EP1127706A1 - Ink jet recording material - Google Patents
Ink jet recording material Download PDFInfo
- Publication number
- EP1127706A1 EP1127706A1 EP01000012A EP01000012A EP1127706A1 EP 1127706 A1 EP1127706 A1 EP 1127706A1 EP 01000012 A EP01000012 A EP 01000012A EP 01000012 A EP01000012 A EP 01000012A EP 1127706 A1 EP1127706 A1 EP 1127706A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ink jet
- jet recording
- recording element
- element according
- ink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/506—Intermediate layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/508—Supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5218—Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5245—Macromolecular coatings characterised by the use of polymers containing cationic or anionic groups, e.g. mordants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5254—Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/529—Macromolecular coatings characterised by the use of fluorine- or silicon-containing organic compounds
Definitions
- the present invention relates to the field of recording media for ink jet printing.
- ink jet printing has become a popular technique because of its simplicity, convenience and low cost. Especially in those instances where a limited edition of the printed matter is needed ink jet printing has become a technology of choice.
- a recent survey on progress and trends in ink jet printing technology is given by Hue P. Le in Journal of Imaging Science and Technology Vol. 42 (1), Jan/Febr 1998.
- ink jet printing tiny drops of ink fluid are projected directly onto an ink receptor surface without physical contact between the printing device and the receptor.
- the printing device stores the printing data electronically and controls a mechanism for ejecting the drops image-wise. Printing is accomplished by moving the print head across the paper or vice versa.
- Early patents on ink jet printers include US 3,739,393, US 3,805,273 and US 3,891,121.
- the jetting of the ink droplets can be performed in several different ways.
- a continuous droplet stream is created by applying a pressure wave pattern. This process is known as continuous ink jet printing.
- the droplet stream is divided into droplets that are electrostatically charged, deflected and recollected, and into droplets that remain uncharged, continue their way undeflected, and form the image.
- the charged deflected stream forms the image and the uncharged undeflected jet is recollected.
- several jets are deflected to a different degree and thus record the image (multideflection system).
- the ink droplets can be created “on demand” (“DOD” or “drop on demand” method) whereby the printing device ejects the droplets only when they are used in imaging on a receiver thereby avoiding the complexity of drop charging, deflection hardware, and ink recollection.
- DOD on demand
- the ink droplet can be formed by means of a pressure wave created by a mechanical motion of a piezoelectric transducer (so-called “piezo method”), or by means of discrete thermal pushes (so-called “bubble jet” method, or “thermal jet” method).
- Ink compositions for ink jet typically include following ingredients : dyes or pigments, water and/or organic solvents, humectants such as glycols, detergents, thickeners, polymeric binders, preservatives, etc.. It will be readily understood that the optimal composition of such an ink is dependent on the ink jetting method used and on the nature of the substrate to be printed.
- the ink compositions can be roughly divided in :
- Pigments and particles have also been described in patent applications including DE 2,925,769, GB 2,050,866, US-P 4,474,850, US-P 4,547,405, US-P 4,578,285, WO 88 06532, US-P 4,849,286, EP 339604, EP 400681, EP 407881, EP 411638 and US-P 5,045,864 (non-exhaustive list).
- binders of which the most common types such as gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, and various types of cellulose derivatives. These conventional binders are mentioned in numerous patent documents.
- a suitable material is disclosed in EP 487350 which describes a receiver coating comprising a pigment, polyvinyl alcohol, and an additional binder selected from the group consisting of styrene-butadiene latices, cationic polymers, styrene-vinyl pyrrolidone copolymers, styrene-maleic anhydride copolymers, and mixtures thereof.
- styrene-butadiene latices cationic polymers
- styrene-vinyl pyrrolidone copolymers styrene-maleic anhydride copolymers
- mixtures thereof it turns out that using conventional polyvinyl alcohol as binder not all types of pigments are dispersed in a perfectly stable way. In particular, with some types of silica partial or total flocculation can occur giving rise to turbid coated layers.
- the present invention extends the teachings on ink jet recording materials and is particularly directed to to an improved material for outdoor.
- an ink jet recording element comprising a support and an ink receiving layer wherein said ink receiving layer comprises (a) a pigment, (b) a silanol modified polyvinyl alcohol, and (c) a film-forming polymer having a glass transition temperature lower than 50 °C.
- the recording element may further contain an adhesive undercoat between the support and the ink receiving layer.
- the principal ingredients of the ink receiving layer in connection with the present invention being the pigment, the silanol modified polyvinyl alcohol, and the film-forming polymer.
- the pigment present in the ink receiving layer may be chosen from organic material such as polystyrene, polymethylmethacrylate, silicones, urea-formaldehyde condensation polymers, polyesters and polyamides.
- organic material such as polystyrene, polymethylmethacrylate, silicones, urea-formaldehyde condensation polymers, polyesters and polyamides.
- it is an inorganic porous pigment, such as silica, talc, clay, koalin, diatomaceous earth, calcium carbonate, magnesium carbonate, aluminium hydroxide, aluminium oxide, titanium oxide, zinc oxide, barium sulfate, calcium sulfate, zinc sulfide, satin white, boehmite and pseudo-boehmite.
- the preferred pigment is a silica type, more particularly an amorphous silica having a average particle size ranging from 1 ⁇ m to 15 ⁇ m, most preferably from 2 to 10 ⁇ m.
- a silica type more particularly an amorphous silica having a average particle size ranging from 1 ⁇ m to 15 ⁇ m, most preferably from 2 to 10 ⁇ m.
- non-colloidal silica types in ink jet receiver formulations is known for long time, e.g. from old references such as JP-A 55-051583, JP-A 56-000157, US-P 4,474,850 and DE 3410828.
- a most useful commercial compound is the amorphous precipitated silica type SIPERNAT 570, trade name from Degussa Co. It is preferably present in the receiving layer in an amount ranging from 5 g/m 2 to 30 g/m 2 .
- the pigment is dispersed into the binder solution by mechanically mixing for about 15 minutes. It is essential to the present invention that this binder is silanol modified polyvinyl alcohol. Most useful commercially available silanol modified polyvinyl alcohols can be found in the POVAL R polymer series, trade name of Kuraray Co., Japan.
- a silanol modified polyvinyl alcohol may be obtained via copolymerisation or by modification of the polyvinyl alcohol using silanes.
- Copolymerisation of vinyl acetate with monomers like vinyltrimethoxysilane, methacroyloxypropyl trimethoxysilane, triisopropoxyvinylsilane, and methacrylamidopropyl triethoxysilane can result in useful precursor polymers.
- the polyvinyl alcohol may also be modified using silanes.
- Alkoxy silanes like ⁇ -3,4-epoxycyclohexylethyltriethoxysilane, ⁇ -glycidyloxypropyltrimethoxysilane or isocyanatopropyl triethoxysilane are suitable for this purpose.
- Typical binders include hydroxyethyl cellulose; hydroxypropyl cellulose; hydroxyethylmethyl cellulose; hydroxypropyl methyl cellulose; hydroxybutylmethyl cellulose; methyl cellulose; sodium carboxymethyl cellulose; sodium carboxymethylhydroxethyl cellulose; water soluble ethylhydroxyethyl cellulose; cellulose sulfate; polyvinyl alcohol; vinylalcohol copolymers; polyvinyl acetate; polyvinylacetal; polyvinyl pyrrolidone; polyacrylamide; acrylamide/acrylic acid copolymer; styrene/acrylic acid copolymer; ethylene-vinylacetate copolymer; vinylmethyl ether/maleic acid copolymer; poly(2-acrylamido
- the binder or binder mixture is preferably present in the receiving layer in a weight ratio from 30 % to 60 % to the total coating weight of the layer.
- the third essential ingredient of the receiving layer according to the present invention is a film-forming polymer having a glass transition temperature (T g ) lower than 50 °C, more preferably lower than 20°C. It is added whilst stirring to the dispersion of the pigment in the binder.
- T g glass transition temperature
- Representative polymers obeying this definition include conjugated diene polymers such as styrene-butadiene copolymers and methyl methacrylate-butadiene copolymers, acrylic polymers, for example, homopolymers and copolymers of acrylic acid esters and methacrylic acid esters, vinyl polymers, e.g.
- vinylester polymers for example, polyvinyl acetate, ethylene-vinyl acetate copolymers; vinylacetate-acrylate copolymers, vinylacetate-maleate copolymers; modification reaction products of the above-mentioned polymers and copolymers, for example, modified with a carboxyl and/or cationic groups; water-soluble or dispersible resins, for example, melamine-formaldehyde resins and urea-formaldehyde resins; water-insoluble adhesive resins, for example, maleic anhydride copolymer resins, polyacrylamide resins, polymethyl methacrylate resins, polyurethane resins, unsaturated polyester resins, polyvinyl butyral resins, and alkyd resins.
- vinylester polymers for example, polyvinyl acetate, ethylene-vinyl acetate copolymers; vinylacetate-acrylate copolymers, vinylacetate-maleate copolymers; modification reaction products
- the film-forming polymer is a latex.
- the most preferred latices are copoly(styrene-butadiene) latices, (co)polyvinylester latices, and (co)polyacrylate latices.
- latices include aqueous aliphatic urethane dispersions; vinylacetate, and copolymers, such as copoly(vinylacetate-butylmaleate), copoly(vinylacetate-acrylate), copoly(vinylacetate-ethylene), and vinylacetate-vinylidenechloride; and copoly(acrylonitrile-butadiene).
- the film-forming polymer is incorporated in the ink-receiving layer in a preferred weight % range from 5 to 20%.
- the total dry coating weight of the receiving layer is preferably comprised between 10 and 40 g/m 2 .
- a cationic substance acting as mordant may be present in the ink receiving layer.
- Such substances increase the capacity of the layer for fixing and holding the dye of the ink droplets.
- a particularly suited compound is a poly(diallyldimethylammonium chloride) or, in short, a poly(dadmac). These compounds are commercially available from several companies, e.g. Aldrich, Calgon, Clariant, BASF and EKA Chemicals.
- CYPRO 514/515/516, SUPERFLOC 507/521/567 cationic cellulose derivatives such as CELQUAT L-200, H-100, SC-240C, SC-230M, trade names of Starch & Chemical Co., and QUATRISOFT LM200, UCARE polymers JR125, JR400, LR400, JR30M, LR30M and UCARE polymer LK; trivalent aluminum, boron, and zirconium ions; polyethyleneimine and copolymers, e.g. LUPASOL, trade name of BASF AG; triethanolamine-titanium-chelate, e.g.
- TYZOR trade name of Du Pont Co.
- copolymers of vinylpyrrolidone such as VIVIPRINT 111, trade name of ISP, a methacrylamido propyl dimethylamine copolymer; with dimethylaminoethylmethacrylate such as COPOLYMER 845 and COPOLYMER 937, trade names of ISP
- vinylimidazole e.g.
- LUVIQUAT CARE, LUVITEC 73W, LUVITEC VPI55 K18P, LUVITEC VP155 K72W, LUVIQUAT FC905, LUVIQUAT FC550, LUVIQUAT HM522, and SOKALAN HP56 all trade names of BASF AG; polyamidoamines, e.g. RETAMINOL and NADAVIN, trade marks of Bayer AG; and phosphonium compounds such as disclosed in EP 609930.
- the cationic substance is not incorporated in the ink receiving layer itself but in a separate thin top layer.
- this layer is coated from an aqueous medium. Its dry coverage is preferably comprised between 0.5 and 5 g/m 2 .
- an extra adhesive layer may be applied between the support and the ink receiving layer.
- This layer is then coated from an aqueous medium containing any of the numerous known adhesive polymers.
- the adhesive polymer is also a styrene-butadiene latex or an acrylate latex.
- the dry coating weight of this undercoat layer when present is preferably comprised between 0.5 and 10 g/m 2 .
- the ink receiving layer and the optional top- and undercoat layers may further contain well-known conventional ingredi ⁇ nts, such as surfactants serving as coating aids, hardening agents plasticizers, whitening agents and matting agents.
- Surfactants may be incorporated in the ink-receiving layer of the present invention. They can be any of the cationic, anionic, amphoteric, and nonionic ones as described in JP-A 62-280068 (1987).
- the surfactants are N-alkylamino acid salts, alkylether carboxylic acid salts, acylated peptides, alkylsulfonic acid salts, alkylbenzene and alkylnaphthalene sulfonic acid salts, sulfosuccinic acid salts, ⁇ -olefin sulfonic acid salts, N-acylsulfonic acid salts, sulfonated oils, alkylsulfonic acid salts, alkylether sulfonic acid salts, alkylallylethersulfonic acid salts, alkylamidesulfonic acid salts, alkylphosphoric acid salts, alkyletherphosphoric acid salts, alkylally
- These surfactants are commercially available from DuPont and 3M.
- the concentration of the surfactant component in the ink-receiving layer is typically in the range of 0.1 to 2 %, preferably in the range of 0.4 to 1.5 % and is most preferably 0.75 % by weight based on the total dry weight of the layer.
- the ink-receiving layer according to this invention is preferably crosslinked to provide such desired features as waterfastness and non-blocking characteristics.
- the crosslinking is also useful in providing abrasion resistance and resistance to the formation of fingerprints on the element as a result of handling.
- crosslinking agents also known as hardening agents - that will function to crosslink film forming materials, and they are commonly used in the photographic industry to harden gelatin emulsion layers and other layers of photographic silver halide elements.
- Hardening agents can be used individually or in combination and in free or in blocked form.
- a great many hardeners, useful for the present invention are known, including formaldehyde and free dialdehydes, such as succinaldehyde and glutaraldehyde, blocked dialdehydes, active esters, sulfonate esters, active halogen compounds, isocyanate or blocked isocyanates, polyfunctional isocyanates, melamine derivatives, s-triazines and diazines, epoxides, active olefins having two or more active bonds, carbodiimides, isoxazolium salts unsubsituted in the 3-position, esters of 2-alkoxy-N-carboxy-dihydroquinoline, N-carbamoylpyridinium salts, hardeners of mixed function, such as halogen-substituted aldehyde acids (e.g.
- mucochloric and mucobromic acids onium substituted acroleins and vinyl sulfones and polymeric hardeners, such as dialdehyde starches and copoly(acroleinmethacrylic acid), and oxazoline functional polymers, e.g. EPOCROS WS-500, and EPOCROS K-1000 series.
- Matting agents may be added such as polymethylmethacrylate beads. They are usually added to the receiving layer in a range of 0.4 to 1.2 g/m 2 and preferably in a range of 0.40 to 0.90 g/m 2 with 0.50 g/m 2 being most preferred.
- the ink-receiving layer of the invention may contain a whitening agent.
- TiO 2 rutile or anatase
- the ink-receiving layer of the invention may contain a whitening agent.
- the ink-receiving layer of the present invention may also comprise a plasticizer such as ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol, glycerol monomethylether, glycerol monochlorohydrin, ethylene carbonate, propylene carbonate, tetrachlorophthalic anhydride, tetrabromophthalicanhydride, urea phosphate, triphenylphosphate, glycerolmonostearate, propylene glycol monostearate, tetramethylene sulfone, n-methyl-2-pyrrolidone, n-vinyl-2-pyrrolidone.
- a plasticizer such as ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol, glycerol monomethylether, glycerol monochlorohydrin, ethylene carbonate, propylene carbonate, tetrachlorophthalic anhydride, tetrabromo
- the ink receiving layer and the optional supplementary layers can be coated onto the support by any conventional coating technique, such as dip coating, knife coating, extrusion coating, spin coating, slide hopper coating and curtain coating.
- the support for use in the present invention can be chosen from the paper type en polymeric type support well-known from photographic technology.
- Paper types include plain paper, cast coated paper, polyethylene coated paper and polypropylene coated paper.
- Polymeric supports include cellulose acetate propionate or cellulose acetate butyrate, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyamides, polycarbonates, polyimides, polyolefins, poly(vinylacetals), polyethers and polysulfonamides.
- Other examples of useful high-quality polymeric supports for the present invention include opaque white polyesters and extrusion blends of poly(ethylenenterephthalate) and polypropylene.
- Polyester film supports and especially polyethylene terephthalate are preferred because of their excellent properties of dimensional stability.
- a subbing layer must be employed to improve the bonding of the ink-receiving layer to the support.
- Useful subbing layers for this purpose are well known in the photographic art and include, for example, polymers of vinylidene chloride such as vinylidene chloride /acrylonitrile /acrylic acid terpolymers or vinylidene chloride /methyl acrylate /itaconic acid terpolymers.
- Typical supports for outdoor use include PET, wet strength paper, PVC, PVC with an adhesive backing, the polyethylene paper TYVEK, trade name of Du Pont Co., the porous polyethylene paper TESLIN, trade name of International Paper CO., canvas, polypropylene, and polycarbonate.
- PVA polyvinyl alcohol
- silica type SIPERNAT 570 trade mark of Degussa Co., was added to solutions of the different polyvinyl alcohol types in amounts represented in table 2. Dispersions were prepared using a pendraulic dissolver for about 15 minutes.
- the solution were prepared by adding 916 g of each dispersion to 84 g of the styrene-butadiene latex DL379, trade name of Dow Co. After addition of an anionic surfactant the solutions were coated on a subbed polyester base at a wet thickness of abour 120 ⁇ m.
- This example illustrates the benefits of an adhesive undercoat. Again 300 ml of a 10 % PVA solution was combined with 230 g of SIPERNAT, trade name of Degussa Co., and 469.4 ml of water were added. Then 120 ml of Dow latex DL950 was added. The solutions were coated respectively :
- This example illustrates the benefits of an extra top layer comprising a cationic polymer such as poly(diallyldimethylammonium chloride).
- Sample (2) of example 3 was provided with a top layer coated from a 6.25 % solution of poly(diallyldimethylammonium chloride).
- the compound used was CATFLOC T2, trade name from Calgon Co..
- This sample and a comparison sample without the extra top layer were printed with an AgfaJet Sherpa, trade name of Agfa-Gevaert N.V., using 4 colour dye inks.
- the obtained densities were measured on a Macbeth densitometer in reflection. Then the samples were put in water for 30 minutes, and the densities were measured again.
- the results are summarized in table 6.
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Ink Jet (AREA)
Abstract
Description
- water based ; the drying mechanism involves absorption, penetration and evaporation;
- oil based ; the drying involves absorption and penetration;
- solvent based ; the drying mechanism involves primarely evaporation;
- hot melt or phase change : the ink vehicle is liquid at the ejection temperature but solid at room temperature ; drying is replaced by solidification;
- UV-curable ; drying is replaced by polymerization.
- The ink-receiving layer should have a high ink absorbing capacity, so that the dots will not flow out and will not be expanded more than is necessary to obtain a high optical density.
- The ink-receiving layer should have a high ink absorbing speed (short ink drying time) so that the ink droplets will not feather if smeared immediately after applying.
- The ink dots that are applied to the ink-receiving layer should be substantially round in shape and smooth at their peripheries. The dot diameter must be constant and accurately controlled.
- The receiving layer must be readily wetted so that there is no "puddling", i.e. coalescence of adjacent ink dots, and an earlier absorbed ink drop should not show any "bleeding", i.e. overlap with neighbouring or later placed dots.
- Transparent ink-jet recording elements must have a low haze-value and be excellent in transmittance properties.
- After being printed the image must have a good resistance regarding waterfastness, lightfastness, and good endurance under severe conditions of temperature and humidity.
- The ink jet recording element may not show any curl or sticky behaviour if stacked before or after being printed.
- The ink jet recording element must be able to move smoothly through different types of printers.
| No. | name | firm | hydrolysis (%) | viscosity 4% 20°C | comonomer |
| 1 comp. | GohsefimerK-210 | Nippon Goshei | 85-88 | 18-22 | dadmac |
| 2 comp. | PolyviolWX 48/20 | Wacker | 97-99 | 43-53 | - |
| 3.comp. | Airvol 230 | Air Products | 87-89 | 3.5-4.5 | - |
| 4 inv. | PovalR2105 | Kuraray | 98-99 | 4.8 | silanol |
| 5 inv | PovalR1130 | Kuraray | 98-99 | 25.6 | silanol |
| 6 inv. | PovalR3109 | Kuraray | 98-99 | 9.7 | silanol |
| Sample No. | g SIPERNAT | g PVOH | microscop.eval. |
| 1 | 400 g | 600g of 10% sol. PVA 1 | moderate floc.* |
| 2 | 400 g | 1090g of 5.5% sol. PVA 2 | strong. floc. |
| 3 | 400 g | 1090g of 5.5% sol. PVA 3 | strong floc. |
| 4 | 200" | 545.5g of 5.5% sol. PVA 4 | no floc. |
| 5 | 400 | 1090g of 5.5% sol. PVA 5 | little floc. |
| Sample No. | cyan | magenta | yellow | black |
| 1 | 0.93 | 0.79 | 0.77 | 1.08 |
| 2 | 0.64 | 0.58 | 0.54 | 0.92 |
| 3 | 0.54 | 0.49 | 0.53 | 0.91 |
| 4 | 1.20 | 1.07 | 1.01 | 1.29 |
| 5 | 0.97 | 0.88 | 0.85 | 1.28 |
| PVA type | cyan | magenta | yellow | black |
| 1 | 0.79 | 0.69 | 0.69 | 0.96 |
| 3 | 0.67 | 0.61 | 0.55 | 0.87 |
| 6 | 0.62 | 0.58 | 0.57 | 0.94 |
| coated sample | wet adhesion | dry adhesion |
| (1) | 4 | 4 |
| (2) | 1 | 2-3 |
| (3) | 1 | 1-2 |
| Y | M | C | K | |
| comparison | ||||
| fresh | 1.14 | 1.11 | 1.31 | 1.41 |
| after 30min H2O | 0.02 | 0.01 | 0.04 | 0.04 |
| with top layer | ||||
| fresh | 1.18 | 1.22 | 1.40 | 1.43 |
| after 30min H20 | 1.14 | 1.20 | 1.45 | 1.42 |
Claims (16)
- An ink jet recording element comprising a support and an ink receiving layer wherein said ink receiving layer comprises (a) a pigment, (b) a silanol modified polyvinyl alcohol, and (c) a film-forming polymer having a glass transition temperature Tg lower than 50 °C.
- An ink jet recording element according to claim 1 wherein said pigment is a porous inorganic pigment.
- An ink jet recording element according to claim 2 wherein said porous inorganic pigment is a silica.
- An ink jet recording element according to any of claims 1 to 3 wherein said silica is an amorphous silica having an average particle size between 1 µm and 15 µm.
- An ink jet recording element according to any of claims 1 to 4 wherein said silanol modified polyvinyl alcohol has a silanol modification degree between 0.1 % and 10 % and a viscosity of a 4% aqueous solution between 1 and 25 mPa.s.
- An ink jet recording element according to any of of claims 1 to 5 wherein said film-forming polymer having a Tg lower than 50 °C is a latex.
- An ink jet recording element according to claim 6 wherein said latex is a copoly(styrene-butadiene) latex.
- An ink jet recording element according to claim 6 wherein said latex is an acrylate latex.
- An ink jet recording element according to any of claims 1 to 8 wherein said ink receiving layer further comprises a cationic substance.
- An ink jet recording element according to claim 9 wherein said cationic substance is a poly(diallyldimethylammonium chloride) or a dimethylamine-epichlorohydrine copolymer.
- An ink jet recording element according to any of claims 1 to 10 wherein said element further comprises an adhesive undercoat layer containing an adhesive polymer between said support and said ink receiving layer.
- An ink jet recording element according to claim 11 wherein said adhesive polymer is a copoly(styrene-butadiene) latex.
- An ink jet recording element according to claim 11 wherein said adhesive polymer is an acrylate latex.
- An ink jet recording element according to claim 13 wherein said acrylate latex is ethylacrylate-hydroxyethylmethacrylate copolymer.
- An ink jet recording element according to claim 11 wherein said adhesive polymer is a vinylester latex.
- An ink jet recording element according to any of claims 1 to 15 wherein said support is an opaque support.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE60111587T DE60111587T3 (en) | 2000-02-22 | 2001-02-12 | Ink jet recording material |
| EP01000012.3A EP1127706B2 (en) | 2000-02-22 | 2001-02-12 | Ink jet recording material |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP00200600 | 2000-02-22 | ||
| EP00200600 | 2000-02-22 | ||
| EP01000012.3A EP1127706B2 (en) | 2000-02-22 | 2001-02-12 | Ink jet recording material |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP1127706A1 true EP1127706A1 (en) | 2001-08-29 |
| EP1127706B1 EP1127706B1 (en) | 2005-06-22 |
| EP1127706B2 EP1127706B2 (en) | 2013-10-02 |
Family
ID=26071873
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP01000012.3A Expired - Lifetime EP1127706B2 (en) | 2000-02-22 | 2001-02-12 | Ink jet recording material |
Country Status (1)
| Country | Link |
|---|---|
| EP (1) | EP1127706B2 (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1382621A1 (en) * | 2002-07-18 | 2004-01-21 | Wacker Polymer Systems GmbH & Co. KG | Silane containing polyvinyl alcohol for coating compositions |
| EP1384754A1 (en) * | 2002-07-18 | 2004-01-28 | Wacker Polymer Systems GmbH & Co. KG | Mixtures of silane-modified polyvinylalcohols |
| WO2004098898A1 (en) | 2003-05-08 | 2004-11-18 | Wacker Polymer Systems Gmbh & Co. Kg | Compound of a powdery coating agent |
| EP1531996A4 (en) * | 2002-06-05 | 2007-08-15 | Isp Investments Inc | Substrate for color inkjet printing |
| CN100379579C (en) * | 2003-05-08 | 2008-04-09 | 瓦克聚合系统两合公司 | powder coating composition |
| US7723424B2 (en) | 2005-11-17 | 2010-05-25 | Wacker Chemie Ag | Silane-modified polyvinyl alcohols |
| WO2012057732A1 (en) | 2010-10-25 | 2012-05-03 | Hewlett Packard Development Company, L.P. | Print media comprising latex ink film-forming aid |
| CN111372772A (en) * | 2017-08-18 | 2020-07-03 | 康宁股份有限公司 | Temporary bonding using polycationic polymers |
| US11535553B2 (en) | 2016-08-31 | 2022-12-27 | Corning Incorporated | Articles of controllably bonded sheets and methods for making same |
| US11660841B2 (en) | 2015-05-19 | 2023-05-30 | Corning Incorporated | Articles and methods for bonding sheets with carriers |
| CN118685995A (en) * | 2024-05-17 | 2024-09-24 | 潍坊佳诚数码材料有限公司 | A novel flame-retardant Tyvek advertising cloth and its preparation method and application |
| US12122138B2 (en) | 2016-08-30 | 2024-10-22 | Corning Incorporated | Siloxane plasma polymers for sheet bonding |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0076490A1 (en) * | 1981-10-05 | 1983-04-13 | Kuraray Co., Ltd. | Paper coating agent |
| JPS62259882A (en) * | 1986-05-06 | 1987-11-12 | Mitsubishi Paper Mills Ltd | Ink jet recording medium |
| JPH0382589A (en) * | 1989-08-25 | 1991-04-08 | Oji Paper Co Ltd | Water-resistant ink jet recording sheet |
| EP0487350A1 (en) * | 1990-11-21 | 1992-05-27 | Xerox Corporation | Coated receiver sheets |
| EP0600245A1 (en) * | 1992-11-09 | 1994-06-08 | Mitsubishi Paper Mills, Ltd. | Ink jet recording sheet and method for producing same |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2921786B2 (en) † | 1995-05-01 | 1999-07-19 | キヤノン株式会社 | Recording medium, method for manufacturing the medium, and image forming method using the medium |
| JP3141753B2 (en) † | 1995-10-06 | 2001-03-05 | 王子製紙株式会社 | Inkjet recording sheet |
| DE19640578A1 (en) † | 1995-10-11 | 1997-04-17 | Eastman Kodak Co | High speed manufacture of thermoplastic coated photographic paper |
| JP3863590B2 (en) † | 1996-03-25 | 2006-12-27 | 三菱製紙株式会社 | Inkjet recording sheet |
| US6514598B1 (en) † | 1998-10-27 | 2003-02-04 | Oji Paper Co., Ltd. | Ink jet recording sheet and method |
-
2001
- 2001-02-12 EP EP01000012.3A patent/EP1127706B2/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0076490A1 (en) * | 1981-10-05 | 1983-04-13 | Kuraray Co., Ltd. | Paper coating agent |
| JPS62259882A (en) * | 1986-05-06 | 1987-11-12 | Mitsubishi Paper Mills Ltd | Ink jet recording medium |
| JPH0382589A (en) * | 1989-08-25 | 1991-04-08 | Oji Paper Co Ltd | Water-resistant ink jet recording sheet |
| EP0487350A1 (en) * | 1990-11-21 | 1992-05-27 | Xerox Corporation | Coated receiver sheets |
| EP0600245A1 (en) * | 1992-11-09 | 1994-06-08 | Mitsubishi Paper Mills, Ltd. | Ink jet recording sheet and method for producing same |
Non-Patent Citations (2)
| Title |
|---|
| DATABASE WPI Section Ch Week 198751, Derwent World Patents Index; Class A97, AN 1987-358270, XP002141952 * |
| DATABASE WPI Section Ch Week 199120, Derwent World Patents Index; Class A18, AN 1991-145509, XP002142135 * |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1531996A4 (en) * | 2002-06-05 | 2007-08-15 | Isp Investments Inc | Substrate for color inkjet printing |
| EP1382621A1 (en) * | 2002-07-18 | 2004-01-21 | Wacker Polymer Systems GmbH & Co. KG | Silane containing polyvinyl alcohol for coating compositions |
| EP1384754A1 (en) * | 2002-07-18 | 2004-01-28 | Wacker Polymer Systems GmbH & Co. KG | Mixtures of silane-modified polyvinylalcohols |
| US7052773B2 (en) | 2002-07-18 | 2006-05-30 | Wacker Polymer Systems Gmbh & Co. Kg | Silane-modified polyvinyl alcohol mixtures |
| WO2004098898A1 (en) | 2003-05-08 | 2004-11-18 | Wacker Polymer Systems Gmbh & Co. Kg | Compound of a powdery coating agent |
| CN100379579C (en) * | 2003-05-08 | 2008-04-09 | 瓦克聚合系统两合公司 | powder coating composition |
| US7538153B2 (en) | 2003-05-08 | 2009-05-26 | Wacker Chemie Ag | Compound of a powdery coating agent |
| US7723424B2 (en) | 2005-11-17 | 2010-05-25 | Wacker Chemie Ag | Silane-modified polyvinyl alcohols |
| WO2012057732A1 (en) | 2010-10-25 | 2012-05-03 | Hewlett Packard Development Company, L.P. | Print media comprising latex ink film-forming aid |
| EP2632735A4 (en) * | 2010-10-25 | 2016-03-09 | Hewlett Packard Development Co | Print media comprising latex ink film-forming aid |
| US11660841B2 (en) | 2015-05-19 | 2023-05-30 | Corning Incorporated | Articles and methods for bonding sheets with carriers |
| US12122138B2 (en) | 2016-08-30 | 2024-10-22 | Corning Incorporated | Siloxane plasma polymers for sheet bonding |
| US11535553B2 (en) | 2016-08-31 | 2022-12-27 | Corning Incorporated | Articles of controllably bonded sheets and methods for making same |
| US12344548B2 (en) | 2016-08-31 | 2025-07-01 | Corning Incorporated | Methods for making controllably bonded sheets |
| CN111372772A (en) * | 2017-08-18 | 2020-07-03 | 康宁股份有限公司 | Temporary bonding using polycationic polymers |
| US11999135B2 (en) | 2017-08-18 | 2024-06-04 | Corning Incorporated | Temporary bonding using polycationic polymers |
| CN118685995A (en) * | 2024-05-17 | 2024-09-24 | 潍坊佳诚数码材料有限公司 | A novel flame-retardant Tyvek advertising cloth and its preparation method and application |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1127706B2 (en) | 2013-10-02 |
| EP1127706B1 (en) | 2005-06-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6841206B2 (en) | Ink jet recording element | |
| US20010024713A1 (en) | Ink jet recording material | |
| EP1127706B1 (en) | Ink jet recording material | |
| US6887536B2 (en) | Recording element for ink jet printing | |
| US6924011B2 (en) | Ink jet recording material | |
| EP1211086B1 (en) | Improved ink jet recording medium | |
| EP1364800B1 (en) | Improved recording element for ink jet printing. | |
| EP1346840B1 (en) | Improved recording element for ink jet printing | |
| US20030219553A1 (en) | Recording element for ink jet printing | |
| EP1321300B1 (en) | Improved recording element for ink jet printing | |
| EP1273455B1 (en) | Improved ink jet recording element | |
| EP1211087B1 (en) | Improved ink jet recording element | |
| US20030137571A1 (en) | Recording element for ink jet printing | |
| US6558779B1 (en) | Ink jet recording element | |
| US20040142123A1 (en) | Ink-jet recording material | |
| EP1393922B1 (en) | Ink jet recording material | |
| US20040265515A1 (en) | Ink-receiving material | |
| US20040005417A1 (en) | Ink jet image improved for light-fastness | |
| DE60111587T2 (en) | Ink jet recording material | |
| EP1437230A1 (en) | Ink-jet recording material | |
| DE60103349T2 (en) | Improved inkjet recording element | |
| JP2005014611A (en) | Improved ink-acceptance material | |
| EP1491352A2 (en) | Improved ink-receiving material. | |
| EP1375173A1 (en) | Ink jet image improved for light-fastness | |
| JP2004338370A (en) | Improved ink-jet recording material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGFA-GEVAERT |
|
| 17P | Request for examination filed |
Effective date: 20020228 |
|
| AKX | Designation fees paid |
Free format text: DE FR GB |
|
| 17Q | First examination report despatched |
Effective date: 20031215 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REF | Corresponds to: |
Ref document number: 60111587 Country of ref document: DE Date of ref document: 20050728 Kind code of ref document: P |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| ET | Fr: translation filed | ||
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| 26 | Opposition filed |
Opponent name: KURARAY SPECIALITIES EUROPE GMBH Effective date: 20060316 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
| RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: AGFA GRAPHICS N.V. |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| R26 | Opposition filed (corrected) |
Opponent name: KURARAY EUROPE GMBH Effective date: 20060316 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
| PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
| 27A | Patent maintained in amended form |
Effective date: 20131002 |
|
| AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 60111587 Country of ref document: DE Effective date: 20131002 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160106 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160111 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160106 Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60111587 Country of ref document: DE |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170212 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171031 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170212 |