EP1257281B1 - Nucleoside analogs with carboxamidine modified monocyclic base - Google Patents
Nucleoside analogs with carboxamidine modified monocyclic base Download PDFInfo
- Publication number
- EP1257281B1 EP1257281B1 EP01920996A EP01920996A EP1257281B1 EP 1257281 B1 EP1257281 B1 EP 1257281B1 EP 01920996 A EP01920996 A EP 01920996A EP 01920996 A EP01920996 A EP 01920996A EP 1257281 B1 EP1257281 B1 EP 1257281B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- type
- cells
- compounds
- viramidine
- ribavirin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002777 nucleoside Substances 0.000 title description 32
- 150000003833 nucleoside derivatives Chemical class 0.000 title description 13
- 125000002950 monocyclic group Chemical group 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 57
- 239000003814 drug Substances 0.000 claims abstract description 22
- 241000711549 Hepacivirus C Species 0.000 claims abstract description 12
- 238000011282 treatment Methods 0.000 claims abstract description 11
- 208000036142 Viral infection Diseases 0.000 claims abstract description 10
- 230000009385 viral infection Effects 0.000 claims abstract description 10
- 241000700721 Hepatitis B virus Species 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 208000015181 infectious disease Diseases 0.000 claims description 9
- 108010050904 Interferons Proteins 0.000 claims description 6
- 102000014150 Interferons Human genes 0.000 claims description 6
- 229940079322 interferon Drugs 0.000 claims description 5
- 108010047761 Interferon-alpha Proteins 0.000 claims description 4
- 102000006992 Interferon-alpha Human genes 0.000 claims description 4
- 230000037396 body weight Effects 0.000 claims 2
- 150000003839 salts Chemical class 0.000 abstract description 6
- 229940002612 prodrug Drugs 0.000 description 27
- 239000000651 prodrug Substances 0.000 description 27
- 102000004127 Cytokines Human genes 0.000 description 26
- 108090000695 Cytokines Proteins 0.000 description 26
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 23
- 210000001744 T-lymphocyte Anatomy 0.000 description 23
- 230000004044 response Effects 0.000 description 23
- 230000000694 effects Effects 0.000 description 21
- 229960000329 ribavirin Drugs 0.000 description 21
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 21
- 239000000203 mixture Substances 0.000 description 16
- 229940079593 drug Drugs 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- -1 unsaturated carbocyclic radical Chemical class 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 208000010247 contact dermatitis Diseases 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- NHKZSTHOYNWEEZ-AFCXAGJDSA-N taribavirin Chemical compound N1=C(C(=N)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NHKZSTHOYNWEEZ-AFCXAGJDSA-N 0.000 description 9
- 229950006081 taribavirin Drugs 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 108010002350 Interleukin-2 Proteins 0.000 description 7
- 102000000588 Interleukin-2 Human genes 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 7
- 125000000623 heterocyclic group Chemical group 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- LOTKRQAVGJMPNV-UHFFFAOYSA-N 1-fluoro-2,4-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=C(F)C([N+]([O-])=O)=C1 LOTKRQAVGJMPNV-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- PYMYPHUHKUWMLA-LMVFSUKVSA-N aldehydo-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 125000003835 nucleoside group Chemical group 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000007920 subcutaneous administration Methods 0.000 description 5
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 102000003814 Interleukin-10 Human genes 0.000 description 4
- 108090000978 Interleukin-4 Proteins 0.000 description 4
- 102000004388 Interleukin-4 Human genes 0.000 description 4
- 102000008072 Lymphokines Human genes 0.000 description 4
- 108010074338 Lymphokines Proteins 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 230000024932 T cell mediated immunity Effects 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000000840 anti-viral effect Effects 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 4
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000001424 substituent group Chemical class 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- IWUCXVSUMQZMFG-RGDLXGNYSA-N 1-[(2s,3s,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,4-triazole-3-carboxamide Chemical compound N1=C(C(=O)N)N=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 IWUCXVSUMQZMFG-RGDLXGNYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 3
- 208000005176 Hepatitis C Diseases 0.000 description 3
- 108090000174 Interleukin-10 Proteins 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 125000001246 bromo group Chemical group Br* 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000002648 combination therapy Methods 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 235000019439 ethyl acetate Nutrition 0.000 description 3
- 210000002443 helper t lymphocyte Anatomy 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 229940047124 interferons Drugs 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 150000004712 monophosphates Chemical class 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- PIGYMBULXKLTCJ-UHSSARMYSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,4-triazole-3-carboximidamide;hydrochloride Chemical compound Cl.N1=C(C(=N)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 PIGYMBULXKLTCJ-UHSSARMYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- XEDONBRPTABQFB-UHFFFAOYSA-N 4-[(2-formyl-3-hydroxyphenoxy)methyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1COC1=CC=CC(O)=C1C=O XEDONBRPTABQFB-UHFFFAOYSA-N 0.000 description 2
- YLDCUKJMEKGGFI-QCSRICIXSA-N 4-acetamidobenzoic acid;9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purin-6-one;1-(dimethylamino)propan-2-ol Chemical compound CC(O)CN(C)C.CC(O)CN(C)C.CC(O)CN(C)C.CC(=O)NC1=CC=C(C(O)=O)C=C1.CC(=O)NC1=CC=C(C(O)=O)C=C1.CC(=O)NC1=CC=C(C(O)=O)C=C1.O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(NC=NC2=O)=C2N=C1 YLDCUKJMEKGGFI-QCSRICIXSA-N 0.000 description 2
- AEJARLYXNFRVLK-UHFFFAOYSA-N 4H-1,2,3-triazole Chemical compound C1C=NN=N1 AEJARLYXNFRVLK-UHFFFAOYSA-N 0.000 description 2
- CQVSGRBPWUXLOH-JTFADIMSSA-N 7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-oxo-1h-pyrrolo[2,3-d]pyrimidine-5-carboximidamide Chemical compound C1=2N=CNC(=O)C=2C(C(=N)N)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O CQVSGRBPWUXLOH-JTFADIMSSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 208000006154 Chronic hepatitis C Diseases 0.000 description 2
- 108010036941 Cyclosporins Proteins 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 101100005713 Homo sapiens CD4 gene Proteins 0.000 description 2
- 101150106931 IFNG gene Proteins 0.000 description 2
- 206010061217 Infestation Diseases 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 108010002616 Interleukin-5 Proteins 0.000 description 2
- 102000000743 Interleukin-5 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- IXMTWJNGXZIMAL-FMKGYKFTSA-N [(2r,3r,4r,5r)-3,4-diacetyloxy-5-(3-cyano-1,2,4-triazol-1-yl)oxolan-2-yl]methyl acetate Chemical compound CC(=O)O[C@@H]1[C@H](OC(C)=O)[C@@H](COC(=O)C)O[C@H]1N1N=C(C#N)N=C1 IXMTWJNGXZIMAL-FMKGYKFTSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 239000013566 allergen Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 210000001218 blood-brain barrier Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 229930182912 cyclosporin Natural products 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 208000010710 hepatitis C virus infection Diseases 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000009610 hypersensitivity Effects 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229960001614 levamisole Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 125000004043 oxo group Chemical group O=* 0.000 description 2
- 150000002972 pentoses Chemical class 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 229950009795 tucaresol Drugs 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- HSINOMROUCMIEA-FGVHQWLLSA-N (2s,4r)-4-[(3r,5s,6r,7r,8s,9s,10s,13r,14s,17r)-6-ethyl-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2-methylpentanoic acid Chemical compound C([C@@]12C)C[C@@H](O)C[C@H]1[C@@H](CC)[C@@H](O)[C@@H]1[C@@H]2CC[C@]2(C)[C@@H]([C@H](C)C[C@H](C)C(O)=O)CC[C@H]21 HSINOMROUCMIEA-FGVHQWLLSA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical class ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- GUQHFZFTGHNVDG-UHFFFAOYSA-N 1h-1,2,4-triazole-5-carbonitrile Chemical compound N#CC1=NC=NN1 GUQHFZFTGHNVDG-UHFFFAOYSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 238000006418 Brown reaction Methods 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 101000867232 Escherichia coli Heat-stable enterotoxin II Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 108091058560 IL8 Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100040018 Interferon alpha-2 Human genes 0.000 description 1
- 108010079944 Interferon-alpha2b Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102000000585 Interleukin-9 Human genes 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 101100508420 Mus musculus Ifng gene Proteins 0.000 description 1
- 101001033265 Mus musculus Interleukin-10 Proteins 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241000713126 Punta Toro virus Species 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 206010038717 Respiratory syncytial viral infections Diseases 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- 102000002262 Thromboplastin Human genes 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 208000000679 Torovirus Infections Diseases 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 1
- IHNHAHWGVLXCCI-FDYHWXHSSA-N [(2r,3r,4r,5s)-3,4,5-triacetyloxyoxolan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@H]1O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H]1OC(C)=O IHNHAHWGVLXCCI-FDYHWXHSSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- FKCBLVCOSCZFHV-UHFFFAOYSA-N acetonitrile;ethanol Chemical compound CCO.CC#N FKCBLVCOSCZFHV-UHFFFAOYSA-N 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PYMYPHUHKUWMLA-MROZADKFSA-N aldehydo-L-ribose Chemical compound OC[C@H](O)[C@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-MROZADKFSA-N 0.000 description 1
- 125000000320 amidine group Chemical group 0.000 description 1
- 150000001409 amidines Chemical group 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 230000001399 anti-metabolic effect Effects 0.000 description 1
- 230000002141 anti-parasite Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- 229940125687 antiparasitic agent Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- SNHRLVCMMWUAJD-SUYDQAKGSA-N betamethasone valerate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(OC(=O)CCCC)[C@@]1(C)C[C@@H]2O SNHRLVCMMWUAJD-SUYDQAKGSA-N 0.000 description 1
- 229960004311 betamethasone valerate Drugs 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 239000003858 bile acid conjugate Substances 0.000 description 1
- 210000003445 biliary tract Anatomy 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- MHSVUSZEHNVFKW-UHFFFAOYSA-N bis-4-nitrophenyl phosphate Chemical compound C=1C=C([N+]([O-])=O)C=CC=1OP(=O)(O)OC1=CC=C([N+]([O-])=O)C=C1 MHSVUSZEHNVFKW-UHFFFAOYSA-N 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 239000003241 dermatological agent Substances 0.000 description 1
- VWVSBHGCDBMOOT-IIEHVVJPSA-N desoximetasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@H](C(=O)CO)[C@@]1(C)C[C@@H]2O VWVSBHGCDBMOOT-IIEHVVJPSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- OFKDAAIKGIBASY-VFGNJEKYSA-N ergotamine Chemical class C([C@H]1C(=O)N2CCC[C@H]2[C@]2(O)O[C@@](C(N21)=O)(C)NC(=O)[C@H]1CN([C@H]2C(C3=CC=CC4=NC=C([C]34)C2)=C1)C)C1=CC=CC=C1 OFKDAAIKGIBASY-VFGNJEKYSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 210000005027 intestinal barrier Anatomy 0.000 description 1
- 230000007358 intestinal barrier function Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000008384 membrane barrier Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002947 procoagulating effect Effects 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- DXVAQZJPPDWTNY-UHFFFAOYSA-N pyrrolo[3,2-d]pyrimidin-2-one Chemical compound O=C1N=CC2=NC=CC2=N1 DXVAQZJPPDWTNY-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 1
- 229960004880 tolnaftate Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229940035306 topicort Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 230000005951 type IV hypersensitivity Effects 0.000 description 1
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/7056—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/056—Triazole or tetrazole radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/14—Pyrrolo-pyrimidine radicals
Definitions
- Ribavirin (1- ⁇ -3-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) is a nucleoside analog that has demonstrated efficacy in treating viral diseases both as monotherapy (respiratory syncytial virus, Hall, C. B.; McBride, J. T.; Walsh, E. E.; Bell, D. M.; Gala, C. L.; Hildreth, S.; Ten Eyck, L. G.; W. J. Hall. Aerosolized ribavirin treatment of infants with respiratory syncytial viral infection. N. Engl. J. Med.
- the antiviral compound ribavirin modulates the T helper Typel/Type2 subset balance in hepatitis B and C virus-specific immune responses. J. Gen. Virol. 1998, 79, 2381-2391 ; Ning, Q.; Brown, D.; Parodo, J.; Cattral, M.; Fung, L.; Gorczynski, R.; Cole, E., Fung, L.; Ding, J. W.; Liu, M. F.; Rotstein, O.; Phillips, M. J.; Levy; G.
- Ribavirin inhibits viral-induced macrophage production of tumor necrosis factor, interleukin-1, procoagulant activity fg12 prothrombinase and preserves Th1 cytokine production but inhibits Th2 cytokine response.
- This immunomodulatory effect of ribavirin is demonstrable in vitro by measuring the levels of Type 1 cytokines produced by activated T cells from both humans and mice ( Tam, R. C.: Pai, B.; Bard, J.; Lim, C.; Averett, D. R.; Phan, U. T.; Milovanovic, T. Ribavirin polarizes human T cell responses towards a Type 1 cytokine profile. J. Hepatol. 1999, 30, 376-382 ), and by other measures.
- the induction of a Type 1 cytokine bias by ribavirin is functionally significant in vivo in murine systems ( Tam, R. C.; Lim, C.; Bard, J.; Pai, B. Contact hypersensitivity responses following ribavirin treatment in vivo are influenced by Type 1 cytokine polarization, regulation of IL-10 expression and costimulatory signaling. J. Immunol. 1999, 163, 3709-3717 ).
- B lymphocytes B cells
- T lymphocytes T cells
- T cells are generally considered to fall into two subclasses, helper T cells and cytotoxic T cells.
- Helper T cells activate other lymphocytes, including B cells and cytotoxic T cells, and macrophages, by releasing soluble protein mediators called cytokines that are involved in cell-mediated immunity.
- lymphokines are a subset of cytokines.
- Helper T cells are also generally considered to fall into two subclasses, Type 1 and Type 2.
- Type 1 cells produce interleukin 2 (IL-2), tumor necrosis factor (TNF ⁇ ) and interferon gamma (IFN ⁇ ), and are responsible primarily for cell-mediated immunity such as delayed type hypersensitivity and antiviral immunity.
- Type 2 cells produce interleukins, IL4, IL-5, IL-6, IL-9, IL-10 and IL-13, and are primarily involved in assisting humoral immune responses such as those seen in response to allergens, e.g. IgE and lgG4 antibody isotype switching ( Mosmann, 1989, Annu Rev Immunol, 7:145-173 ).
- Type 1 and Type 2 "responses” are meant to include the entire range of effects resulting from induction of Type 1 and Type 2 lymphocytes, respectively.
- responses include variation in production of the corresponding cytokines through transcription, translation, secretion and possibly other mechanisms, increased proliferation of the corresponding lymphocytes, and other effects associated with increased production of cytokines, including motility effects.
- US patents 6,518,253 and 6,423,695 relate to aspects of our recent discoveries involving the effect of various nucleosides (which are defined herein to include derivatives and analogs of native nucleosides) on selectively modulating lymphocyte responses relative to each other.
- nucleosides which are defined herein to include derivatives and analogs of native nucleosides
- nucleosides effective in selectively modulating Type 1 and Type 2 responses relative to one another tend to have a bimodal effect.
- some nucleosides that tend to generally suppress or induce both Type 1 and Type 2 activity at a relatively higher dose tend to selectively modulate Type 1 and Type 2 relative to each other at relatively lower doses.
- U.S. Patent 6,130,326 discloses the use of D- and L-ribavirin for the treatment of various diseases including infections, infestations, neoplasms, and autoimmune diseases. In particular, the use of these compounds against Hepatitis B Virus and Hepatitis C Virus is disclosed.
- viramidine TM (1- ⁇ -D-ribofuranosyl-1,2,4-triazole-3-carboxamidine hydrochloride) has been shown active in ten different viruses that is comparable to Ribavirin.
- Viramidine TM like Ribavirin is an inhibitor of IMP dehydrogenease ( R. C. Willis, R. K. Robins, J. E. Seegmiller, Molecular Pharmacology, 18, 287-295, 1980 ).
- Viramidine TM is less toxic than ribavirin ( D. Y. Pifat, R. W. Sidwell, P. G. Canonico, Antiviral Research, 9, 136, 1988 ).
- recent studies at our lab revealed that Viramidine TM and ribavirin exhibited similar immunomodulatory properties. These results coupled with low bioavailability and the toxicity associated with ribavirin prompt us not only to develop Viramidine TM for other viral diseases but also to prepare other derivatives of Viramidine TM , including the synthesis of prodrugs of Viramidine TM , and screen them as potential antiviral agents.
- any potent biologically active compounds never become clinically useful agents because of their undesirable biopharmaceutical properties which include low bioavailability due to low permeability through biological barriers, such as the blood brain barrier (BBB) and the intestinal barrier.
- BBB blood brain barrier
- the undesirable physicochemical properties e.g., charge, lipophilicity, hydrogen bonding potential, size
- optimization of the physicochemical characteristics (charge, lipophilicity, hydrogen bonding potential, size) of a drug is probably the most likely general strategy to facilitate the transport of drugs through such membrane barriers.
- prodrugs To optimize the physicochemical properties of drugs, one possible strategy is that of prodrugs.
- prodrugs H. Bundgaard, Design of Prodrugs, Elsevier, Amsterdam, 1985 ; N. Bodor, L. Prokai, W. M. Wu, H. Farag, S. Jonalagadda, M. Kawamura, J. Simpkins, Science, 257, 1698-1700, 1992 ; H. E. Taylor, K. B. Sloan, J. Pharm. Sci, 87, 5-20, 1998 ).
- prodrug is used to describe an agent, which must undergo chemical or enzymatic transformation to the active or parent drug after administration, so that the metabolic product or parent drug can subsequently exhibit the desired pharmacological response.
- Type 1 and Type 2 responses can be useful in treating a wide variety of conditions and diseases, ranging from infections, infestations, tumors and hypersensitivities to autoimmune diseases.
- autoimmune disease for example, is frequently limited to palliative measures, removal of toxic antibodies (as in myasthenia gravis), and administration of hazardous drugs including corticosteroids, chloroquine derivatives, and antimetabolic or antitumor drugs, and drugs such as cyclosporines that target immune system cells.
- the present invention is directed to the use of a compound according to Formula 1 for the manufacture of a medicament for the treatment of a Hepatitis C Virus (HCV) viral infection or a Hepatitis B Virus (HBV) viral infection.
- HCV Hepatitis C Virus
- HBV Hepatitis B Virus
- nucleoside and “nucleoside analog compound” are interchangeable and refer to a compound composed of any pentose or modified pentose moiety attached to a specific position of a heterocycle, aromatic heterocycle or to the natural position of a purine (9-position) or pyrimidine (1-position) or to the equivalent position in an analog.
- nucleotide refers to a phosphate ester substituted on the 5'-position of a nucleoside.
- heterocycle refers to a monovalent saturated or unsaturated carbocyclic radical having at least one hetero atom, such as N, O or S, within the ring each available position of which can be optionally substituted, independently, with, e.g., hydroxy, oxo, amino, imino, lower alkyl, bromo, chloro and/or cyano. Included within this class of substituents are purines, pyrimidines.
- purine refers to nitrogenous bicyclic heterocycles.
- pyrimidine refers to nitrogenous monocyclic heterocycles.
- D-nucleosides refers to the nucleoside compounds that have a D-ribose sugar moiety (e.g., Adenosine).
- L-nucleosides refers to the nucleoside compounds that have an L-ribose sugar moiety.
- L-configuration and D-configuration are used throughout the present invention to describe the chemical configuration of the ribofuranosyl moiety of the compounds that is linked to the pyrrolo-pyrimidone portion of the molecule.
- C-nucleosides is used throughout the specification to describe the linkage type that formed between the ribose sugar moiety and the heterocyclic base.
- the linkage originates from the C-1 position of the ribose sugar moiety and joins the carbon of the heterocyclic base.
- the linkage that forms in C-nucleosides is carbon-to-carbon type.
- N-nucleosides is used throughout the specification to describe the linkage type that formed between the ribose sugar moiety and the heterocyclic base.
- the linkage originates from the C-1 position of the ribose sugar moiety and joins the nitrogen of the heterocyclic base.
- the linkage that forms in N-nucleosides is carbon to nitrogen type.
- protecting group refers to a chemical group that is added to, oxygen or nitrogen atom to prevent its further reaction during the course of derivatization of other moieties in the molecule in which the oxygen or nitrogen is located.
- oxygen and nitrogen protecting groups are known to those skilled in the art of organic synthesis.
- lower alkyl refers to methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, i-butyl or n-hexyl. This term is further-exemplified to a cyclic, branched or straight chain from one to six carbon atoms.
- aryl refers to a monovalent unsaturated aromatic carbocyclic radical having a single ring (e.g., phenyl) or two condensed rings (e.g., naphthyl), which can optionally be substituted with hydroxyl, lower alky, chloro, and/or cyano.
- heterocycle refers to a monovalent saturated or unsaturated carbocyclic radical having at least one hetero atom, such as N, O, S, Se or P, within the ring, each available position of which can be optionally substituted or unsubstituted, independently, with hydroxy, oxo, amino, imino, lower alkyl, bromo, chloro, and/or cyano.
- monocyclic refers to a monovalent saturated carbocyclic radical having at least one hetero atom, such as O, N, S, Se or P, within the ring, each available position of which can be optionally substituted, independently, with a sugar moiety or any other groups like bromo, chloro and/or cyano, so that the monocyclic ring system eventually aromatized [e.g., Thymidine].
- immunomodulator and “modulator” are herein used interchangeably and refers to natural or synthetic products capable of modifying the normal or aberrant immune system through stimulation or suppression.
- the term "effective amount” refers to the amount of a compound of formula (1) that will restore immune function to normal levels, or increase immune function above normal levels in order to eliminate infection.
- the compounds of Formula 1 may have multiple asymmetric centers. Accordingly, they may be prepared in either optically active form or as a racemic mixture.
- the scope of the invention as described and claimed encompasses the individual optical isomers and non-racemic mixtures thereof as well as the racemic forms of the compounds of Formula 1.
- ⁇ and ⁇ indicate the specific stereochemical configuration of a substituent at an asymmetric carbon atom in a chemical structure as drawn.
- enantiomers refers to a pair of stereoisomers that are non-superimposable mirror images of each other.
- a mixture of a pair of enantiomers, in a 1:1 ratio, is a “racemic" mixture.
- isomers refers to different compounds that have the same formula. “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space.
- “Pharmaceutically acceptable salts” may be any salts derived from inorganic and organic acids or bases.
- nucleoside analog compound used in the present invention is generally described by Formula 1: wherein the chemical configuration of the compound is in the L-configuration or the D-configuration.
- An exemplary synthesis of contemplated compounds (here: Viramidine TM ). may follow a procedure as outlined below and shown in Figure 1.
- 3-Cyano-1-(2,3,5-tri- O -acetyl- ⁇ -D-ribofuranosyl)-1,2,4-triazole (7) A mixture of 3-cyano-1,2,4-triazole (18.8 g, 200 mmol) (6), 1,2,3,5-tetra- O -acetyl- ⁇ -D-ribofuranose (63.66 g, 200 mmol) and bis( p -nitrophenyl)phosphate (1 g) were placed in a RB flask (500 mL). The flask was placed in a pre-heated oil bath at 165-175° C under water aspirator vacuum with stirring for 25 minutes.
- the acetic acid displaced was collected in a ice cold trap that is placed between aspirator and the RB flask.
- the flask was removed from the oil bath and allowed to cool.
- EtOAc 300 mL
- sat. NaHCO 3 150 mL
- the aqueous layer was extracted again with EtOAc (200 mL).
- the combined EtOAc extract was washed with sat. NaHCO 3 (300 mL), water (200 mL) and brine (150 mL).
- the organic extract was dried over anhydrous Na 2 SO 4 , filtered and the filtrate evaporated to dryness.
- the synthesis may proceed from commercially available Ribavirin TM as follows:
- the pro-drug form of the compounds which does not belong to the invention especially including acylated (acetylated or other) derivatives, pyridine esters and various salt forms of the present compounds are preferred and can be administered in a method of treatment of a condition of a patient.
- acylated (acetylated or other) derivatives, pyridine esters and various salt forms of the present compounds are preferred and can be administered in a method of treatment of a condition of a patient.
- One of ordinary skill in the art will recognize how to readily modify the present compounds to pro-drug forms to facilitate delivery of active compounds to a target site within the host organism or patient.
- One of ordinary skill in the art will also take advantage of favorable pharmacokinetic parameters of the pro-drug forms, where applicable, in delivering the present compounds to a targeted site within the host organism or patient to maximize the intended effect of the compound.
- a contemplated example of the formation of a pro-drug form which does not belong to the invention of the compounds used herein is as follows.
- One of the simplest prodrug of Viramidine TM is the tri-O-acetyl derivative of Viramidine TM .
- the tri-O-acetyl derivative is prepared as depicted in scheme 1:
- Viramidine TM is another simple prodrug form which does not belong to the invention and been prepared as follows:
- Amino acid esters are considered better prodrug forms which are not part of the invention because of possible involvement of a stereoselective transporter.
- Amino acid derivatives of Viramidine TM could be synthesized as shown below:
- Amino acid phosphoramidates are another class of prodrugs which are not part of the invention that could be synthesized as described below:
- Salicylate-based prodrugs which do not belong to the invention of Viramidine TM may be obtained by the following scheme:
- nucleotide lipophilic prodrugs which do not belong to the invention and are prepared as depicted below:
- Prodrugs of Viramidine TM which do not belong to the invention could be obtained not only by modifying the sugar.portion of the parent molecule but also by derivatizing the amidine functionality too. Following are a few classes of prodrugs that may be prepared by modifying the amidine group as described below:
- compounds according to Formula 1 will be used to treat hepatitis B virus (HBV) or hepatitis C virus (HCV), infection.
- Another aspect in connection with the use of the compound of the invention comprises administering a therapeutically and/or prophylactically effective amount of a pharmaceutical containing a compound of the present invention.
- the effect may relate to modulation of some portion of the mammal's immune system, especially modulation of lymphokines profiles of Type 1 and Type 2 with respect to one another.
- modulation of Type 1 and Type 2 lymphokines it is particularly contemplated that the modulation may include suppression of both Type 1 and Type 2, and more preferably stimulation of Type 1 lymphokines, or a relative increase of a type 1 response to a type 2 response.
- Viramidine TM (1.39 ug/ml) increases the expression and synthesis of Type 1 cytokines in (preferably activated) T-lymphocytes, and results from various experiments are shown in Figures 2-5.
- Figure 3 is a graphical representation of a dose-response effect of Viramidine in the range of 0.625 - 10 ⁇ M on Type 1 cytokine synthesis in SEB (Staphylococcal Enterotoxin B)-activated human T cells (data represent 4 individual donors).
- CHS contact hyper-sensitivity
- Figure 5 shows a comparison between Viramidine and Levovirin/Ribavirin in respect to peak response nucleoside concentration and peak range of responses (y-axis depicts number of responders in a particular experiment).
- Peripheral blood mononuclear cells were isolated from healthy donors or rheumatoid arthritis patients by density gradient centrifugation followed by T cell enrichment using Lymphokwik (One Lambda, Canoga Park CA). Contaminating monocytes were removed by adherence to plastic. Purified T cells were > 99% CD2+ , ⁇ 1% HLA-DR+ and ⁇ 5% CD25+ and were maintained in RPMI-AP5 (RPMI-1640 medium containing 20 mM HEPES buffer, pH 7.4, 5% autologous plasma, 1% L-glutamine, 1% penicillin/streptomycin and 0.05% 2-mercaptoethanol).
- RPMI-AP5 RPMI-1640 medium containing 20 mM HEPES buffer, pH 7.4, 5% autologous plasma, 1% L-glutamine, 1% penicillin/streptomycin and 0.05% 2-mercaptoethanol.
- T-cells (1 x 10 6 cells in a volume of 1 ml) were activated by the addition of 10 ng PMA plus 0.5 ⁇ g ionomycin (both from Calbiochem, La Jolla, CA) and incubated in 24 well plates in the presence of 0 to 20 ⁇ M nucleoside for up to 48 h at 37°C and 5% CO 2 in a humidified incubator. Following activation, supernatants were analysed for cell-derived cytokine production.
- the protocol as above was modified to a 96 well-plate format using 0.2 x 10 6 cells in a volume of 0.2 ml and activation with 2ng PMA and 0.1 ⁇ g ionomycin.
- 5 x 10 6 T cells in 2ml were activated with 20 ng PMA plus 1 ⁇ g ionomycin.
- cells can be activated in vitro with SEB following published procedures.
- total RNA was isolated from T cells following 6 - 24h incubation and analyzed by RT -PCR to determine mRNA levels of various cytokines and inflammatory mediators.
- human T cells were purified further (using cell enrichment reagents from Stem Cell Technologies, Vancouver, BC) to give pure populations of CD4+ ( ⁇ 1% CD8+ using RosetteSep human CD4+ T cell isolation reagent), and CD8+ ( ⁇ 1% CD4+ using RosetteSep human CD4+ T cell isolation reagent) T cell subsets, after which 1 x 10 6 cells per ml were activated with PMA and ionomycin, as in the total T cell experiments.
- Human cytokine levels were determined in cell supernatants, following appropriate dilution, using ELISA kits specific for IL-2, IFNg, TNFa, IL-4 and IL-5 (Biosource International, Camarillo, CA).
- Murine cytokine levels were determined using ELISA kits specific for murine IFNg and IL-4 (R and D Systems, Minneapolis, MN). All ELISA results were expressed as pg/ml. Some data are shown as percentage of activated control, calculated as the ratio of activated T cell cytokine level in the presence of test nucleoside over the cytokine level of untreated activated T cells x 100 %.
- Zero effect on cytokine levels by test nucleosides would give a percentage of activated control value of 100 %.
- data were shown as percentage change from activated control ([(test pg/ml- activated control pg/ml)/activated control pg/ml] x 100%).
- Zero effect on cytokine levels by test nucleosides would be 0 %.
- DNFB contact sensitivity (CS) in BALB/c and C3H/He mice. J. Invest. Dermatol. 102:321 ). Briefly, mice were sensitized by application of 20 ⁇ l of 0.3% DNFB in acetone : olive oil, 4 : 1 onto the shaved abdomens of naive mice. For optimal elicitation of CHS, the mice were challenged on both sides of each ear with 20 ⁇ l of 0.12% DNFB, five days after sensitization.
- mice Unsensitized mice were also challenged and used as controls in each experiment. After 24h, ear thickness measurements were taken and response to DNFB was assessed by subtracting post-challenge from pre-challenge values. Where indicated, 7- ⁇ -D-ribofuranosyl-4-oxopyrrolo[2,3-d]pyrimidine-5-carboxamidine, at a dose of 6.2 ⁇ g in 50 ⁇ l PBS (0.3 mg/kg) or 12.4 ⁇ g in 100 ⁇ l PBS (0.6 mg/kg), was administered by i.p. injection at the time of challenge with DNFB.
- mice were sacrificed by cervical dislocation and axillary/lateral axillary lymph nodes were removed. Following isolation of total cellular RNA from isolated lymph node cells, RT-PCR and Southern Blot analyses were performed to monitor for mouse IFNg, IL-2, and IL-10 mRNA levels.
- the minimum effective s.c. dose of 32 mg/kg for ribavirin and for viramidine was 96 mg/kg given s.c. b.i.d for 5 days.
- the minimum effective p.o. dose of 20 mg/kg for ribavirin and for viramidine was 40 mg/kg given p.o. b.i.d for 5 days.
- the most preferred uses according to the present invention are those in which the active compounds are relatively less cytotoxic to the non-target host cells and relatively more active against the target.
- the active compounds are relatively less cytotoxic to the non-target host cells and relatively more active against the target.
- L-nucleosides may have increased stability over D-nucleosides, which could lead to better pharmacokinetics. This result may attain because L-nucleosides may not be recognized by enzymes, and therefore may have longer half-lives.
- compositions according to the present invention will be used in vitro, or ex vivo in any appropriate pharmaceutical formulation, and under any appropriate protocol.
- administration may take place orally, parenterally (including subcutaneous injections, intravenous, intramuscularly, by intrasternal injection or infusion techniques), by inhalation spray, or rectally, topically and so forth, and in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles.
- compounds used in the present invention can be formulated in admixture with a pharmaceutically acceptable carrier.
- the compounds of the present invention can be administered orally as pharmacologically acceptable salts.
- physiological saline solution e.g., buffered to a pH of about 7.2 to 7.5.
- physiological saline solution e.g., buffered to a pH of about 7.2 to 7.5.
- Conventional buffers such as phosphates, bicarbonates or citrates can be used for this purpose.
- physiological saline solution e.g., buffered to a pH of about 7.2 to 7.5.
- Conventional buffers such as phosphates, bicarbonates or citrates can be used for this purpose.
- one of ordinary skill in the art may modify the formulations within the teachings of the specification to provide numerous formulations for a particular route of administration without rendering the compositions of the present invention unstable or compromising their therapeutic activity.
- the modification of the present compounds used to render them more soluble in water or other vehicle may be easily accomplished by minor modifications (salt formulation, esterification, etc.) that are well within the ordinary skill in the art. It is also well within the ordinary skill of the art to modify the route of administration and dosage regimen of a particular compound in order to manage the pharmacokinetics of the present compounds for maximum beneficial effect in patients.
- Combination therapies in connection with the use of the present invention comprise the administration of a compound according to Formula I and at least one other pharmaceutically active ingredient.
- the active ingredient(s) and pharmaceutically active agents may be administered separately or together and when administered separately this may occur simultaneously or separately in any order.
- the amounts of the active ingredient(s) and pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect.
- the combination therapy involves the administration of one compound of the present invention or a physiologically functional derivative thereof and one of the agents mentioned herein below.
- anti-viral agents such as interferon, including interferon a and ⁇ , Ribavirin, acyclovir, and AZT TM ; anti-fungal agents such as tolnaftate, Fungizone TM , Lotrimin TM , Mycelex TM , Nystatin and Amphoteracin; anti-parasitics such as Mintezol TM, Niclocide TM , Vermox TM , and Flagyl TM , bowel agents such as Immodium TM , Lomotil TM and Phazyme TM ; anti-tumor agents such as interferon ⁇ and ⁇ , Adriamycin TM ; Cytoxan TM , Imuran TM , Methotrexate, Mithracin TM , Tiazofurin TM , Taxol TM ; dermatologic agents such as Aclovate TM ,
- Especially preferred primary drugs are AZT, 3TC, 8-substituted guanosine analogs, 2,3-dideoxynucleosides, interleukin II, interferons such as I ⁇ B-interferons, tucaresol, levamisole, isoprinosine and cyclolignans.
- Such further therapeutic agents include agents that are effective for the modulation of immune system or associated conditions such as AZT, 3TC, 8-substituted guanosine analogs, 2', 3'-dideoxynucleosides, interleukin II, interferons, such as ⁇ -interferon, tucaresol, levamisole, isoprinosine and cyclolignans.
- agents that are effective for the modulation of immune system or associated conditions such as AZT, 3TC, 8-substituted guanosine analogs, 2', 3'-dideoxynucleosides, interleukin II, interferons, such as ⁇ -interferon, tucaresol, levamisole, isoprinosine and cyclolignans.
- Certain compounds according to the present invention may be effective for enhancing the biological activity of certain agents according to the present invention by reducing the metabolism or inactivation of other compounds and as such, are co-administered for
- a therapeutically effective amount will vary with the infection or condition to be treated, its severity, the treatment regimen to be employed, the pharmacokinetics of the agent used, as well as the patient (animal or human) treated. It is contemplated that various alternative dosages are also appropriate, including dosages between 0.5 mg/kg and 0.1 mg/kg and less, but also dosages between 0.5 and 1.0mg/kg and more. It is further contemplated that while treatment success may be achieved with some viral infections at relatively low plasma concentrations of the compounds of Formula 1, other viral infections may require relatively high dosages. It is contemplated, however, that an appropriate regimen will be developed by administering a small amount, and then increasing the amount until the side effects become unduly adverse, or the intended effect is achieved.
- Administration of the active compound may range from continuous (intravenous drip) to several oral administrations per day (for example, Q.I.D.) and may include oral, topical, parenteral, intramuscular, intravenous, sub-cutaneous, transdermal (which may include a penetration enhancement agent), buccal and suppository administration, among other routes of administration.
- a therapeutically effective amount of one or more of the compounds according to Formula 1 is preferably intimately admixed with a pharmaceutically acceptable carrier according to conventional pharmaceutical compounding techniques to produce a dose.
- a carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral.
- any of the usual pharmaceutical media may be used.
- suitable carriers and additives including water, glycols, oils, alcohols, flavouring agents, preservatives, colouring agents and the like may be used.
- suitable carriers and additives including starches, sugar carrier, such as dextrose, mannitol, lactose and related carriers, diluents, granulating agents, lubricants, binders, disintegrating agents and the like may be used.
- the tablets or capsules may be enteric-coated or sustained release by standard techniques.
- the carrier will usually comprise sterile water or aqueous sodium chloride solution, though other ingredients including those that aid dispersion may be included.
- sterile water is to be used and maintained as sterile, the compositions and carriers must also be sterilized.
- injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Virology (AREA)
- Biotechnology (AREA)
- Gastroenterology & Hepatology (AREA)
- Communicable Diseases (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Oncology (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Neurosurgery (AREA)
- Rheumatology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Psychiatry (AREA)
- AIDS & HIV (AREA)
- Obesity (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Hematology (AREA)
- Hospice & Palliative Care (AREA)
Abstract
Description
- The present invention relates to the field of nucleoside analogs
- Ribavirin (1-β-3-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) is a nucleoside analog that has demonstrated efficacy in treating viral diseases both as monotherapy (respiratory syncytial virus, Hall, C. B.; McBride, J. T.; Walsh, E. E.; Bell, D. M.; Gala, C. L.; Hildreth, S.; Ten Eyck, L. G.; W. J. Hall. Aerosolized ribavirin treatment of infants with respiratory syncytial viral infection. N. Engl. J. Med. 1983, 308, 1443-1447), and in combination therapy with interferon-alpha (hepatitis C virus, Reichard, O.; Norkrans, G.; Fryden, A.; Braconier, J-H.; Sonnerborg, A.; Weiland, O. Randomized, double blind, placebo controlled trial of interferon alpha 2B with and without ribavirin for chronic hepatitis C. Lancet 1998, 351, 83-87). Recently reported studies indicate that the in vivo utility of ribavirin can result not only from direct inhibition of viral replication, but also from its ability to enhance T cell-mediated immunity (Hultgren, C.; Milich, D. R.; Weiland, O.; Sällberg, M. The antiviral compound ribavirin modulates the T helper Typel/Type2 subset balance in hepatitis B and C virus-specific immune responses. J. Gen. Virol. 1998, 79, 2381-2391; Ning, Q.; Brown, D.; Parodo, J.; Cattral, M.; Fung, L.; Gorczynski, R.; Cole, E., Fung, L.; Ding, J. W.; Liu, M. F.; Rotstein, O.; Phillips, M. J.; Levy; G. Ribavirin inhibits viral-induced macrophage production of tumor necrosis factor, interleukin-1, procoagulant activity fg12 prothrombinase and preserves Th1 cytokine production but inhibits Th2 cytokine response. J. Immunol. 1998, 160, 3487-3493; Martin, M. J.; Navas, S.; Quiroga, J. A.; Pardo, M.; Carreno, V. Effects of the ribavirin-interferon alpha combination on cultured peripheral blood mononuclear cells from chronic hepatitis C patients. Cytokine 1998, 79,2381-2391. This immunomodulatory effect of ribavirin is demonstrable in vitro by measuring the levels of
Type 1 cytokines produced by activated T cells from both humans and mice (Tam, R. C.: Pai, B.; Bard, J.; Lim, C.; Averett, D. R.; Phan, U. T.; Milovanovic, T. Ribavirin polarizes human T cell responses towards a ), and by other measures. The induction of aType 1 cytokine bias by ribavirin is functionally significant in vivo in murine systems (Tam, R. C.; Lim, C.; Bard, J.; Pai, B. Contact hypersensitivity responses following ribavirin treatment in vivo are influenced by ). - Mammalian immune systems contain two major classes of lymphocytes: B lymphocytes (B cells), which originate in the bone marrow; and T lymphocytes (T cells) that originate in the thymus. B cells are largely responsible for humoral immunity (i.e., antibody production), while T cells are largely responsible for cell-mediated immunity.
- T cells are generally considered to fall into two subclasses, helper T cells and cytotoxic T cells. Helper T cells activate other lymphocytes, including B cells and cytotoxic T cells, and macrophages, by releasing soluble protein mediators called cytokines that are involved in cell-mediated immunity. As used herein, lymphokines are a subset of cytokines.
- Helper T cells are also generally considered to fall into two subclasses,
Type 1 andType 2.Type 1 cells produce interleukin 2 (IL-2), tumor necrosis factor (TNFα) and interferon gamma (IFNγ), and are responsible primarily for cell-mediated immunity such as delayed type hypersensitivity and antiviral immunity. In contrast,Type 2 cells produce interleukins, IL4, IL-5, IL-6, IL-9, IL-10 and IL-13, and are primarily involved in assisting humoral immune responses such as those seen in response to allergens, e.g. IgE and lgG4 antibody isotype switching (Mosmann, 1989, Annu Rev Immunol, 7:145-173). - As used herein, the
terms Type 1 andType 2 "responses" are meant to include the entire range of effects resulting from induction ofType 1 andType 2 lymphocytes, respectively. Among other things, such responses include variation in production of the corresponding cytokines through transcription, translation, secretion and possibly other mechanisms, increased proliferation of the corresponding lymphocytes, and other effects associated with increased production of cytokines, including motility effects. -
US patents 6,518,253 and6,423,695 relate to aspects of our recent discoveries involving the effect of various nucleosides (which are defined herein to include derivatives and analogs of native nucleosides) on selectively modulating lymphocyte responses relative to each other. Among other things, we have shown that either ofType 1 andType 2 responses can be selectively suppressed while the other is either induced or left relatively unaffected, and either ofType 1 orType 2 responses can be selectively induced while the other is either suppressed or left relatively unaffected. We have also discovered the surprising fact that some nucleosides effective in selectively modulatingType 1 andType 2 responses relative to one another tend to have a bimodal effect. Among other things, some nucleosides that tend to generally suppress or induce bothType 1 andType 2 activity at a relatively higher dose tend to selectively modulateType 1 andType 2 relative to each other at relatively lower doses. -
U.S. Patent 6,130,326 discloses the use of D- and L-ribavirin for the treatment of various diseases including infections, infestations, neoplasms, and autoimmune diseases. In particular, the use of these compounds against Hepatitis B Virus and Hepatitis C Virus is disclosed. - Gabrielsen, B. et al. (J. Med. Chem. (1992) 35, 3231-3238) as well as Witkowski, J.T. et al. (J. Med. Chem. (1973) 16, 935-937) report on the use of several analogues of ribavirin such as virabine as having biological activity against a wide variety of viruses.
- viramidine™ (1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamidine hydrochloride) has been shown active in ten different viruses that is comparable to Ribavirin. (J. T. Witkowski, R. K. Robins, G. P. Khare, R. W. Sidwell, J. Med Chem., 16, 935-937, 1973; R. W. Sidwell, J. H. Huffman, D. L. Barnard, D. Y. Pifat, Antiviral Research, 10, 193-208, 1988; B. Gabrielsen, M. J. Phelan, L. Barthel-Rosa, C. See, J. W. Huggins, D. F. Kefauver, T: P. Monath, M. A. Ussery, G. N. Chmurny, E. M. Schubert, K. Upadhya, C. Kwong, D. A. Carter, J. A. Secrist III, J. J. Kirsi, W. M. Shannon, R. W. Sidwell, G. D. Kini, R. K. Robins, J. Med. Chem., 35, 3231-3238, 1992). In addition, Viramidine™ like Ribavirin is an inhibitor of IMP dehydrogenease (R. C. Willis, R. K. Robins, J. E. Seegmiller, Molecular Pharmacology, 18, 287-295, 1980). Furthermore, preliminary toxicology studies suggests that Viramidine™ is less toxic than ribavirin (D. Y. Pifat, R. W. Sidwell, P. G. Canonico, Antiviral Research, 9, 136, 1988). Also, recent studies at our lab (R. Tam, K. Ramasamy, ICN Pharmaceuticcals, Inc.,unpublished results, 1999) revealed that Viramidine™ and ribavirin exhibited similar immunomodulatory properties. These results coupled with low bioavailability and the toxicity associated with ribavirin prompt us not only to develop Viramidine™ for other viral diseases but also to prepare other derivatives of Viramidine™, including the synthesis of prodrugs of Viramidine™, and screen them as potential antiviral agents.
- The effect of other nucleoside analog compounds on selectively modulating lymphocyte responses relative to each other has not been previously studied or documented. We have discovered that the bimodal effect, or selective modulation of
Type 1 andType 2 responses relative to one another, also occurs after administration of other nucleoside analog compounds, such as pro-drug forms of the compounds. - There are many barriers to overcome in developing biologically active compounds into clinically useful agents. M any potent biologically active compounds never become clinically useful agents because of their undesirable biopharmaceutical properties which include low bioavailability due to low permeability through biological barriers, such as the blood brain barrier (BBB) and the intestinal barrier. Although many factors affect the bioavailability of a drug, the undesirable physicochemical properties (e.g., charge, lipophilicity, hydrogen bonding potential, size) of many drugs is probably one of the most commonly encountered factors that hinder the permeation of drugs through biological barriers. Therefore, optimization of the physicochemical characteristics (charge, lipophilicity, hydrogen bonding potential, size) of a drug is probably the most likely general strategy to facilitate the transport of drugs through such membrane barriers.
- To optimize the physicochemical properties of drugs, one possible strategy is that of prodrugs. (H. Bundgaard, Design of Prodrugs, Elsevier, Amsterdam, 1985; N. Bodor, L. Prokai, W. M. Wu, H. Farag, S. Jonalagadda, M. Kawamura, J. Simpkins, Science, 257, 1698-1700, 1992 ; H. E. Taylor, K. B. Sloan, J. Pharm. Sci, 87, 5-20, 1998). The term prodrug is used to describe an agent, which must undergo chemical or enzymatic transformation to the active or parent drug after administration, so that the metabolic product or parent drug can subsequently exhibit the desired pharmacological response. By derivatizing certain polar functional groups in small organic molecules transiently and bioreversibly, the undesirable physicochemical characteristics (e.g., charge, hydrogen bonding potential) of these groups have been "masked" without permanently altering the pharmacological properties of the molecules. This strategy has been very successfully used in cases where the prodrug derivatization involves converting a carboxyl or a hydroxyl functional group into an ester, which can be readily hydrolyzed in vivo either chemically, or enzymatically. The promising prodrug concept, we anticipate that the introduction of other moieties in the parent drug would increase the bioavailability, adsorption and antiviral effects.
- Despite the existence of as-yet undefined mechanisms, we have discovered that enormous potential benefits can be derived from selective modulation of
Type 1 andType 2 responses relative to each other. We have concluded, for example, that specific modulation ofType 1 relative toType 2 can be useful in treating a wide variety of conditions and diseases, ranging from infections, infestations, tumors and hypersensitivities to autoimmune diseases. - These discoveries are especially significant because modem treatment strategies for many of the above-listed diseases have limited effectiveness, significant side effects, or both. Treatment of autoimmune disease, for example, is frequently limited to palliative measures, removal of toxic antibodies (as in myasthenia gravis), and administration of hazardous drugs including corticosteroids, chloroquine derivatives, and antimetabolic or antitumor drugs, and drugs such as cyclosporines that target immune system cells.
-
-
- Figure 1 is an exemplary synthetic scheme for the synthesis of a compound according to
Formula 1. - Figure 2 is a graphical depiction of the effect of contemplated and other compounds on
Type 1 cytokine synthesis in SEB-activated human T cells. - Figure 3 is a graphical depiction of the effect of 0.625 - 10µM concentration of a contemplated compound on
Type 1 cytokine synthesis in SEB-activated human T cells. - Figure 4 is a graphical depiction of the Effect of a contemplated compound on CHS responses in BALB/c mice.
- Figure 5 is a graphical depiction of the peak response and peak range of contemplated and other compounds on
Type 1 cytokine synthesis in SEB-activated human T cells. - Where the following terms are used in this specification, they are used as defined below.
- The terms "nucleoside" and "nucleoside analog compound" are interchangeable and refer to a compound composed of any pentose or modified pentose moiety attached to a specific position of a heterocycle, aromatic heterocycle or to the natural position of a purine (9-position) or pyrimidine (1-position) or to the equivalent position in an analog.
- The term "nucleotide" refers to a phosphate ester substituted on the 5'-position of a nucleoside.
- The term "heterocycle" refers to a monovalent saturated or unsaturated carbocyclic radical having at least one hetero atom, such as N, O or S, within the ring each available position of which can be optionally substituted, independently, with, e.g., hydroxy, oxo, amino, imino, lower alkyl, bromo, chloro and/or cyano. Included within this class of substituents are purines, pyrimidines.
- The term "purine" refers to nitrogenous bicyclic heterocycles.
- The term "pyrimidine" refers to nitrogenous monocyclic heterocycles.
- The term "D-nucleosides" refers to the nucleoside compounds that have a D-ribose sugar moiety (e.g., Adenosine).
- The term "L-nucleosides" refers to the nucleoside compounds that have an L-ribose sugar moiety.
- The terms "L-configuration" and "D-configuration" are used throughout the present invention to describe the chemical configuration of the ribofuranosyl moiety of the compounds that is linked to the pyrrolo-pyrimidone portion of the molecule.
- The term "C-nucleosides" is used throughout the specification to describe the linkage type that formed between the ribose sugar moiety and the heterocyclic base. In C-nucleosides, the linkage originates from the C-1 position of the ribose sugar moiety and joins the carbon of the heterocyclic base. The linkage that forms in C-nucleosides is carbon-to-carbon type.
- The term "N-nucleosides" is used throughout the specification to describe the linkage type that formed between the ribose sugar moiety and the heterocyclic base. In N-nucleosides, the linkage originates from the C-1 position of the ribose sugar moiety and joins the nitrogen of the heterocyclic base. The linkage that forms in N-nucleosides is carbon to nitrogen type.
- The term "protecting group" refers to a chemical group that is added to, oxygen or nitrogen atom to prevent its further reaction during the course of derivatization of other moieties in the molecule in which the oxygen or nitrogen is located. A wide variety of oxygen and nitrogen protecting groups are known to those skilled in the art of organic synthesis.
- The term "lower alkyl" refers to methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, i-butyl or n-hexyl. This term is further-exemplified to a cyclic, branched or straight chain from one to six carbon atoms.
- The term "aryl" refers to a monovalent unsaturated aromatic carbocyclic radical having a single ring (e.g., phenyl) or two condensed rings (e.g., naphthyl), which can optionally be substituted with hydroxyl, lower alky, chloro, and/or cyano.
- The term "heterocycle" refers to a monovalent saturated or unsaturated carbocyclic radical having at least one hetero atom, such as N, O, S, Se or P, within the ring, each available position of which can be optionally substituted or unsubstituted, independently, with hydroxy, oxo, amino, imino, lower alkyl, bromo, chloro, and/or cyano.
- The term "monocyclic" refers to a monovalent saturated carbocyclic radical having at least one hetero atom, such as O, N, S, Se or P, within the ring, each available position of which can be optionally substituted, independently, with a sugar moiety or any other groups like bromo, chloro and/or cyano, so that the monocyclic ring system eventually aromatized [e.g., Thymidine].
- The terms "immunomodulator" and "modulator" are herein used interchangeably and refers to natural or synthetic products capable of modifying the normal or aberrant immune system through stimulation or suppression.
- The term "effective amount" refers to the amount of a compound of formula (1) that will restore immune function to normal levels, or increase immune function above normal levels in order to eliminate infection.
- The compounds of
Formula 1 may have multiple asymmetric centers. Accordingly, they may be prepared in either optically active form or as a racemic mixture. The scope of the invention as described and claimed encompasses the individual optical isomers and non-racemic mixtures thereof as well as the racemic forms of the compounds ofFormula 1. - The term "α" and "β" indicate the specific stereochemical configuration of a substituent at an asymmetric carbon atom in a chemical structure as drawn.
- The term "enantiomers" refers to a pair of stereoisomers that are non-superimposable mirror images of each other. A mixture of a pair of enantiomers, in a 1:1 ratio, is a "racemic" mixture.
- The term "isomers" refers to different compounds that have the same formula. "Stereoisomers" are isomers that differ only in the way the atoms are arranged in space.
- "Pharmaceutically acceptable salts" may be any salts derived from inorganic and organic acids or bases.
- The nucleoside analog compound used in the present invention is generally described by Formula 1:
wherein the chemical configuration of the compound is in the L-configuration or the D-configuration. An exemplary synthesis of contemplated compounds (here: Viramidine™). may follow a procedure as outlined below and shown in Figure 1. - 3-Cyano-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-1,2,4-triazole (7): A mixture of 3-cyano-1,2,4-triazole (18.8 g, 200 mmol) (6), 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose (63.66 g, 200 mmol) and bis(p-nitrophenyl)phosphate (1 g) were placed in a RB flask (500 mL). The flask was placed in a pre-heated oil bath at 165-175° C under water aspirator vacuum with stirring for 25 minutes. The acetic acid displaced was collected in a ice cold trap that is placed between aspirator and the RB flask. The flask was removed from the oil bath and allowed to cool. When the temperature of the flask reached roughly to 60 - 70° C, EtOAc (300 mL) and sat. NaHCO3 (150 mL) were introduced, and extracted in EtOAc. The aqueous layer was extracted again with EtOAc (200 mL). The combined EtOAc extract was washed with sat. NaHCO3 (300 mL), water (200 mL) and brine (150 mL). The organic extract was dried over anhydrous Na2SO4, filtered and the filtrate evaporated to dryness. The residue was dissolved in ether (100 mL) which on cooling at 0° C for 12 h provided colorless crystals. The solid was filtered, washed with minimum cold EtOH (20 mL) and dried at high vacuum over solid NaOH. Yield: 56.4 g (80%). mp 96-97° C. 1HMR (CDCl3): δ 2.11 (s, 3H, COCH3), 2.13 (s, 3H, COCH3), 2.14 (s, 3H, COCH3), 4.22 (dd, 1H), 4.46 (m, 2H), 5.52 (t, 1H, J = 6.0 Hz), 5.70 (m, 1H), 6.01 (d, 1H, C1 , H J= 3.6 Hz) and 8.39 (s, 1H, C5 H). Anal. Calc. For C14H16N4O7 (352.30): C, 47.73; H, 4.58; N, 15.90. Found: C, 47.70; H, 4.63; N, 16.01.
- 1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxamidine (Viramidine™) Hydrochloride (8): A mixture of (7) (14.08 g, 40.0 mmol), NH4Cl (2.14g, 40.0 mmol) and anhydrous ammonia (150 ml) was heated in a steel bomb at 85 °C for 18 h. The steel bomb was cooled, opened and the contents were evaporated to dryness. The residue was crystallized from MeCN-EtOH to provide 10.6 g (95%) of 8. Mp 177-179 °C. 1HMR (DMSO-d 6): δ 3.44-4.2 (m, 3H), 4.40 (m, 2H), 5.04 (t, 1H), 5.29 (m, 1H), 5.74 (m, 1H), 5.87 (d, 1H, C1, H), 8.96 (bs, 3H) and 9.17 (s, 1 H, C5 H). Anal. Calc. For CBH14ClN5O4 (279.68): C, 34.35; H, 5.05; N, 25.04; Cl, 12.69. Found: C, 34.39; H, 5.10; N, 25.14; Cl, 12.71.
- Alternatively, the synthesis may proceed from commercially available Ribavirin™ as follows:
- 2',3',5'-Tri-O-acetyl-1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (9). A suspension of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Ribavirin™) (28.4 g, 116.4 mmol) (5) in acetic anhydride (200 mL) and pyridine (50 mL) was stirred at room temperature overnight. The resulting clear solution was concentrated in vacuo to yield a clear foam (43.1 g, quantitive). This foam was homogenous on TLC and used directly for the next step without purification. A small amount was purified by flash chromatography to yield an analytical sample; 1H NMR (300 MHz), DMSO-d 6) δ 2.01, 2.08, 2.09 (3s, 9 H, COCH 3), 4.10 (m, 1 H), 3.52 (m, 2 H), 5.58 (t, 1 H), 5.66 (m, 1 H); 6.33 (d,.1 H, J. = 3.0 Hz, C1H), 7.73, 7.92, (2 s, 2 H, CONH 2), 8.86 (s, 1 H, C5H triazole). Anal. (C10H18N4O8) C, H, N.
- 3-Cyano-2',3',5'-tri-O-acetyl-1-β-D-ribofuranosyl-1,2,4-triazole (10). To a solution of 9 (43.1 g, 116.4 mmol) in chloroform (500 mL) was added triethylamine (244 mL) and the mixture cooled to 0 °C in an ice-salt bath. Phosphorus oxychloride (30.7 mL, 330 mmol) was added dropwise with stirring and the solution allowed to warm to room temperature. After the mixture was stirred at room temperature for 1 h, TLC (hexane/acetone 3:1) indicated complete disappearance of starting material. The brown reaction mixture was concentrated to dryness in vacuo and the residue dissolved in chloroform (500 mL). This organic solution was washed with saturated aqueous sodium bicarbonate (3 x 200 mL), dried over anhydrous sodium sulfate, and concentrated in vacuo. The residue was chromatographed over silica gel (flash chromatography) with 20% acetone in hexane to yield 33.14 g (81% from ribavirin) of pure 10 as an amorphous solid. This solid was identical in all respects with an authentic sample: mp 101-103 °C; IR (potassium bromide) ν 2250 (CN), 1750 (C=O), cm-1; 1H NMR (300 MHz, CDCl3) δ 2.04, 2.06, 2.07 (3 s, 9 H, acetyl methyls), 4.15 (dd, 1 H), 4.40 (m, 1 H), 5.47 (t, 1 H), 5.63 (dd, 1 H), 5.95 (d, 1 H, J = 3.2 Hz, C1H), 8.34 (s, 1 H, C5H triazole).
- 1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxamidine Hydrochloride (8). To a suspension of 10 (4.0 g, 11.4 mmol) in methanol (100 mL) was added a molar solution of methanolic sodium methoxide (12 mL) and the mixture stirred at room temperature overnight. The solution was acidified to
pH 4 with methanol washed Dowex H+ resin, the resin was filtered, and the filtrate was concentrated to dryness in vacuo. The residue was dissolved in a minimum amount of methanol (15 mL) and transferred to a pressure bottle. Ammonium chloride (0.61 g, 11.4 mmol) and a solution of methanol saturated at 0 °C with dry ammonia gas (75 mL) were added, the bottle was sealed, and the solution was stirred at room temperature overnight. The solution was concentrated to dryness in vacuo and the resulting residue crystallized from acetonitrile/ethanol to yield 8 as a crystalline solid (2.95 g, 93%). This sample was identical in all respects with an authentic sample. - In certain pharmaceutical dosage forms, the pro-drug form of the compounds, which does not belong to the invention especially including acylated (acetylated or other) derivatives, pyridine esters and various salt forms of the present compounds are preferred and can be administered in a method of treatment of a condition of a patient. One of ordinary skill in the art will recognize how to readily modify the present compounds to pro-drug forms to facilitate delivery of active compounds to a target site within the host organism or patient. One of ordinary skill in the art will also take advantage of favorable pharmacokinetic parameters of the pro-drug forms, where applicable, in delivering the present compounds to a targeted site within the host organism or patient to maximize the intended effect of the compound.
-
-
-
- Most of these compounds may be obtained as described (C. Sergheraert, C. Pierlot, A. Tartar, Y. Henin, M. Lemaitre, J. Med. Chem., 36, 826-830,1993).
-
-
- For specific delivery of drugs to the liver and the biliary system the endogenous bile acid transport system is an attractive candidate. Synthesis of bile acid conjugates of Viramidine™ could be accomplished as represented below:
- Nucleotide derivatives are another class of prodrugs or prodrug forms which are not part of the invention. Preparation of protected 5'-monophosphate derivatives are shown below. By protecting the negative charges of phosphates with neutral substituents would form more lipophilic derivatives that are expected to revert back to the corresponding monophosphates once inside the cell.
- Nucleotide derivatives are another class of prodrugs or prodrug forms which are not part of the invention. Preparation of protected 5'-monophosphate derivatives are shown below. By protecting the negative charges of phosphates with neutral substituents would form more lipophilic derivatives that are expected to revert back to the corresponding monophosphates once inside the cell.
-
-
- Prodrugs of nucleoside 5'-di or triphosphates which do not belong to the invention would be more interesting since they would bypass more metabolic steps.
-
-
- Other possible prodrugs which do not belong to the invention include the possible combinations of the groups shown in
,PCT patent application WO 98/39342 ,WO 98/39343 andWO 98/39344 .WO 99/45016 - Prodrugs of Viramidine™ which do not belong to the invention could be obtained not only by modifying the sugar.portion of the parent molecule but also by derivatizing the amidine functionality too. Following are a few classes of prodrugs that may be prepared by modifying the amidine group as described below:
- It is contemplated that compounds according to
Formula 1 will be used to treat hepatitis B virus (HBV) or hepatitis C virus (HCV), infection. - Another aspect, in connection with the use of the compound of the invention comprises administering a therapeutically and/or prophylactically effective amount of a pharmaceutical containing a compound of the present invention. In this aspect the effect may relate to modulation of some portion of the mammal's immune system, especially modulation of lymphokines profiles of
Type 1 andType 2 with respect to one another. Where modulation ofType 1 andType 2 lymphokines occurs, it is particularly contemplated that the modulation may include suppression of bothType 1 andType 2, and more preferably stimulation ofType 1 lymphokines, or a relative increase of atype 1 response to atype 2 response. - It is particularly contemplated that Viramidine™ (1.39 ug/ml) increases the expression and synthesis of
Type 1 cytokines in (preferably activated) T-lymphocytes, and results from various experiments are shown in Figures 2-5. Figure 2 depicts the effect of 5µM Viramidine (a compound according to Formula 1), Ribavirin, and levovirin onType 1 cytokine synthesis in SEB-activated human T cells (n= 5 donors), in which viramidine shows a clear increase in theType 1 response as compared to the control with Triazole. Figure 3 is a graphical representation of a dose-response effect of Viramidine in the range of 0.625 - 10 µM onType 1 cytokine synthesis in SEB (Staphylococcal Enterotoxin B)-activated human T cells (data represent 4 individual donors). The in vivo effect of an increasedType 1 response in a contact hyper-sensitivity (CHS) assay of Viramidine is clearly demonstrated in Figure 4, and Figure 5 shows a comparison between Viramidine and Levovirin/Ribavirin in respect to peak response nucleoside concentration and peak range of responses (y-axis depicts number of responders in a particular experiment). - Peripheral blood mononuclear cells were isolated from healthy donors or rheumatoid arthritis patients by density gradient centrifugation followed by T cell enrichment using Lymphokwik (One Lambda, Canoga Park CA). Contaminating monocytes were removed by adherence to plastic. Purified T cells were > 99% CD2+ , <1% HLA-DR+ and < 5% CD25+ and were maintained in RPMI-AP5 (RPMI-1640 medium containing 20 mM HEPES buffer, pH 7.4, 5% autologous plasma, 1% L-glutamine, 1% penicillin/streptomycin and 0.05% 2-mercaptoethanol).
- For determination of cytokine protein levels, T-cells (1 x 106 cells in a volume of 1 ml) were activated by the addition of 10 ng PMA plus 0.5 µg ionomycin (both from Calbiochem, La Jolla, CA) and incubated in 24 well plates in the presence of 0 to 20 µM nucleoside for up to 48 h at 37°C and 5% CO2 in a humidified incubator. Following activation, supernatants were analysed for cell-derived cytokine production. For proliferation and viability studies, the protocol as above was modified to a 96 well-plate format using 0.2 x 106 cells in a volume of 0.2 ml and activation with 2ng PMA and 0.1 µg ionomycin. In separate experiments, 5 x 106 T cells in 2ml were activated with 20 ng PMA plus 1 µg ionomycin. Alternatively, cells can be activated in vitro with SEB following published procedures. Here total RNA was isolated from T cells following 6 - 24h incubation and analyzed by RT -PCR to determine mRNA levels of various cytokines and inflammatory mediators. Also in separate experiments, human T cells were purified further (using cell enrichment reagents from Stem Cell Technologies, Vancouver, BC) to give pure populations of CD4+ (< 1% CD8+ using RosetteSep human CD4+ T cell isolation reagent), and CD8+ (< 1% CD4+ using RosetteSep human CD4+ T cell isolation reagent) T cell subsets, after which 1 x 106 cells per ml were activated with PMA and ionomycin, as in the total T cell experiments.
- Human cytokine levels were determined in cell supernatants, following appropriate dilution, using ELISA kits specific for IL-2, IFNg, TNFa, IL-4 and IL-5 (Biosource International, Camarillo, CA). Murine cytokine levels were determined using ELISA kits specific for murine IFNg and IL-4 (R and D Systems, Minneapolis, MN). All ELISA results were expressed as pg/ml. Some data are shown as percentage of activated control, calculated as the ratio of activated T cell cytokine level in the presence of test nucleoside over the cytokine level of untreated activated T cells x 100 %. Zero effect on cytokine levels by test nucleosides would give a percentage of activated control value of 100 %. Alternatively data were shown as percentage change from activated control ([(test pg/ml- activated control pg/ml)/activated control pg/ml] x 100%). Zero effect on cytokine levels by test nucleosides would be 0 %.
- Reactivity to the contact allergen, DNFB, was determined, in BALB/c mice, as previously described (Ishii, N., K. Takahashi, H. Nakajima, S. Tanaka, P.W. Askenase, 1994. DNFB contact sensitivity (CS) in BALB/c and C3H/He mice. J. Invest. Dermatol. 102:321). Briefly, mice were sensitized by application of 20µl of 0.3% DNFB in acetone : olive oil, 4 : 1 onto the shaved abdomens of naive mice. For optimal elicitation of CHS, the mice were challenged on both sides of each ear with 20µl of 0.12% DNFB, five days after sensitization. Unsensitized mice were also challenged and used as controls in each experiment. After 24h, ear thickness measurements were taken and response to DNFB was assessed by subtracting post-challenge from pre-challenge values. Where indicated, 7-β-D-ribofuranosyl-4-oxopyrrolo[2,3-d]pyrimidine-5-carboxamidine, at a dose of 6.2 µg in 50µl PBS (0.3 mg/kg) or 12.4 µg in 100µl PBS (0.6 mg/kg), was administered by i.p. injection at the time of challenge with DNFB. These doses of 7-β-D-ribofuranosyl-4-oxopyrrolo[2,3-d]pyrimidine-5-carboxamidine gave maximal effect in preliminary optimization studies. Following final ear thickness measurements, mice were sacrificed by cervical dislocation and axillary/lateral axillary lymph nodes were removed. Following isolation of total cellular RNA from isolated lymph node cells, RT-PCR and Southern Blot analyses were performed to monitor for mouse IFNg, IL-2, and IL-10 mRNA levels.
- It is generally contemplated that a shift of an immune response towards a
Type 1 response is favorable. Consequently, it is contemplated that the use of compounds according toFormula 1 may be particularly useful in treatment of HCV or HBV viral infections (in which thetype 1 response is reduced or suppressed). To confirm the effectiveness of modulating an immune response, various experiments have been conducted, and the following is an exemplary summary of some of the experiments conducted with contemplated compounds: - In vitro - Viramidine inhibited Punta Toro virus infection of LLC-MK2 (rhesus monkey kidney cells) with EC50 of 8- mg/ml (Adames strain) and 12 mg/ml (Balliet strain) - CC50 was 320 mg/ml (1.0 - 1.2 virus rating).
- In vivo - Administration s.c., or oral viramidine resulted in 100% survival (10 C57BL/6 mice/gp) of PTV injected s.c. (Adames strain).
- For 24h post infection by PTV in vivo the minimum effective s.c. dose of 32 mg/kg for ribavirin and for viramidine was 96 mg/kg given s.c. b.i.d for 5 days. For 24h post infection by PTV in vivo the minimum effective p.o. dose of 20 mg/kg for ribavirin and for viramidine was 40 mg/kg given p.o. b.i.d for 5 days.
- In general, the most preferred uses according to the present invention are those in which the active compounds are relatively less cytotoxic to the non-target host cells and relatively more active against the target. In this respect, it may also be advantageous that L-nucleosides may have increased stability over D-nucleosides, which could lead to better pharmacokinetics. This result may attain because L-nucleosides may not be recognized by enzymes, and therefore may have longer half-lives.
- It is contemplated that compounds according to the present invention will be used in vitro, or ex vivo in any appropriate pharmaceutical formulation, and under any appropriate protocol. Thus, administration may take place orally, parenterally (including subcutaneous injections, intravenous, intramuscularly, by intrasternal injection or infusion techniques), by inhalation spray, or rectally, topically and so forth, and in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles.
- By way of example, it is contemplated that compounds used in the present invention can be formulated in admixture with a pharmaceutically acceptable carrier. For example, the compounds of the present invention can be administered orally as pharmacologically acceptable salts. Because the compounds used in the present invention are mostly water soluble, they can be administered intravenously in physiological saline solution (e.g., buffered to a pH of about 7.2 to 7.5). Conventional buffers such as phosphates, bicarbonates or citrates can be used for this purpose. Of course, one of ordinary skill in the art may modify the formulations within the teachings of the specification to provide numerous formulations for a particular route of administration without rendering the compositions of the present invention unstable or compromising their therapeutic activity. In particular, the modification of the present compounds used to render them more soluble in water or other vehicle, for example, may be easily accomplished by minor modifications (salt formulation, esterification, etc.) that are well within the ordinary skill in the art. It is also well within the ordinary skill of the art to modify the route of administration and dosage regimen of a particular compound in order to manage the pharmacokinetics of the present compounds for maximum beneficial effect in patients.
- In addition, compounds used in the present invention may be administered alone or in combination with other agents for the treatment of the above infections or conditions. Combination therapies in connection with the use of the present invention comprise the administration of a compound according to Formula I and at least one other pharmaceutically active ingredient. The active ingredient(s) and pharmaceutically active agents may be administered separately or together and when administered separately this may occur simultaneously or separately in any order. The amounts of the active ingredient(s) and pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect. Preferably, the combination therapy involves the administration of one compound of the present invention or a physiologically functional derivative thereof and one of the agents mentioned herein below.
- Examples of other drugs or active ingredients contemplated to be effective in combination with a modulator according to
Formula 1 are anti-viral agents such as interferon, including interferon a and γ, Ribavirin, acyclovir, and AZT™; anti-fungal agents such as tolnaftate, Fungizone™, Lotrimin™, Mycelex™, Nystatin and Amphoteracin; anti-parasitics such as Mintezol™, Niclocide™, Vermox™, and Flagyl™, bowel agents such as Immodium™, Lomotil™ and Phazyme™; anti-tumor agents such as interferon α and γ, Adriamycin™; Cytoxan™, Imuran™, Methotrexate, Mithracin™, Tiazofurin™, Taxol™; dermatologic agents such as Aclovate™, Cyclocort™, Denorex™, Florone™, Oxsoralen™, coal tar and salicylic acid; migraine preparations such as ergotamine compounds; steroids and immunosuppresants not listed above, including cyclosporins, Diprosone™, hydrocortisone; Floron™, Lidex™, Topicort and Valisone; and metabolic agents such as insulin, and other drugs which may not nicely fit into the above categories, including cytokines such as IL2, IL4, IL6, IL8, IL10 and IL12. Especially preferred primary drugs are AZT, 3TC, 8-substituted guanosine analogs, 2,3-dideoxynucleosides, interleukin II, interferons such as IαB-interferons, tucaresol, levamisole, isoprinosine and cyclolignans. - Examples of such further therapeutic agents include agents that are effective for the modulation of immune system or associated conditions such as AZT, 3TC, 8-substituted guanosine analogs, 2', 3'-dideoxynucleosides, interleukin II, interferons, such as α-interferon, tucaresol, levamisole, isoprinosine and cyclolignans. Certain compounds according to the present invention may be effective for enhancing the biological activity of certain agents according to the present invention by reducing the metabolism or inactivation of other compounds and as such, are co-administered for this intended effect.
- With respect to dosage, one of ordinary skill in the art will recognize that a therapeutically effective amount will vary with the infection or condition to be treated, its severity, the treatment regimen to be employed, the pharmacokinetics of the agent used, as well as the patient (animal or human) treated. It is contemplated that various alternative dosages are also appropriate, including dosages between 0.5 mg/kg and 0.1 mg/kg and less, but also dosages between 0.5 and 1.0mg/kg and more. It is further contemplated that while treatment success may be achieved with some viral infections at relatively low plasma concentrations of the compounds of
Formula 1, other viral infections may require relatively high dosages. It is contemplated, however, that an appropriate regimen will be developed by administering a small amount, and then increasing the amount until the side effects become unduly adverse, or the intended effect is achieved. - Administration of the active compound may range from continuous (intravenous drip) to several oral administrations per day (for example, Q.I.D.) and may include oral, topical, parenteral, intramuscular, intravenous, sub-cutaneous, transdermal (which may include a penetration enhancement agent), buccal and suppository administration, among other routes of administration.
- To prepare the pharmaceutical compositions used in the present invention, a therapeutically effective amount of one or more of the compounds according to
Formula 1 is preferably intimately admixed with a pharmaceutically acceptable carrier according to conventional pharmaceutical compounding techniques to produce a dose. A carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral. In preparing pharmaceutical compositions in oral dosage form, any of the usual pharmaceutical media may be used. Thus, for liquid oral preparations such as suspensions, elixirs and solutions, suitable carriers and additives including water, glycols, oils, alcohols, flavouring agents, preservatives, colouring agents and the like may be used. For solid oral preparations such as powders, tablets, capsules, and for solid preparations such as suppositories, suitable carriers and additives including starches, sugar carrier, such as dextrose, mannitol, lactose and related carriers, diluents, granulating agents, lubricants, binders, disintegrating agents and the like may be used. If desired, the tablets or capsules may be enteric-coated or sustained release by standard techniques. - For parenteral formulations, the carrier will usually comprise sterile water or aqueous sodium chloride solution, though other ingredients including those that aid dispersion may be included. Of course, where sterile water is to be used and maintained as sterile, the compositions and carriers must also be sterilized. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
Claims (6)
- The use of claim 1, wherein the viral infection is an HCV infection.
- The use of claim 1 or 2, wherein the medicament is formulated for oral administration.
- The use of any of claims 1 to 3, wherein the medicament is formulated to include a dose of the compound between 0.1 mg per kg of body weight of the patient and 40 mg per kg of body weight of the patient.
- The use of any of claims 1 to 4, wherein the medicament further comprises an interferon.
- The use of claim 5, wherein the interferon is interferon-alpha.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP07107588.1A EP1813278B9 (en) | 2000-02-15 | 2001-02-15 | Nucleoside analogs with carboxamidine modified monocyclic base |
| CY20071101614T CY1107103T1 (en) | 2000-02-15 | 2007-12-19 | NEW NUCLEOZYTE PRODUCERS WITH MODIFIED CARBOXAMIDINE MONOCYCLIC BASE |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US595365 | 1996-02-01 | ||
| US18267600P | 2000-02-15 | 2000-02-15 | |
| US182676P | 2000-02-15 | ||
| US09/595,365 US6455508B1 (en) | 2000-02-15 | 2000-10-05 | Methods for treating diseases with tirazole and pyrrolo-pyrimidine ribofuranosyl nucleosides |
| PCT/US2001/040148 WO2001060379A1 (en) | 2000-02-15 | 2001-02-15 | Nucleoside analogs with carboxamidine modified monocyclic base |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP07107588.1A Division EP1813278B9 (en) | 2000-02-15 | 2001-02-15 | Nucleoside analogs with carboxamidine modified monocyclic base |
Publications (4)
| Publication Number | Publication Date |
|---|---|
| EP1257281A1 EP1257281A1 (en) | 2002-11-20 |
| EP1257281A4 EP1257281A4 (en) | 2003-03-19 |
| EP1257281B1 true EP1257281B1 (en) | 2007-11-07 |
| EP1257281B8 EP1257281B8 (en) | 2008-01-23 |
Family
ID=26878297
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP07107588.1A Expired - Lifetime EP1813278B9 (en) | 2000-02-15 | 2001-02-15 | Nucleoside analogs with carboxamidine modified monocyclic base |
| EP01920996A Expired - Lifetime EP1257281B8 (en) | 2000-02-15 | 2001-02-15 | Nucleoside analogs with carboxamidine modified monocyclic base |
| EP01910892A Withdrawn EP1278528A4 (en) | 2000-02-15 | 2001-02-15 | Nucleoside analogs with carboxamidine-modified bicyclic base |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP07107588.1A Expired - Lifetime EP1813278B9 (en) | 2000-02-15 | 2001-02-15 | Nucleoside analogs with carboxamidine modified monocyclic base |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP01910892A Withdrawn EP1278528A4 (en) | 2000-02-15 | 2001-02-15 | Nucleoside analogs with carboxamidine-modified bicyclic base |
Country Status (28)
| Country | Link |
|---|---|
| US (1) | US6455508B1 (en) |
| EP (3) | EP1813278B9 (en) |
| JP (3) | JP2004510691A (en) |
| KR (2) | KR20030005190A (en) |
| CN (2) | CN1268335C (en) |
| AT (1) | ATE377422T1 (en) |
| AU (2) | AU783142B2 (en) |
| BR (2) | BR0108401A (en) |
| CA (2) | CA2395854A1 (en) |
| CY (1) | CY1107103T1 (en) |
| CZ (2) | CZ20022799A3 (en) |
| DE (1) | DE60131250T8 (en) |
| DK (1) | DK1257281T3 (en) |
| ES (2) | ES2528429T3 (en) |
| HR (2) | HRP20020583A2 (en) |
| HU (2) | HU229480B1 (en) |
| IL (3) | IL150555A0 (en) |
| MX (2) | MXPA02007932A (en) |
| NO (2) | NO329927B1 (en) |
| NZ (2) | NZ521390A (en) |
| PL (2) | PL200140B1 (en) |
| PT (1) | PT1257281E (en) |
| RS (1) | RS20090086A (en) |
| RU (2) | RU2002120483A (en) |
| SI (2) | SI21076A (en) |
| SK (2) | SK11572002A3 (en) |
| WO (2) | WO2001060381A1 (en) |
| YU (1) | YU61502A (en) |
Families Citing this family (57)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6831069B2 (en) * | 1999-08-27 | 2004-12-14 | Ribapharm Inc. | Pyrrolo[2,3-d]pyrimidine nucleoside analogs |
| US7638496B2 (en) * | 2000-02-15 | 2009-12-29 | Valeant Pharmaceuticals North America | Nucleoside analogs with carboxamidine modified monocyclic base |
| US7056895B2 (en) * | 2000-02-15 | 2006-06-06 | Valeant Pharmaceuticals International | Tirazole nucleoside analogs and methods for using same |
| MY164523A (en) * | 2000-05-23 | 2017-12-29 | Univ Degli Studi Cagliari | Methods and compositions for treating hepatitis c virus |
| KR20080021797A (en) * | 2000-05-26 | 2008-03-07 | 이데닉스(케이만)리미티드 | Methods and compositions for treatment of flaviviruses and pestiviruses |
| BR0206614A (en) | 2001-01-22 | 2004-02-17 | Merck & Co Inc | Compound, pharmaceutical composition, method for inhibiting rna-dependent rna viral polymerase and / or inhibiting rna-dependent rna viral replication, method for treating an rna-dependent rna viral infection, and use of a compound |
| WO2003037908A1 (en) * | 2001-10-31 | 2003-05-08 | Ribapharm Inc. | Antiviral combination therapy and compositions |
| JP2005533824A (en) | 2002-06-28 | 2005-11-10 | イデニクス(ケイマン)リミテツド | 2'-C-methyl-3'-OL-valine ester ribofuranosyl cytidine for the treatment of Flaviviridae infections |
| US7608600B2 (en) | 2002-06-28 | 2009-10-27 | Idenix Pharmaceuticals, Inc. | Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections |
| NZ537662A (en) | 2002-06-28 | 2007-10-26 | Idenix Cayman Ltd | 2'-C-methyl-3'-O-L-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections |
| US7824851B2 (en) | 2002-11-15 | 2010-11-02 | Idenix Pharmaceuticals, Inc. | 2′-branched nucleosides and Flaviviridae mutation |
| EP1585529A4 (en) | 2002-12-12 | 2008-05-28 | Idenix Cayman Ltd | Process for the production of 2'-branched nucleosides |
| AU2004224575A1 (en) * | 2003-03-28 | 2004-10-07 | Pharmasset Ltd. | Compounds for the treatment of flaviviridae infections |
| US20040197287A1 (en) * | 2003-04-04 | 2004-10-07 | The Procter & Gamble Company | Personal care composition containing an antidandruff component and a nonionic surfactant |
| US20040202636A1 (en) * | 2003-04-11 | 2004-10-14 | Kaczvinsky Joseph Robert | Personal care composition containing an antidandruff component and a nonionic surfactant |
| US20040197292A1 (en) * | 2003-04-04 | 2004-10-07 | The Procter & Gamble Company | Personal care composition containing an antidandruff component and a nonionic surfactant |
| US6930093B2 (en) * | 2003-07-10 | 2005-08-16 | Valeant Research & Development | Use of ribofuranose derivatives against inflammatory bowel diseases |
| US20050009848A1 (en) * | 2003-07-10 | 2005-01-13 | Icn Pharmaceuticals Switzerland Ltd. | Use of antivirals against inflammatory bowel diseases |
| WO2005018330A1 (en) * | 2003-08-18 | 2005-03-03 | Pharmasset, Inc. | Dosing regimen for flaviviridae therapy |
| US20050095218A1 (en) * | 2003-10-29 | 2005-05-05 | The Procter & Gamble Company | Personal care composition containing a detersive surfactant, an antidandruff component, and ketoamide surfactants |
| US20050182252A1 (en) | 2004-02-13 | 2005-08-18 | Reddy K. R. | Novel 2'-C-methyl nucleoside derivatives |
| EP1758453B1 (en) | 2004-06-15 | 2014-07-16 | Merck Sharp & Dohme Corp. | C-purine nucleoside analogs as inhibitors of rna-dependent rna viral polymerase |
| JP4516863B2 (en) * | 2005-03-11 | 2010-08-04 | 株式会社ケンウッド | Speech synthesis apparatus, speech synthesis method and program |
| CA2606195C (en) | 2005-05-02 | 2015-03-31 | Merck And Co., Inc. | Hcv ns3 protease inhibitors |
| US7470664B2 (en) | 2005-07-20 | 2008-12-30 | Merck & Co., Inc. | HCV NS3 protease inhibitors |
| US8278322B2 (en) | 2005-08-01 | 2012-10-02 | Merck Sharp & Dohme Corp. | HCV NS3 protease inhibitors |
| CA2634749C (en) | 2005-12-23 | 2014-08-19 | Idenix Pharmaceuticals, Inc. | Process for preparing a synthetic intermediate for preparation of branched nucleosides |
| JP2009522281A (en) * | 2005-12-28 | 2009-06-11 | トランスレーショナル セラピューティクス,インク. | Treatment based on translational dysfunction |
| US8497292B2 (en) | 2005-12-28 | 2013-07-30 | Translational Therapeutics, Inc. | Translational dysfunction based therapeutics |
| GB0609492D0 (en) | 2006-05-15 | 2006-06-21 | Angeletti P Ist Richerche Bio | Therapeutic agents |
| GB0612423D0 (en) | 2006-06-23 | 2006-08-02 | Angeletti P Ist Richerche Bio | Therapeutic agents |
| WO2008005542A2 (en) * | 2006-07-07 | 2008-01-10 | Gilead Sciences, Inc., | Antiviral phosphinate compounds |
| EP2076278B1 (en) | 2006-10-24 | 2015-05-06 | Merck Sharp & Dohme Corp. | Macrocyclic HCV NS3 protease inhibitors |
| WO2008051475A2 (en) | 2006-10-24 | 2008-05-02 | Merck & Co., Inc. | Hcv ns3 protease inhibitors |
| EP2079480B1 (en) | 2006-10-24 | 2013-06-05 | Merck Sharp & Dohme Corp. | Hcv ns3 protease inhibitors |
| BRPI0718161A2 (en) | 2006-10-27 | 2013-11-26 | Merck & Co Inc | COMPOUND, PHARMACEUTICAL COMPOSITION, AND, USE OF THE COMPOUND. |
| EP2083844B1 (en) | 2006-10-27 | 2013-11-27 | Merck Sharp & Dohme Corp. | Hcv ns3 protease inhibitors |
| EP2121707B1 (en) | 2006-12-20 | 2012-12-05 | Istituto di Ricerche di Biologia Molecolare P. Angeletti S.R.L. | Antiviral indoles |
| GB0625345D0 (en) | 2006-12-20 | 2007-01-31 | Angeletti P Ist Richerche Bio | Therapeutic compounds |
| GB0625349D0 (en) | 2006-12-20 | 2007-01-31 | Angeletti P Ist Richerche Bio | Therapeutic compounds |
| CN101754970B (en) | 2007-07-17 | 2013-07-10 | P.安杰莱蒂分子生物学研究所 | Macrocyclic indole derivatives for the treatment of hepatitis c infections |
| US8927569B2 (en) | 2007-07-19 | 2015-01-06 | Merck Sharp & Dohme Corp. | Macrocyclic compounds as antiviral agents |
| EP2271345B1 (en) | 2008-04-28 | 2015-05-20 | Merck Sharp & Dohme Corp. | Hcv ns3 protease inhibitors |
| ME02132B (en) | 2008-07-22 | 2014-08-22 | Merck Sharp & Dohme | COMBINATIONS OF A MACROCYCLIC CHINOXALIN COMPOUND THAT IS A HCV NS3 PROTEASE INHIBITOR WITH OTHER HCV MEDIUM |
| WO2010082050A1 (en) | 2009-01-16 | 2010-07-22 | Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. | Macrocyclic and 7-aminoalkyl-substituted benzoxazocines for treatment of hepatitis c infections |
| GB0900914D0 (en) | 2009-01-20 | 2009-03-04 | Angeletti P Ist Richerche Bio | Antiviral agents |
| WO2011014487A1 (en) | 2009-07-30 | 2011-02-03 | Merck Sharp & Dohme Corp. | Hepatitis c virus ns3 protease inhibitors |
| WO2013074386A2 (en) | 2011-11-15 | 2013-05-23 | Merck Sharp & Dohme Corp. | Hcv ns3 protease inhibitors |
| US20140356325A1 (en) | 2012-01-12 | 2014-12-04 | Ligand Pharmaceuticals Incorporated | Novel 2'-c-methyl nucleoside derivative compounds |
| CN102978264B (en) * | 2012-11-14 | 2014-12-10 | 广东肇庆星湖生物科技股份有限公司 | Preparation method for taribavirin |
| WO2014121418A1 (en) | 2013-02-07 | 2014-08-14 | Merck Sharp & Dohme Corp. | Tetracyclic heterocycle compounds and methods of use thereof for the treatment of hepatitis c |
| WO2014121417A1 (en) | 2013-02-07 | 2014-08-14 | Merck Sharp & Dohme Corp. | Tetracyclic heterocycle compounds and methods of use thereof for the treatment of hepatitis c |
| CA2937548C (en) | 2014-02-13 | 2022-10-25 | Ligand Pharmaceuticals, Inc. | Prodrug compounds and their uses |
| WO2016003812A1 (en) | 2014-07-02 | 2016-01-07 | Ligand Pharmaceuticals, Inc. | Prodrug compounds and uses therof |
| JP2018523665A (en) | 2015-08-06 | 2018-08-23 | キメリックス インコーポレイテッド | Pyrrolopyrimidine nucleosides and their analogs useful as antiviral agents |
| EP3684771B1 (en) | 2017-09-21 | 2024-11-27 | Chimerix, Inc. | Morphic forms of 4-amino-7-(3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-methyl-7h-pyrrolo(2,3-d)pyrimidine-5-carboxamide and uses thereof |
| RU2020126177A (en) | 2018-01-09 | 2022-02-10 | Лиганд Фармасьютикалз, Инк. | ACETAL COMPOUNDS AND THEIR THERAPEUTIC APPLICATIONS |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3984396A (en) | 1971-06-01 | 1976-10-05 | Icn Pharmaceuticals, Inc. | 1-(β,-D-ribofuranosyl)-1,2,4-triazole acid esters |
| US3991078A (en) | 1971-06-01 | 1976-11-09 | Icn Pharmaceuticals, Inc. | N-substituted 1,2,4-triazoles |
| US3798209A (en) | 1971-06-01 | 1974-03-19 | Icn Pharmaceuticals | 1,2,4-triazole nucleosides |
| USRE29835E (en) | 1971-06-01 | 1978-11-14 | Icn Pharmaceuticals | 1,2,4-Triazole nucleosides |
| US3962211A (en) * | 1975-01-13 | 1976-06-08 | The University Of Utah | 7-substituted nucleoside compounds |
| US4093624A (en) | 1977-01-31 | 1978-06-06 | Icn Pharmaceuticals, Inc. | 1,2,4-Thiadiazolidine-3,5-dione |
| SU1124559A1 (en) * | 1983-06-08 | 1986-07-07 | Институт молекулярной биологии АН СССР | 1-(2-oxyethoxymethyl)-1,2,4-triazole-5-carboxamide possessing activity against herpes virus |
| JPS6426593A (en) | 1987-07-21 | 1989-01-27 | Asahi Glass Co Ltd | Nucleoside derivative |
| US4892865A (en) * | 1987-12-01 | 1990-01-09 | The Regents Of The University Of Michigan | Pyrrolo[2,3-d]pyrimidine nucleosides as antiviral agents |
| US5405837A (en) * | 1993-05-18 | 1995-04-11 | Indiana University Foundation | Method for the treatment of neoplastic disease utilizing tiazofurin and ribavirin |
| US5767097A (en) * | 1996-01-23 | 1998-06-16 | Icn Pharmaceuticals, Inc. | Specific modulation of Th1/Th2 cytokine expression by ribavirin in activated T-lymphocytes |
| CA2246162C (en) * | 1996-01-23 | 2000-04-04 | Icn Pharmaceuticals, Inc. | Modulation of th1/th2 cytokine expression by ribavirin.rtm. and ribavirin.rtm. analogs in activated t-lymphocytes |
| SI20076A (en) * | 1996-10-16 | 2000-04-30 | Icn Pharmaceuticals, Inc. | Monocyclic l-nucleosides, analogs and use thereof |
| KR20020092904A (en) * | 1999-08-27 | 2002-12-12 | 아이씨엔 파마슈티컬스, 인코포레이티드 | Pyrrolo[2,3-d]pyrimidine nucleoside analogs |
-
2000
- 2000-10-05 US US09/595,365 patent/US6455508B1/en not_active Expired - Lifetime
-
2001
- 2001-02-15 PL PL357945A patent/PL200140B1/en unknown
- 2001-02-15 ES ES07107588.1T patent/ES2528429T3/en not_active Expired - Lifetime
- 2001-02-15 RU RU2002120483/14A patent/RU2002120483A/en not_active Application Discontinuation
- 2001-02-15 MX MXPA02007932A patent/MXPA02007932A/en unknown
- 2001-02-15 MX MXPA02007931A patent/MXPA02007931A/en active IP Right Grant
- 2001-02-15 DE DE60131250T patent/DE60131250T8/en active Active
- 2001-02-15 AT AT01920996T patent/ATE377422T1/en active
- 2001-02-15 HU HU0300027A patent/HU229480B1/en unknown
- 2001-02-15 KR KR1020027010593A patent/KR20030005190A/en not_active Withdrawn
- 2001-02-15 IL IL15055501A patent/IL150555A0/en unknown
- 2001-02-15 ES ES01920996T patent/ES2295148T3/en not_active Expired - Lifetime
- 2001-02-15 CA CA002395854A patent/CA2395854A1/en not_active Abandoned
- 2001-02-15 CZ CZ20022799A patent/CZ20022799A3/en unknown
- 2001-02-15 CN CNB018077455A patent/CN1268335C/en not_active Expired - Fee Related
- 2001-02-15 NZ NZ521390A patent/NZ521390A/en unknown
- 2001-02-15 AU AU47988/01A patent/AU783142B2/en not_active Ceased
- 2001-02-15 DK DK01920996T patent/DK1257281T3/en active
- 2001-02-15 KR KR1020027010417A patent/KR100811927B1/en not_active Expired - Fee Related
- 2001-02-15 AU AU38450/01A patent/AU3845001A/en not_active Abandoned
- 2001-02-15 JP JP2001559477A patent/JP2004510691A/en active Pending
- 2001-02-15 WO PCT/US2001/005172 patent/WO2001060381A1/en not_active Ceased
- 2001-02-15 NZ NZ52087701A patent/NZ520877A/en not_active IP Right Cessation
- 2001-02-15 CZ CZ20022798A patent/CZ302327B6/en not_active IP Right Cessation
- 2001-02-15 JP JP2001559475A patent/JP4975930B2/en not_active Expired - Fee Related
- 2001-02-15 PL PL01365239A patent/PL365239A1/en unknown
- 2001-02-15 HR HR20020583A patent/HRP20020583A2/en not_active Application Discontinuation
- 2001-02-15 BR BR0108401-1A patent/BR0108401A/en not_active IP Right Cessation
- 2001-02-15 EP EP07107588.1A patent/EP1813278B9/en not_active Expired - Lifetime
- 2001-02-15 RS RSP-2009/0086A patent/RS20090086A/en unknown
- 2001-02-15 HU HU0300912A patent/HUP0300912A2/en unknown
- 2001-02-15 SI SI200120010A patent/SI21076A/en not_active IP Right Cessation
- 2001-02-15 CN CN01805036A patent/CN1420779A/en active Pending
- 2001-02-15 SK SK1157-2002A patent/SK11572002A3/en unknown
- 2001-02-15 SK SK1149-2002A patent/SK287765B6/en not_active IP Right Cessation
- 2001-02-15 WO PCT/US2001/040148 patent/WO2001060379A1/en not_active Ceased
- 2001-02-15 SI SI200120011A patent/SI21077A/en not_active IP Right Cessation
- 2001-02-15 IL IL15099001A patent/IL150990A0/en unknown
- 2001-02-15 CA CA2399208A patent/CA2399208C/en not_active Expired - Fee Related
- 2001-02-15 YU YU61502A patent/YU61502A/en unknown
- 2001-02-15 RU RU2002120922/15A patent/RU2259831C2/en active
- 2001-02-15 HR HR20020657A patent/HRP20020657A2/en not_active Application Discontinuation
- 2001-02-15 BR BR0108402-0A patent/BR0108402A/en not_active Application Discontinuation
- 2001-02-15 EP EP01920996A patent/EP1257281B8/en not_active Expired - Lifetime
- 2001-02-15 PT PT01920996T patent/PT1257281E/en unknown
- 2001-02-15 EP EP01910892A patent/EP1278528A4/en not_active Withdrawn
-
2002
- 2002-07-30 IL IL150990A patent/IL150990A/en not_active IP Right Cessation
- 2002-08-14 NO NO20023855A patent/NO329927B1/en not_active IP Right Cessation
- 2002-08-14 NO NO20023852A patent/NO20023852L/en not_active Application Discontinuation
-
2007
- 2007-12-19 CY CY20071101614T patent/CY1107103T1/en unknown
-
2009
- 2009-01-29 JP JP2009018382A patent/JP5253204B2/en not_active Expired - Fee Related
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1257281B1 (en) | Nucleoside analogs with carboxamidine modified monocyclic base | |
| US6495677B1 (en) | Nucleoside compounds | |
| US6815542B2 (en) | Nucleoside compounds and uses thereof | |
| US20090176721A1 (en) | Nucleoside analogs with carboxamidine modified monocyclic base | |
| HK1051149B (en) | Nucleoside analogs with carboxamidine modified monocyclic base | |
| ZA200206468B (en) | Nucleoside analogs with carboxamidine modified monocyclic base. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20020913 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7C 07H 19/056 B Ipc: 7A 61P 31/12 B Ipc: 7A 61K 31/70 A |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20030131 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RIBAPHARM CORP |
|
| 17Q | First examination report despatched |
Effective date: 20030905 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RIBAPHARM, INC. |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20071129 |
|
| RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: VALEANT PHARMACEUTICALS NORTH AMERICA |
|
| REF | Corresponds to: |
Ref document number: 60131250 Country of ref document: DE Date of ref document: 20071220 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: VALEANT PHARMACEUTICALS NORTH AMERICA Effective date: 20071212 |
|
| REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20070403781 Country of ref document: GR |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2295148 Country of ref document: ES Kind code of ref document: T3 |
|
| REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1051149 Country of ref document: HK |
|
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20080808 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20090304 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20090227 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20090212 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20090202 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CY Payment date: 20090216 Year of fee payment: 9 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100215 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100215 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20180209 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180207 Year of fee payment: 18 Ref country code: CH Payment date: 20180125 Year of fee payment: 18 Ref country code: FI Payment date: 20180126 Year of fee payment: 18 Ref country code: ES Payment date: 20180302 Year of fee payment: 18 Ref country code: DK Payment date: 20180125 Year of fee payment: 18 Ref country code: GB Payment date: 20180125 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20180207 Year of fee payment: 18 Ref country code: AT Payment date: 20180126 Year of fee payment: 18 Ref country code: PT Payment date: 20180130 Year of fee payment: 18 Ref country code: IT Payment date: 20180215 Year of fee payment: 18 Ref country code: BE Payment date: 20180219 Year of fee payment: 18 Ref country code: FR Payment date: 20180118 Year of fee payment: 18 Ref country code: IE Payment date: 20180126 Year of fee payment: 18 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60131250 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20190228 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20190301 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 377422 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190215 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190216 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190816 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190215 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190228 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190215 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190903 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190215 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190215 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190215 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200330 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190216 |