and less than 180 °C.
- the spring 65 allows the eccentric to make one complete rotation, after which the control and checking unit 32, or a switch not shown, make sure that the ash evacuating movement is repeated until one complete strike have been obtained for the rake 51 , i.e. that the rake 51 is reciprocated between its maximum end position 58, 59, which are set by the length of the rods 52 used.
- the invention is not limited to the shown embodiment and it can be varied in different ways within the frame of the claims. It is for instance realized that with a conventional heating boiler 6 it is here for instance meant a so called oil-fired boiler for smaller hoses 2 in which the normal oil burner is replaced by a burner 16 for solid fuel, preferably pellets, and in which the heating system, for instance the existing waterborne system is used in exactly the same way as in normal oil firing.
- the pellet burner 16 is installed with a connection to the standard drive thermostat of the boiler 6.
- the combustion device 3 for example into it being used only in already existing boilers 6, why the combustion device may be used in every new installation of applicable central heating systems 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Solid-Fuel Combustion (AREA)
- Regulation And Control Of Combustion (AREA)
- Fuel Cell (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Spinning Or Twisting Of Yarns (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE0001606 | 2000-04-28 | ||
| SE0001606A SE517021C2 (en) | 2000-04-28 | 2000-04-28 | Device for combustion of granular solid fuel |
| PCT/SE2001/000730 WO2001084048A1 (en) | 2000-04-28 | 2001-04-04 | Combustion device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1277012A1 true EP1277012A1 (en) | 2003-01-22 |
| EP1277012B1 EP1277012B1 (en) | 2005-02-16 |
Family
ID=20279511
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP01924045A Expired - Lifetime EP1277012B1 (en) | 2000-04-28 | 2001-04-04 | Combustion device |
Country Status (7)
| Country | Link |
|---|---|
| EP (1) | EP1277012B1 (en) |
| AT (1) | ATE289400T1 (en) |
| AU (1) | AU2001250712A1 (en) |
| DE (1) | DE60108951T2 (en) |
| NO (1) | NO322436B1 (en) |
| SE (1) | SE517021C2 (en) |
| WO (1) | WO2001084048A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109028026A (en) * | 2018-06-30 | 2018-12-18 | 梁春花 | A new energy boiler with feeding function |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10308695A1 (en) * | 2003-02-28 | 2004-09-09 | Georg Fischer Gmbh & Co.Kg | Device for heating a thermo-technical device with solid, free-flowing fuel |
| FI20035103A0 (en) * | 2003-06-19 | 2003-06-19 | Ht Lasertekniikka Oy | pellet burner |
| DE102004038968B3 (en) * | 2004-08-10 | 2006-05-11 | Manfred Manderbach | Automatic chip burner for central heating boiler has stepped combustion profile with primary, secondary and tertiary firing sectors |
| FR2880407A1 (en) * | 2004-12-30 | 2006-07-07 | Pagnod Ind Sarl | Burner for e.g. boiler, has support unit with opening to evacuate combustion residues accumulated at bottom of burner by gravity, and automation units to control and manage activation of driving units |
| AT501478B1 (en) * | 2005-02-28 | 2006-09-15 | Calimax Entwicklungs & Vertrie | HEATING DEVICE FOR PIECE FUELS |
| NZ571145A (en) | 2006-03-08 | 2012-02-24 | Hni Tech Inc | Automated ash removal system for a pellet stove using a motor to move part of the floor of the firebox |
| ITPD20060234A1 (en) * | 2006-06-09 | 2007-12-10 | Germano Mozzato | HEATING SYSTEM AUTOMATICALLY POWERED WITH SOLID FUEL |
| WO2009046604A1 (en) * | 2007-10-10 | 2009-04-16 | Zhanbin Che | Feeding device for solid fuel |
| SE533848C2 (en) * | 2009-06-18 | 2011-02-08 | Ekosystem I Gaevle Ab | Solid fuel burner with ash output |
| IT1397799B1 (en) * | 2009-09-02 | 2013-01-24 | Venturi Stufe | AUTOMATIC FUEL-SUPPLIED AUTOMATIC WOOD-STOVE STOVE AND / OR SAWING BAGS WITH VARIOUS MEASUREMENTS AND / OR POWER SUPPLY SYSTEMS AND AUTOMATIC AND PROGRAMMABLE IGNITIONS ON 24 HOURS AND ON 7 DAYS OR MORE, POWERED BY TRUNK BENDERS WITH VARIOUS MEASUREMENTS. Said system is applied to all the wood fuel heating solutions and / or bending machines with various measures. |
| AT510438B1 (en) | 2010-09-30 | 2012-04-15 | Windhager Zentralheizung Technik Gmbh | BURNER FOR SOLID FUELS |
| CN102466241A (en) * | 2010-11-09 | 2012-05-23 | 农业部规划设计研究院 | Automatic ignition method and device for biomass particle fuel |
| FR2994728B1 (en) * | 2013-09-09 | 2016-11-18 | Christian Schulhof | PELLET STOVE |
| HUP1700093A2 (en) * | 2017-03-02 | 2018-09-28 | Primus Net Kft | Pellet boiler with grid burner and proceedings of the combustion to maintain |
| CA3099693C (en) | 2018-05-07 | 2023-08-29 | Dansons, Inc. | Induction burner ignition system |
| CN108680038B (en) * | 2018-06-09 | 2024-02-20 | 江苏江涛环境工程有限公司 | Chain drive plate flue gas cooler |
| CN109237506A (en) * | 2018-08-15 | 2019-01-18 | 芜湖鸣人热能设备有限公司 | Boiler coal bucket |
| CN111140876B (en) * | 2020-01-19 | 2025-01-28 | 山东隆鑫新能源有限公司 | A biomass pellet environmentally friendly heating stove |
| CN113669751A (en) * | 2021-09-27 | 2021-11-19 | 文亮 | Non-backfire biomass energy backfire preventing feeding device and method |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2934905A1 (en) * | 1979-08-27 | 1981-03-19 | Günter 1000 Berlin Krause | Controllable solid fuel fired heating system - has extensible fuel storage hopper fitting adjustably into fuel feed chute |
| DE3518576A1 (en) * | 1985-05-23 | 1986-11-27 | Stubinen Utveckling AB, Stockholm | DEVICE FOR BURNING AND / OR THERMALLY DEGRADING FUEL, IN PARTICULAR SOLID FUELS |
| SE457474B (en) * | 1986-05-21 | 1988-12-27 | Pegasus Ab | Stoker-fed, solid pellet combustion unit |
| AT398826B (en) * | 1987-07-08 | 1995-02-27 | Raggam August Dr Techn | Heating system for the combustion of solid fuels |
| DD266395A1 (en) * | 1987-12-10 | 1989-03-29 | Bergmann Borsig Veb | DEVICE FOR PROTECTION AGAINST NEEDS IN THE STORAGE BINKER AND FUEL SHAFT OF SOLID CONTROLS |
| US5137010A (en) * | 1991-08-14 | 1992-08-11 | Pyro Industries, Inc. | Combustion grate for pellet fueled stove |
| DK171619B1 (en) * | 1995-03-09 | 1997-02-24 | Cour Administration Pindstrup | Method and apparatus for feeding a solid fuel |
| US5582117A (en) * | 1995-06-06 | 1996-12-10 | Mendive Needs Corporation | Firepot with ash-dumping floor |
| US5893358A (en) * | 1997-11-04 | 1999-04-13 | Pyro Industries, Inc. | Pellet fuel burner for heating and drying systems |
-
2000
- 2000-04-28 SE SE0001606A patent/SE517021C2/en unknown
-
2001
- 2001-04-04 AT AT01924045T patent/ATE289400T1/en active
- 2001-04-04 AU AU2001250712A patent/AU2001250712A1/en not_active Abandoned
- 2001-04-04 DE DE60108951T patent/DE60108951T2/en not_active Expired - Lifetime
- 2001-04-04 WO PCT/SE2001/000730 patent/WO2001084048A1/en not_active Ceased
- 2001-04-04 EP EP01924045A patent/EP1277012B1/en not_active Expired - Lifetime
-
2002
- 2002-10-28 NO NO20025181A patent/NO322436B1/en unknown
Non-Patent Citations (1)
| Title |
|---|
| See references of WO0184048A1 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109028026A (en) * | 2018-06-30 | 2018-12-18 | 梁春花 | A new energy boiler with feeding function |
| CN109028026B (en) * | 2018-06-30 | 2019-10-18 | 唐山冀东石油机械有限责任公司 | A new energy boiler with feeding function |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1277012B1 (en) | 2005-02-16 |
| SE0001606L (en) | 2001-10-29 |
| ATE289400T1 (en) | 2005-03-15 |
| NO322436B1 (en) | 2006-10-02 |
| AU2001250712A1 (en) | 2001-11-12 |
| DE60108951T2 (en) | 2005-12-29 |
| WO2001084048A1 (en) | 2001-11-08 |
| NO20025181L (en) | 2002-12-30 |
| DE60108951D1 (en) | 2005-03-24 |
| SE0001606D0 (en) | 2000-04-28 |
| NO20025181D0 (en) | 2002-10-28 |
| SE517021C2 (en) | 2002-04-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1277012B1 (en) | Combustion device | |
| US4312278A (en) | Chip wood furnace and furnace retrofitting system | |
| US5001993A (en) | Stove for burning bio-mass pellets and grain | |
| US7739966B2 (en) | Device and method for the combustion of granular, solid fuel | |
| EP2400217B1 (en) | An enclosed granular fuel burning boiler | |
| AU2011201584B2 (en) | A solid fuel unit having the feature of burning solid fuels together with their volatile gases | |
| WO1984002385A1 (en) | A solid fuel stoker | |
| CN201724257U (en) | Multifunctional combustion furnace using biomass energy particle as fuel | |
| JP3144569U (en) | Granular material transport mechanism and combustion apparatus equipped with the same | |
| WO1981002922A1 (en) | Shavings-or chips-fired burner unit for heating boilers | |
| US4708069A (en) | Solid fuel heating appliance | |
| JP2004293828A (en) | Combustion device | |
| EP2762777A1 (en) | Boiler | |
| JP2006078072A (en) | Granular matter carrying mechanism and combustion device provided therewith | |
| CN203442792U (en) | Intelligent boiler using biomass particles for burning | |
| KR101210962B1 (en) | Using environmentally friendly solid fuel boiler | |
| EP2144001B1 (en) | Method for cleaning the brazier of a heating apparatus | |
| EP4227580A1 (en) | Fireplace intended for solid fuels with multi-fuel device arranged into its burning place | |
| US4766824A (en) | Burner especially for burning biomass | |
| CN104235830A (en) | Intelligent boiler for burning biomass particles | |
| CN208794390U (en) | Biomass granule fuel combustion system and biomass granule fuel commercial kitchen range | |
| JP2018059642A (en) | Combustion apparatus and heat supply system using the same | |
| CN105444207A (en) | Biomass fuel combustion device and tobacco leaf roaster | |
| EP0882931B1 (en) | Method and device for the combustion of wood pellets or other free-flowing solid fuels | |
| CN106765183B (en) | A kind of multi-function domestic refuse disposal installation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20021016 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050216 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050216 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REF | Corresponds to: |
Ref document number: 60108951 Country of ref document: DE Date of ref document: 20050324 Kind code of ref document: P |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050404 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: FREI PATENTANWALTSBUERO |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050516 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050516 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050516 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050527 |
|
| NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050804 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| ET | Fr: translation filed | ||
| 26N | No opposition filed |
Effective date: 20051117 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080415 Year of fee payment: 8 Ref country code: LU Payment date: 20080422 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20080417 Year of fee payment: 8 Ref country code: BE Payment date: 20080422 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20080417 Year of fee payment: 8 |
|
| BERE | Be: lapsed |
Owner name: SWEDISH *BIOBURNER SYSTEM A.B. Effective date: 20090430 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090406 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090404 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200415 Year of fee payment: 20 Ref country code: DE Payment date: 20200420 Year of fee payment: 20 Ref country code: FI Payment date: 20200420 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200422 Year of fee payment: 20 Ref country code: GB Payment date: 20200417 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20200420 Year of fee payment: 20 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60108951 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20210403 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 289400 Country of ref document: AT Kind code of ref document: T Effective date: 20210404 |
|
| REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210403 |