EP1261626A1 - Bombesin analogs for treatment of cancer - Google Patents
Bombesin analogs for treatment of cancerInfo
- Publication number
- EP1261626A1 EP1261626A1 EP00952333A EP00952333A EP1261626A1 EP 1261626 A1 EP1261626 A1 EP 1261626A1 EP 00952333 A EP00952333 A EP 00952333A EP 00952333 A EP00952333 A EP 00952333A EP 1261626 A1 EP1261626 A1 EP 1261626A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- peptide
- trp
- leu
- aib
- ala
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 16
- 201000011510 cancer Diseases 0.000 title claims abstract description 13
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical class C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 title abstract 3
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 118
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 150000001413 amino acids Chemical class 0.000 claims description 49
- 239000011347 resin Substances 0.000 claims description 28
- 229920005989 resin Polymers 0.000 claims description 28
- -1 9-fluorenyl methoxy carbonyl (Fmoc) group Chemical group 0.000 claims description 25
- 150000003839 salts Chemical class 0.000 claims description 21
- 238000005859 coupling reaction Methods 0.000 claims description 11
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 claims description 11
- 239000007790 solid phase Substances 0.000 claims description 11
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 10
- 229920001184 polypeptide Polymers 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 8
- QIVBCDIJIAJPQS-SECBINFHSA-N D-tryptophane Chemical compound C1=CC=C2C(C[C@@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-SECBINFHSA-N 0.000 claims description 7
- 125000002252 acyl group Chemical group 0.000 claims description 7
- 238000011068 loading method Methods 0.000 claims description 7
- 125000006239 protecting group Chemical group 0.000 claims description 7
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 claims description 6
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 claims description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 5
- NQIHMZLGCZNZBN-PXNSSMCTSA-N Trp-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)N)C(O)=O)=CNC2=C1 NQIHMZLGCZNZBN-PXNSSMCTSA-N 0.000 claims description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000012317 TBTU Substances 0.000 claims description 3
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 238000010532 solid phase synthesis reaction Methods 0.000 claims description 3
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 claims description 3
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 claims description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 claims description 2
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 230000007062 hydrolysis Effects 0.000 claims description 2
- 238000006460 hydrolysis reaction Methods 0.000 claims description 2
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 claims description 2
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 claims 2
- 229940091173 hydantoin Drugs 0.000 claims 2
- 241000124008 Mammalia Species 0.000 claims 1
- 230000000973 chemotherapeutic effect Effects 0.000 claims 1
- AKRYBBWYDSDZHG-UHFFFAOYSA-N nitrosobis(2-oxopropyl)amine Chemical compound CC(=O)CN(N=O)CC(C)=O AKRYBBWYDSDZHG-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 28
- 238000003786 synthesis reaction Methods 0.000 abstract description 28
- 108010051479 Bombesin Proteins 0.000 abstract description 25
- 239000005557 antagonist Substances 0.000 abstract description 12
- 238000013461 design Methods 0.000 abstract description 7
- 230000002265 prevention Effects 0.000 abstract description 4
- 150000001371 alpha-amino acids Chemical class 0.000 abstract description 2
- 235000008206 alpha-amino acids Nutrition 0.000 abstract description 2
- 230000000144 pharmacologic effect Effects 0.000 abstract description 2
- 102000013585 Bombesin Human genes 0.000 abstract 2
- 235000001014 amino acid Nutrition 0.000 description 45
- 229940024606 amino acid Drugs 0.000 description 45
- QXZBMSIDSOZZHK-DOPDSADYSA-N 31362-50-2 Chemical class C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CNC=N1 QXZBMSIDSOZZHK-DOPDSADYSA-N 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 25
- 102100036519 Gastrin-releasing peptide Human genes 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N Vilsmeier-Haack reagent Natural products CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 23
- 102000004862 Gastrin releasing peptide Human genes 0.000 description 20
- 108090001053 Gastrin releasing peptide Proteins 0.000 description 20
- PUBCCFNQJQKCNC-XKNFJVFFSA-N gastrin-releasingpeptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)CNC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)C(C)C)[C@@H](C)O)C(C)C)[C@@H](C)O)C(C)C)C1=CNC=N1 PUBCCFNQJQKCNC-XKNFJVFFSA-N 0.000 description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 13
- 238000003776 cleavage reaction Methods 0.000 description 11
- 230000007017 scission Effects 0.000 description 11
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 206010041067 Small cell lung cancer Diseases 0.000 description 9
- 208000000587 small cell lung carcinoma Diseases 0.000 description 9
- 231100000135 cytotoxicity Toxicity 0.000 description 7
- 238000004108 freeze drying Methods 0.000 description 7
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 108700042623 Tpi(6)-Leu(13)-psi(CH2NH)-Leu(14)- bombesin (6-14) Proteins 0.000 description 6
- 230000003013 cytotoxicity Effects 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 241000699660 Mus musculus Species 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 238000011580 nude mouse model Methods 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 3
- 231100000002 MTT assay Toxicity 0.000 description 3
- 238000000134 MTT assay Methods 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- SBNPWPIBESPSIF-MHWMIDJBSA-N cetrorelix Chemical compound C([C@@H](C(=O)N[C@H](CCCNC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@H](C)C(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](CC=1C=NC=CC=1)NC(=O)[C@@H](CC=1C=CC(Cl)=CC=1)NC(=O)[C@@H](CC=1C=C2C=CC=CC2=CC=1)NC(C)=O)C1=CC=C(O)C=C1 SBNPWPIBESPSIF-MHWMIDJBSA-N 0.000 description 3
- 108700008462 cetrorelix Proteins 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- NSZZKYYCIQQWKE-UHFFFAOYSA-N 2-(dibutylazaniumyl)acetate Chemical compound CCCCN(CC(O)=O)CCCC NSZZKYYCIQQWKE-UHFFFAOYSA-N 0.000 description 2
- CZHCGMZJLLOYJW-UHFFFAOYSA-N 2-amino-2-propylpentanoic acid Chemical compound CCCC(N)(C(O)=O)CCC CZHCGMZJLLOYJW-UHFFFAOYSA-N 0.000 description 2
- FZTIWOBQQYPTCJ-UHFFFAOYSA-N 4-[4-(4-carboxyphenyl)phenyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(O)=O)C=C1 FZTIWOBQQYPTCJ-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 102400000921 Gastrin Human genes 0.000 description 2
- 108010052343 Gastrins Proteins 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000003305 autocrine Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229940044551 receptor antagonist Drugs 0.000 description 2
- 239000002464 receptor antagonist Substances 0.000 description 2
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical class C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 2
- 229940075620 somatostatin analogue Drugs 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- FUXUMEVLBNCHHR-NGJCQDCLSA-N (2S)-N-[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-[(4R)-4-carbamoyl-1,3-thiazolidin-3-yl]-4-methylpentan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]-2-(3-phenylpropanoylamino)pentanediamide Chemical compound CC(C)C[C@@H](CN1CSC[C@H]1C(N)=O)NC(=O)[C@H](Cc1cnc[nH]1)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](Cc1c[nH]c2ccccc12)NC(=O)[C@H](CCC(N)=O)NC(=O)CCc1ccccc1)C(C)C FUXUMEVLBNCHHR-NGJCQDCLSA-N 0.000 description 1
- CBPJQFCAFFNICX-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-methylpentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(C)C)C(O)=O)C3=CC=CC=C3C2=C1 CBPJQFCAFFNICX-IBGZPJMESA-N 0.000 description 1
- RWBLWXCGQLZKLK-USVTTYPOSA-N (2s)-2-[(2-aminoacetyl)amino]-n-[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[2-[[(2s)-1-[[(2s)-1-[[(2s)-1-amino-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxob Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC(N)=O)NC(=O)CN)C(C)C)C1=CN=CN1 RWBLWXCGQLZKLK-USVTTYPOSA-N 0.000 description 1
- XXFIWKDBCZWORZ-YQZUKWOLSA-N (2s)-n-[(2s)-1-[[(2s)-1-[[(2s)-1-[[2-[[(2s)-1-[[(2s)-1-[[(2s)-1-amino-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl] Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(N)=O)C(C)C)C1=CN=CN1 XXFIWKDBCZWORZ-YQZUKWOLSA-N 0.000 description 1
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- WOXWUZCRWJWTRT-UHFFFAOYSA-N 1-amino-1-cyclohexanecarboxylic acid Chemical compound OC(=O)C1(N)CCCCC1 WOXWUZCRWJWTRT-UHFFFAOYSA-N 0.000 description 1
- IINRZEIPFQHEAP-UHFFFAOYSA-N 1-aminocycloheptane-1-carboxylic acid Chemical compound OC(=O)C1(N)CCCCCC1 IINRZEIPFQHEAP-UHFFFAOYSA-N 0.000 description 1
- NILQLFBWTXNUOE-UHFFFAOYSA-N 1-aminocyclopentanecarboxylic acid Chemical compound OC(=O)C1(N)CCCC1 NILQLFBWTXNUOE-UHFFFAOYSA-N 0.000 description 1
- PJSQECUPWDUIBT-UHFFFAOYSA-N 1-azaniumylcyclooctane-1-carboxylate Chemical compound OC(=O)C1(N)CCCCCCC1 PJSQECUPWDUIBT-UHFFFAOYSA-N 0.000 description 1
- AZKSAVLVSZKNRD-UHFFFAOYSA-M 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Chemical compound [Br-].S1C(C)=C(C)N=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=CC=C1 AZKSAVLVSZKNRD-UHFFFAOYSA-M 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 1
- ALKYHXVLJMQRLQ-UHFFFAOYSA-M 3-carboxynaphthalen-2-olate Chemical compound C1=CC=C2C=C(C([O-])=O)C(O)=CC2=C1 ALKYHXVLJMQRLQ-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 108010073466 Bombesin Receptors Proteins 0.000 description 1
- 229940122203 Bombesin receptor antagonist Drugs 0.000 description 1
- 241000269339 Bombina bombina Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108700017667 Hca(6)-Leu(13)-psi(CH2N)-Tac(14)- bombesin(6-14) Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 229940124041 Luteinizing hormone releasing hormone (LHRH) antagonist Drugs 0.000 description 1
- SGXDXUYKISDCAZ-UHFFFAOYSA-N N,N-diethylglycine Chemical compound CCN(CC)CC(O)=O SGXDXUYKISDCAZ-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920002253 Tannate Polymers 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000010976 amide bond formation reaction Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- WGNZRLMOMHJUSP-UHFFFAOYSA-N benzotriazol-1-yloxy(tripyrrolidin-1-yl)phosphanium Chemical compound C1CCCN1[P+](N1CCCC1)(N1CCCC1)ON1C2=CC=CC=C2N=N1 WGNZRLMOMHJUSP-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000002790 bombesin antagonist Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 229960003230 cetrorelix Drugs 0.000 description 1
- PRQROPMIIGLWRP-BZSNNMDCSA-N chemotactic peptide Chemical class CSCC[C@H](NC=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 PRQROPMIIGLWRP-BZSNNMDCSA-N 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 125000006638 cyclopentyl carbonyl group Chemical group 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 229940009662 edetate Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229950005627 embonate Drugs 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229950000206 estolate Drugs 0.000 description 1
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 1
- 229960005293 etodolac Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000002474 gonadorelin antagonist Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 150000001469 hydantoins Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-N lactobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical compound [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 125000001312 palmitoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 229940014662 pantothenate Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 102000014187 peptide receptors Human genes 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 210000005267 prostate cell Anatomy 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- ZHNFLHYOFXQIOW-LPYZJUEESA-N quinine sulfate dihydrate Chemical compound [H+].[H+].O.O.[O-]S([O-])(=O)=O.C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21.C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 ZHNFLHYOFXQIOW-LPYZJUEESA-N 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
- C07K7/086—Bombesin; Related peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention encompasses novel peptides that are antagonists to bombesin and bombesin like peptides and are useful in the treatment of cancer.
- the invention particularly relates to the design and synthesis of the novel peptides incorporating ⁇ , ⁇ -amino acids in a site specific manner.
- the invention encompasses methods for the generation of these peptides, compositions containing the peptides and the pharmacological applications of these peptides especially in the treatment and prevention of cancer.
- Bombesin is a 14 amino acid peptide which was first isolated from the skin of the frog Bombina bombina (Anastasi et al., Experientia, 1971, 27, 166) and has the sequence: pGlu-Gln-Arg-Leu-Gly-Asn-Gln-Trp-Ala-Val-Gly-His- Leu-Met-NH 2 (SEQ ID NO: 1)
- Gastrin releasing peptide is a 27 amino acid peptide isolated from the porcine gut. The last ten amino acids at the C-terminus of gastrin releasing peptide correspond with one amino acid alteration (3) to the last ten amino acids of bombesin, viz: H-Gly-Asn-His-Trp-Ala-Val-Gly-His-Leu-Met-NH 2
- Analogues of bombesin / GRP have been shown to inhibit the binding of gastrin releasing peptide to a SCLC cell line and to inhibit the growth of SCLC cells in-vitro and in-vivo (S. Mahmoud et al., Cancer Research, 1991, 51, 1798; Moody TW et al., Life Sci., 1995, 56, 521; Moody TW et al., 1996, 17, 1337).
- Bombesin/GRP cell receptors were established on SCLC cells, receptors were also found to be present on human prostate cells.
- a Bombesin/GRP antagonist (RC-3940-II) was found to inhibit the proliferation of SW-1990 human pancreatic adenocarcinoma cells in vivo and in vitro (Qin, Y. et al., 1995, Int. J. Cancer, 63, 257). Similar effect was seen with bombesin/GRP antagonist RC-3095 on the growth of CFPAC-1 human pancreatic cancer cells transplanted to nude mice or cultured in vitro (Qin Y et al., Can Res, 1994, 54(4): 1035-41).
- bombesin/GRP antagonists such as [Psi 13,14] bombesin.
- bombesin analogues were solid phase synthesized and incubated with intact SCLC cells at 37°C in RPMI medium in a time course fashion (0-1080 minutes) to determine enzymatic stability. The proteolytic stability of the compounds was determined by subsequent HPLC analysis.
- This invention describes the preparation and use of peptide analogs of bombesin/GRP using constrained amino acids and their use for cancer therapy, alone, or in combination or as an adjunct to or with other chemotherapeutic agents and compounds.
- the design of conformationally constrained bioactive peptide derivatives has been one of the widely used approaches for the development of peptide-based therapeutic agents.
- Non-standard amino acids with strong conformational preferences may be used to direct the course of polypeptide chain folding, by imposing local stereochemical constraints, in de novo approaches to peptide design.
- the conformational characteristics of ⁇ , ⁇ -dialkylated amino acids ' have been well studied.
- conformational properties of the higher homologs of ⁇ , ⁇ -dialkylated amino acids such as diethylglycine (Deg), di-n- propylglycine (Dpg) and di-n-butylglycine (Dbg) as well as the cyclic side chain analogs of , ⁇ -dialkylated amino acids such as 1-aminocyclopentane carboxylic acid (Ac5c), 1-aminocyclohexane carboxylic acid (Ac6c), 1-aminocycloheptane carboxylic acid (Ac7c) and 1-aminocyclooctane carboxylic acid (Ac8c) have also been shown to induce folded conformation (Prasad et al., (1995), Biopolymers 35, 11-20; Karle et al., (1995); J.
- the present invention exploits the conformational properties of , ⁇ - dialkylated amino acids for the design of biologically active peptide derivatives, taking bombesin as the model system under consideration. Furthermore, it has been shown that lipophilization of bioactive peptides improves their stability, bioavailability and the ability to permeate biomembranes (Dasgupta, P et al; 1999, Pharmaceutical Res. 16, 1047-1053; Gozes, I, et al 1996, Proc. Natl. Acad. Sci. USA, 93, 427-432). In the present invention, we have also synthesized peptide derivatives having N-terminal alkanoyl groups from C2-C1 carbon atoms, which retain anticancer activity.
- the present invention exploits the conformational properties of ⁇ , ⁇ - dialkylated amino acids for the design of biologically active peptide derivatives, taking bombesin as the model system under consideration. Furthermore, it has been shown that lipophilization of bioactive peptides improves their stability, bioavailability and the ability to permeate biomembranes (Dasgupta, P et al; 1999, Pharmaceutical Res. 16, 1047-1053; Goes, L, et al., 1996, Proc. Natl. Acad. Sci. USA, 93, 427-432).
- HBTU O-Benzotriazole-N,N,N',N'-tetramethyl-uronium- hexofluoro-phosphate
- HOBt 1-Hydroxy Benzotriazole
- DCC Dicyclohexyl carbodiimide
- the present invention provides novel polypeptides of the following general formula,
- X-D-Phe-Gln-Rl-R2-Val-R3-His-R4-NH 2 wherein X is acetyl or straight, branched, or cyclic alkanoyl group from 3-16 carbon atoms, or X is deleted,
- Rl is Trp or D-Trp
- R2 is Ala, Aib or Deg
- R3 is Gly, Aib, Deg, Dpg or Ac5c
- R4 is Leu or He or a hydrolyzable carboxy protecting group; or a pharmaceutically acceptable salt of the polypeptide. At least one of R2 or R3 is a non-standard amino acid.
- the invention also encompasses methods for making the peptides, compositions containing the peptides and use of the peptides. DETAILED DESCRIPTION OF THE INVENTION The present invention provides novel polypeptides of the following general formula,
- Rl is Trp or D-Trp
- R2 is Ala, Aib or Deg
- R3 is Gly, Aib, Deg, Dpg or Ac5c,
- R4 is Leu or He or a hydrolyzable carboxy protecting group; or a pharmaceutically acceptable salt of the polypeptide. At least one of R2 or R3 is a non-standard amino acid.
- a hydrolyzable carboxy protecting group are those groups which on hydrolysis converts to carboxylic group such as -COONH 2 , -COOMe, etc.
- the preferred alkanoyl groups are acetyl, n-butanoyl, n-hexanoyl, n- octanoyl, lauroyl, myristoyl, palmitoyl, isohexanoyl, cyclohexanoyl, cyclopentyl- carbonyl, n-heptanoyl, n-decanoyl, n-undecanoyl and 3,7-dimethyloctanoyl.
- Salts encompassed within the term "pharmaceutically acceptable salts" refer to non-toxic salts of the compounds of this invention.
- Representative salts and esters include: acetate, ascorbate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, camsylate, carbonate, citrate, dihydrochloride, methanesulfonate, ethanesulfonate, p-toluenesulfonate, cyclohexylsulfamate, quinate, edetate, edisylate, estolate, esylate, fumaxate, gluconate, glutamate, glycerophophates, hydrobromide, 5 hydrochloride, hydroxynaphthoate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, mucate, napsylate, nitrate, n-
- salts include Ca, Li, Mg, Na and K salts; salts of amino acids such lysine or arginine; guanidine, diethanolamine or choline; ammonium, substituted ammonium salts or aluminum salts.
- the salts can be prepared by standard techniques.
- Preferred peptides of this invention are:
- D-Phe-Gln-Trp-Ala-Val-Aib-His-Leu-NH 2 (SEQ ID NO:3) D-Phe-Gln-Trp-Aib-Val-Gly -His-Leu-NH 2 (SEQ ID NO:4) D-Phe-Gln-D-Trp-Ala-Val-Aib-His-Leu-NH 2 (SEQ ID NO:5) D-Phe-Gln-Trp-Aib-Val-Gly-His-Ile-NH 2 (SEQ ID NO:6) D-Phe-Gln-Trp-Ala-Val-Aib-His-Ile-NH 2 (SEQ ID NO:7)
- the present invention also envisages methods of prevention and treatment of cancer using the polypeptides of the present invention, pharmaceutical compositions comprising such polypeptides and processes for their preparation. These peptides possess antagonist properties against bombesin and bombesin-like peptides and are useful in the prevention and treatment of malignant diseases.
- Suitable routes for administration of the peptides are those known in the art and include oral, rectal, transdermal, vaginal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intradedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections.
- compositions suitable for use in present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose.
- these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers, excipients, diluents, solvents, flavorings, colorants etc.
- the preparations may be formulated in any form including but not limited to tablets, dragees, capsules, powders, syrups, suspensions, slurries, time released formulations, sustained release formulations, pills, granules, emulsions, patches, injections, solutions, liposomes or nanoparticles.
- the exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition.
- an effective amount means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought. Toxicity and therapeutic efficacy of the peptides of this invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals.
- the novel peptide analogs embodied in the present invention contain amino acids, namely ⁇ , ⁇ -dialkylated amino acids, which have been known to induce highly specific constraints in the peptide backbone.
- the ⁇ , -dialkylated amino acids, used in the present invention are synthesized from the corresponding ketones.
- the ketones are first converted into the corresponding hydantoins which are hydrolyzed using a strong acid or base, preferably H 2 SO 4 , HC1, NaOH or Na 2 CO 3 to yield the aforesaid amino acids.
- 60% sulphuric acid has been employed as the hydrolyzing agent.
- the present invention also provides a solid phase synthesis process for the preparation of peptide analogs of the general formula (I):
- X-D-Phe-Gln-Rl-R2-Val-R3-His-R4-NH 2 wherein X is acetyl or straight, branched, or cyclic alkanoyl group from 3-16 carbon atoms or X is deleted, Rl is Trp or D-Trp,
- R2 is Ala, Aib or Deg
- R3 is Gly, Aib, Deg, Dpg or Ac5c
- R4 is Leu or He which comprises sequentially loading the corresponding protected ⁇ , ⁇ -dialkylated amino acids in sequential cycles to the amino terminus of a solid phase resin, coupling the amino acids in the presence of conventional solvents and reagents to assemble a peptide-resin assembly, removing the protecting groups and cleaving the peptide from the resin to obtain a crude peptide analog.
- novel peptides in the present invention have been generated by using solid phase techniques or by a combination of solution phase procedures and solid phase techniques or by fragment condensation. These methods for the chemical synthesis of polypeptides are well known in the art (Stewart and Young, 1969, Solid Phase Peptide Synthesis, W.H. Freeman & Co.).
- the peptides were synthesized using the Fmoc strategy, on a semi automatic peptide synthesizer (CS Bio, Model 536), using optimum side chain protection.
- the peptides were assembled from C-terminus to N-terminus.
- Peptides amidated at the carboxy-terminus were synthesized using the Rink Amide resin.
- the loading of the first Fmoc protected amino acid was achieved via an amide bond formation with the solid support, mediated by Diiopropylcarbodiimide (DIPCDI) and HOBt.
- DIPCDI Diiopropylcarbodiimide
- Substitution levels for automated synthesis were preferably between 0.2 and 0.6 mmole amino acid per gram resin.
- the resin employed for the synthesis of carboxy-terminal amidated peptide analogs was 4-(2', 4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxymethyl derivatized polystyrene 1% divinylbenzene (Rink Amide) resin (100-200 mesh), procured from Calbioichem-Novabiochem Corp., La Jolla, U.S.A., (0.47 milliequivalent NH 2 /g resin).
- the N-terminal amino group was protected by 9-fluorenylmethoxy- carbonyl (Fmoc) group.
- Trityl (trt) or t-butyloxycarbonyl (Boc) were the preferred protecting groups for imadazole group of Histidine residue.
- Trityl was the preferred protecting group for Asparagine and Glutamine and tertiary butyl group (tBu) was the preferred protecting group for Aspartic acid and Glutamic acid.
- the tryptophan residue was either left unprotected or used with Boc protection.
- the side chain amino group of Lysine was protected using Boc group preferably.
- a preferred embodiment of the invention 2-8 equivalents of Fmoc protected amino acid per resin nitrogen equivalent were used.
- the activating reagents used for coupling amino acids to the resin, in solid phase peptide synthesis are well known in the art. These include DCC, DIPCDI, DIEA, BOP, PyBOP, HBTU, TBTU, or HOBt. Preferably, DCC, DIPCDI/HOBt or HBTU/HOBT and DIEA were used as activating reagents in the coupling reactions.
- the protected amino acids were either activated in situ or added in the form of preactivated esters known in the art such as NHS esters, Opfp esters etc. Atherton, E. et. al, 1988, J. Chem. Soc, Perkin Trans.I, 2887; Bodansky, M. in
- the coupling reaction was carried out in DMF, DCM or NMP or a mixture of these solvents and was monitored by Kaiser test (Kaiser et al., Anal. Biochem., 34, 595-598 (1970)). In case of a positive Kaiser test, the appropriate amino acid was re-coupled using freshly prepared activated reagents.
- the ammo-terminal Fmoc group was removed and then the peptide-resin was washed with methanol and dried.
- the peptides were then deprotected and cleaved from the resin support by treatment with trifluoroacetic acid, crystalline phenol, ethanedithiol, thioanisole and de-ionized water for 1.5 to 5 hours at room temperature.
- the crude peptide was obtained by precipitation with cold dry ether, filtered, dissolved, and lyophilized.
- the resulting crude peptide was purified by preperative high performance liquid chromatography (HPLC) using a LiChroCART® C,8 (250. Times.
- a peptide of the present invention can be made by exclusively solid phase techniques, by partial solid phase/solution phase techniques and/or fragment condensation.
- Preferred, semi-automated, stepwise solid phase methods for synthesis of peptides of the invention are provided in the examples discussed in the subsequent section of this document.
- EXAMPLE 1 First loading on Rink Amide Resin A typical preparation of the Fmoc-Leu-Rink Amide Resin was carried out using 0.5g of 4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)phenoxymethyl derivatized polystyrene 1% divinylbenzene (Rink Amide) resin (0.7 mM/g) (100-200 mesh), procured from Advanced Chemtech, Louisville, KY, U.S.A., (0.7 milliequivalent NH 2 resin). Swelling of the resin was typically carried out in dichloromethane measuring to volumes 10-40 ml/g resin.
- the resin was allowed to swell in methylene chloride (2 X 25 ml, for 10 min.). It was washed once in dimethylformamide (DMF) for 1 min. All solvents in the protocol were added in 20 ml portions per cycle.
- the Fmoc-protecting group on the resin was removed by following steps 3-7 in the protocol. The deprotection of the Fmoc group was checked by the presence of blue beads in Kaiser test.
- the first amino acid, Fmoc-Leu- OH was weighed in three to six fold excess, along with a similar fold excess of HOBt, in the amino acid vessel of the peptide synthesizer.
- the peptide- resin was washed twice with methanol, dried and weighed to obtain 0.649g. This was subjected to cleavage in a cleavage mixture consisting of trifiuoroacetic acid and scavengers, ethanedithol, crystalline phenol and thioanisole and water for a period of 1.5 to 5 hours at room temperature with continuous stirring. The peptide was precipitated using cold dry ether to obtain ⁇ 330 mg of crude peptide.
- the crude peptide was purified on a C18 preperative reverse phase HPLC column (250 X 10) on a gradient system comprising acetonitrile and water in 0.1 % TFA as described previously in the art.
- the prominent peaks were collected and lyophilized, reanalyzed on analytical HPLC and subjected to mass spectrometry. There was a good agreement between the observed molecular weight and calculated molecular weight (Calculated Mass ⁇ 983; Observed Mass ⁇ 984.2 ).
- the pure peptide was then used for bioassays.
- MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliurn bromide] assay.
- MTT assay is based on the principle of uptake of MTT, a tetrazolium salt, by metabolically active cells where it is metabolized by active mitochondria into a blue colored formazon product, which can be read spectrometrically (J. of Immunological Methods 65: 55-63, 1983).
- MTT MTT was dissolved in phosphate buffered saline with a pH of 7.4 to obtain an MTT concentration of 5 mg/ml; the resulting mixture was filtered through a 0.22 micron filter to sterilize and remove a small amount of insoluble residue. This filtered mixture was the MTT stock solution.
- Rl (absorbance of the untreated control at 540nm) - (absorbance of the blank at 540nm).
- EXAMPLE 12 The biological activity of synthesized peptide SEQ ID NO:3 was tested on different human tumor cell lines such as HT-29 & PTC (colon), A549 (non small lung cell), KB (oral squamous cell), MCF7 & MDA.MB.453 (Breast), HuTu80 (duodenum), PA-1 (ovary), MOLT-4 (leukemia) and MIAPaCa2 (Pancreas) at various molar concentrations.
- the percentage cytotoxicity induced by different concentrations of the peptide SEQ ID NO: 3 is summarized in the following table.
- EXAMPLE 13 The cytotoxic activity of other synthesized bombesin analogs was tested on eight human tumor cell lines namely HT-29, SW620, PTC (all colon), PA- 1 (ovary), A549 (lung), HBL100 (breast), MOLT-4 (leukemia) and DU145 (prostate).
- the tumor cells were collected at exponential growth phase and resuspended in medium (1.5 x 10 6 ) cells/ml in RPMI 1640 containing 10% FBS). 150 ⁇ l of medium was added to the wells of a 96-well tissue culture plate (Nunc, Denmark) followed by 30 ⁇ l of cell suspension. The plate was left in incubator (37°C, 5% CO 2 overnight.
- EXAMPLE 14 The cytotoxic effect of peptide sequences SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12, were studied by MTT assay which is based on the principle of uptake of MTT[3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyl tetrazolium bromide], a tetrazolium salt by the metabolically active cells where it is metabolized by active mitochondria into a blue colored formazan product which can be read spectrophotometrically.
- Tumor cells KB oral squamous
- HuTu80 Stomach
- PTC and SW620 colon
- U87MG Glioblastoma
- HBL 100 Breast
- HeP2 laryngeal
- LI 32 LI 32 (Lung) were incubated with the peptide analogs for 48 hours at 37°C in a 96-well culture plate, followed by the addition of 100 ⁇ g MTT and further incubation of 1 hour.
- the formazan crystals formed inside the cells were dissolved with a detergent comprising 10% Sodium dodecyl sulfate and 0.01 N HC1 and optical density read on a multiscan ELISA reader. The optical density was directly proportional to the number of proliferating and metabolically active cells. Percent cytotoxicity of peptide analogs is shown in the following Table.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention encompasses novel peptides that are antagonists to bombesin and bombesin like peptides and are useful in the treatment of cancer. The invention particularly relates to the design and synthesis of the novel peptides incorporating α,α-amino acids in a site specific manner. The invention encompasses methods for the generation of these peptides, compositions containing the peptides and the pharmacological applications of these peptides especially in the treatment and prevention of cancer.
Description
BOMBESIN ANALOGS FOR TREATMENT OF CANCER FIELD OF INVENTION The present invention encompasses novel peptides that are antagonists to bombesin and bombesin like peptides and are useful in the treatment of cancer. The invention particularly relates to the design and synthesis of the novel peptides incorporating α,α-amino acids in a site specific manner. The invention encompasses methods for the generation of these peptides, compositions containing the peptides and the pharmacological applications of these peptides especially in the treatment and prevention of cancer. BACKGROUND OF THE INVENTION
Bombesin is a 14 amino acid peptide which was first isolated from the skin of the frog Bombina bombina (Anastasi et al., Experientia, 1971, 27, 166) and has the sequence: pGlu-Gln-Arg-Leu-Gly-Asn-Gln-Trp-Ala-Val-Gly-His- Leu-Met-NH2 (SEQ ID NO: 1)
Gastrin releasing peptide (GRP) is a 27 amino acid peptide isolated from the porcine gut. The last ten amino acids at the C-terminus of gastrin releasing peptide correspond with one amino acid alteration (3) to the last ten amino acids of bombesin, viz: H-Gly-Asn-His-Trp-Ala-Val-Gly-His-Leu-Met-NH2
(SEQ ID NO:2).
It has been reported (J. H. Walsh and J. R. Reeve, Peptides 6, (3), 63-68, (1985)) that bombesin and bombesin-like peptides such as gastrin releasing peptide (GRP) are secreted by human small-cell lung cancer (SCLC) cells. It has been postulated (P. J. Woll and E. Rozengurt, PNAS 85, 1859-1863, (1988)) that gastrin releasing factor antagonists would bind competitively to bombesin receptors in animals and would therefore be of use in the treatment of SCLC and/or in the control of clinical symptoms associated with this disease and due to hypersecretion of this peptide hormone. Analogues of bombesin / GRP have been shown to inhibit the binding of gastrin releasing peptide to a SCLC cell line and to inhibit the growth of SCLC cells in-vitro and in-vivo (S. Mahmoud et al., Cancer Research, 1991, 51, 1798; Moody TW et al., Life Sci., 1995, 56, 521; Moody TW et al.,
1996, 17, 1337). After Bombesin/GRP cell receptors were established on
SCLC cells, receptors were also found to be present on human prostate cells. Reile H et al., (Prostate, 1994, 25: 29-38) showed that the PC-3 and DU-145 human prostate cancer cell lines possess specific high-affinity receptors for bombesin/GRP and are suitable models for the evaluation of anti-neoplastic activity of new bombesin/GRP antagonists in the treatment of androgen-dependent prostate cancer. Bombesin also increased the penetration of the two human prostatic carcinoma cell lines, the relatively indolent LNCaP cells and the aggressively growing and invasive PC-3 cells, in an in vitro invasion of reconstituted basement membrane (Matrigel) (Hoosein NM et al., J Urol, 149(5): 1209-1213). High-affmity binding sites for GRP were found on human colorectal cancer tissue (Preston, SR. et al, Br. J. Can., 1995, 71, 1087), suggesting that bombesin-like peptides may have a role in the pathogenesis of colorectal cancer, and bombesin receptor antagonists may be of value in the treatment of receptor-positive tumours. Inhibitory effects of bombesin/ GRP antagonist RC-3095 and somatostatin analogue RC-160 were also seen on growth of HT-29 human colon cancer xenografts in nude mice (Radulovic S et al., Acta Oncol, 1994, 33(6): 693-701).
Studies with the anti-bombesin/GRP antibodies lead to the hypothesis that it may be possible to disrupt the autocrine growth cycle of bombesin/GRP using designed peptide receptor antagonists. Since then several types of Bombesin antagonists have been reported. These antagonists have been defined by type and position of the substitutions of the natural sequence. Early receptor antagonists suffered from low potency, lack of specificity, and toxicity, which presented serious problems with their scientific and therapeutic use. More recent work has concentrated on modification of the carboxy terminal (C-terminal) region of these peptides to interrupt the receptor interaction utilizing a variety of different types of C-terminal modified analogs. These have included incorporation of D-amino acids, non-peptide bonds for example (psi. CH2NH), amide, and ester modifications. These alterations gave rise to certain peptides having improved characteristics (Staley J et al., Peptides, 1991, 12(1): 145- 9; Coy DH et al., J Natl Cancer Inst Monogr, 1992, 13: 133-9). Other patents that describes bombesin and related analogs are:
USP5,834,433 (1998)
USP 5,723,578 (1998)
USP 5,620,959 (1997)
USP 5,620,955 (1997) USP 5,428,019 (1995)
USP 5,369,094 (1994)
USP 5,084,555 (1992)
A Bombesin/GRP antagonist (RC-3940-II) was found to inhibit the proliferation of SW-1990 human pancreatic adenocarcinoma cells in vivo and in vitro (Qin, Y. et al., 1995, Int. J. Cancer, 63, 257). Similar effect was seen with bombesin/GRP antagonist RC-3095 on the growth of CFPAC-1 human pancreatic cancer cells transplanted to nude mice or cultured in vitro (Qin Y et al., Can Res, 1994, 54(4): 1035-41).
As reported earlier, the autocrine growth cycle of bombesin/GRP in SCLC can be disrupted by bombesin/GRP antagonists such as [Psi 13,14] bombesin. Several bombesin analogues were solid phase synthesized and incubated with intact SCLC cells at 37°C in RPMI medium in a time course fashion (0-1080 minutes) to determine enzymatic stability. The proteolytic stability of the compounds was determined by subsequent HPLC analysis. [Psi 13, 14] Bombesin was found to be very stable to metabolic enzymes (Tl/2= 646 min.) and inhibited SCLC xenograft formation in vivo in a dose-dependent manner (Davis TP et al., Peptides, 1992, 13(2): 401-7).
Female athyrnic nude mice bearing xenografts of the MCF-7 Mill human breast cancer cell line were treated for 7 weeks with bombesin/GRP antagonist (DTpi6, Leul3 ρsi[CH2NH]-Leul4) bombesin (6-14)(RC-3095) injected subcutaneously daily at a dose of 20 μg and LHRH antagonist SB-75 (Cetrorelix) administered biweekly in the form of microgranules releasing 45 μg/ day. After 2 weeks of treatment, a significant inhibition of tumor volume was observed in the groups treated with RC-3095 alone or in combination with SB-75 (Yano T et al., Cancer, 1994, 73(4): 1229-38).
Pinski J et al., (Int. J. Cancer, 1994, 57(4): 574-580), demonstrated for the first time that the growth of gastrin-responsive human gastric carcinoma
MKN45 cell line xenografts in nude mice could be inhibited not only by somatostatin analogues, but also by administration of modern bombesin GRP antagonists, such as RC-3095, or. a combination of these. RC-3095 also effectively inhibited tumor growth in nude mice bearing xenografts of the human gastric cancer cell line Hs746T (Qin Y et al., J Cancer Res Clin Oncol, 1994,120(9):519-528).
This invention describes the preparation and use of peptide analogs of bombesin/GRP using constrained amino acids and their use for cancer therapy, alone, or in combination or as an adjunct to or with other chemotherapeutic agents and compounds. The design of conformationally constrained bioactive peptide derivatives has been one of the widely used approaches for the development of peptide-based therapeutic agents. Non-standard amino acids with strong conformational preferences may be used to direct the course of polypeptide chain folding, by imposing local stereochemical constraints, in de novo approaches to peptide design. The conformational characteristics of α,α-dialkylated amino acids' have been well studied. The incorporation of these amino acids restricts the rotation of φ, Ψ angles, within the molecule, thereby stabilizing a desired peptide conformation. The prototypic member of ,α-dialkylated aminoacids, α- aminoisobutyric acid (Aib) or α,α-dimethylglycine has been shown to induce (β- turn or helical conformation when incorporated in a peptide sequence (Prasad and Balaram, (1984); CRC Crit. Rev. Biochem. 16, 307-347; Karle and Balaram (1990) Biochemistry 29, 6747-6756). The conformational properties of the higher homologs of α,α-dialkylated amino acids such as diethylglycine (Deg), di-n- propylglycine (Dpg) and di-n-butylglycine (Dbg) as well as the cyclic side chain analogs of ,α-dialkylated amino acids such as 1-aminocyclopentane carboxylic acid (Ac5c), 1-aminocyclohexane carboxylic acid (Ac6c), 1-aminocycloheptane carboxylic acid (Ac7c) and 1-aminocyclooctane carboxylic acid (Ac8c) have also been shown to induce folded conformation (Prasad et al., (1995), Biopolymers 35, 11-20; Karle et al., (1995); J. Amer. Chem. Soc. 117, 9632-9637). α,α-dialkylated amino acids have been used in the design of highly potent chemotactic peptide analogs (Prasad et al., (1996) Int. J. Peptide Proteins RCS. 48, 312-318).
The present invention exploits the conformational properties of ,α-
dialkylated amino acids for the design of biologically active peptide derivatives, taking bombesin as the model system under consideration. Furthermore, it has been shown that lipophilization of bioactive peptides improves their stability, bioavailability and the ability to permeate biomembranes (Dasgupta, P et al; 1999, Pharmaceutical Res. 16, 1047-1053; Gozes, I, et al 1996, Proc. Natl. Acad. Sci. USA, 93, 427-432). In the present invention, we have also synthesized peptide derivatives having N-terminal alkanoyl groups from C2-C1 carbon atoms, which retain anticancer activity.
The present invention exploits the conformational properties of α,α- dialkylated amino acids for the design of biologically active peptide derivatives, taking bombesin as the model system under consideration. Furthermore, it has been shown that lipophilization of bioactive peptides improves their stability, bioavailability and the ability to permeate biomembranes (Dasgupta, P et al; 1999, Pharmaceutical Res. 16, 1047-1053; Goes, L, et al., 1996, Proc. Natl. Acad. Sci. USA, 93, 427-432).
Throughout the specification and claims the amino acid residues are designated by their standard abbreviations. Amino acids denote L-configuration unless otherwise indicated by D or DL appearing before the symbol and separated from it by a hypen. Throughout the specification and claims, the following abbreviations are used with the following meanings:
BOP: Benzotriazole-l-yl-oxy-tris-(dimethylamino)- phosphonium hexfluorophosphate
PyBOP : Benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexofluorophospate TBTU: 2-(lH-Benzotriazole-lyl)-l,l,3,3-tetramethyluronium tetrafluroborate
HBTU: O-Benzotriazole-N,N,N',N'-tetramethyl-uronium- hexofluoro-phosphate
HOBt: 1-Hydroxy Benzotriazole DCC: Dicyclohexyl carbodiimide
DIPCDI: Diisopropyl carbodiimide
DIEA: Diisopropyl ethylamine
DMF: Dimethyl formamide
DCM: Dichloromethane
NMP: N-Methyl-2-pyrrolidinone
TFA: trifluoroacetic acid SUMMARY OF INVENTION
The present invention provides novel polypeptides of the following general formula,
X-D-Phe-Gln-Rl-R2-Val-R3-His-R4-NH2 wherein X is acetyl or straight, branched, or cyclic alkanoyl group from 3-16 carbon atoms, or X is deleted,
Rl is Trp or D-Trp, R2 is Ala, Aib or Deg, R3 is Gly, Aib, Deg, Dpg or Ac5c,
R4 is Leu or He or a hydrolyzable carboxy protecting group; or a pharmaceutically acceptable salt of the polypeptide. At least one of R2 or R3 is a non-standard amino acid. The invention also encompasses methods for making the peptides, compositions containing the peptides and use of the peptides. DETAILED DESCRIPTION OF THE INVENTION The present invention provides novel polypeptides of the following general formula,
X-D-Phe-Gln-Rl -R2- Val-R3-His-R4-NH2 wherein X is acetyl or straight, branched, or cyclic alkanoyl group from 3-16 carbon atoms, or X is deleted,
Rl is Trp or D-Trp, R2 is Ala, Aib or Deg,
R3 is Gly, Aib, Deg, Dpg or Ac5c,
R4 is Leu or He or a hydrolyzable carboxy protecting group; or a pharmaceutically acceptable salt of the polypeptide. At least one of R2 or R3 is a non-standard amino acid. A hydrolyzable carboxy protecting group are those groups which on hydrolysis converts to carboxylic group such as -COONH2, -COOMe, etc.
The preferred alkanoyl groups are acetyl, n-butanoyl, n-hexanoyl, n-
octanoyl, lauroyl, myristoyl, palmitoyl, isohexanoyl, cyclohexanoyl, cyclopentyl- carbonyl, n-heptanoyl, n-decanoyl, n-undecanoyl and 3,7-dimethyloctanoyl.
Salts encompassed within the term "pharmaceutically acceptable salts" refer to non-toxic salts of the compounds of this invention. Representative salts and esters include: acetate, ascorbate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, camsylate, carbonate, citrate, dihydrochloride, methanesulfonate, ethanesulfonate, p-toluenesulfonate, cyclohexylsulfamate, quinate, edetate, edisylate, estolate, esylate, fumaxate, gluconate, glutamate, glycerophophates, hydrobromide, 5 hydrochloride, hydroxynaphthoate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, mucate, napsylate, nitrate, n-methylglucamine, oleate, oxalate, palmoates, pamoate (embonate), palmitate, pantothenate, perchlorates, phosphate/diphosphate, polygalacturonate, salicylates, stearate, succinates, sulfate, sulfamate, subacetate, succinate, tannate, tartrate, trifluoroacetate, tosylate and valerate.
Other salts include Ca, Li, Mg, Na and K salts; salts of amino acids such lysine or arginine; guanidine, diethanolamine or choline; ammonium, substituted ammonium salts or aluminum salts.
The salts can be prepared by standard techniques. Preferred peptides of this invention are:
D-Phe-Gln-Trp-Ala-Val-Aib-His-Leu-NH2 (SEQ ID NO:3) D-Phe-Gln-Trp-Aib-Val-Gly -His-Leu-NH2 (SEQ ID NO:4) D-Phe-Gln-D-Trp-Ala-Val-Aib-His-Leu-NH2 (SEQ ID NO:5) D-Phe-Gln-Trp-Aib-Val-Gly-His-Ile-NH2 (SEQ ID NO:6) D-Phe-Gln-Trp-Ala-Val-Aib-His-Ile-NH2 (SEQ ID NO:7)
D-Phe-Gln-D-Trp-Ala-Val-Dpg-His-Leu-NH2 (SEQ ID NO:8) D-Phe-Gln-Trp-Deg-Val-Gly-His-Leu-NH2 (SEQ ID NO:9) D-Phe-Gln-Trp-Ala-Val-Ac5c-His-Leu-NH2 (SEQ ID NO: 10) Butanoyl-D-Phe-Gln-Trp-Ala-Val-Aib-His-Leu-NH2 (SEQ ID NO: 11)
Octanoyl-D-Phe-Gln-Trp-Ala-Val-Aib-His-Leu-NH2 (SEQ ID NO: 12)
The present invention also envisages methods of prevention and treatment of cancer using the polypeptides of the present invention, pharmaceutical compositions comprising such polypeptides and processes for their preparation. These peptides possess antagonist properties against bombesin and bombesin-like peptides and are useful in the prevention and treatment of malignant diseases.
Suitable routes for administration of the peptides are those known in the art and include oral, rectal, transdermal, vaginal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intradedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections.
Pharmaceutical compositions suitable for use in present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers, excipients, diluents, solvents, flavorings, colorants etc. The preparations may be formulated in any form including but not limited to tablets, dragees, capsules, powders, syrups, suspensions, slurries, time released formulations, sustained release formulations, pills, granules, emulsions, patches, injections, solutions, liposomes or nanoparticles. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition.
The term "an effective amount" means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought. Toxicity and therapeutic efficacy of the peptides of this invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals.
The novel peptide analogs embodied in the present invention contain amino acids, namely α,α-dialkylated amino acids, which have been known to induce highly specific constraints in the peptide backbone. The α, -dialkylated amino acids, used in the present invention are synthesized from the corresponding ketones. In a preferred embodiment of the invention, the ketones are first converted
into the corresponding hydantoins which are hydrolyzed using a strong acid or base, preferably H2SO4, HC1, NaOH or Na2CO3 to yield the aforesaid amino acids. In a preferred embodiment of the present invention, 60% sulphuric acid has been employed as the hydrolyzing agent. The present invention also provides a solid phase synthesis process for the preparation of peptide analogs of the general formula (I):
X-D-Phe-Gln-Rl-R2-Val-R3-His-R4-NH2 wherein X is acetyl or straight, branched, or cyclic alkanoyl group from 3-16 carbon atoms or X is deleted, Rl is Trp or D-Trp,
R2 is Ala, Aib or Deg, R3 is Gly, Aib, Deg, Dpg or Ac5c, R4 is Leu or He which comprises sequentially loading the corresponding protected α,α-dialkylated amino acids in sequential cycles to the amino terminus of a solid phase resin, coupling the amino acids in the presence of conventional solvents and reagents to assemble a peptide-resin assembly, removing the protecting groups and cleaving the peptide from the resin to obtain a crude peptide analog.
The novel peptides in the present invention have been generated by using solid phase techniques or by a combination of solution phase procedures and solid phase techniques or by fragment condensation. These methods for the chemical synthesis of polypeptides are well known in the art (Stewart and Young, 1969, Solid Phase Peptide Synthesis, W.H. Freeman & Co.).
In a preferred embodiment of the present invention the peptides were synthesized using the Fmoc strategy, on a semi automatic peptide synthesizer (CS Bio, Model 536), using optimum side chain protection. The peptides were assembled from C-terminus to N-terminus. Peptides amidated at the carboxy-terminus were synthesized using the Rink Amide resin. The loading of the first Fmoc protected amino acid was achieved via an amide bond formation with the solid support, mediated by Diiopropylcarbodiimide (DIPCDI) and HOBt. Substitution levels for automated synthesis were preferably between 0.2 and 0.6 mmole amino acid per gram resin.
The resin employed for the synthesis of carboxy-terminal amidated peptide analogs was 4-(2', 4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxymethyl derivatized polystyrene 1% divinylbenzene (Rink Amide) resin (100-200 mesh), procured from Calbioichem-Novabiochem Corp., La Jolla, U.S.A., (0.47 milliequivalent NH2/g resin).
The N-terminal amino group was protected by 9-fluorenylmethoxy- carbonyl (Fmoc) group. Trityl (trt) or t-butyloxycarbonyl (Boc) were the preferred protecting groups for imadazole group of Histidine residue. The hydroxyl groups of Serine, Threonine and Tyrosine were preferably protected by t-butyl group (tBu) 2,2,5,7,8-pentamethyl-chroman-6-sulfonyl (Pmc) or 2,2,4,7,-pentamethyl-dihydro- benzenofuran-5 5-sulfonyl (Pbf) were the preferred protecting groups for the guandino group of Arginine. Trityl was the preferred protecting group for Asparagine and Glutamine and tertiary butyl group (tBu) was the preferred protecting group for Aspartic acid and Glutamic acid. The tryptophan residue was either left unprotected or used with Boc protection. The side chain amino group of Lysine was protected using Boc group preferably.
In a preferred embodiment of the invention, 2-8 equivalents of Fmoc protected amino acid per resin nitrogen equivalent were used. The activating reagents used for coupling amino acids to the resin, in solid phase peptide synthesis, are well known in the art. These include DCC, DIPCDI, DIEA, BOP, PyBOP, HBTU, TBTU, or HOBt. Preferably, DCC, DIPCDI/HOBt or HBTU/HOBT and DIEA were used as activating reagents in the coupling reactions.
The protected amino acids were either activated in situ or added in the form of preactivated esters known in the art such as NHS esters, Opfp esters etc. Atherton, E. et. al, 1988, J. Chem. Soc, Perkin Trans.I, 2887; Bodansky, M. in
"The Peptides, Analysis, Synthesis and Biology (E. Gross, J, Meienhofer, eds) Vol. I, Academic Press, New York, 1979, 106.
The coupling reaction was carried out in DMF, DCM or NMP or a mixture of these solvents and was monitored by Kaiser test (Kaiser et al., Anal. Biochem., 34, 595-598 (1970)). In case of a positive Kaiser test, the appropriate amino acid was re-coupled using freshly prepared activated reagents.
After the assembly of the peptide was completed, the ammo-terminal
Fmoc group was removed and then the peptide-resin was washed with methanol and dried. The peptides were then deprotected and cleaved from the resin support by treatment with trifluoroacetic acid, crystalline phenol, ethanedithiol, thioanisole and de-ionized water for 1.5 to 5 hours at room temperature. The crude peptide was obtained by precipitation with cold dry ether, filtered, dissolved, and lyophilized. The resulting crude peptide was purified by preperative high performance liquid chromatography (HPLC) using a LiChroCART® C,8 (250. Times. 10) reverse phase column (Merck, Darmstadt, Germany) on a Preparative HPLC system (Shimadzu Corporation, Japan) using a gradient of 0.1 % TFA in acetonitrile and water. The eluted fractions were reanalyzed on Analytical HPLC system (Shimadzu Corporation, Japan) using a C18 LiChrospherg®, WP-300 (300 X 4) reverse- phase column. Acetonitrile was evaporated and the fractions were lyophilized to obtain the pure peptide. The identity of each peptide was confirmed by electron-spray mass spectroscopy. Synthesis Of Peptides
A peptide of the present invention can be made by exclusively solid phase techniques, by partial solid phase/solution phase techniques and/or fragment condensation. Preferred, semi-automated, stepwise solid phase methods for synthesis of peptides of the invention are provided in the examples discussed in the subsequent section of this document.
The present invention will be further described in detail with reference to the following examples, as will be appreciated by a person skilled in the art are merely illustrative and should not be construed as limiting. Various other modifications of the invention will be possible without departing from the spirit and scope of the present invention.
EXAMPLE 1 First loading on Rink Amide Resin A typical preparation of the Fmoc-Leu-Rink Amide Resin was carried out using 0.5g of 4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)phenoxymethyl derivatized polystyrene 1% divinylbenzene (Rink Amide) resin (0.7 mM/g) (100-200 mesh), procured from Advanced Chemtech, Louisville, KY, U.S.A., (0.7 milliequivalent NH2 resin). Swelling of the resin was typically carried out in
dichloromethane measuring to volumes 10-40 ml/g resin. The resin was allowed to swell in methylene chloride (2 X 25 ml, for 10 min.). It was washed once in dimethylformamide (DMF) for 1 min. All solvents in the protocol were added in 20 ml portions per cycle. The Fmoc-protecting group on the resin was removed by following steps 3-7 in the protocol. The deprotection of the Fmoc group was checked by the presence of blue beads in Kaiser test. For loading of the first amino acid on the free amino (NH2) group of the resin, the first amino acid, Fmoc-Leu- OH, was weighed in three to six fold excess, along with a similar fold excess of HOBt, in the amino acid vessel of the peptide synthesizer. These were dissolved in dimethylformamide (A.C.S. grade) (J.T.Baker, Phillipsburg, New Jersey, U.S.A.) and activated with DIPCDI, just prior to the addition to the resin in the reaction vessel of the peptide synthesizer. HOBt was added in all coupling reactions, especially in the case of Gin and His. The coupling reaction was carried out for a period ranging from 1-3 hours. The loading of the amino acid on the resin was confirmed by the presence of colorless beads in the Kaiser Test. The loading efficiency was ascertained by the increase of weight of the resin after the addition of the amino acid.
EXAMPLE 2 Synthesis of D-Phe-Gln-T -Ala-Val-Aib-His-Leu-NH, (SEQ ID NO: 3 The synthesis of SEQ ID NO: 3, amidated at the carboxy- terminus, was initiated by using all of the resin loaded with Fmoc-Leu-OH as prepared in Example 1 above. This was subjected to stepwise deprotection and coupling steps as in steps 1-10 of the synthesis cycle. In each coupling reaction, a two to six fold excess of amino acid, DIPCDI and HOBt were used. Upon completion of synthesis and removal of the N-terminal Fmoc protecting group (steps 1-6 of the synthesis cycle), the peptide- resin was washed twice with methanol, dried and weighed to obtain 0.649g. This was subjected to cleavage in a cleavage mixture consisting of trifiuoroacetic acid and scavengers, ethanedithol, crystalline phenol and thioanisole and water for a period of 1.5 to 5 hours at room temperature with continuous stirring. The peptide was precipitated using cold dry ether to obtain ~ 330 mg of crude peptide. The crude peptide was purified on a C18 preperative reverse phase HPLC column (250 X 10) on a gradient system comprising acetonitrile and water in
0.1 % TFA as described previously in the art. The prominent peaks were collected and lyophilized, reanalyzed on analytical HPLC and subjected to mass spectrometry. There was a good agreement between the observed molecular weight and calculated molecular weight (Calculated Mass ~ 983; Observed Mass ~ 984.2 ). The pure peptide was then used for bioassays.
EXAMPLE 3 Synthesis of D-Phe-Gln-Trp-Aib-Val-Glv-His-Leu-NH-, (SEQ ID NO:4^
The synthesis, cleavage and lyophilization steps were carried out as in the Example 2 above using the appropriate amino acids. The calculated mass was ~ 969 and the observed mass was 970.4.
EXAMPLE 4 Synthesis of D-Phe-Gln-D-Tro-Ala-Val-Aib-His-Leu-NH, (SEQ ID NO:5^)
The synthesis, cleavage and lyophilization steps were carried out as in the Example 2 above using the appropriate amino acids. The calculated mass was ~ 983 and the observed mass was 984.30.
EXAMPLE 5 Synthesis of D-Phe-Gln-Trp-Aib-Val-Glv-His-He-NH, (SEQ ID NO:6)
The synthesis, cleavage and lyophilization steps were carried out as in the Example 2 above using the appropriate amino acids. The calculated mass was ~ 969 and the observed mass was 970.2.
EXAMPLE 6 Synthesis of D-Phe-Gln-Trp-Ala-Val-Aib-His-Ile-NH, (SEQ ID NO^
The synthesis, cleavage and lyophilization steps were carried out as in the Example 2 above using the appropriate amino acids. The calculated mass was ~ 983 and the observed mass was 984.2.
EXAMPLE 7 Synthesis of D-Phe-Gln-D-Trp-Ala-Val-Dpg -His-Leu-NH-, (SEQ ID NO:8)
The synthesis, cleavage and lyophilization steps were carried out as in the Example 2 above using the appropriate amino acids. The calculated mass was ~ 1039 and the 25 observed mass was 1040.4.
EXAMPLE 8 Synthesis D-Phe-Gln-Trp-Deg-Val-Glv-His-Leu-NH, (SEO ID NO:9)
The synthesis, cleavage and lyophilization steps were carried out as in the Example 2 above using the appropriate amino acids. The calculated mass was ~ 997 and the observed mass was 998.5.
EXAMPLE 9 Synthesis of D-Phe-Gln-Trp-Ala-Val-Ac5c-His-Leu-NH, (SEO ID NO: 10)
The synthesis, cleavage and lyophilization steps were carried out as in the Example 2 above using the appropriate amino acids. The calculated mass was ~ 1009 and the observed mass was 1010.4.
EXAMPLE 10 Synthesis of Butanoyl-D-Phe-Gln-Trp-Ala-Val-Aib-His-Leu-NH (SEO ID NO: in The conjugation of the butanoyl group at the N-terminal position was done on solid phase. The above peptide sequence was synthesized on resin as described in Example 2. After the deprotection of D-Arg amino acid it was further coupled with butanoic acid in DMF using DIPCDI and HOBT. The cleavage and purification was further carried out following the standard protocol as described in Example 2. The final peptide was further analyzed by mass spectroscopy. The calculated mass and observed were in good agreement, (calculated mass = ~ 1053, observed mass = 1054.2).
EXAMPLE 11 Synthesis of Octanoyl-D-Phe-Gm-Trp-Ala-Val-Aib-His-Leu-NH, (SEO ID NO: 12 The conjugation of the octanoyl group at the N-terminal position after the peptide synthesized as described in Example 2 was done on solid phase using octanoic acid in DMF using DIPCDI and HOBT. The cleavage and purification was further carried out following the standard protocol as described in Example 2. The final purified peptide was further analyzed by mass spectroscopy. The calculated mass and observed were in good agreement, (calculated mass = ~ 1109, observed mass = 1110.5). BIOLOGICAL ACTIVITY OF PEPTIDES
The cytoxicity of the peptide analog was carried out by two day MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliurn bromide] assay. MTT assay
is based on the principle of uptake of MTT, a tetrazolium salt, by metabolically active cells where it is metabolized by active mitochondria into a blue colored formazon product, which can be read spectrometrically (J. of Immunological Methods 65: 55-63, 1983). To prepare the MTT stock solution needed, MTT was dissolved in phosphate buffered saline with a pH of 7.4 to obtain an MTT concentration of 5 mg/ml; the resulting mixture was filtered through a 0.22 micron filter to sterilize and remove a small amount of insoluble residue. This filtered mixture was the MTT stock solution.
Briefly, for each tumor type, 10,000 cells were seeded in 96-well tissue culture plate and incubated with each peptide concentration individually in a CO2 incubator for 48 hrs. The peptide analog at different concentrations was added once every 24 hrs during the incubation period. Control cultures, which were not treated with the peptide was similarly incubated. The assay was terminated by adding lOOμg (20μl) of MTT to each well, incubating for three hours, decanting supernatant and finally adding 150 μl of dimethylsulphoxide to each well to dissolve the formazon. The plates were incubated for 15 minutes at 37°C and read spectro- photometrically at 540 nm; and cytotoxicity percentage was calculated by following formula:
Cytotoxicity Percentage = lOOx [1-X/R1], where X= (absorbance of the treated sample at 540 nm-absorbance of a blank at 540 nn) and
Rl = (absorbance of the untreated control at 540nm) - (absorbance of the blank at 540nm).
Thus in each of the MTT cytotoxicity assay the percentage was calculated according to the above formula and was based on the proliferation of the untreated controls, the value of which was considered as 100%.
EXAMPLE 12 The biological activity of synthesized peptide SEQ ID NO:3 was tested on different human tumor cell lines such as HT-29 & PTC (colon), A549 (non small lung cell), KB (oral squamous cell), MCF7 & MDA.MB.453 (Breast), HuTu80 (duodenum), PA-1 (ovary), MOLT-4 (leukemia) and MIAPaCa2 (Pancreas) at various molar concentrations. The percentage cytotoxicity induced by different
concentrations of the peptide SEQ ID NO: 3 is summarized in the following table.
EXAMPLE: 13 The cytotoxic activity of other synthesized bombesin analogs was tested on eight human tumor cell lines namely HT-29, SW620, PTC (all colon), PA- 1 (ovary), A549 (lung), HBL100 (breast), MOLT-4 (leukemia) and DU145 (prostate). The tumor cells were collected at exponential growth phase and resuspended in medium (1.5 x 106) cells/ml in RPMI 1640 containing 10% FBS). 150μl of medium was added to the wells of a 96-well tissue culture plate (Nunc, Denmark) followed by 30μl of cell suspension. The plate was left in incubator (37°C, 5% CO2 overnight. 20μl of the peptide (10"7 x 10-10 M concentration) was added to marked wells of the 96-well plate. Each concentration was plated in triplicates. 20μl of medium alone was added to control wells while wells without cells served as blanks. A total volume of 200μl was ensured in each well and plate was left in incubator (37°C, 5% CO2). After 72 hours of incubation an MTT assay was performed and percentage cytotoxicity was calculated with respect to control cells. Following tables show the cytotoxicity achieved on various cell lines at different concentrations.
PA-1
PTC
DU145
SW620
HT29
MOLT4
HBL
A549
EXAMPLE 14 The cytotoxic effect of peptide sequences SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12, were studied by MTT assay which is based on the principle of uptake of MTT[3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyl tetrazolium bromide], a tetrazolium salt by the metabolically active cells where it is metabolized by active mitochondria into a blue colored formazan product which can be read spectrophotometrically. Tumor cells KB (oral squamous), HuTu80 (Stomach), PTC and SW620 (colon), U87MG (Glioblastoma), HBL 100 (Breast), HeP2 (laryngeal) and LI 32 (Lung) were incubated with the peptide analogs for 48 hours at 37°C in a 96-well culture plate, followed by the addition of 100 μg MTT and further incubation of 1 hour. The formazan crystals formed inside the cells were dissolved with a detergent comprising 10% Sodium dodecyl sulfate and 0.01 N HC1 and optical density read on a multiscan ELISA reader. The optical
density was directly proportional to the number of proliferating and metabolically active cells. Percent cytotoxicity of peptide analogs is shown in the following Table.
SEO ID: 9
SEO ID: 10
SEO ID: 11
All publications referenced are incorporated by reference herein, including the nucleic acid sequences acid sequences and amino acid sequences listed in each publication. All the compounds and methods disclosed and referred to in the publications mentioned above are incorporated by reference herein, including those compounds disclosed and referred to in articles cited by the publications mentioned above.
Claims
1. A peptide of the formula X-D-Phe-Gln-Rl-R2-Val-R3-His-R4-NH2 wherein X is acetyl or straight, branched or cyclic alkanoyl group from 3-16 carbon atoms, or X is deleted
Rl is Trp or D-Trp, R2 is Ala, Aib or Deg, R3 is Gly, Aib, Deg, Dpg or Ac5c, R4 is Leu or He or a hydrolyzable carboxy protecting group; wherein at least one of R2 or R3 is an α, - dialkylated amino acid; or a pharmaceutically acceptable salt of the peptide.
2. The peptide of claim 1, wherein X is deleted, Rl is Trp, R2 is Ala, R3 is Aib and R4 is Leu, and said peptide has the formula:
D-Phe-Gln-Trp-Ala-Val-Aib-His-Leu-NH2 (SEQ ID NO: 3) or a pharmaceutically acceptable salt thereof.
3. The peptide of claim 1, wherein X is deleted, Rl is Trp, R2 is Aib, R3 is Gly and R4 is Leu, and said peptide has the formula:
D-Phe-Glrι-Trp-Aib-Val-Gly-His-Leu-NH2 (SEQ ID NO: 4) or a pharmaceutically acceptable salt thereof.
4. The peptide of claim 1, wherein X is deleted, Rl is D-Trp, R2 is Ala,
R3 is Aib and R4 is Leu, and said peptide has the formula:
D-Phe-Gln-D-Trp-Ala-Val-Aib-His-Leu-NH2 (SEQ ID NO:5) or a pharmaceutically acceptable salt thereof.
5. The peptide of claim 1, wherein X is deleted, Rl is Trp, R2 is Aib, R3 is Gly and R4 is He, and said peptide has the formula:
D-Phe-Gln-Trp-Aib-Val-Gly-His-Ile-NH2 (SEQ ID NO: 6) or a pharmaceutically acceptable salt thereof.
6. The peptide of claim 1, wherein X is deleted, Rl is Trp, R2 is Ala, R3 is Aib and R4 is He, and said peptide has the formula: D-Phe-Gln-Trp-Ala-Val-Aib-His-Ile-NH2 (SEQ ID NO:7) or a pharmaceutically acceptable salt thereof.
7. The peptide of claim 1, wherein X is deleted, Rl is D-Trp, R2 is Ala, R3 is Dpg and R4 is Leu, and said peptide has the formula:
D-Phe-Gln-D-Trp-Ala-Val-Dpg-His-Leu-NH2 (SEQ ID NO: 8) or a pharmaceutically acceptable salt thereof.
8. The peptide of claim 1, wherein X is deleted, Rl is Trp, R2 is Deg, R3 is Gly and R4 is Leu, and said peptide has the formula:
D-Phe-Gln-Trp-Deg-Val-Gly-His-Leu-NH2 (SEQ ID NO:9) or a pharmaceutically acceptable salt thereof.
9. The peptide of claim 1, wherein X deleted, Rl is Trp, R2 is Ala, R3 is Ac5c and R4 is Leu, and said peptide has the formula: D-Phe-Gln-Trp-Ala-Val-Ac5c-His-Leu-NH2 (SEQ ID NO: 10) or a pharmaceutically acceptable salt thereof.
10. The peptide of claim 1, wherein X is butanoyl, Rl is Trp, R2 is Ala, R3 is Alb and R4 is Leu, and said peptide has the formula:
Butanoyl-D-Phe-Gln-Trp-Ala-Val-Aib-His-Leu-NH2 (SEQ ID NO: 11) or a pharmaceutically acceptable salt thereof.
11. The peptide of claim 1, wherein X is octanoyl, Rl is Trp, R2 is Ala, R3 is Alb and R4 is Leu and said peptide has the formula:
Octanoyl-D-Phe-Gln-Trp-Ala-Val-Aib-His-Leu-NH2 (SEQ ID NO: 12) or a pharmaceutically acceptable salt thereof.
12. A composition comprising an effective amount of a polypeptide according to claim 1, and a pharmaceutically acceptable carrier.
13. A method of treatment of cancer in mammals which comprises the administration of an effective amount of a peptide according to claim 1.
14. A method according to claim 11, further comprising administering a chemotherapeutic compound.
15. A solid phase synthesis process for the preparation of a peptide analog of formula (I):
X-D-Phe-Gln-Rl-R2-Val-R3-His-R4-NH2 wherein X is acetyl or straight, branched or cyclic alkanoyl group from 3-16 carbon atoms, or X is deleted,
Rl is Trp or D-Trp, R2 is Ala, Aib or Deg, R3 is Gly, Aib, Deg, Dpg or Ac5c,
R4 is Leu or He which comprises sequentially loading protected α, -dialkylated amino acids in sequential cycles to the amino terminus of a solid phase resin, coupling the amino acids to assemble a peptide-resin assembly, removing the protecting groups and cleaving the peptide from the resin to obtain a peptide.
16. The process as claimed in claim 13, wherein said α-, α-dialkylated amino acids are protected at their α-amino groups by a 9-fluorenyl methoxy carbonyl (Fmoc) group.
17. The process as claimed in claim 15, wherein the coupling is carried out in the presence of activated agents selected from the group consisting of DCC, DIPCDI, DIEA, BOP, PyBOP, HBTU, TBTU, and HOBt.
18. The process as claimed in claim 15, wherein the coupling is carried out in the presence of a solvent selected from the group consisting of DMF, DCM, and NMP or a mixture thereof.
19. The process as claimed in claim 15, wherein said peptide is cleaved from said peptide-resin assembly by treatment with trifluoroacetic acid, crystalline phenol, ethanedithiol, thioanisole and water for 1.5 to 5 hours at room temperature.
20. The process as claimed in claim 15, wherein the , α-dialkylated amino acid is prepared by conversion of a ketone to a hydantoin and hydrolysis, of said hydantoin.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| INDE00014700 | 2000-02-24 | ||
| IN147DE2000 | 2000-02-24 | ||
| PCT/US2000/020873 WO2001062777A1 (en) | 2000-02-24 | 2000-07-31 | Bombesin analogs for treatment of cancer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1261626A1 true EP1261626A1 (en) | 2002-12-04 |
Family
ID=11097032
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP00952333A Withdrawn EP1261626A1 (en) | 2000-02-24 | 2000-07-31 | Bombesin analogs for treatment of cancer |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP1261626A1 (en) |
| AU (1) | AU2000265053A1 (en) |
| CA (1) | CA2405704C (en) |
| WO (1) | WO2001062777A1 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7173006B2 (en) * | 2002-12-23 | 2007-02-06 | Dabur Research Foundation | Drug comprising synthetic peptide analogs for the treatment of cancer |
| US8420050B2 (en) | 2003-01-13 | 2013-04-16 | Bracco Imaging S.P.A. | Gastrin releasing peptide compounds |
| US7611692B2 (en) | 2003-01-13 | 2009-11-03 | Bracco Imaging S.P.A. | Gastrin releasing peptide compounds |
| US7226577B2 (en) | 2003-01-13 | 2007-06-05 | Bracco Imaging, S. P. A. | Gastrin releasing peptide compounds |
| US7922998B2 (en) | 2003-01-13 | 2011-04-12 | Bracco Imaging S.P.A. | Gastrin releasing peptide compounds |
| US7850947B2 (en) | 2003-01-13 | 2010-12-14 | Bracco Imaging S.P.A. | Gastrin releasing peptide compounds |
| AU2004314112A1 (en) * | 2003-12-24 | 2005-07-28 | Bracco Imaging S.P.A. | Improved gastrin releasing peptide compounds |
| WO2009040019A2 (en) * | 2007-09-11 | 2009-04-02 | Mondobiotech Laboratories Ag | Use of a peptide as a therapeutic agent |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU618029B2 (en) * | 1987-11-02 | 1991-12-12 | Imperial Chemical Industries Plc | Polypeptide compounds |
| GB8813356D0 (en) * | 1988-06-06 | 1988-07-13 | Ici Plc | Polypeptide compounds |
| AU641789B2 (en) * | 1990-07-26 | 1993-09-30 | Aventisub Ii Inc. | Peptides |
| US6492330B1 (en) * | 1996-08-16 | 2002-12-10 | National Institute Of Immunology | Antiangiogenic drugs |
-
2000
- 2000-07-31 CA CA2405704A patent/CA2405704C/en not_active Expired - Fee Related
- 2000-07-31 EP EP00952333A patent/EP1261626A1/en not_active Withdrawn
- 2000-07-31 AU AU2000265053A patent/AU2000265053A1/en not_active Abandoned
- 2000-07-31 WO PCT/US2000/020873 patent/WO2001062777A1/en not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO0162777A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2000265053A1 (en) | 2001-09-03 |
| CA2405704A1 (en) | 2001-08-30 |
| CA2405704C (en) | 2010-11-16 |
| WO2001062777A1 (en) | 2001-08-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100225679B1 (en) | Nonapeptide bombesin antagonists | |
| NO321380B1 (en) | Heptapeptide analogous to oxytocin antagonist activity, method of preparation thereof and use thereof for the preparation of drugs. | |
| WO1996040751A1 (en) | Novel dolastatin derivatives, their preparation and use | |
| US6489297B1 (en) | Vasoactive intestinal peptide analogs | |
| HU218288B (en) | Bombesin-antagonistic polypeptide derivatives and pharmaceutical compositions containing them | |
| US20040122013A1 (en) | Analogs of nocicettin | |
| CA2405704C (en) | Bombesin analogs for treatment of cancer | |
| US6316414B1 (en) | Somatostatin analogs for the treatment of cancer | |
| EP1198478B1 (en) | Somatostatin analogs and their use for the treatment of cancer | |
| US6989371B1 (en) | Bombesin analogs for treatment of cancer | |
| US6596692B1 (en) | Substance P analogs for the treatment of cancer | |
| CA2405724C (en) | Substance p analogs for the treatment of cancer | |
| EP1593686B1 (en) | Antineoplastic peptides | |
| CN104744563A (en) | Linear lipopeptide with lipophilic structure at end group, preparation method and use thereof | |
| US6949513B2 (en) | Polypeptides of covalently linked synthetic bioactive peptide analog(s) for treatment of cancer | |
| IE912378A1 (en) | Derivatives of pituitary posterior lobe hormones | |
| JPH09502427A (en) | Peptides showing oxytocin antagonist activity | |
| CA2008454A1 (en) | Linear analog of biologically active mammalian grp or amphibian bombesin | |
| CA2405689A1 (en) | Vasoactive intestinal peptide analogs |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20020919 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DABUR PHARMA LTD. |
|
| 17Q | First examination report despatched |
Effective date: 20060216 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20070808 |