EP1115825A1 - Solid detergent compositions - Google Patents
Solid detergent compositionsInfo
- Publication number
- EP1115825A1 EP1115825A1 EP98948562A EP98948562A EP1115825A1 EP 1115825 A1 EP1115825 A1 EP 1115825A1 EP 98948562 A EP98948562 A EP 98948562A EP 98948562 A EP98948562 A EP 98948562A EP 1115825 A1 EP1115825 A1 EP 1115825A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- builder
- water
- surfactant
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 185
- 239000013042 solid detergent Substances 0.000 title abstract description 4
- 239000004094 surface-active agent Substances 0.000 claims abstract description 117
- 229910000323 aluminium silicate Inorganic materials 0.000 claims abstract description 20
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical group O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 66
- 239000003599 detergent Substances 0.000 claims description 55
- 239000002253 acid Substances 0.000 claims description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 150000003839 salts Chemical class 0.000 claims description 32
- 239000007844 bleaching agent Substances 0.000 claims description 30
- 239000003945 anionic surfactant Substances 0.000 claims description 24
- 239000002243 precursor Substances 0.000 claims description 24
- 239000011734 sodium Substances 0.000 claims description 23
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 22
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 20
- 229910052708 sodium Inorganic materials 0.000 claims description 20
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 19
- 229910052739 hydrogen Chemical group 0.000 claims description 19
- 239000011872 intimate mixture Substances 0.000 claims description 18
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 17
- 125000000129 anionic group Chemical group 0.000 claims description 17
- 239000001257 hydrogen Chemical group 0.000 claims description 17
- 150000008051 alkyl sulfates Chemical class 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 12
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 claims description 11
- 229910021653 sulphate ion Inorganic materials 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 150000004760 silicates Chemical class 0.000 claims description 7
- 239000002304 perfume Substances 0.000 claims description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 5
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical class [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 abstract description 4
- -1 ether carboxylates Chemical class 0.000 description 88
- 125000004432 carbon atom Chemical group C* 0.000 description 55
- 150000001875 compounds Chemical class 0.000 description 49
- 239000002245 particle Substances 0.000 description 41
- 239000004615 ingredient Substances 0.000 description 32
- 229920000642 polymer Polymers 0.000 description 23
- 238000000034 method Methods 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 20
- 239000002518 antifoaming agent Substances 0.000 description 19
- 102000004190 Enzymes Human genes 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 18
- 229940088598 enzyme Drugs 0.000 description 18
- 150000002148 esters Chemical class 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 150000001412 amines Chemical class 0.000 description 17
- 235000014113 dietary fatty acids Nutrition 0.000 description 17
- 239000000975 dye Substances 0.000 description 17
- 239000000194 fatty acid Substances 0.000 description 17
- 229930195729 fatty acid Natural products 0.000 description 17
- 229920001296 polysiloxane Polymers 0.000 description 17
- 125000003342 alkenyl group Chemical group 0.000 description 16
- 229920001577 copolymer Polymers 0.000 description 16
- 150000007513 acids Chemical class 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 15
- 150000004665 fatty acids Chemical class 0.000 description 15
- 229920005646 polycarboxylate Polymers 0.000 description 15
- 125000002091 cationic group Chemical group 0.000 description 14
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000003513 alkali Substances 0.000 description 12
- 239000003352 sequestering agent Substances 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 11
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 11
- 125000004429 atom Chemical group 0.000 description 11
- 125000001183 hydrocarbyl group Chemical group 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 11
- 150000004967 organic peroxy acids Chemical class 0.000 description 11
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 11
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 229910001385 heavy metal Inorganic materials 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 9
- 239000000344 soap Substances 0.000 description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 239000012190 activator Substances 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 8
- 125000002947 alkylene group Chemical group 0.000 description 8
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 239000002736 nonionic surfactant Substances 0.000 description 8
- 150000004965 peroxy acids Chemical class 0.000 description 8
- 239000011591 potassium Substances 0.000 description 8
- 239000010457 zeolite Substances 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 229910021536 Zeolite Inorganic materials 0.000 description 7
- 239000002270 dispersing agent Substances 0.000 description 7
- JPZROSNLRWHSQQ-UHFFFAOYSA-N furan-2,5-dione;prop-2-enoic acid Chemical compound OC(=O)C=C.O=C1OC(=O)C=C1 JPZROSNLRWHSQQ-UHFFFAOYSA-N 0.000 description 7
- 239000011976 maleic acid Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229920000620 organic polymer Polymers 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 7
- 159000000000 sodium salts Chemical class 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 125000002877 alkyl aryl group Chemical group 0.000 description 6
- 150000004996 alkyl benzenes Chemical class 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 150000007942 carboxylates Chemical class 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- VFNGKCDDZUSWLR-UHFFFAOYSA-N disulfuric acid Chemical group OS(=O)(=O)OS(O)(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-N 0.000 description 6
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 5
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical compound C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 150000005323 carbonate salts Chemical class 0.000 description 5
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 5
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000001694 spray drying Methods 0.000 description 5
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 5
- VKZRWSNIWNFCIQ-UHFFFAOYSA-N 2-[2-(1,2-dicarboxyethylamino)ethylamino]butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NCCNC(C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical compound O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- 238000004061 bleaching Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 239000012876 carrier material Substances 0.000 description 4
- 229960004106 citric acid Drugs 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 150000002431 hydrogen Chemical group 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- 229940045872 sodium percarbonate Drugs 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 4
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 3
- 102000013142 Amylases Human genes 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004367 Lipase Substances 0.000 description 3
- 108090001060 Lipase Proteins 0.000 description 3
- 102000004882 Lipase Human genes 0.000 description 3
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 235000019418 amylase Nutrition 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229940077388 benzenesulfonate Drugs 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000003093 cationic surfactant Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001860 citric acid derivatives Chemical class 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000007046 ethoxylation reaction Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 150000003949 imides Chemical class 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 235000019421 lipase Nutrition 0.000 description 3
- 239000001630 malic acid Substances 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 238000006384 oligomerization reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- 235000011083 sodium citrates Nutrition 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 3
- 238000005809 transesterification reaction Methods 0.000 description 3
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 3
- 239000002888 zwitterionic surfactant Substances 0.000 description 3
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 108010059892 Cellulase Proteins 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical class NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000004450 alkenylene group Chemical group 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 230000003625 amylolytic effect Effects 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229960004424 carbon dioxide Drugs 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000002366 lipolytic effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 2
- 239000003605 opacifier Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 235000012736 patent blue V Nutrition 0.000 description 2
- DMCJFWXGXUEHFD-UHFFFAOYSA-N pentatriacontan-18-one Chemical compound CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCC DMCJFWXGXUEHFD-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 235000012752 quinoline yellow Nutrition 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000009490 roller compaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- BQJAOYFZRGTLGB-VIFPVBQESA-N (2s)-1-benzoyl-5-oxopyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCC(=O)N1C(=O)C1=CC=CC=C1 BQJAOYFZRGTLGB-VIFPVBQESA-N 0.000 description 1
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical class OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- VYXRTZYURDKMLT-UHFFFAOYSA-N 1-benzoylpyrrolidin-2-one Chemical compound C=1C=CC=CC=1C(=O)N1CCCC1=O VYXRTZYURDKMLT-UHFFFAOYSA-N 0.000 description 1
- CLFHABXQJQAYEF-UHFFFAOYSA-N 1-benzoylpyrrolidine-2,5-dione Chemical compound C=1C=CC=CC=1C(=O)N1C(=O)CCC1=O CLFHABXQJQAYEF-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- FNJPVNIUVIVZEV-UHFFFAOYSA-N 2,3-dibenzoyl-1,4-diphenylbut-2-ene-1,4-dione Chemical group C=1C=CC=CC=1C(=O)C(=C(C(=O)C=1C=CC=CC=1)C(=O)C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 FNJPVNIUVIVZEV-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 1
- UURYKQHCLJWXEU-UHFFFAOYSA-N 2-(2-hydroxypropanoyloxy)butanedioic acid Chemical class CC(O)C(=O)OC(C(O)=O)CC(O)=O UURYKQHCLJWXEU-UHFFFAOYSA-N 0.000 description 1
- LVVZBNKWTVZSIU-UHFFFAOYSA-N 2-(carboxymethoxy)propanedioic acid Chemical class OC(=O)COC(C(O)=O)C(O)=O LVVZBNKWTVZSIU-UHFFFAOYSA-N 0.000 description 1
- HWQVXNFIYABVIW-UHFFFAOYSA-N 2-(carboxymethylamino)-4,5-dihydroxypentanoic acid Chemical compound OCC(O)CC(C(O)=O)NCC(O)=O HWQVXNFIYABVIW-UHFFFAOYSA-N 0.000 description 1
- CQWXKASOCUAEOW-UHFFFAOYSA-N 2-[2-(carboxymethoxy)ethoxy]acetic acid Chemical compound OC(=O)COCCOCC(O)=O CQWXKASOCUAEOW-UHFFFAOYSA-N 0.000 description 1
- OARDBPIZDHVTCK-UHFFFAOYSA-N 2-butyloctanoic acid Chemical class CCCCCCC(C(O)=O)CCCC OARDBPIZDHVTCK-UHFFFAOYSA-N 0.000 description 1
- GGAVUMZUOHJGGM-UHFFFAOYSA-N 2-decanoyloxybenzenesulfonic acid Chemical compound CCCCCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O GGAVUMZUOHJGGM-UHFFFAOYSA-N 0.000 description 1
- GZFRVDZZXXKIGR-UHFFFAOYSA-N 2-decanoyloxybenzoic acid Chemical compound CCCCCCCCCC(=O)OC1=CC=CC=C1C(O)=O GZFRVDZZXXKIGR-UHFFFAOYSA-N 0.000 description 1
- ZDKYIHHSXJTDKX-UHFFFAOYSA-N 2-dodecanoyloxybenzenesulfonic acid Chemical compound CCCCCCCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O ZDKYIHHSXJTDKX-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- WJZIPMQUKSTHLV-UHFFFAOYSA-N 2-ethyldecanoic acid Chemical class CCCCCCCCC(CC)C(O)=O WJZIPMQUKSTHLV-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- PFFITEZSYJIHHR-UHFFFAOYSA-N 2-methyl-undecanoic acid Chemical class CCCCCCCCCC(C)C(O)=O PFFITEZSYJIHHR-UHFFFAOYSA-N 0.000 description 1
- PLVOWOHSFJLXOR-UHFFFAOYSA-N 2-pentylheptanoic acid Chemical class CCCCCC(C(O)=O)CCCCC PLVOWOHSFJLXOR-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- APKRDOMMNFBDSG-UHFFFAOYSA-N 2-propylnonanoic acid Chemical class CCCCCCCC(C(O)=O)CCC APKRDOMMNFBDSG-UHFFFAOYSA-N 0.000 description 1
- LMYSNFBROWBKMB-UHFFFAOYSA-N 4-[2-(dipropylamino)ethyl]benzene-1,2-diol Chemical compound CCCN(CCC)CCC1=CC=C(O)C(O)=C1 LMYSNFBROWBKMB-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- SFHBJXIEBWOOFA-UHFFFAOYSA-N 5-methyl-3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical compound O=C1OC(C)COC(=O)C2=CC=C1C=C2 SFHBJXIEBWOOFA-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical group CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical class OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 1
- RTMBGDBBDQKNNZ-UHFFFAOYSA-L C.I. Acid Blue 3 Chemical compound [Ca+2].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=C(O)C=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1.C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=C(O)C=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 RTMBGDBBDQKNNZ-UHFFFAOYSA-L 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 101100148128 Caenorhabditis elegans rsp-4 gene Proteins 0.000 description 1
- 101100201838 Caenorhabditis elegans rsp-6 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- GXGJIOMUZAGVEH-UHFFFAOYSA-N Chamazulene Chemical group CCC1=CC=C(C)C2=CC=C(C)C2=C1 GXGJIOMUZAGVEH-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical group O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- 101710127332 Protease I Proteins 0.000 description 1
- 101710194948 Protein phosphatase PhpP Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108010056079 Subtilisins Proteins 0.000 description 1
- 102000005158 Subtilisins Human genes 0.000 description 1
- OIQPTROHQCGFEF-QIKYXUGXSA-L Sunset Yellow FCF Chemical compound [Na+].[Na+].OC1=CC=C2C=C(S([O-])(=O)=O)C=CC2=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 OIQPTROHQCGFEF-QIKYXUGXSA-L 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N Taurine Natural products NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- 101710137710 Thioesterase 1/protease 1/lysophospholipase L1 Proteins 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 1
- IFEUBXRSLPUMSI-UHFFFAOYSA-N [ClH]1NN=NC=C1 Chemical class [ClH]1NN=NC=C1 IFEUBXRSLPUMSI-UHFFFAOYSA-N 0.000 description 1
- PXLVUBPOUFMYMH-UHFFFAOYSA-N [Na+].OB(O)O.OB(O)[O-] Chemical compound [Na+].OB(O)O.OB(O)[O-] PXLVUBPOUFMYMH-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 125000005157 alkyl carboxy group Chemical group 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 125000005263 alkylenediamine group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 229960004543 anhydrous citric acid Drugs 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- IYVBKVVOHXVKRD-UHFFFAOYSA-N benzimidazol-1-yl(phenyl)methanone Chemical compound C1=NC2=CC=CC=C2N1C(=O)C1=CC=CC=C1 IYVBKVVOHXVKRD-UHFFFAOYSA-N 0.000 description 1
- 238000006480 benzoylation reaction Methods 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 235000012745 brilliant blue FCF Nutrition 0.000 description 1
- 239000004161 brilliant blue FCF Substances 0.000 description 1
- 229940055580 brilliant blue fcf Drugs 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical class O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- XNOQNFJEPBFKLL-UHFFFAOYSA-N butanedioic acid;1,2-diaminopropan-2-ol Chemical compound CC(N)(O)CN.OC(=O)CCC(O)=O.OC(=O)CCC(O)=O XNOQNFJEPBFKLL-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 108010005400 cutinase Proteins 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- DUCCPNVOQJMMAN-UHFFFAOYSA-N dimethylamino hexanoate Chemical compound CCCCCC(=O)ON(C)C DUCCPNVOQJMMAN-UHFFFAOYSA-N 0.000 description 1
- XQRLCLUYWUNEEH-UHFFFAOYSA-L diphosphonate(2-) Chemical compound [O-]P(=O)OP([O-])=O XQRLCLUYWUNEEH-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- XWENCHGJOCJZQO-UHFFFAOYSA-N ethane-1,1,2,2-tetracarboxylic acid Chemical class OC(=O)C(C(O)=O)C(C(O)=O)C(O)=O XWENCHGJOCJZQO-UHFFFAOYSA-N 0.000 description 1
- IGBSXRIJNMDLFB-UHFFFAOYSA-N ethane-1,2-diamine;pentanedioic acid Chemical compound NCCN.OC(=O)CCCC(O)=O.OC(=O)CCCC(O)=O IGBSXRIJNMDLFB-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- JEGIFBGJZPYMJS-UHFFFAOYSA-N imidazol-1-yl(phenyl)methanone Chemical compound C1=CN=CN1C(=O)C1=CC=CC=C1 JEGIFBGJZPYMJS-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical class OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-N methyl sulfate Chemical group COS(O)(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-N 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- SXLLDUPXUVRMEE-UHFFFAOYSA-N nonanediperoxoic acid Chemical compound OOC(=O)CCCCCCCC(=O)OO SXLLDUPXUVRMEE-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 239000004177 patent blue V Substances 0.000 description 1
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical class OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- RRCSSMRVSNZOFR-UHFFFAOYSA-N phenyl 3,5,5-trimethylhexanoate;sodium Chemical compound [Na].CC(C)(C)CC(C)CC(=O)OC1=CC=CC=C1 RRCSSMRVSNZOFR-UHFFFAOYSA-N 0.000 description 1
- ZRXJXIVOMZDPKQ-UHFFFAOYSA-N phenyl 6-(nonanoylamino)hexanoate Chemical compound CCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1 ZRXJXIVOMZDPKQ-UHFFFAOYSA-N 0.000 description 1
- SIENSFABYFDZCL-UHFFFAOYSA-N phenyl decanoate Chemical compound CCCCCCCCCC(=O)OC1=CC=CC=C1 SIENSFABYFDZCL-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- NJKRDXUWFBJCDI-UHFFFAOYSA-N propane-1,1,2,3-tetracarboxylic acid Chemical class OC(=O)CC(C(O)=O)C(C(O)=O)C(O)=O NJKRDXUWFBJCDI-UHFFFAOYSA-N 0.000 description 1
- NJEVMKZODGWUQT-UHFFFAOYSA-N propane-1,1,3,3-tetracarboxylic acid Chemical class OC(=O)C(C(O)=O)CC(C(O)=O)C(O)=O NJEVMKZODGWUQT-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000004023 quaternary phosphonium compounds Chemical class 0.000 description 1
- 239000004172 quinoline yellow Substances 0.000 description 1
- 229940051201 quinoline yellow Drugs 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 229940071089 sarcosinate Drugs 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- QSKQNALVHFTOQX-UHFFFAOYSA-M sodium nonanoyloxybenzenesulfonate Chemical compound [Na+].CCCCCCCCC(=O)OC1=CC=CC=C1S([O-])(=O)=O QSKQNALVHFTOQX-UHFFFAOYSA-M 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- DAPMZWDGZVFZMK-UHFFFAOYSA-N sodium;2-[2-[4-[4-[2-(2-sulfophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonic acid Chemical group [Na].[Na].OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=C(C=2C=CC(C=CC=3C(=CC=CC=3)S(O)(=O)=O)=CC=2)C=C1 DAPMZWDGZVFZMK-UHFFFAOYSA-N 0.000 description 1
- RPQSWSMNPBZEHT-UHFFFAOYSA-M sodium;2-acetyloxybenzenesulfonate Chemical compound [Na+].CC(=O)OC1=CC=CC=C1S([O-])(=O)=O RPQSWSMNPBZEHT-UHFFFAOYSA-M 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- KQHKITXZJDOIOD-UHFFFAOYSA-M sodium;3-sulfobenzoate Chemical compound [Na+].OS(=O)(=O)C1=CC=CC(C([O-])=O)=C1 KQHKITXZJDOIOD-UHFFFAOYSA-M 0.000 description 1
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 235000012751 sunset yellow FCF Nutrition 0.000 description 1
- 239000004173 sunset yellow FCF Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- 150000004026 tertiary sulfonium compounds Chemical class 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- QQOWHRYOXYEMTL-UHFFFAOYSA-N triazin-4-amine Chemical class N=C1C=CN=NN1 QQOWHRYOXYEMTL-UHFFFAOYSA-N 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 235000019263 trisodium citrate Nutrition 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/37—Mixtures of compounds all of which are anionic
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0052—Gas evolving or heat producing compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
- C11D3/1273—Crystalline layered silicates of type NaMeSixO2x+1YH2O
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/128—Aluminium silicates, e.g. zeolites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2082—Polycarboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2086—Hydroxy carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/33—Amino carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/36—Organic compounds containing phosphorus
- C11D3/361—Phosphonates, phosphinates or phosphonites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3761—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
Definitions
- the invention relates to solid detergent compositions comprising improved builder systems and surfactant systems which have an improved delivery to the wash and an improved cleaning performance.
- Detergent manufacturers spend much time and effort on further improving their products to meet consumer needs, for example by improving the performance of the products, the easy of handling of the products, or the delivery of the product to the wash.
- surfactants and builders are essential to provide building of the washing liquor, by binding, complexing or dispersing the hard water ions which interfere with various ingredients but in particular with the surfactants present in the detergents, which reduces their performance, for example their surfactancy, which is of course undesirable.
- certain builders can bind or complex certain heavy metal ions present in the washing process or in the detergent or introduced in the detergent during the making process, which can interfere with detergent ingredients such as oxygen bleach, both during the wash and during storage.
- the most commonly used builders present in about all commercially available detergents which do not contain phosphate builders, are aluminosilicates. They are inexpensive builders which have as an additional benefit that they are easy to process. In fact they are useful process aids because they are very good binders or carrier material for other detergent ingredients. Furthermore, they are useful as dusting agent, to reduce the stickiness or caking of the product.
- aluminosilicate builders are combined with other builder materials.
- EP-A-554287 describes builder systems comprising high levels of zeolite A, layered silicates and polymeric compounds.
- WO 97/17045 described builders systems with reduced levels of zeolite A, replaced with higher levels of amorphous silicates and carbonates.
- the inventors have found that most detergent compositions leave residues in the washing machine and on the fabrics, which are difficult to remove. They have also found that these residues can become entrapped in the fibres of the fabric, which makes it even more difficult to remove the residues.
- the inventors have found that the one of the main reasons for this problem is the presence of in particular powdered, insoluble builders, including aluminosilicates and amorphous silicates.
- the inventors have now found that an improved phosphate-free detergent composition is obtained when a specific builder system, preferably combined with specific surfactant system are used, preferably incorporated in the composition in the form of a specific particular component.
- a specific builder system preferably combined with specific surfactant system are used, preferably incorporated in the composition in the form of a specific particular component.
- compositions herein have a surprisingly improved delivery to the wash. They have a reduced gelling upon contact with water, improved dispensing and a reduced residue formation. A fast and efficient building of the washing liquor is achieved, whereby a very effective cleaning performance is obtained.
- the delivery to the wash of the product may be further improved when a water soluble polymeric polycarboxylic acid or salt is present, and optionally further polymeric flocculating polymer is present, in particular combined with an monomeric (poly) carboxylate or more preferably the acid form thereof.
- These detergent compositions may comprise particles which are free of sprayed-on nonionic alkoxylated alcohol surfactants. This may help to reduce the gelling and caking of the products.
- a further advantage can be that the omission of sprayed-on nonionic alkoxylated alcohols allows the reduction or omission of powdered materials such as fine aluminosilicate material and amorphous silicate material, which are normally used to dust the detergent particles containing these sprayed-on nonionic surfactants, to reduce caking. This also allows a reduction of the process complexity.
- the invention provides a phosphate-free detergent composition comprising at least one particulate components, from 5% to 90% by weight of the composition of a builder system and at least 10% by weight of the composition of a surfactant system, comprising one or more surfactants, characterised in that
- the builder system comprises at least two builders selected from water-soluble or partially water-soluble builders or mixtures thereof, present at a level from 60% to 100% by weight of the builder system; and from 0% to 40% by weight of the builder system of water-insoluble builders, provided that less than 9% by weight of the composition of aluminosilicate builder is present, and less than 5% by weight of the composition of amorphous sodium silicate is present; and
- the particulate component comprises at least one of the surfactants of the surfactant system is intimately mixed with at least one of the water-soluble or partially water- soluble builders. It has been found that theses detergent compositions have a reduced gelling upon contact with water, an improved dispensing and a reduced residue formation, whereby a very good building of the wash water and a very good cleaning performance is achieved.
- the detergent composition preferably a builder system which comprises less than 30% or even less than 20% or even less than 10% by weight of water insoluble builder, whereby in the preferred embodiments the balance of the builder system are the water-soluble builders and/ or partially water soluble builders.
- aluminosilicate preferably less than 6% or even less than 4% or even less than 2% by weight of the composition.
- the aluminosilicate may be contained in a component containing other detergent ingredients, such as in a detergent agglomerate, extrudate or a blown powder. It may even be preferred that substantially no aluminosilicate is present as separate particulate ingredient.
- amorphous silicate is present.
- the amorphous silicate is preferably contained in a component containing other detergent ingredients, such as in a detergent agglomerate, extrudate or a blown powder. It may be preferred that substantially no amorphous silicate is present as separate particulate ingredient.
- the water-soluble builder and partially water-soluble builder are typically present at a level up to 50% by weight, preferably up to 35% by weight, most preferably from 3% to 30% by weight of the composition, or even from 6% to 30% or even from 8% to 25%.
- the detergent composition of the invention comprises at least one particulate component containing an intimate mixture of one or more of the water soluble or partially water soluble builders and one or more surfactants. It may be preferred that the component comprises more than one of these builders.
- At least two particulate components are present in the detergent composition, which comprise intimate mixtures of a surfactants and a water-soluble builder.
- Such intimate mixtures can be obtained by any process involving the mixing of the components, which can be part of a granulation processes including a spray-drying process, an extrusion process and an agglomeration processes and also a tableting process.
- a first step comprises forming of a mixture of the surfactant and the water soluble or partially water soluble builder, and granulation of the mixture to form a particular component, preferably a granule.
- the intimately mixing preferably results in an agglomerate or a spray-dried or blown powder, an extrudate .
- the particulate components herein preferably has a particle size of at least 50 microns, preferably they have an weight average particle size of more than 150 or more than 250 microns or even more than 350 microns, as measured by sieving the composition on sieves of different mesh size, and calculating the fraction which remain on the sieve and the fraction which passes through the sieve.
- the density of the component is from 250 g/litre to 1500 g/litre, more preferably at least one of the components, preferably all of the components, has a density from 400 g/litre to 1200gr/litre, more preferably from 500 g/litre to 900g/litre.
- Preferred components comprise an intimate mixture of at least one anionic surfactant and one or more of the water-soluble or partially water soluble builders.
- a partially water-soluble builder When a partially water-soluble builder is present, it may be preferred that at least 50% thereof or even substantially all of the partially water-insoluble builder is present in a component herein, preferably in an intimate mixture with one or more anionic surfactants.
- a highly preferred additional ingredient of the detergent compositions herein may be oxygen based bleach, preferably containing an hydrogen peroxide source, preferably a perhydrogen compound and a bleach activator, described herein after. It has been found that the improved product delivery to the wash results in an improved delivery of the bleach system therein, which reduces the risk of deposition of bleach on the fabric and the risk of patchy fabric damage.
- the compositions herein comprise a component which contains high levels of an alkyl sulfate or sulphonate surfactant or mixtures thereof, preferably an alkyl benzene sulphonate, intimately mixed with an sulphate salt and moisture.
- a component comprising from 85% to 95% of one an anionic sulfate or sulphonate surfactant and from 15% to 5% sulfate salt and moisture.
- a component may be in the form f a flake, which can be admixed or dry-added to the other components of the detergent composition herein.
- the components of the compositors herein are free of sprayed-on nonionic alkoxylated alcohol surfactants. It has been found that hereby the delivery of the composition to the washing water can be improved and the caking of the product can be reduced. It may be preferred that the composition comprises a nonionic surfactant which is solid at temperatures below 30°C or even 40°C, preferably present in an intimate mixture with other ingredients.
- compositions thereof comprises a perfume, brightener or dye or mixtures thereof, which may be sprayed onto the particular component herein.
- compositions may contain an effervescence system to further improve the delivery of the detergent composition to the washing water.
- Water-Soluble or Partially Water-Soluble Builders are partially Water-Soluble Builders
- the composition comprises two or more water-soluble or partially water soluble builders or mixtures thereof. These include crystalline layered silicates an organic carboxylates or carboxylic acids.
- the preferred crystalline layered silicate herein have the general formula
- M is sodium or hydrogen
- x is a number from 1.9 to 4 and y is a number from 0 to 20.
- Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
- x in the general formula above has a value of 2, 3 or 4 and is preferably 2.
- M is preferably H, K or Na or mixtures thereof, preferably Na.
- the most preferred material is ⁇ -Na2Si2 ⁇ 5 5 R. Na2S ⁇ 2 ⁇ 5 or ⁇ -Na2Si2 ⁇ 5, or mixtures thereof, preferably being at least 75% -Na2Si2 ⁇ 5 for example available from Clariant as
- the crystalline layered silicate material in particular of the formula Na2Si2 ⁇ 5 may optionally comprise other elements such as B, P, S, for example obtained by processes as described in EP 578986-B.
- the partially water-soluble builder is preferably present at a level up to 40%, more preferably up to 35%.
- the composition of the invention comprises from 10% to 40%, more preferably from 12% to 35% or even from 15% to 25%o by weight of the composition of the partially water-soluble builder.
- crystalline layered silicate when present, part of or all of this is in an intimate mixture with a surfactant, preferably an anionic surfactant.
- a preferred particulate component herein may comprise an intimate mixture of preferably from 25% to 75% by weight, more preferably from 35%) to 68%, even more preferably from 45% to 62%> by weight of the component of a of a crystalline layered silicate and from 25% to 75% by weight, more preferably from 32% to 62% by weight more preferably from 38% to 48% by weight of the component of an anionic surfactant.
- Such a particulate component preferably comprises less than 10% by weight of free moisture, preferably less than 5%, or even less than 3% or even less than 2% by weight.
- the free moisture content as used herein can be determined by placing 5 grams of the particulate component in a petri dish and placing this petri dish in a convection oven at 50°C for 2 hours, and subsequently measuring the weight loss, due to water evaporation
- the anionic surfactant comprises from 50% to 100% by weight, preferably from 60% or even 75% to 100% of the anionic surfactant of a sulphonate surfactant preferably an alkyl benzene sulphonate surfactant, as described herein.
- the weight ratio of the crystalline layered silicate to the anionic surfactant in the intimate mixture is from 4:5 to 7:3, more preferably from 1 : 1 to 2:1, most preferably from 5:4 to 3:2.
- Such a component may be prepared by any method, preferably by roller compaction or more preferably by agglomeration, as known in the art.
- Such component may also comprise additional ingredients, for example in amounts of from 0% to 25%, generally no greater than 20% or even 15%) by weight of the agglomerate.
- additional ingredients for example in amounts of from 0% to 25%, generally no greater than 20% or even 15%.
- levels of incorporation thereof will depend on the application of the component or compositions and the physical form of the components and the compositions.
- the crystalline layered silicate may also be in an intimate mixture with other materials, including one or more of the water-soluble builders or polymeric compounds such as acrylic and/ or maleic acid polymers, inorganic acids or salts, including carbonates and sulphates, or small levels of other silicate material, including amorphous silicate, meta silicates, and aluminosilicates, as described herein.
- water-soluble builders or polymeric compounds such as acrylic and/ or maleic acid polymers, inorganic acids or salts, including carbonates and sulphates, or small levels of other silicate material, including amorphous silicate, meta silicates, and aluminosilicates, as described herein.
- the water soluble builders include organic carboxylic acids and salts thereof.
- Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms and mixtures of any of the foregoing.
- the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
- polymeric polycarboxylates may be present, including homo and copolymers of maleic acid and acrylic acid and their salts.
- Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
- Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
- Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No.
- Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1, 3, 3 -propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
- Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
- Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
- the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures, are also contemplated as useful builder components.
- acetic acid citric acid, malic acid, and fumaric acid, or their salts or mixtures thereof. It may be preferred that mixtures of the salt and acid form are present.
- the water soluble builder is preferably present at a level up to 40%, more preferably up to 35%).
- the composition of the invention comprises from 10%) to 40%, more preferably from 12% to 35% or even from 15% to 25% by weight of the composition of the water-soluble builder.
- part or even all of the monomeric or oligomeric (poly)carboxylic acid or salt thereof is in the form of a separate particle, whereby it may be preferred that the average particle size of this builder material is then preferably less than 150 microns, or even less than 100 microns.
- part of the water-soluble or partially water-soluble builder is used as dusting agent, to reduce the caking of the product when necessary.
- Suitable water-soluble builder materials are polymeric polycarboxylic acids or polycarboxylates, including the water soluble homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
- Polymers of the latter type are disclosed in GB-A-1, 596,756.
- Examples of such salts are polyacrylates of MWt 1000-50000, preferably 10000 or even 7000 and copolymers of (poly)acrylate and maleic acid or anhydride, such copolymers having preferably a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
- a polycarboxylate polymer such as polymer and copolymer of maleic anhydride or acid and (poly)acrylic acid and their salts, is incorporated at a level of from 0.5% to 15%, preferably from 1% to 12% or even from 2% to 8% by weight of the composition.
- the water-insoluble builder and the polymer are not in an intimate mixture with one another.
- the inventors have also found that when a polymeric polycarboxylate is present, it may be preferred that the polymer is comprised in an intimate mixture, preferably a spray- dried particle, which is prepared by first mixing a carbonate salt and the polymer and then addition and intimately mixing of other ingredients.
- an intimate mixture preferably a spray- dried particle, which is prepared by first mixing a carbonate salt and the polymer and then addition and intimately mixing of other ingredients.
- the degree of mixing between amorphous silicate and an anionic surfactant is reduced, when an amorphous silicate is present, in particular in mixtures containing anionic surfactant which are to be spray-dried, it may be beneficial to reduce the amount of silicate present, for example to levels of less than 3% by weight of the mixture, or even less than 2%, or even less thanl% or even 0% by weight of the mixture.
- the surfactant system preferably comprises at least one type of anionic surfactant and two or more anionic surfactants are preferably present.
- Fatty acid soaps may be present, also to control the sudsing in the wash.
- anionic surfactant when only anionic surfactant is present, it may be preferred that this is comprised in more than one particulate, intimately mixed component of the composition herein.
- the surfactant system also comprise cationic and it may be preferred that these or part thereof are intimately mixed with an anionic surfactant.
- the surfactant system may also comprise nonionic surfactants and it may also be preferred that part or all of the nonionic surfactant is in an intimate mixture with the anionic surfactants.
- the surfactant system is substantially free of linear alkyl sulfate surfactant.
- at least an anionic sulphonate surfactant is present, preferably comprised in at least two particulate components, preferably at least at a level of 10% by weight of the composition, more preferably at least 12% or even 15% by weight.
- a mid-chain branched alkyl sulfate surfactant whereby it may be preferred that only limited levels of sulphonate surfactant are present, for example less than 10% or even less than 8% or even form 0% to 5% by weight of the composition.
- ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with anionic and/or nonionic surfactants.
- the anionic surfactant herein preferably comprises at least a sulphate surfactant and/ or a sulphonate surfactant or mixtures thereof.
- compositions herein comprise a particulate component, preferably in the form of a flake of an alkyl sulfate or sulphonate surfactant, preferably an alkyl benzene sulphonate, present at a concentration of from 85% to 95% of the particle or flake, the balance being an sulfate salt and moisture, the particle or flake being admixed to the other detergent component(s) or ingredients.
- a particulate component preferably in the form of a flake of an alkyl sulfate or sulphonate surfactant, preferably an alkyl benzene sulphonate, present at a concentration of from 85% to 95% of the particle or flake, the balance being an sulfate salt and moisture, the particle or flake being admixed to the other detergent component(s) or ingredients.
- anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C, ⁇ -C, ⁇ monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C.--C , , diesters), N-acyl sarcosinates.
- Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
- the anionic sulphonate surfactants include the salts of C5-C20 linear or branched alkylbenzene sulphonates, alkyl ester sulphonates, C6-C22 primary or secondary alkane sulphonates, Cg-C24 olefin sulphonates, sulphonated polycarboxylic acids, and any mixtures thereof.
- Preferred salts are sodium and potassium salts.
- alkyl ester sulphonated surfactant are also suitable for the invention, preferably those of formula
- R* is a Cg-C22 hydrocarbyl
- R 2 is a Cj-C6 alkyl
- A is a C6-C22 alkylene
- alkenylene x is 0 or 1
- M is a cation.
- the counterion M is preferably sodium, potassium or ammonium.
- the alkyl ester sulphonated surfactant is preferably a ⁇ -sulpho alkyl ester of the formula above, whereby thus x is 0.
- R ! is an alkyl or alkenyl group of from 10 to 22, preferably 16 C atoms and x is preferably 0.
- R 2 is preferably ethyl or more preferably methyl.
- Rl of the ester is derived from unsaturated fatty acids, with preferably 1, 2 or 3 double bonds. It can also be preferred that R 1 of the ester is derived from a natural occurring fatty acid, preferably palmic acid or stearic acid or mixtures thereof.
- the anionic sulphate surfactant herein include the linear and branched primary and secondary alkyl sulphates and disulphates, alkyl ethoxysulphates having an average ethoxylation number of 3 or below, fatty oleoyl glycerol sulphates, alkyl phenol ethylene oxide ether sulphates, the C5-C17 acyl-N-(C ⁇ -C4 alkyl) and -N-(C]-C2 hydroxyalkyl) glucamine sulphates, and sulphates of alkylpolysaccharides.
- Primary alkyl sulphate surfactants are preferably selected from the linear and branched primary C ] Q-C ⁇ g alkyl sulphates, more preferably the C ⁇ ⁇ -C 5 linear or branched chain alkyl sulphates, or more preferably the C12-C14 linear chain alkyl sulphates.
- Preferred secondary alkyl sulphate surfactant are of the formula
- R 3 is a C 8 -C 20 hydrocycarbyl
- R 4 is a hydrocycarbyl
- M is a cation.
- Alkyl ethoxy sulphate surfactants are preferably selected from the group consisting of the Cio-Cj g alkyl sulphates which have been ethoxylated with from 0.5 to 3 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulphate surfactant is a C ⁇ ⁇ -C ⁇ , most preferably Cj 1-C15 alkyl sulphate which has been ethoxylated with from
- a particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulphate and alkyl ethoxysulphate surfactants.
- Preferred salts are sodium and potassium salts.
- Preferred mid-chain branched primary alkyl_sulfate surfactants for use herein are of the formula
- These surfactants have a linear primary alkyl sulfate chain backbone (i.e., the longest linear carbon chain which includes the sulfated carbon atom) which preferably comprises from 12 to 19 carbon atoms and their branched primary alkyl moieties comprise preferably a total of at least 14 and preferably no more than 20, carbon atoms.
- the average total number of carbon atoms for the branched primary alkyl moieties is preferably within the range of from greater than 14.5 to about 17.5.
- the surfactant system preferably comprises at least one branched primary alkyl sulfate surfactant compound having a longest linear carbon chain of not less than 12 carbon atoms or not more than 19 carbon atoms, and the total number of carbon atoms including branching must be at least 14, and further the average total number of carbon atoms for the branched primary alkyl moiety is within the range of greater than 14.5 to about 17.5.
- R, Rl, and R 2 are each independently selected from hydrogen and Cj-C alkyl group (preferably hydrogen or Ci -C2 alkyl, more preferably hydrogen or methyl, and most preferably methyl), provided R, R*, and R 2 are not all hydrogen. Further, when z is 1, at least R or Rl is not hydrogen.
- M is hydrogen or a salt forming cation depending upon the method of synthesis.
- w is an integer from 0 to 13;
- x is an integer from 0 to 13;
- y is an integer from 0 to 13;
- z is an integer of at least 1 ;
- w + x + y + z is an integer from 8 to 14.
- a preferred mid-chain branched primary alkyl sulfate surfactant is, a C16 total carbon primary alkyl sulfate surfactant having 13 carbon atoms in the backbone and having 1, 2, or 3 branching units (i.e., R, Rl and/or R 2 ) of in total 3 carbon atoms, (whereby thus the total number of carbon atoms is at least 16).
- Preferred branching units can be one propyl branching unit or three methyl branching units.
- Another preferred surfactant are branched primary alkyl sulfates having the formula
- dianionic surfactants are also useful anionic surfactants for the present invention, in particular those of formula
- R is an, optionally substituted, alkyl, alkenyl, aryl, alkaryl, ether, ester, amine or amide group of chain length C ⁇ to C28, preferably C3 to C24, most preferably Cg to C20, or hydrogen;
- a and B are independently selected from alkylene, alkenylene, (poly) alkoxylene, hydroxyalkylene, arylalkylene or amido alkylene groups of chain length C ⁇ to C28 preferably C ⁇ to C5, most preferably C ⁇ or C2, or a covalent bond, and preferably
- a and B in total contain at least 2 atoms; A, B, and R in total contain from 4 to about 31 carbon atoms; X and Y are anionic groups selected from the group comprising carboxylate, and preferably sulfate and sulfonate, z is 0 or preferably 1 ; and M is a cationic moiety, preferably a substituted or unsubstituted ammonium ion, or an alkali or alkaline earth metal ion.
- the most preferred dianionic surfactant has the formula as above where R is an alkyl group of chain length from C ⁇ Q to C ⁇ g, A and B are independently C ⁇ or C2, both X and
- Y are sulfate groups
- M is a potassium, ammonium, or a sodium ion.
- Preferred dianionic surfactants herein include:
- R is a straight or branched chain alkyl or alkenyl group of chain length from about C4 to about C 20
- R is a straight or branched chain alkyl or alkenyl group of chain length from about C4 to about Cjg; preferred R are selected from octanyl, nonanyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, and mixtures thereof; and (c) 1,5 disulphate compounds, preferably 1,5 C9-C23 straight or branched chain alkyl or alkenyl disulphates, more preferably having the formula:
- R is a straight or branched chain alkyl or alkenyl group of chain length from about C4 to about C1 g.
- dianionic surfactants of the invention are alkoxylated dianionic surfactants.
- the alkoxylated dianionic surfactants of the invention comprise a structural skeleton of at least five carbon atoms, to which two anionic substituent groups spaced at least three atoms apart are attached. At least one of said anionic substituent groups is an alkoxy- linked sulphate or sulphonate group.
- Said structural skeleton can for example comprise any of the groups consisting of alkyl, substituted alkyl, alkenyl, aryl, alkaryl, ether, ester, amine and amide groups.
- Preferred alkoxy moieties are ethoxy, propoxy, and combinations thereof.
- the structural skeleton preferably comprises from 5 to 32, preferably 7 to 28, most preferably 12 to 24 atoms.
- the structural skeleton comprises only carbon- containing groups and more preferably comprises only hydrocarbyl groups.
- the structural skeleton comprises only straight or branched chain alkyl groups.
- the structural skeleton is preferably branched. Preferably at least 10 % by weight of the structural skeleton is branched and the branches are preferably from 1 to 5, more preferably from 1 to 3, most preferably from 1 to 2 atoms in length (not including the sulphate or sulphonate group attached to the branching).
- a preferred alkoxylated dianionic surfactant has the formula
- R is an, optionally substituted, alkyl, alkenyl, aryl, alkaryl, ether, ester, amine or amide group of chain length Cj to C28 > preferably C3 to C24, most preferably Cg to C20 > or hydrogen;
- a and B are independently selected from, optionally substituted, alkyl and alkenyl group of chain length C ⁇ to C28, preferably C ⁇ to C5, most preferably Cj or C2, or a covalent bond;
- EO/PO are alkoxy moieties selected from ethoxy, propoxy, and mixed ethoxy/propoxy groups, wherein n and m are independently within the range of from about 0 to about 10, with at least m or n being at least 1 ;
- a and B in total contain at least 2 atoms;
- A, B, and R in total contain from 4 to about 31 carbon atoms;
- X and Y are anionic groups selected from the group consisting of sulphate and sulphonate
- the most preferred alkoxylated dianionic surfactant has the formula as above where R is an alkyl group of chain length from C ⁇ Q to C ⁇ g, A and B are independently C ⁇ or C2, n and m are both 1 , both X and Y are sulfate groups, and M is a potassium, ammonium, or a sodium ion.
- Preferred alkoxylated dianionic surfactants herein include: ethoxylated and/or propoxylated disulphate compounds, preferably C10-C24 straight or branched chain alkyl or alkenyl ethoxylated and/or propoxylated disulphates, more preferably having the formulae: wherein R is a straight or branched chain alkyl or alkenyl group of chain length from about C6 to about C ⁇ g; EO/PO are alkoxy moieties selected from ethoxy, propoxy, and mixed ethoxy/propoxy groups; and n and m are independently within the range of from about 0 to about 10 (preferably from about 0 to about 5), with at least m or n being 1.
- Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
- Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH2 ⁇ ) x
- R is a Cg to Cjg alkyl group
- x ranges from O to 10
- the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation.
- Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR ⁇ -CHR2-O)-R3 wherein R is a Cg to Ci g alkyl group, x is from 1 to 25, R ⁇ and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
- Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
- Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-l-undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl-l-nonanoic acid, 2- butyl- 1-octanoic acid and 2-pentyl-l-heptanoic acid.
- Certain soaps may also be included as suds suppressors.
- alkali metal sarcosinates of formula R-CON (Rl) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, Rl is a C1-C4 alkyl group and M is an alkali metal ion.
- R is a C5-C17 linear or branched alkyl or alkenyl group
- Rl is a C1-C4 alkyl group
- M is an alkali metal ion.
- any alkoxylated nonionic surfactants are suitable herein.
- the ethoxylated and propoxylated nonionic surfactants are preferred.
- Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
- the condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein.
- the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
- Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
- Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R ⁇ CONRlZ wherein : Rl is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably Cj or C2 alkyl, most preferably C ⁇ alkyl (i.e., methyl); and R is a C5-C31 hydrocarbyl, preferably straight-chain C5-C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain Cj 1-C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
- Z preferably
- Suitable fatty acid amide surfactants include those having the formula: R ⁇ CON(R ⁇ )2 wherein R° is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R? is selected from the group consisting of hydrogen, C1-C4 alkyl, C ⁇ - C4 hydroxyalkyl, and -(C2H4 ⁇ ) x H, where x is in the range of from 1 to 3.
- alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
- Preferred alkylpolyglycosides have the formula:
- R 2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8.
- the glycosyl is preferably derived from glucose.
- Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
- Suitable amine oxides include those compounds having the formula R3(OR4) X NO(R->)2 wherein Ry is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R ⁇ is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups.
- Preferred are Ci Q-Cj alkyl dimethylamine oxide, and C ⁇ o-18 acylamido alkyl dimethylamine oxide.
- a suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Cone, manufactured by Miranol, Inc., Dayton, NJ.
- Zwitterionic surfactants can also be incorporated into the detergent compositions in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
- Suitable betaines are those compounds having the formula R(R')2N + R2COO ⁇ wherein R is a Cg-Cj g hydrocarbyl group, each Rl is typically C1-C3 alkyl, and R 2 is a C1-C5 hydrocarbyl group.
- Preferred betaines are Cj2-18 dimethyl-ammonio hexanoate and the ClO-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
- Complex betaine surfactants are also suitable for use herein.
- Suitable cationic surfactants to be used in the detergent herein include the quaternary ammonium surfactants.
- the quaternary ammonium surfactant is a mono Cg-
- N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- Preferred are also the mono-alkoxylated and bis-alkoxylated amine surfactants.
- cationic ester surfactants Another suitable group of cationic surfactants which can be used in the detergent compositions or components thereof herein are cationic ester surfactants.
- the cationic ester surfactant is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
- Suitable cationic ester surfactants including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
- ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms.
- the atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain.
- spacer groups having, for example, -O-O- (i.e.
- spacer groups having, for example -CH2-O- CH2- and -CH2-NH-CH2- linkages are included.
- the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
- cationic mono-alkoxylated amine surfactant preferably of the general formula I:
- R is an alkyl or alkenyl moiety containing from about 6 to about 18 carbon atoms, preferably 6 to about 16 carbon atoms, most preferably from about 6 to about 14 carbon atoms;
- R 2 and R ⁇ are each independently alkyl groups containing from one to about three carbon atoms, preferably methyl, most preferably both R 2 and R ⁇ are methyl groups;
- R ⁇ is selected from hydrogen (preferred), methyl and ethyl;
- X" is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, to provide electrical neutrality;
- A is a alkoxy group, especially a ethoxy, propoxy or butoxy group; and
- p is from 0 to about 30, preferably 2 to about 15, most preferably 2 to about 8.
- Particularly preferred ApR ⁇ groups are — CH 2 CH 2 OH, — CH 2 CH 2 CH 2 OH, — CH 2 CH(CH 3 )OH and —
- R 1 groups are linear alkyl groups. Linear Rl groups having from 8 to 14 carbon atoms are preferred.
- Another highly preferred cationic mono-alkoxylated amine surfactants for use herein are of the formula
- Rl is Cjo-Cig hydrocarbyl and mixtures thereof, especially C1Q-C14 alkyl, preferably C ⁇ Q an d Cj2 alkyl, and X is any convenient anion to provide charge balance, preferably chloride or bromide.
- compounds of the foregoing type include those wherein the ethoxy (CH2CH2O) units (EO) are replaced by butoxy, isopropoxy [CH(CH3)CH2O] and [CH2CH(CH3 ⁇ ] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
- EO ethoxy
- i-Pr isopropoxy units
- Pr n-propoxy units
- the levels of the cationic mono-alkoxylated amine surfactants used in detergent compositions of the invention is preferably from 0.1 %> to 20%, more preferably from 0.2% to 7%, most preferably from 0.3% to 3.0% by weight of the composition.
- the cationic bis-alkoxylated amine surfactant preferably has the general formula II:
- Rl is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms;
- R 2 is an alkyl group containing from one to three carbon atoms, preferably methyl;
- R ⁇ and R ⁇ can vary independently and are selected from hydrogen (preferred), methyl and ethyl,
- X" is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, sufficient to provide electrical neutrality.
- a and A' can vary independently and are each selected from C1-C4 alkoxy, especially ethoxy, (i.e., -CH2CH2O-), propoxy, butoxy and mixtures thereof; p is from 1 to about 30, preferably 1 to about 4 and q is from 1 to about 30, preferably 1 to about 4, and most preferably both p and q are 1.
- Rl is C10-C18 hydrocarbyl and mixtures thereof, preferably CJO * Cj2 > C14 alkyl and mixtures thereof.
- X is any convenient anion to provide charge balance, preferably chloride.
- cationic bis-alkoxylated amine surfactants useful herein include compounds of the formula:
- Rl is CjQ-Cig hydrocarbyl, preferably C10-C14 alkyl, independently p is 1 to about 3 and q is 1 to about 3, R 2 is C1-C3 alkyl, preferably methyl, and X is an anion, especially chloride or bromide.
- Other compounds of the foregoing type include those wherein the ethoxy (CH2CH2O) units (EO) are replaced by butoxy (Bu) isopropoxy [CH(CH3)CH2 ⁇ ] and
- the water insoluble builder comprises in particular aluminosilicates.
- The_aluminosilicates herein include zeolites which have the unit cell formula
- aluminosilicates are in preferably in hydrated form and are preferably crystalline, containing from 10% to 28%>, more preferably from 18% to 22% water in bound form. However, it may be useful to incorporate overdried aluminosilictaes.
- the aluminosilicates can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula
- Zeolite X has the formula Nagg [(Al ⁇ 2)86(Si ⁇ 2)i06J- 276 H 2 O.
- Effervescence System Any effervescence system known in the art can be used in the composition of the invention.
- a preferred effervescence system comprises an acid source, capable of reacting with an alkali source in the presence of water to produce a gas.
- the acid source is preferably present at a level of from 0.5% o 35%, more preferably from 1.0% or even 2% to 20% or even form 4% to 20% by weight of the composition.
- the acid source or part thereof and the alkali source or part thereof are comprised in an intimate mixture, for example in the form of a compacted particle.
- the molecular ratio of the acid source to the alkali source present in such a mixture is preferably from 50:1 to 1 :50, more preferably from 20:1 to 1 :20 more preferably from 10:1 to 1 :10, more preferably from 5:1 to 1 :3, more preferably from 3:1 to 1 :2, more preferably from 2:1 to 1 :2.
- such a particle is present and in addition thereto one or more separate acid sources and one or more separate alkali sources
- the acid source component may be any organic, mineral or inorganic acid, or a derivative thereof, or a mixture thereof.
- the acid source component comprises an organic acid.
- the acid compound is preferably substantially anhydrous or non-hygroscopic and the acid is preferably water-soluble. It may be preferred that the acid source is overdried. Some of these acids may be water-soluble builders, as described above and should be considered part of the builder system of the compositions herein, whilst also providing effervescing.
- Suitable acids source components include citric, malic, maleic, fumaric, aspartic, glutaric, tartaric succinic or adipic acid, monosodium phosphate, boric acid, or derivative thereof. Citric acid, maleic or malic acid are especially preferred. Most preferably, the acid source provides acidic compounds which have an average particle size in the range of from about 75 microns to 1 180 microns, more preferably from 150 microns to about 710 microns, calculated by sieving a sample of the source of acidity on a series of Tyler sieves.
- the effervescence system preferably comprises an alkali source.
- any alkali source which has the capacity to react with the acid source to produce a gas may be present in the particle, which may be any gas known in the art, including nitrogen oxygen and carbondioxide gas.
- Preferred can be perhydrate bleaches, including perborate, and silicate material.
- the alkali source is preferably substantially anhydrous or non- hydroscopic. It may be preferred that the alkali source is overdried.
- this gas is carbon dioxide
- the alkali source is a preferably a source of carbonate, which can be any source of carbonate known in the art.
- the carbonate source is a carbonate salt.
- preferred carbonates are the alkaline earth and alkali metal carbonates, including sodium or potassium carbonate, bicarbonate and sesqui-carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
- Alkali metal percarbonate salts are also suitable sources of carbonate species, which may be present combined with one or more other carbonate sources.
- the carbonate and bicarbonate preferably have an amorphous structure.
- the carbonate and or bicarbonates may be coated with coating materials.
- the particles of carbonate and bicarbonate can have a mean particle size of 75 microns or preferably 150 ⁇ m or greater, more preferably of 250 ⁇ m or greater, preferably 500 ⁇ m or greater.
- the carbonate salt is such that fewer than 20% (by weight) of the particles have a particle size below 500 ⁇ m, calculated by sieving a sample of the carbonate or bicarbonate on a series of Tyler sieves.
- the fewer than 60% or even 25% of the particles have a particle size below 150 ⁇ m, whilst fewer than 5% has a particle size of more than 1.18 mm, more preferably fewer than 20% have a particle size of more than 212 ⁇ m, calculated by sieving a sample of the carbonate or bicarbonate on a series of Tyler sieves.
- compositions herein may also comprise an alkali source when no effervescence is required or when no acid source is present, but for example to provide the required pH of the composition or the wash water.
- carbonate salts may be present in the detergent composition of the invention.
- compositions herein may contain additional detergent components.
- additional detergent components The precise nature of these additional components, and levels of inco ⁇ oration thereof will depend on the physical form of the compositions comprising the builder component and the precise nature of the washing operation for which it is to be used.
- Additional ingredients include bleach, enzymes, suds suppressors, lime soap, dispersants, soil suspension and anti-redeposition agents soil releasing agents, perfumes, brighteners, photobleaching agents and additional corrosion inhibitors.
- compositions herein is an oxygen bleach, preferably comprising a hydrogen peroxide source and a bleach precursor or activator.
- a preferred source of hydrogen peroxide is a perhydrate bleach, such as metal perborates, more preferably metal percarbonates, particularly the sodium salts.
- a perhydrate bleach such as metal perborates, more preferably metal percarbonates, particularly the sodium salts.
- Potassium peroxymonopersulfate, sodium per is another optional inorganic perhydrate salt of use in the detergent compositions herein.
- Perborate can be mono or tetra hydrated.
- Sodium percarbonate has the formula corresponding to 2Na2C ⁇ 3-3H2 ⁇ 2, and is available commercially as a crystalline solid.
- percarbonate salts are used herein and in particular percarbonate salts which are coated.
- Suitable coating agent are known in the art, and include silicates, magnesium salts and carbonates salts and mixtures thereof.
- a preferred feature of the composition herein is an organic peroxyacid bleaching system.
- the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound.
- the production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
- Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches, such as the perborate bleach of the claimed invention.
- a preformed organic peroxyacid is inco ⁇ orated directly into the composition.
- Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
- Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
- peroxyacid bleach precursors may be represented as O X - C - L
- L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
- Peroxyacid bleach precursor compounds are preferably inco ⁇ orated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15%> by weight, most preferably from 1.5% to 10%> by weight of the detergent compositions.
- Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O- acyl groups, which precursors can be selected from a wide range of classes.
- Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A- 1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
- L group The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilise for use in a bleaching composition.
- Preferred L groups are selected from the group consisting of:
- R is an alkyl, aryl, or alkaryl group containing from 1 to
- R 3 is an alkyl chain containing from 1 to 8 carbon atoms.
- R 4 is H or
- R 3 , and Y is H or a solubilizing group.
- Any of R 1 , R3 and R 4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups. - + - + - + + + 3 -
- the preferred solubilizing groups are -SO., M , -CO- M , -SO ⁇ M , -N (R ) ⁇ X and
- M O ⁇ N(R )-, and most preferably -SO., M and -CO 2 M wherein R is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
- M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
- Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
- Preferred precursors of this type provide peracetic acid on perhydrolysis.
- Preferred alkyl percarboxylic precursor compounds of the imide type include the N- ,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1 , 2 and 6 carbon atoms.
- Tetraacetyl ethylene diamine (TAED) is particularly preferred.
- the TAED is preferably not present in the agglomerated particle of the present invention, but preferably present in the detergent composition, comprising the particle.
- alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
- Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae: R N — R' R _ N _ -c - - R 2 C
- Rl is an alkyl group with from 1 to 14 carbon atoms
- R2 is an alkylene group containing from 1 to 14 carbon atoms
- R ⁇ is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
- Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
- Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
- Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
- Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole.
- Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
- the detergent composition may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
- a preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae: R 1 — C — N — R 2 — C — OOH R 1 N R' C - OOH
- Rl is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms
- R is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms
- R ⁇ is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
- Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
- organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
- diacyl and tetraacylperoxides especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
- Mono- and diperazelaic acid, mono- and diperbrassylic acid and N- phthaloylaminoperoxicaproic acid are also suitable herein.
- Heavy metal ion sequestrant are also useful additional ingredients herein.
- heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have a limited calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper. The are thus not considered builders for the pu ⁇ ose of the invention.
- Heavy metal ion sequestrants are generally present at a level of from 0.005%) to 10%, preferably from 0.1% to 5%, more preferably from 0.25% to 7.5% and most preferably from 0.3%> to 2% by weight of the compositions.
- Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1 -hydroxy disphosphonates and nitrilo trimethylene phosphonates.
- organic phosphonates such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1 -hydroxy disphosphonates and nitrilo trimethylene phosphonates.
- Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate, 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphonic acid.
- Suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
- Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
- iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3 -sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein.
- EP-A-476,257 describes suitable amino based sequestrants.
- EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein.
- EP-A- 528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-l,2,4-tricarboxylic acid are also suitable.
- Glycinamide- N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2- hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
- diethylenetriamine pentacetic acid ethylenediamine-N,N'- disuccinic acid (EDDS) and 1,1 hydroxyethane diphosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
- EDDS ethylenediamine-N,N'- disuccinic acid
- 1,1 hydroxyethane diphosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
- Another preferred ingredient useful herein is one or more additional enzymes.
- Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally inco ⁇ orated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
- Organic polymeric compounds are preferred additional components of the compositions herein.
- organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as binder, dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein, including quatemised ethoxylated (poly) amine clay-soil removal/ anti-redeposition agent, not being polymeric polycarboxylte polymers.
- Organic polymeric compound is typically inco ⁇ orated in the detergent compositions of the invention at a level of from 0.01% to 30%, preferably from 0.1% to 15%, most preferably from 0.5% to 10%o by weight of the compositions.
- polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
- Te ⁇ olymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
- organic polymeric compounds suitable for inco ⁇ oration in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
- organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000- 10000, more particularly 2000 to 8000 and most preferably about 4000.
- Highly preferred polymeric components herein are cotton and non-cotton soil release polymer according to U.S. Patent 4,968,451, Scheibel et al., and U.S. Patent 5,415,807, Gosselink et al., and in particular according to US application no.60/051517.
- Another organic compound which is a preferred clay dispersant anti-redeposition agent, for use herein, can be the ethoxylated cationic monoamines and diamines of the formula:
- X is a nonionic group selected from the group consisting of H, C1-C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof
- a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene)
- Other dispersants/ anti-redeposition agents for use herein are described in EP-B-011965 and US 4,659,802 and US 4,664,848.
- the detergent compositions of the invention when formulated for use in machine washing compositions, may comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.02% to 10%, most preferably from 0.05% to 3% by weight of the composition.
- Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
- antifoam compound any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
- Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
- silicone antifoam compounds as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
- Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
- Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
- the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
- Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
- Suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18- 40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa- alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
- high molecular weight fatty esters e.g. fatty acid triglycerides
- fatty acid esters of monovalent alcohols e.g. fatty acid esters of monovalent alcohols
- a preferred suds suppressing system comprises:
- antifoam compound preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
- silica at a level of from 1 % to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound;
- silica/silicone antifoam compound is inco ⁇ orated at a level of from
- a dispersant compound most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78%) and an ethylene oxide to propylene oxide ratio of from 1 :0.9 to 1 : 1.1 , at a level of from 0.5% to 10%, preferably 1% to 10% by weight;
- a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially available from DOW Corning under the tradename DCO544;
- an inert carrier fluid compound most preferably comprising a C ⁇ g-C ⁇ g ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
- a highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.
- EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
- suds suppressing systems comprise polydimethylsiloxane or mixtures of silicone, such as polydimethylsiloxane, aluminosilicate and polycarboxylic polymers, such as copolymers of laic and acrylic acid.
- compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
- the polymeric dye transfer inhibiting agents are preferably selected from polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof, whereby these polymers can be cross-linked polymers.
- Optical Brightener is preferably selected from polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof, whereby these polymers can be cross-linked polymers.
- compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners, as known in the art.
- SRA Polymeric soil release agents, hereinafter "SRA"
- SRA's will generally comprise from 0.01% to 10.0%>, typically from 0.1% to 5%>, preferably from 0.2% to 3.0% by weight, of the compositions.
- Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
- Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide.
- esters may be made using additional monomers capable of being inco ⁇ orated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
- Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P. Gosselink.
- ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate (“DMT”) and 1,2-propylene glycol (“PG”) in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water.
- DMT dimethyl terephthalate
- PG 1,2-propylene glycol
- SRA's include the nonionic end- capped 1 ,2-propylene/polyoxyethylene terephthalate polyesters of U.S.
- Gosselink et al. 4,71 1,730, December 8, 1987 to Gosselink et al., for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG").
- SRA's include: the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8- hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S.
- Gosselink for example produced from DMT, methyl (Me)-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S.
- SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C1-C4 alkyl celluloses and C4 hydroxyalkyl celluloses, see U.S. 4,000,093,
- methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2% aqueous solution.
- Such materials are available as METOLOSE SMI 00 and METOLOSE SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
- SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201,824. Violland et al. and U.S. 4,240,918 Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage.
- Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al..
- Other classes include: (III) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al.;
- compositions of the invention include perfumes, speckles, colours or dyes, filler salts, with sodium sulfate being a preferred filler salt.
- encapsulated perfumes preferably comprising a starch encapsulte.
- the dye which may be used herein can be any dye for example in the form of a dye stuff or an aqueous solution of a dye stuff. It may be preferred that the dye is an aqueous solution comprising a dyestuff, at any level to obtain suitable dyeing of the particles, preferably such that levels of dye solution are obtained up to 2% by weight of the speckle particle, or more preferably up to 0.5% by weight.
- the dye also comprising other ingredients such as organic binder materials.
- the dyestuff can be any suitable dyestuff.
- suitable dyestuffs include El 04 - food yellow 13 (quinoline yellow), El 10 - food yellow 3 (sunset yellow FCF), El 31 - food blue 5 (patent blue V), Ultra Marine blue (trade name), El 33 - food blue 2 (brilliant blue FCF), El 40 - natural green 3 (chlorophyll and chlo ⁇ hyllins), El 41 and Pigment green 7 (chlorinated Cu phthalocyanine).
- Preferred dyestuffs may be Monastral Blue BV paste (trade name) and/ or Pigmasol Green (trade name).
- compositions of the invention it may be preferred that when dyes and/ or perfumes are sprayed onto the another component, the component does not comprise spray-on nonionic alkoxylated alcohol surfactant.
- composition of the invention thereof can be made via a variety of methods involving the mixing of ingredients, including dry-mixing, compaction such as agglomerating, extrusion, tabletting, or spray-drying of the various compounds comprised in the detergent component, or mixtures of these techniques, whereby the components herein also can be made by for example compaction, including extrusion and agglomerating, or spray-drying.
- compositions herein can take a variety of physical solid forms including forms such as tablet, flake, pastille and bar, and preferably the composition is in the form of granules or a tablet.
- compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
- the compositions preferably have a density of more than 350 gr/litre, more preferably more than 450 gr/litre or even more than 570 gr/litre.
- Naj2(Al ⁇ 2Si ⁇ 2)i2-27H2 ⁇ having a primary particle size in the range from 0.1 to 10 micrometers (weight expressed on an anhydrous basis)
- NaSKS-6 (I) Crystalline layered silicate of formula ⁇ - Na2Si2 ⁇ 5 0 f weight average particle size of 18 microns and at least 90% by weight being of particle size of below 65.6 microns.
- NaSKS-6 (II) Crystalline layered silicate of formula ⁇ - Na2Si2 ⁇ 5 0 f weight average particle size of 18 microns and at least 90% by weight being of particle size of below 42.1 microns.
- Citric acid Anhydrous citric acid
- Silicate Amo ⁇ hous sodium silicate (SiO2:Na2O 2.0:1)
- Protease Proteolytic enzyme having 3.3% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Savinase
- Protease I Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591, sold by Genencor
- Alcalase Proteolytic enzyme having 5.3% by weight of active enzyme, sold by NOVO Industries A/S
- Amylase Amylolytic enzyme having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Termamyl 120T
- Amylase II Amylolytic enzyme as disclosed in PCT/ US9703635 Lipase Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase
- Lipolytic enzyme having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra
- Endolase Endoglucanase enzyme having 1.5% by weight of active enzyme, sold by NOVO Industries A/S PB4 : Sodium perborate tetrahydrate of nominal formula
- DOBS Decanoyl oxybenzene sulfonate in the form of the sodium salt
- NACA-OBS (6-nonamidocaproyl) oxybenzene sulfonate
- DOBS Decanoyloxybenzene sulfonate in the form of the sodium salt
- Photoactivated bleach Sulfonated zinc phthlocyanine encapsulated in or carried by soluble polymer or sulfonated alumino phthlocyanine encapsulated in or carried by soluble polymer
- Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl
- Brightener 2 Disodium 4,4'-bis(4-anilino-6-mo ⁇ holino-l .3.5-triazin-2- yl)amino) stilbene-2:2'-disulfonate
- HEDP 1,1 -hydroxy ethane diphosphonic acid PEGx Polyethylene glycol, with a molecular weight of x
- PVPVI Copolymer of polyvinylpyrolidone and vinylimidazole with an average molecular weight of 20,000
- SRP 1 Anionically end capped poly esters
- SRP 2 Diethoxylated poly (1, 2 propylene terephtalate) short block polymer
- Opacifier Water based monostyrene latex mixture, sold by BASF
- compositions are in accord with the invention.
- compositions in accordance with the invention which may be in the form of granules or in the form of a tablet.
- a detergent composition comprising blown powder, an agglomerate comprising crystalline layered silicate and anionic surfactant, an effervescent particle and dry-mixed bleach activator particle, sodium percarbonate, sodium citrate and suds supressor.
- the individual particulates were prepared and dry-mixed together with gentle mixing e.g. in a Nautamixer for a period of at least 4 minutes.
- composition of the final blown powder was as follows:-
- the blown powder was prepared by a standard spray drying process.
- the above ingredients were mixed into a slurry with water.
- the aqueous slurry may be prepared by a batch or continuous process.
- a batch mixer, or "crutcher” was used in which the various detergent components were dissolved in, or slurried with, water to provide a slurry containing 35%> water.
- the water content my be varied from about 20%> to about 60%) by weight of water, preferably it is about from about 30% to about 40% by weight water.
- the order of addition of the ingredients to water to form the aqueous slurry was as listed above in the final composition of the blown powder.
- the aqueous slurry was then pumped at high pressure through atomising nozzles into a spray- drying tower where excess water was driven off, producing a flowable powder product (blown powder). Fines were screened out through a mesh.
- An agglomerate comprising 70% SKS6 and 30% LAS was prepared by a conventional agglomeration process.
- Effervescent Particle Particles were prepared having the following composition:
- the particle was made via a roller compaction process.
- the raw materials in the proportions indicated above, were fed at a press force of 80kN into a Pharmapaktor L200/50 P roller, set up with concave smooth rolls with a 0.3mm axial corrugation installed.
- the flakes produced were then compacted using a Flake Crusher FC 200 with a mesh size selected to produce the required particle size.
- the product was screened to remove the fines.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Crystallography & Structural Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
The invention relates to solid detergent compositions comprising improved builder systems and surfactant systems which have an improved delivery to the wash and an improved cleaning performance. The builder system comprises at least two builders selected from water-soluble or partially water-soluble builders or mixtures thereof, present at a level from 60 % to 100 % by weight of the builder system; and from 0 % to 40 % by weight of the builder system of water-insoluble builders, provided that less than 9 % by weight of the composition of aluminosilicate builder is present, and less than 5 % by weight of the composition of amorphous sodium silicate is present. The composition also comprises at least one particulate component, comprises at least one of the surfactants of the surfactant system, is intimately mixed with at least one of the water-soluble or partially water-soluble builders.
Description
SOLID DETERGENT COMPOSITIONS
Technical Field of the Invention
The invention relates to solid detergent compositions comprising improved builder systems and surfactant systems which have an improved delivery to the wash and an improved cleaning performance.
Background to the Invention
Detergent manufacturers spend much time and effort on further improving their products to meet consumer needs, for example by improving the performance of the products, the easy of handling of the products, or the delivery of the product to the wash.
Important ingredients in detergents which contributes to the performance are surfactants and builders. Builders are essential to provide building of the washing liquor, by binding, complexing or dispersing the hard water ions which interfere with various ingredients but in particular with the surfactants present in the detergents, which reduces their performance, for example their surfactancy, which is of course undesirable. Furthermore, certain builders can bind or complex certain heavy metal ions present in the washing process or in the detergent or introduced in the detergent during the making process, which can interfere with detergent ingredients such as oxygen bleach, both during the wash and during storage.
The most commonly used builders, present in about all commercially available detergents which do not contain phosphate builders, are aluminosilicates. They are inexpensive builders which have as an additional benefit that they are easy to process. In fact they are useful process aids because they are very good binders or carrier material for other
detergent ingredients. Furthermore, they are useful as dusting agent, to reduce the stickiness or caking of the product.
Often the aluminosilicate builders are combined with other builder materials. For example EP-A-554287 describes builder systems comprising high levels of zeolite A, layered silicates and polymeric compounds. WO 97/17045 described builders systems with reduced levels of zeolite A, replaced with higher levels of amorphous silicates and carbonates.
The inventors have found that most detergent compositions leave residues in the washing machine and on the fabrics, which are difficult to remove. They have also found that these residues can become entrapped in the fibres of the fabric, which makes it even more difficult to remove the residues. The inventors have found that the one of the main reasons for this problem is the presence of in particular powdered, insoluble builders, including aluminosilicates and amorphous silicates.
The inventors have now found that an improved phosphate-free detergent composition is obtained when a specific builder system, preferably combined with specific surfactant system are used, preferably incorporated in the composition in the form of a specific particular component. Hereby, a reduction or even omission of the water-insoluble builders is possible.
The compositions herein have a surprisingly improved delivery to the wash. They have a reduced gelling upon contact with water, improved dispensing and a reduced residue formation. A fast and efficient building of the washing liquor is achieved, whereby a very effective cleaning performance is obtained.
The inventors have also found that when small amounts of water-insoluble builder are present, the delivery to the wash of the product may be further improved when a water
soluble polymeric polycarboxylic acid or salt is present, and optionally further polymeric flocculating polymer is present, in particular combined with an monomeric (poly) carboxylate or more preferably the acid form thereof.
These detergent compositions may comprise particles which are free of sprayed-on nonionic alkoxylated alcohol surfactants. This may help to reduce the gelling and caking of the products. A further advantage can be that the omission of sprayed-on nonionic alkoxylated alcohols allows the reduction or omission of powdered materials such as fine aluminosilicate material and amorphous silicate material, which are normally used to dust the detergent particles containing these sprayed-on nonionic surfactants, to reduce caking. This also allows a reduction of the process complexity.
Summary of the Invention
The invention provides a phosphate-free detergent composition comprising at least one particulate components, from 5% to 90% by weight of the composition of a builder system and at least 10% by weight of the composition of a surfactant system, comprising one or more surfactants, characterised in that
a) the builder system comprises at least two builders selected from water-soluble or partially water-soluble builders or mixtures thereof, present at a level from 60% to 100% by weight of the builder system; and from 0% to 40% by weight of the builder system of water-insoluble builders, provided that less than 9% by weight of the composition of aluminosilicate builder is present, and less than 5% by weight of the composition of amorphous sodium silicate is present; and
b) the particulate component comprises at least one of the surfactants of the surfactant system is intimately mixed with at least one of the water-soluble or partially water- soluble builders.
It has been found that theses detergent compositions have a reduced gelling upon contact with water, an improved dispensing and a reduced residue formation, whereby a very good building of the wash water and a very good cleaning performance is achieved.
Detailed Description of the Invention
The detergent composition preferably a builder system which comprises less than 30% or even less than 20% or even less than 10% by weight of water insoluble builder, whereby in the preferred embodiments the balance of the builder system are the water-soluble builders and/ or partially water soluble builders.
Hereby, preferably less than 6% or even less than 4% or even less than 2% by weight of the composition is aluminosilicate. When present, the aluminosilicate may be contained in a component containing other detergent ingredients, such as in a detergent agglomerate, extrudate or a blown powder. It may even be preferred that substantially no aluminosilicate is present as separate particulate ingredient.
Also, preferably less than 3% or even less than 1.5% or even less than 0.8% by weight of amorphous silicate is present. When present, the amorphous silicate is preferably contained in a component containing other detergent ingredients, such as in a detergent agglomerate, extrudate or a blown powder. It may be preferred that substantially no amorphous silicate is present as separate particulate ingredient.
The water-soluble builder and partially water-soluble builder are typically present at a level up to 50% by weight, preferably up to 35% by weight, most preferably from 3% to 30% by weight of the composition, or even from 6% to 30% or even from 8% to 25%.
The detergent composition of the invention comprises at least one particulate component containing an intimate mixture of one or more of the water soluble or partially water
soluble builders and one or more surfactants. It may be preferred that the component comprises more than one of these builders.
Preferably, at least two particulate components are present in the detergent composition, which comprise intimate mixtures of a surfactants and a water-soluble builder.
Such intimate mixtures can be obtained by any process involving the mixing of the components, which can be part of a granulation processes including a spray-drying process, an extrusion process and an agglomeration processes and also a tableting process. Hereby, preferably a first step comprises forming of a mixture of the surfactant and the water soluble or partially water soluble builder, and granulation of the mixture to form a particular component, preferably a granule. The intimately mixing preferably results in an agglomerate or a spray-dried or blown powder, an extrudate .
The particulate components herein preferably has a particle size of at least 50 microns, preferably they have an weight average particle size of more than 150 or more than 250 microns or even more than 350 microns, as measured by sieving the composition on sieves of different mesh size, and calculating the fraction which remain on the sieve and the fraction which passes through the sieve.
Preferably, the density of the component is from 250 g/litre to 1500 g/litre, more preferably at least one of the components, preferably all of the components, has a density from 400 g/litre to 1200gr/litre, more preferably from 500 g/litre to 900g/litre.
Preferred components comprise an intimate mixture of at least one anionic surfactant and one or more of the water-soluble or partially water soluble builders.
When a partially water-soluble builder is present, it may be preferred that at least 50% thereof or even substantially all of the partially water-insoluble builder is present in a component herein, preferably in an intimate mixture with one or more anionic surfactants.
A highly preferred additional ingredient of the detergent compositions herein may be oxygen based bleach, preferably containing an hydrogen peroxide source, preferably a perhydrogen compound and a bleach activator, described herein after. It has been found that the improved product delivery to the wash results in an improved delivery of the bleach system therein, which reduces the risk of deposition of bleach on the fabric and the risk of patchy fabric damage.
Depending on the precise formulation of the composition and the use thereof, it may be preferred that the compositions herein comprise a component which contains high levels of an alkyl sulfate or sulphonate surfactant or mixtures thereof, preferably an alkyl benzene sulphonate, intimately mixed with an sulphate salt and moisture. For example, such a component comprising from 85% to 95% of one an anionic sulfate or sulphonate surfactant and from 15% to 5% sulfate salt and moisture. Such a component may be in the form f a flake, which can be admixed or dry-added to the other components of the detergent composition herein.
It may be preferred that the components of the compositors herein are free of sprayed-on nonionic alkoxylated alcohol surfactants. It has been found that hereby the delivery of the composition to the washing water can be improved and the caking of the product can be reduced. It may be preferred that the composition comprises a nonionic surfactant which is solid at temperatures below 30°C or even 40°C, preferably present in an intimate mixture with other ingredients.
Other preferred ingredients comprises a perfume, brightener or dye or mixtures thereof, which may be sprayed onto the particular component herein.
Furthermore, the compositions may contain an effervescence system to further improve the delivery of the detergent composition to the washing water.
Water-Soluble or Partially Water-Soluble Builders
The composition comprises two or more water-soluble or partially water soluble builders or mixtures thereof. These include crystalline layered silicates an organic carboxylates or carboxylic acids.
The preferred crystalline layered silicate herein have the general formula
NaMSix02x+l .yH20
wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. For the purpose of the present invention, x in the general formula above has a value of 2, 3 or 4 and is preferably 2. M is preferably H, K or Na or mixtures thereof, preferably Na. The most preferred material is α-Na2Si2θ55 R. Na2SΪ2θ5 or δ-Na2Si2θ5, or mixtures thereof, preferably being at least 75% -Na2Si2θ5 for example available from Clariant as
NaSKS-6.
The crystalline layered silicate material, in particular of the formula Na2Si2θ5 may optionally comprise other elements such as B, P, S, for example obtained by processes as described in EP 578986-B.
The partially water-soluble builder is preferably present at a level up to 40%, more preferably up to 35%. When present it may be preferred that the composition of the invention comprises from 10% to 40%, more preferably from 12% to 35% or even from 15% to 25%o by weight of the composition of the partially water-soluble builder.
In a preferred embodiment of the invention, when crystalline layered silicate is present, part of or all of this is in an intimate mixture with a surfactant, preferably an anionic surfactant. Thus, a preferred particulate component herein may comprise an intimate mixture of preferably from 25% to 75% by weight, more preferably from 35%) to 68%, even more preferably from 45% to 62%> by weight of the component of a of a crystalline layered silicate and from 25% to 75% by weight, more preferably from 32% to 62% by weight more preferably from 38% to 48% by weight of the component of an anionic surfactant.
Such a particulate component preferably comprises less than 10% by weight of free moisture, preferably less than 5%, or even less than 3% or even less than 2% by weight. The free moisture content as used herein, can be determined by placing 5 grams of the particulate component in a petri dish and placing this petri dish in a convection oven at 50°C for 2 hours, and subsequently measuring the weight loss, due to water evaporation
Highly preferred may be that the anionic surfactant comprises from 50% to 100% by weight, preferably from 60% or even 75% to 100% of the anionic surfactant of a sulphonate surfactant preferably an alkyl benzene sulphonate surfactant, as described herein.
Preferably, the weight ratio of the crystalline layered silicate to the anionic surfactant in the intimate mixture is from 4:5 to 7:3, more preferably from 1 : 1 to 2:1, most preferably from 5:4 to 3:2.
Such a component may be prepared by any method, preferably by roller compaction or more preferably by agglomeration, as known in the art.
Such component may also comprise additional ingredients, for example in amounts of from 0% to 25%, generally no greater than 20% or even 15%) by weight of the agglomerate. The precise nature of these additional ingredients, and levels of
incorporation thereof will depend on the application of the component or compositions and the physical form of the components and the compositions.
The crystalline layered silicate may also be in an intimate mixture with other materials, including one or more of the water-soluble builders or polymeric compounds such as acrylic and/ or maleic acid polymers, inorganic acids or salts, including carbonates and sulphates, or small levels of other silicate material, including amorphous silicate, meta silicates, and aluminosilicates, as described herein.
The water soluble builders include organic carboxylic acids and salts thereof. Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance. In addition to these water-soluble builders, polymeric polycarboxylates may be present, including homo and copolymers of maleic acid and acrylic acid and their salts.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands
Application 7205873, and the oxypolycarboxylate materials such as 2-oxa- 1,1, 3 -propane tricarboxylates described in British Patent No. 1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1, 3, 3 -propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates. The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures, are also contemplated as useful builder components.
Most preferred may be acetic acid, citric acid, malic acid, and fumaric acid, or their salts or mixtures thereof. It may be preferred that mixtures of the salt and acid form are present.
It has been found that when these highly water-soluble carboxylate- or carboxylic acid- containing compounds are present in an intimate mixture with one or more of the surfactants and optionally other ingredients, the rate of dissolution of the intimate mixture and also of the surfactants and other ingredients is increased. Thus, overall a faster delivery of the surfactants and other ingredients can be achieved.
The water soluble builder is preferably present at a level up to 40%, more preferably up to 35%). When present it may be preferred that the composition of the invention comprises from 10%) to 40%, more preferably from 12% to 35% or even from 15% to 25% by weight of the composition of the water-soluble builder.
It may be preferred that part or even all of the monomeric or oligomeric (poly)carboxylic acid or salt thereof is in the form of a separate particle, whereby it may be preferred that the average particle size of this builder material is then preferably less than 150 microns, or even less than 100 microns. It may be preferred that part of the water-soluble or partially water-soluble builder is used as dusting agent, to reduce the caking of the product when necessary.
Other suitable water-soluble builder materials are polymeric polycarboxylic acids or polycarboxylates, including the water soluble homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1, 596,756. Examples of such salts are polyacrylates of MWt 1000-50000, preferably 10000 or even 7000 and copolymers of (poly)acrylate and maleic acid or anhydride, such copolymers having preferably a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
It may be preferred that, in particular when small amounts of insoluble builder are present in the compositions herein, a polycarboxylate polymer, such as polymer and copolymer of maleic anhydride or acid and (poly)acrylic acid and their salts, is incorporated at a level of from 0.5% to 15%, preferably from 1% to 12% or even from 2% to 8% by weight of the composition. Hereby, it may be preferred that the water-insoluble builder and the polymer are not in an intimate mixture with one another.
The inventors have also found that when a polymeric polycarboxylate is present, it may be preferred that the polymer is comprised in an intimate mixture, preferably a spray- dried particle, which is prepared by first mixing a carbonate salt and the polymer and then addition and intimately mixing of other ingredients.
It may also be useful that in certain embodiments of the invention , the degree of mixing between amorphous silicate and an anionic surfactant is reduced, when an amorphous
silicate is present, in particular in mixtures containing anionic surfactant which are to be spray-dried, it may be beneficial to reduce the amount of silicate present, for example to levels of less than 3% by weight of the mixture, or even less than 2%, or even less thanl% or even 0% by weight of the mixture.
Surfactant System
The surfactant system preferably comprises at least one type of anionic surfactant and two or more anionic surfactants are preferably present. Fatty acid soaps may be present, also to control the sudsing in the wash.
When only anionic surfactant is present, it may be preferred that this is comprised in more than one particulate, intimately mixed component of the composition herein.
It may be preferred that the surfactant system also comprise cationic and it may be preferred that these or part thereof are intimately mixed with an anionic surfactant.
The surfactant system may also comprise nonionic surfactants and it may also be preferred that part or all of the nonionic surfactant is in an intimate mixture with the anionic surfactants.
In one embodiment, the surfactant system is substantially free of linear alkyl sulfate surfactant. Then, it may be preferred that at least an anionic sulphonate surfactant is present, preferably comprised in at least two particulate components, preferably at least at a level of 10% by weight of the composition, more preferably at least 12% or even 15% by weight.
Also preferred may be a mid-chain branched alkyl sulfate surfactant, whereby it may be preferred that only limited levels of sulphonate surfactant are present, for example less than 10% or even less than 8% or even form 0% to 5% by weight of the composition.
Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with anionic and/or nonionic surfactants.
Anionic Surfactant
The anionic surfactant herein preferably comprises at least a sulphate surfactant and/ or a sulphonate surfactant or mixtures thereof.
Depending on the precise formulation of the composition and the use thereof, it may be preferred that the compositions herein comprise a particulate component, preferably in the form of a flake of an alkyl sulfate or sulphonate surfactant, preferably an alkyl benzene sulphonate, present at a concentration of from 85% to 95% of the particle or flake, the balance being an sulfate salt and moisture, the particle or flake being admixed to the other detergent component(s) or ingredients.
Other possible anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C, ~-C, ^ monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C.--C , , diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic Sulphonate Surfactant
The anionic sulphonate surfactants include the salts of C5-C20 linear or branched alkylbenzene sulphonates, alkyl ester sulphonates, C6-C22 primary or secondary alkane
sulphonates, Cg-C24 olefin sulphonates, sulphonated polycarboxylic acids, and any mixtures thereof.
Highly preferred is a C12-C16 linear alkylbenzene sulphonate. Preferred salts are sodium and potassium salts.
The alkyl ester sulphonated surfactant are also suitable for the invention, preferably those of formula
R1 - CH(SO3M) - (A)x - C(O) - OR2
wherein R* is a Cg-C22 hydrocarbyl, R2 is a Cj-C6 alkyl, A is a C6-C22 alkylene, alkenylene, x is 0 or 1, and M is a cation. The counterion M is preferably sodium, potassium or ammonium.
The alkyl ester sulphonated surfactant is preferably a α-sulpho alkyl ester of the formula above, whereby thus x is 0. Preferably, R! is an alkyl or alkenyl group of from 10 to 22, preferably 16 C atoms and x is preferably 0. R2 is preferably ethyl or more preferably methyl.
It can be preferred that the Rl of the ester is derived from unsaturated fatty acids, with preferably 1, 2 or 3 double bonds. It can also be preferred that R1 of the ester is derived from a natural occurring fatty acid, preferably palmic acid or stearic acid or mixtures thereof.
Anionic Alkyl Sulphate Surfactant
The anionic sulphate surfactant herein include the linear and branched primary and secondary alkyl sulphates and disulphates, alkyl ethoxysulphates having an average ethoxylation number of 3 or below, fatty oleoyl glycerol sulphates, alkyl phenol ethylene
oxide ether sulphates, the C5-C17 acyl-N-(Cι-C4 alkyl) and -N-(C]-C2 hydroxyalkyl) glucamine sulphates, and sulphates of alkylpolysaccharides.
Primary alkyl sulphate surfactants are preferably selected from the linear and branched primary C ] Q-C \ g alkyl sulphates, more preferably the C \ \ -C 5 linear or branched chain alkyl sulphates, or more preferably the C12-C14 linear chain alkyl sulphates.
Preferred secondary alkyl sulphate surfactant are of the formula
R3-CH(SO4M)-R4
wherein R3 is a C8-C20hydrocycarbyl, R4 is a hydrocycarbyl and M is a cation.
Alkyl ethoxy sulphate surfactants are preferably selected from the group consisting of the Cio-Cj g alkyl sulphates which have been ethoxylated with from 0.5 to 3 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulphate surfactant is a C\ \ -C\ , most preferably Cj 1-C15 alkyl sulphate which has been ethoxylated with from
0.5 to 3, preferably from 1 to 3, moles of ethylene oxide per molecule.
A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulphate and alkyl ethoxysulphate surfactants. Preferred salts are sodium and potassium salts.
Mid-Chain Branched Anionic Surfactants
Preferred mid-chain branched primary alkyl_sulfate surfactants for use herein are of the formula
These surfactants have a linear primary alkyl sulfate chain backbone (i.e., the longest linear carbon chain which includes the sulfated carbon atom) which preferably comprises from 12 to 19 carbon atoms and their branched primary alkyl moieties comprise preferably a total of at least 14 and preferably no more than 20, carbon atoms. In the surfactant system comprising more than one of these sulfate surfactants, the average total number of carbon atoms for the branched primary alkyl moieties is preferably within the range of from greater than 14.5 to about 17.5. Thus, the surfactant system preferably comprises at least one branched primary alkyl sulfate surfactant compound having a longest linear carbon chain of not less than 12 carbon atoms or not more than 19 carbon atoms, and the total number of carbon atoms including branching must be at least 14, and further the average total number of carbon atoms for the branched primary alkyl moiety is within the range of greater than 14.5 to about 17.5.
R, Rl, and R2 are each independently selected from hydrogen and Cj-C alkyl group (preferably hydrogen or Ci -C2 alkyl, more preferably hydrogen or methyl, and most preferably methyl), provided R, R*, and R2 are not all hydrogen. Further, when z is 1, at least R or Rl is not hydrogen.
M is hydrogen or a salt forming cation depending upon the method of synthesis. w is an integer from 0 to 13; x is an integer from 0 to 13; y is an integer from 0 to 13; z is an integer of at least 1 ; and w + x + y + z is an integer from 8 to 14.
A preferred mid-chain branched primary alkyl sulfate surfactant is, a C16 total carbon primary alkyl sulfate surfactant having 13 carbon atoms in the backbone and having 1, 2, or 3 branching units (i.e., R, Rl and/or R2) of in total 3 carbon atoms, (whereby thus the total number of carbon atoms is at least 16). Preferred branching units can be one propyl branching unit or three methyl branching units.
Another preferred surfactant are branched primary alkyl sulfates having the formula
Rl R2
I I
CH3CH2(CH2)χCH(CH2)yCH(CH2)zOSO3M wherein the total number of carbon atoms, including branching, is from 15 to 18, and when more than one of these sulfates is present, the average total number of carbon atoms in the branched primary alkyl moieties having the above formula is within the range of greater than 14.5 to about 17.5; Rl and R2 are each independently hydrogen or C1-C3 alkyl; M is a water soluble cation; x is from 0 to 11 ; y is from 0 to 11 ; z is at least 2; and x + y + z is from 9 to 13; provided Rl and R2 are not both hydrogen.
Dianionic Surfactants
The dianionic surfactants are also useful anionic surfactants for the present invention, in particular those of formula
where R is an, optionally substituted, alkyl, alkenyl, aryl, alkaryl, ether, ester, amine or amide group of chain length C\ to C28, preferably C3 to C24, most preferably Cg to C20, or hydrogen; A and B are independently selected from alkylene, alkenylene, (poly) alkoxylene, hydroxyalkylene, arylalkylene or amido alkylene groups of chain length C\ to C28 preferably C\ to C5, most preferably C\ or C2, or a covalent bond, and preferably
A and B in total contain at least 2 atoms; A, B, and R in total contain from 4 to about 31 carbon atoms; X and Y are anionic groups selected from the group comprising
carboxylate, and preferably sulfate and sulfonate, z is 0 or preferably 1 ; and M is a cationic moiety, preferably a substituted or unsubstituted ammonium ion, or an alkali or alkaline earth metal ion.
The most preferred dianionic surfactant has the formula as above where R is an alkyl group of chain length from C \ Q to C^g, A and B are independently C\ or C2, both X and
Y are sulfate groups, and M is a potassium, ammonium, or a sodium ion.
Preferred dianionic surfactants herein include:
(a) 3 disulphate compounds, preferably 1,3 C7-C23 (i.e., the total number of carbons in the molecule) straight or branched chain alkyl or alkenyl disulphates, more preferably having the formula:
wherein R is a straight or branched chain alkyl or alkenyl group of chain length from about C4 to about C 20
(b) 1 ,4 disulphate compounds, preferably 1 ,4 C8-C22 straight or branched chain alkyl or alkenyl disulphates, more preferably having the formula:
wherein R is a straight or branched chain alkyl or alkenyl group of chain length from about C4 to about Cjg; preferred R are selected from octanyl, nonanyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, and mixtures thereof; and
(c) 1,5 disulphate compounds, preferably 1,5 C9-C23 straight or branched chain alkyl or alkenyl disulphates, more preferably having the formula:
wherein R is a straight or branched chain alkyl or alkenyl group of chain length from about C4 to about C1 g.
It can be preferred that the dianionic surfactants of the invention are alkoxylated dianionic surfactants.
The alkoxylated dianionic surfactants of the invention comprise a structural skeleton of at least five carbon atoms, to which two anionic substituent groups spaced at least three atoms apart are attached. At least one of said anionic substituent groups is an alkoxy- linked sulphate or sulphonate group. Said structural skeleton can for example comprise any of the groups consisting of alkyl, substituted alkyl, alkenyl, aryl, alkaryl, ether, ester, amine and amide groups. Preferred alkoxy moieties are ethoxy, propoxy, and combinations thereof.
The structural skeleton preferably comprises from 5 to 32, preferably 7 to 28, most preferably 12 to 24 atoms. Preferably the structural skeleton comprises only carbon- containing groups and more preferably comprises only hydrocarbyl groups. Most preferably the structural skeleton comprises only straight or branched chain alkyl groups.
The structural skeleton is preferably branched. Preferably at least 10 % by weight of the structural skeleton is branched and the branches are preferably from 1 to 5, more preferably from 1 to 3, most preferably from 1 to 2 atoms in length (not including the sulphate or sulphonate group attached to the branching).
A preferred alkoxylated dianionic surfactant has the formula
where R is an, optionally substituted, alkyl, alkenyl, aryl, alkaryl, ether, ester, amine or amide group of chain length Cj to C28> preferably C3 to C24, most preferably Cg to C20> or hydrogen; A and B are independently selected from, optionally substituted, alkyl and alkenyl group of chain length C\ to C28, preferably C\ to C5, most preferably Cj or C2, or a covalent bond; EO/PO are alkoxy moieties selected from ethoxy, propoxy, and mixed ethoxy/propoxy groups, wherein n and m are independently within the range of from about 0 to about 10, with at least m or n being at least 1 ; A and B in total contain at least 2 atoms; A, B, and R in total contain from 4 to about 31 carbon atoms; X and Y are anionic groups selected from the group consisting of sulphate and sulphonate, provided that at least one of X or Y is a sulfate group; and M is a cationic moiety, preferably a substituted or unsubstituted ammonium ion, or an alkali or alkaline earth metal ion.
The most preferred alkoxylated dianionic surfactant has the formula as above where R is an alkyl group of chain length from C ^ Q to C^g, A and B are independently C\ or C2, n and m are both 1 , both X and Y are sulfate groups, and M is a potassium, ammonium, or a sodium ion.
Preferred alkoxylated dianionic surfactants herein include: ethoxylated and/or propoxylated disulphate compounds, preferably C10-C24 straight or branched chain alkyl or alkenyl ethoxylated and/or propoxylated disulphates, more preferably having the formulae:
wherein R is a straight or branched chain alkyl or alkenyl group of chain length from about C6 to about C\g; EO/PO are alkoxy moieties selected from ethoxy, propoxy, and mixed ethoxy/propoxy groups; and n and m are independently within the range of from about 0 to about 10 (preferably from about 0 to about 5), with at least m or n being 1.
Anionic Carboxylate Surfactant
Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH2θ)x
CH2C00"M+ wherein R is a Cg to Cjg alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHRι-CHR2-O)-R3 wherein R is a Cg to Ci g alkyl group, x is from 1 to 25, R\ and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-l-undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl-l-nonanoic acid, 2-
butyl- 1-octanoic acid and 2-pentyl-l-heptanoic acid.
Certain soaps may also be included as suds suppressors.
Alkali Metal Sarcosinate Surfactant
Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (Rl) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, Rl is a C1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.
Alkoxylated Nonionic Surfactant
Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred.
Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
Nonionic Alkoxylated Alcohol Surfactant
The condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are
the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
Nonionic Polyhydroxy Fatty Acid Amide Surfactant
Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R^CONRlZ wherein : Rl is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably Cj or C2 alkyl, most preferably C\ alkyl (i.e., methyl); and R is a C5-C31 hydrocarbyl, preferably straight-chain C5-C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain Cj 1-C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Nonionic Fatty Acid Amide Surfactant
Suitable fatty acid amide surfactants include those having the formula: R^CON(R^)2 wherein R° is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R? is selected from the group consisting of hydrogen, C1-C4 alkyl, C\- C4 hydroxyalkyl, and -(C2H4θ)xH, where x is in the range of from 1 to 3.
Nonionic Alkylpolysaccharide Surfactant
Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
Preferred alkylpolyglycosides have the formula:
R2θ(CnH2nO)t(glycosyl)x
wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is preferably derived from glucose.
Amphoteric Surfactant
Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
Suitable amine oxides include those compounds having the formula R3(OR4)XNO(R->)2 wherein Ry is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R^ is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are Ci Q-Cj alkyl dimethylamine oxide, and Cιo-18 acylamido alkyl dimethylamine oxide.
A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Cone, manufactured by Miranol, Inc., Dayton, NJ.
Zwitterionic Surfactant
Zwitterionic surfactants can also be incorporated into the detergent compositions in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable betaines are those compounds having the formula R(R')2N+R2COO~ wherein R is a Cg-Cj g hydrocarbyl group, each Rl is typically C1-C3 alkyl, and R2 is a C1-C5 hydrocarbyl group. Preferred betaines are Cj2-18 dimethyl-ammonio hexanoate and the
ClO-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
Cationic Surfactants
Suitable cationic surfactants to be used in the detergent herein include the quaternary ammonium surfactants. Preferably the quaternary ammonium surfactant is a mono Cg-
C\(, preferably Cg-Cjo N-alkyl or alkenyl ammonium surfactants wherein the remaining
N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups. Preferred are also the mono-alkoxylated and bis-alkoxylated amine surfactants.
Another suitable group of cationic surfactants which can be used in the detergent compositions or components thereof herein are cationic ester surfactants. The cationic ester surfactant is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
In one preferred aspect the ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms. The atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain. Thus spacer groups having, for example, -O-O- (i.e. peroxide), -N-N-, and -N-O- linkages are excluded, whilst spacer groups having, for example -CH2-O- CH2- and -CH2-NH-CH2-
linkages are included. In a preferred aspect the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
Cationic Mono- Alkoxylated Amine Surfactants
Highly preferred herein are cationic mono-alkoxylated amine surfactant preferably of the general formula I:
wherein R is an alkyl or alkenyl moiety containing from about 6 to about 18 carbon atoms, preferably 6 to about 16 carbon atoms, most preferably from about 6 to about 14 carbon atoms; R2 and R^ are each independently alkyl groups containing from one to about three carbon atoms, preferably methyl, most preferably both R2 and R^ are methyl groups; R^ is selected from hydrogen (preferred), methyl and ethyl; X" is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, to provide electrical neutrality; A is a alkoxy group, especially a ethoxy, propoxy or butoxy group; and p is from 0 to about 30, preferably 2 to about 15, most preferably 2 to about 8.
Preferably the ApR^ group in formula I has p=l and is a hydroxyalkyl group, having no greater than 6 carbon atoms whereby the — OH group is separated from the quaternary ammonium nitrogen atom by no more than 3 carbon atoms. Particularly preferred ApR^ groups are — CH2CH2OH, — CH2CH2CH2OH, — CH2CH(CH3)OH and —
CH(CH3)CH2OH, with — CH2CH2OH being particularly preferred. Preferred R1 groups are linear alkyl groups. Linear Rl groups having from 8 to 14 carbon atoms are preferred.
Another highly preferred cationic mono-alkoxylated amine surfactants for use herein are of the formula
wherein Rl is Cjo-Cig hydrocarbyl and mixtures thereof, especially C1Q-C14 alkyl, preferably C ^ Q and Cj2 alkyl, and X is any convenient anion to provide charge balance, preferably chloride or bromide.
As noted, compounds of the foregoing type include those wherein the ethoxy (CH2CH2O) units (EO) are replaced by butoxy, isopropoxy [CH(CH3)CH2O] and [CH2CH(CH3θ] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
The levels of the cationic mono-alkoxylated amine surfactants used in detergent compositions of the invention is preferably from 0.1 %> to 20%, more preferably from 0.2% to 7%, most preferably from 0.3% to 3.0% by weight of the composition.
Cationic Bis-Alkoxylated Amine Surfactant
The cationic bis-alkoxylated amine surfactant preferably has the general formula II:
wherein Rl is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms; R2 is an alkyl group containing from one to three carbon atoms, preferably
methyl; R^ and R^ can vary independently and are selected from hydrogen (preferred), methyl and ethyl, X" is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, sufficient to provide electrical neutrality. A and A' can vary independently and are each selected from C1-C4 alkoxy, especially ethoxy, (i.e., -CH2CH2O-), propoxy, butoxy and mixtures thereof; p is from 1 to about 30, preferably 1 to about 4 and q is from 1 to about 30, preferably 1 to about 4, and most preferably both p and q are 1.
Highly preferred cationic bis-alkoxylated amine surfactants for use herein are of the formula
wherein Rl is C10-C18 hydrocarbyl and mixtures thereof, preferably CJO* Cj2> C14 alkyl and mixtures thereof. X is any convenient anion to provide charge balance, preferably chloride. With reference to the general cationic bis-alkoxylated amine structure noted above, since in a preferred compound Rl is derived from (coconut) C12- C 4 alkyl fraction fatty acids, R2 is methyl and ApR^ and A'qR^ are each monoethoxy.
Other cationic bis-alkoxylated amine surfactants useful herein include compounds of the formula:
wherein Rl is CjQ-Cig hydrocarbyl, preferably C10-C14 alkyl, independently p is 1 to about 3 and q is 1 to about 3, R2 is C1-C3 alkyl, preferably methyl, and X is an anion, especially chloride or bromide.
Other compounds of the foregoing type include those wherein the ethoxy (CH2CH2O) units (EO) are replaced by butoxy (Bu) isopropoxy [CH(CH3)CH2θ] and
[CH2CH(CH3θ] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
Water-Insoluble Builder
The water insoluble builder comprises in particular aluminosilicates.
The_aluminosilicates herein include zeolites which have the unit cell formula
Naz[(Alθ2)z(Siθ2)y]. XH2O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicates are in preferably in hydrated form and are preferably crystalline, containing from 10% to 28%>, more preferably from 18% to 22% water in bound form. However, it may be useful to incorporate overdried aluminosilictaes.
The aluminosilicates can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula
Na 12 [AlO2) 12 (SiO2)i2J- H2O
wherein x is from 20 to 30, especially 27. Zeolite X has the formula Nagg [(Alθ2)86(Siθ2)i06J- 276 H2O.
Effervescence System
Any effervescence system known in the art can be used in the composition of the invention. A preferred effervescence system comprises an acid source, capable of reacting with an alkali source in the presence of water to produce a gas.
The acid source is preferably present at a level of from 0.5% o 35%, more preferably from 1.0% or even 2% to 20% or even form 4% to 20% by weight of the composition.
It may be preferred that the acid source or part thereof and the alkali source or part thereof are comprised in an intimate mixture, for example in the form of a compacted particle. Then, the molecular ratio of the acid source to the alkali source present in such a mixture, is preferably from 50:1 to 1 :50, more preferably from 20:1 to 1 :20 more preferably from 10:1 to 1 :10, more preferably from 5:1 to 1 :3, more preferably from 3:1 to 1 :2, more preferably from 2:1 to 1 :2.
It may also be preferred that such a particle is present and in addition thereto one or more separate acid sources and one or more separate alkali sources
The acid source component may be any organic, mineral or inorganic acid, or a derivative thereof, or a mixture thereof. Preferably the acid source component comprises an organic acid.
The acid compound is preferably substantially anhydrous or non-hygroscopic and the acid is preferably water-soluble. It may be preferred that the acid source is overdried. Some of these acids may be water-soluble builders, as described above and should be considered part of the builder system of the compositions herein, whilst also providing effervescing.
Suitable acids source components include citric, malic, maleic, fumaric, aspartic, glutaric, tartaric succinic or adipic acid, monosodium phosphate, boric acid, or derivative thereof. Citric acid, maleic or malic acid are especially preferred.
Most preferably, the acid source provides acidic compounds which have an average particle size in the range of from about 75 microns to 1 180 microns, more preferably from 150 microns to about 710 microns, calculated by sieving a sample of the source of acidity on a series of Tyler sieves.
As discussed above, the effervescence system preferably comprises an alkali source.
Any alkali source which has the capacity to react with the acid source to produce a gas may be present in the particle, which may be any gas known in the art, including nitrogen oxygen and carbondioxide gas. Preferred can be perhydrate bleaches, including perborate, and silicate material. The alkali source is preferably substantially anhydrous or non- hydroscopic. It may be preferred that the alkali source is overdried.
Preferably this gas is carbon dioxide, and therefore the alkali source is a preferably a source of carbonate, which can be any source of carbonate known in the art. In a preferred embodiment, the carbonate source is a carbonate salt. Examples of preferred carbonates are the alkaline earth and alkali metal carbonates, including sodium or potassium carbonate, bicarbonate and sesqui-carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973. Alkali metal percarbonate salts are also suitable sources of carbonate species, which may be present combined with one or more other carbonate sources.
The carbonate and bicarbonate preferably have an amorphous structure. The carbonate and or bicarbonates may be coated with coating materials. It can be preferred that the particles of carbonate and bicarbonate can have a mean particle size of 75 microns or preferably 150μm or greater, more preferably of 250μm or greater, preferably 500μm or greater. It may be preferred that the carbonate salt is such that fewer than 20% (by weight) of the particles have a particle size below 500μm, calculated by sieving a sample of the carbonate or bicarbonate on a series of Tyler sieves. Alternatively or in addition to the
previous carbonate salt, it may be preferred that the fewer than 60% or even 25% of the particles have a particle size below 150μm, whilst fewer than 5% has a particle size of more than 1.18 mm, more preferably fewer than 20% have a particle size of more than 212 μm, calculated by sieving a sample of the carbonate or bicarbonate on a series of Tyler sieves.
It should be understood that the compositions herein may also comprise an alkali source when no effervescence is required or when no acid source is present, but for example to provide the required pH of the composition or the wash water. In particular carbonate salts may be present in the detergent composition of the invention.
Additional Ingredients
The compositions herein may contain additional detergent components. The precise nature of these additional components, and levels of incoφoration thereof will depend on the physical form of the compositions comprising the builder component and the precise nature of the washing operation for which it is to be used.
Additional ingredients include bleach, enzymes, suds suppressors, lime soap, dispersants, soil suspension and anti-redeposition agents soil releasing agents, perfumes, brighteners, photobleaching agents and additional corrosion inhibitors.
Perhydrate Bleaches
A highly preferred additional components of the compositions herein is an oxygen bleach, preferably comprising a hydrogen peroxide source and a bleach precursor or activator.
A preferred source of hydrogen peroxide is a perhydrate bleach, such as metal perborates, more preferably metal percarbonates, particularly the sodium salts. Potassium
peroxymonopersulfate, sodium per is another optional inorganic perhydrate salt of use in the detergent compositions herein.
Perborate can be mono or tetra hydrated. Sodium percarbonate has the formula corresponding to 2Na2Cθ3-3H2θ2, and is available commercially as a crystalline solid.
In particular the percarbonate salts are used herein and in particular percarbonate salts which are coated. Suitable coating agent are known in the art, and include silicates, magnesium salts and carbonates salts and mixtures thereof.
Organic Peroxyacid Bleaching System
A preferred feature of the composition herein is an organic peroxyacid bleaching system. In one preferred execution the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound. The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches, such as the perborate bleach of the claimed invention. In an alternative preferred execution a preformed organic peroxyacid is incoφorated directly into the composition. Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
Peroxyacid Bleach Precursor
Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as
O X - C - L
where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
O X C OOH
Peroxyacid bleach precursor compounds are preferably incoφorated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15%> by weight, most preferably from 1.5% to 10%> by weight of the detergent compositions.
Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O- acyl groups, which precursors can be selected from a wide range of classes. Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A- 1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
Leaving Groups
The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilise for use in a bleaching composition.
Preferred L groups are selected from the group consisting of:
R3 Y
I I
-0-CH=C-CH=CH2 -O-CH=C-CH=CH2
II Y II
O CH2-C > — C^ .
.o_i_Rι -N C * ,' -N c/NR4 o o
R3 O Y i » i
-O— C=CHR4 , and — N— S— CH— R4
R3 O
and mixtures thereof, wherein R is an alkyl, aryl, or alkaryl group containing from 1 to
14 carbon atoms, R 3 is an alkyl chain containing from 1 to 8 carbon atoms. R 4 is H or
R 3 , and Y is H or a solubilizing group. Any of R 1 , R3 and R 4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups.
- + - + - + + 3 -
The preferred solubilizing groups are -SO., M , -CO- M , -SO^ M , -N (R )^X and
3 - + - + 3
O<~N(R )-, and most preferably -SO., M and -CO2 M wherein R is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator. Preferably, M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
Alkyl Percarboxylic Acid Bleach Precursors
Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis. Preferred precursors of this type provide peracetic acid on perhydrolysis.
Preferred alkyl percarboxylic precursor compounds of the imide type include the N- ,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1 , 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred. The TAED is preferably not present in the agglomerated particle of the present invention, but preferably present in the detergent composition, comprising the particle.
Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
Amide Substituted Plkyl Peroxyacid Precursors
Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
R N — R' R _ N _ -c - - R2 C
O R^ O or R5 O 0
wherein Rl is an alkyl group with from 1 to 14 carbon atoms, R2 is an alkylene group containing from 1 to 14 carbon atoms, and R^ is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
Perbenzoic Acid Precursor
Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis. Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Preformed Organic Peroxyacid
The detergent composition may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
R1 — C — N — R2 — C — OOH R1 N R' C - OOH
O R^ O or R5 O O
wherein Rl is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R^ is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N- phthaloylaminoperoxicaproic acid are also suitable herein.
Heavy Metal Ion Sequestrant
Heavy metal ion sequestrant are also useful additional ingredients herein. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have a limited calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper. The are thus not considered builders for the puφose of the invention.
Heavy metal ion sequestrants are generally present at a level of from 0.005%) to 10%, preferably from 0.1% to 5%, more preferably from 0.25% to 7.5% and most preferably from 0.3%> to 2% by weight of the compositions.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1 -hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate, 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphonic acid.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3 -sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The β-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A- 528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-l,2,4-tricarboxylic acid are also suitable. Glycinamide- N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2- hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
Especially preferred are diethylenetriamine pentacetic acid, ethylenediamine-N,N'- disuccinic acid (EDDS) and 1,1 hydroxyethane diphosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
Enzyme
Another preferred ingredient useful herein is one or more additional enzymes.
Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally incoφorated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
Organic Polymeric Compound
Organic polymeric compounds are preferred additional components of the compositions herein.
By organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as binder, dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein, including quatemised ethoxylated (poly) amine clay-soil removal/ anti-redeposition agent, not being polymeric polycarboxylte polymers.
Organic polymeric compound is typically incoφorated in the detergent compositions of the invention at a level of from 0.01% to 30%, preferably from 0.1% to 15%, most preferably from 0.5% to 10%o by weight of the compositions.
The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Teφolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
Other organic polymeric compounds suitable for incoφoration in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000- 10000, more particularly 2000 to 8000 and most preferably about 4000.
Highly preferred polymeric components herein are cotton and non-cotton soil release polymer according to U.S. Patent 4,968,451, Scheibel et al., and U.S. Patent 5,415,807, Gosselink et al., and in particular according to US application no.60/051517.
Another organic compound, which is a preferred clay dispersant anti-redeposition agent, for use herein, can be the ethoxylated cationic monoamines and diamines of the formula:
(CH2CH20 )- X (CH2CH20 ^ X
wherein X is a nonionic group selected from the group consisting of H, C1-C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof, a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene) b is 1 or 0; for cationic monoamines (b=0), n is at least 16, with a typical range of from 20 to 35; for cationic diamines (b=l), n is at least about 12 with a typical range of from about 12 to about 42.
Other dispersants/ anti-redeposition agents for use herein are described in EP-B-011965 and US 4,659,802 and US 4,664,848.
Suds Suppressing System
The detergent compositions of the invention, when formulated for use in machine washing compositions, may comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.02% to 10%, most preferably from 0.05% to 3% by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as
suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18- 40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa- alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
A preferred suds suppressing system comprises:
(a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
(i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95% by weight of the silicone antifoam compound; and
(ii) silica, at a level of from 1 % to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound;
wherein said silica/silicone antifoam compound is incoφorated at a level of from
5% to 50%, preferably 10% to 40% by weight;
(b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78%) and an ethylene oxide to propylene oxide ratio of from 1 :0.9 to 1 : 1.1 , at a level of from 0.5% to 10%,
preferably 1% to 10% by weight; a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially available from DOW Corning under the tradename DCO544;
(c) an inert carrier fluid compound, most preferably comprising a C \ g-C \ g ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
Other highly preferred suds suppressing systems comprise polydimethylsiloxane or mixtures of silicone, such as polydimethylsiloxane, aluminosilicate and polycarboxylic polymers, such as copolymers of laic and acrylic acid.
Polymeric Dye Transfer Inhibiting Agents
The compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof, whereby these polymers can be cross-linked polymers.
Optical Brightener
The compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners, as known in the art.
Polymeric Soil Release Agent
Polymeric soil release agents, hereinafter "SRA", can optionally be employed in the present compositions. If utilised, SRA's will generally comprise from 0.01% to 10.0%>, typically from 0.1% to 5%>, preferably from 0.2% to 3.0% by weight, of the compositions.
Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide. Such esters may be made using additional monomers capable of being incoφorated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P.
Gosselink. Such ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate ("DMT") and 1,2-propylene glycol ("PG") in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water. Other SRA's include the nonionic end- capped 1 ,2-propylene/polyoxyethylene terephthalate polyesters of U.S. 4,71 1,730, December 8, 1987 to Gosselink et al., for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG"). Other examples of SRA's include: the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8- hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S. 4,702,857, October 27, 1987 to Gosselink, for example produced from DMT, methyl (Me)-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al., the latter being typical of SRA's useful in both laundry and fabric conditioning products, an example being an ester composition made from m- sulfobenzoic acid monosodium salt, PG and DMT, optionally but preferably further comprising added PEG, e.g., PEG 3400.
SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C1-C4 alkyl celluloses and C4 hydroxyalkyl celluloses, see U.S. 4,000,093,
December 28, 1976 to Nicol, et al.; and the methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2% aqueous solution. Such materials are available as METOLOSE SMI 00 and METOLOSE
SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
Additional classes of SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201,824. Violland et al. and U.S. 4,240,918 Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage. Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al.. Other classes include: (III) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al.;
Other Optional Ingredients
Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, speckles, colours or dyes, filler salts, with sodium sulfate being a preferred filler salt.
Also, minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides and dyes, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 (herein incoφorated by reference), can be present.
Highly preferred are encapsulated perfumes, preferably comprising a starch encapsulte.
The dye which may be used herein can be any dye for example in the form of a dye stuff or an aqueous solution of a dye stuff. It may be preferred that the dye is an aqueous
solution comprising a dyestuff, at any level to obtain suitable dyeing of the particles, preferably such that levels of dye solution are obtained up to 2% by weight of the speckle particle, or more preferably up to 0.5% by weight. Optionally, the dye also comprising other ingredients such as organic binder materials.
The dyestuff can be any suitable dyestuff. Specific examples of suitable dyestuffs include El 04 - food yellow 13 (quinoline yellow), El 10 - food yellow 3 (sunset yellow FCF), El 31 - food blue 5 (patent blue V), Ultra Marine blue (trade name), El 33 - food blue 2 (brilliant blue FCF), El 40 - natural green 3 (chlorophyll and chloφhyllins), El 41 and Pigment green 7 (chlorinated Cu phthalocyanine). Preferred dyestuffs may be Monastral Blue BV paste (trade name) and/ or Pigmasol Green (trade name).
In the compositions of the invention, it may be preferred that when dyes and/ or perfumes are sprayed onto the another component, the component does not comprise spray-on nonionic alkoxylated alcohol surfactant.
Form of the Compositions
The composition of the invention thereof can be made via a variety of methods involving the mixing of ingredients, including dry-mixing, compaction such as agglomerating, extrusion, tabletting, or spray-drying of the various compounds comprised in the detergent component, or mixtures of these techniques, whereby the components herein also can be made by for example compaction, including extrusion and agglomerating, or spray-drying.
The compositions herein can take a variety of physical solid forms including forms such as tablet, flake, pastille and bar, and preferably the composition is in the form of granules or a tablet.
The compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
The compositions preferably have a density of more than 350 gr/litre, more preferably more than 450 gr/litre or even more than 570 gr/litre.
Abbreviations used in Examples
In the detergent compositions, the abbreviated component identifications have the following meanings:
LAS Sodium linear Cj ι_χ3 alkyl benzene sulfonate LAS (I) Flake containing sodium linear Cj ι_ 3 alkyl benzene sulfonate (90%>) and sodium sulphate and moisture
LAS(II) Potassium linear C] ι_i3 alkyl benzene sulfonate
MES α-sulpho methylester of C18 fatty acid TAS Sodium tallow alkyl sulfate CxyAS Sodium Cjx - Cjy alkyl sulfate
C46SAS Sodium Cj4 - Cjg secondary (2,3) alkyl sulfate
CxyEzS Sodium Cι x-Ciy alkyl sulfate condensed with z moles of ethylene oxide
CxyEz Clχ-Cjy predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide
QAS R2.N+(CH3)2(C2H4OH) with R2 = Cι2 - C14
QAS 1 R2.N+(CH3)2(C2H OH) with R2 = Cg - Cu SADS Sodium C14-C22 alkyl disulfate of formula 2-(R).C4 H7.-l,4-
(SO4-)2 where R = C10_C18
SADE2S Sodium C14-C22 alkyl disulfate of formula 2-(R).C4 H7.-l,4-
(SO4-)2 where R = C10-Clg, condensed with z moles of ethylene oxide
APA Cg - C10 amido propyl dimethyl amine
Soap Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut fatty acids
STS Sodium toluene sulphonate
CFAA l2" l4 (coco) alkyl N-methyl glucamide
TFAA l6" l 8 alkyl N-methyl glucamide
TPKFA Cl6-Cl8 topped whole cut fatty acids
STPP Anhydrous sodium tripolyphosphate TSPP Tetrasodium pyrophosphate Zeolite A Hydrated sodium aluminosilicate of formula
Naj2(Alθ2Siθ2)i2-27H2θ having a primary particle size in the range from 0.1 to 10 micrometers (weight expressed on an anhydrous basis) NaSKS-6 (I) Crystalline layered silicate of formula δ- Na2Si2θ5 0f weight average particle size of 18 microns and at least 90% by weight being of particle size of below 65.6 microns.
NaSKS-6 (II) Crystalline layered silicate of formula δ- Na2Si2θ5 0f weight average particle size of 18 microns and at least 90% by weight being of particle size of below 42.1 microns.
Citric acid Anhydrous citric acid
Borate Sodium borate
Carbonate Anydrous sodium carbonate with a particle size between
200μm and 900μm Bicarbonate Anhydrous sodium bicarbonate with a particle size distribution between 400μm and 1200μm
Silicate Amoφhous sodium silicate (SiO2:Na2O = 2.0:1)
Sulfate Anhydrous sodium sulfate Mg sulfate Anhydrous magnesium sulfate Citrate Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425μm and 850μm
MA AA Copolymer of 1 :4 maleic/acrylic acid, average molecular weight about 70,000
MA/AA (1) Copolymer of 4:6 maleic/acrylic acid, average molecular weight about 10,000
AA Sodium polyacrylate polymer of average molecular weight
4,500 CMC Sodium carboxymethyl cellulose
Cellulose ether Methyl cellulose ether with a degree of polymerization of
650 available from Shin Etsu Chemicals
Protease Proteolytic enzyme, having 3.3% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Savinase
Protease I Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591, sold by Genencor
Int. Inc.
Alcalase Proteolytic enzyme, having 5.3% by weight of active enzyme, sold by NOVO Industries A/S
Cellulase Cellulytic enzyme, having 0.23% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Carezyme
Amylase Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Termamyl 120T
Amylase II Amylolytic enzyme, as disclosed in PCT/ US9703635 Lipase Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase
Lipase (1) Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra
Endolase Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries A/S
PB4 : Sodium perborate tetrahydrate of nominal formula
NaBθ2.3H2O.H2θ2
PB1 : Anhydrous sodium perborate bleach of nominal formula
NaBθ2.H2θ2
Percarbonate : Sodium percarbonate of nominal formula
2Na2Cθ3.3H2θ2
DOBS : Decanoyl oxybenzene sulfonate in the form of the sodium salt
DPDA : Diperoxydodecanedioc acid
NOBS : Nonanoyloxybenzene sulfonate in the form of the sodium salt
NACA-OBS : (6-nonamidocaproyl) oxybenzene sulfonate
LOBS : Dodecanoyloxybenzene sulfonate in the form of the sodium salt
DOBS : Decanoyloxybenzene sulfonate in the form of the sodium salt
DOBA Decanoyl oxybenzoic acid
TAED Tetraacetylethylenediamine
DTPA Diethylene triamine pentaacetic acid
DTPMP Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Tradename Dequest 2060
EDDS Ethylenediamine-N,N'-disuccinic acid, (S,S) isomer in the form of its sodium salt.
Photoactivated bleach: Sulfonated zinc phthlocyanine encapsulated in or carried by soluble polymer or sulfonated alumino phthlocyanine encapsulated in or carried by soluble polymer
Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl Brightener 2 Disodium 4,4'-bis(4-anilino-6-moφholino-l .3.5-triazin-2- yl)amino) stilbene-2:2'-disulfonate HEDP 1,1 -hydroxy ethane diphosphonic acid
PEGx Polyethylene glycol, with a molecular weight of x
(typically 4,000)
PEO Polyethylene oxide, with an average molecular weight of
50,000 TEPAE Tetraethylenepentaamine ethoxylate PVI Polyvinyl imidosole, with an average molecular weight of
20,000
PVP Polyvinylpyrolidone polymer, with an average molecular weight of 60,000 PVNO Polyvinylpyridine N-oxide polymer, with an average molecular weight of 50,000
PVPVI Copolymer of polyvinylpyrolidone and vinylimidazole, with an average molecular weight of 20,000
QEA bis((C2H5θ)(C2H4θ)n)(CH3) -N+-C6H12-N+-(CH3) bis((C2H5θ)-(C2H O))n, wherein n = from 20 to 30
SRP 1 Anionically end capped poly esters SRP 2 Diethoxylated poly (1, 2 propylene terephtalate) short block polymer
PEI Polyethyleneimine with an average molecular weight of
1800 and an average ethoxylation degree of 7 ethyleneoxy residues per nitrogen
Silicone antifoam Polydimethylsiloxane foam controller with siloxane- oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to
100:1
Opacifier Water based monostyrene latex mixture, sold by BASF
Aktiengesellschaft under the tradename Lytron 621
Wax Paraffin wax
Example I
Example 2
The following compositions are in accord with the invention.
Example 3
The following are detergent formulations according to the present invention:
Example 4
The following formulations are examples of compositions in accordance with the invention, which may be in the form of granules or in the form of a tablet.
Example 5
The following are detergent formulations according to the present invention:
Example 6
A detergent composition was formed comprising blown powder, an agglomerate comprising crystalline layered silicate and anionic surfactant, an effervescent particle and dry-mixed bleach activator particle, sodium percarbonate, sodium citrate and suds supressor.
The individual particulates were prepared and dry-mixed together with gentle mixing e.g. in a Nautamixer for a period of at least 4 minutes.
Preparation of the Blown Powder
The composition of the final blown powder was as follows:-
Ingredient % in Blown Powder
Sodium Linear Alkyl Sulphonate (LAS) 20
Copolymer of Acrylic/Maleic Acid 5
Sodium Sulphate 16
Sodium Carbonate 31
Sodium Citrate 20
Water 8
The blown powder was prepared by a standard spray drying process. The above ingredients were mixed into a slurry with water. The aqueous slurry may be prepared by a batch or continuous process. In this case, a batch mixer, or "crutcher" was used in which the various detergent components were dissolved in, or slurried with, water to provide a slurry containing 35%> water. The water content my be varied from about 20%> to about 60%) by weight of water, preferably it is about from about 30% to about 40% by weight water. In this example the order of addition of the ingredients to water to form the aqueous slurry was as listed above in the final composition of the blown powder. The aqueous slurry was then pumped at high pressure through atomising nozzles into a spray-
drying tower where excess water was driven off, producing a flowable powder product (blown powder). Fines were screened out through a mesh.
Preparation of Crystalline layered silicate/ Anionic Surfactant Particle
An agglomerate comprising 70% SKS6 and 30% LAS was prepared by a conventional agglomeration process.
Preparation of the Effervescent Particle Particles were prepared having the following composition:
Ingredient Composition %
Malic Acid 44
Sodium Bicarbonate 40
Sodium Carbonate 16
The particle was made via a roller compaction process. The raw materials in the proportions indicated above, were fed at a press force of 80kN into a Pharmapaktor L200/50 P roller, set up with concave smooth rolls with a 0.3mm axial corrugation installed. The flakes produced were then compacted using a Flake Crusher FC 200 with a mesh size selected to produce the required particle size. The product was screened to remove the fines.
These three components were mixed with the additional dry-added ingredients listed below, in the proportions given below, to form a detergent composition according to the invention.
Ingredient %> in Detergent Composition Spray Dried 42
Bleach Activator 3
Sodium Percarbonate 15
Sodium Citrate 10
SKS6/L AS granulate 10
Suds suppressor particle 4 (95% PEG, 5% silicone)
Effervescent Particle 16
Claims
1. A phosphate-free detergent composition comprising at least one particulate components, from 5% to 90% by weight of the composition of a builder system and at least 10% by weight of the composition of a surfactant system, comprising one or more surfactants, characterised in that
a) the builder system comprises at least two builders selected from water-soluble or partially water-soluble builders or mixtures thereof, present at a level from 60% to
100% by weight of the builder system; and from 0% to 40% by weight of the builder system of water-insoluble builders, provided that less than 9% by weight of the composition of aluminosilicate builder is present, and less than 5% by weight of the composition of amoφhous sodium silicate is present; and
b) the particulate component comprises at least one of the surfactants of the surfactant system is intimately mixed with at least one of the water-soluble or partially water- soluble builders.
2. A detergent composition according to claim 1 wherein substantially no water- insoluble builder is present as a separate powder component.
3. A detergent composition according to claim 1 or 2 comprising less than 3% by weight of aluminosilicate builder and less than 2% of amoφhous sodium silicate, preferably the composition is substantially free of aluminosilicate builder.
4. A composition according to any preceding claim wherein the builder system comprises a crystalline layered silicates of the formula
NaMSixO2x+1.yH2O wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20; whereby preferably the crystalline layered silicate or part thereof is comprised in a particulate component, preferably in an intimate mixture with an anionic surfactant of the surfactant system.
5. A composition according to any preceding claim wherein the builder system comprises an organic carboxylic acid or salt thereof, whereby preferably part or all of the organic carboxylic acid or salt thereof, is comprised in a particulate component.
6. A composition according to claim 5 wherein the organic carboxylic acid or salt thereof comprises a polymeric polycarboxylic acid or salt thereof and a monomeric polycarboxylic acid or salt or mixtures thereof.
7. A composition according to any preceding claim comprising an effervesce system.
8. A composition according to any preceding claim wherein the surfactant system comprises an anionic alkyl sulphate surfactant, an anionic sulphonate surfactant or mixtures thereof.
9. A detergent composition according to any preceding claim wherein the particular component is substantially free of spray-on nonionic alkoxylated alcohol surfactants.
10. A composition according to any preceding claim wherein the particular components comprises a perfume, brightener or dye or mixtures thereof, preferably as a spray-on a component.
11. A composition according to any preceding claim which is substantially free of anionic linear alkyl sulfate surfactants.
12. A detergent composition according to any preceding claim comprising an oxygen- based bleach, comprising a hydrogen peroxide source, preferably a percarbonate salt, and a bleach precursor.
13. Use of a particulate component comprising an intimate mixture of a water soluble or partially water-soluble builder, or mixture thereof and a surfactant to improve the delivery to the wash of a detergent composition, comprising from 5% to 90% by weight of a builder system and at least 10% by weight of a surfactant system which contains one or more surfactants, whereby the builder system comprises at least two builders selected from water-soluble or partially water-soluble builders or mixtures thereof, present at a level from 60%> to 100% by weight of the builder system; and from 0% to 40% by weight of the builder system of water- insoluble builders, provided that less than 9%> by weight of the composition of aluminosilicate builder is present, and less than 5%> by weight of the composition of amoφhous sodium silicate is present.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US1998/020222 WO2000018859A1 (en) | 1998-09-25 | 1998-09-25 | Solid detergent compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1115825A1 true EP1115825A1 (en) | 2001-07-18 |
Family
ID=22267949
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP98948562A Withdrawn EP1115825A1 (en) | 1998-09-25 | 1998-09-25 | Solid detergent compositions |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP1115825A1 (en) |
| AU (1) | AU9510998A (en) |
| MX (1) | MXPA01003100A (en) |
| WO (1) | WO2000018859A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013174843A1 (en) | 2012-05-24 | 2013-11-28 | Bayer Cropscience Ag | N-(tetrazol-5-yl)- and n-(triazol-5-yl)arylcarboxylic thioamides and use thereof as herbicides |
| WO2014037342A1 (en) | 2012-09-05 | 2014-03-13 | Bayer Cropscience Ag | Herbicidally active bicycloaryl carboxylic acid amides |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19943550A1 (en) * | 1999-09-11 | 2001-03-15 | Clariant Gmbh | Highly alkaline crystalline sodium silicate |
| DE19943551A1 (en) * | 1999-09-11 | 2001-03-15 | Clariant Gmbh | Poorly soluble alkali silicate |
| DE10153551A1 (en) * | 2001-10-30 | 2003-05-22 | Henkel Kgaa | Detergent or cleaning agent that is essentially dispersible without sediment |
| ES2415872T3 (en) | 2005-08-19 | 2013-07-29 | The Procter & Gamble Company | Solid laundry detergent composition comprising an anionic detersive surfactant and calcium enhancement technology |
| DE602005020776D1 (en) | 2005-08-19 | 2010-06-02 | Procter & Gamble | A solid detergent composition containing alkylbenzenesulphonate and a hydratable material |
| ATE485361T1 (en) | 2005-08-19 | 2010-11-15 | Procter & Gamble | SOLID DETERGENT COMPOSITION CONTAINING ALKYLBENZENESULPHONATE, CARBONATE SALT AND CARBOXYLATE POLYMER |
| EP1754779B1 (en) | 2005-08-19 | 2012-10-17 | The Procter and Gamble Company | A solid laundry detergent composition comprising anionic detersive surfactant and a highly porous carrier material |
| EP1754776A1 (en) | 2005-08-19 | 2007-02-21 | The Procter and Gamble Company | A process for preparing a solid laundry detergent composition, comprising at least two drying steps |
| ES2598402T5 (en) * | 2009-12-30 | 2019-10-09 | Ecolab Inc | Phosphate substitutes for cleaning and / or detergent compositions compatible with membranes |
| JP5785747B2 (en) * | 2011-03-18 | 2015-09-30 | ライオン株式会社 | Granular detergent composition |
| WO2015003358A1 (en) * | 2013-07-11 | 2015-01-15 | The Procter & Gamble Company | Laundry detergent composition |
| GR20170100372A (en) * | 2017-08-04 | 2019-04-22 | Σωτηριος Στυλιανου Δημοπουλος | Anti-splash formula for the fast development of a foamy film covering the toilet bowl's opening |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9407628D0 (en) * | 1994-04-13 | 1994-06-08 | Procter & Gamble | Detergent compositions |
| GB9407279D0 (en) * | 1994-04-13 | 1994-06-08 | Procter & Gamble | Detergent compositions |
| DE4442977A1 (en) * | 1994-12-02 | 1996-06-05 | Henkel Kgaa | Detergent or cleaning agent with water-soluble builder substances |
-
1998
- 1998-09-25 MX MXPA01003100 patent/MXPA01003100A/en unknown
- 1998-09-25 EP EP98948562A patent/EP1115825A1/en not_active Withdrawn
- 1998-09-25 AU AU95109/98A patent/AU9510998A/en not_active Abandoned
- 1998-09-25 WO PCT/US1998/020222 patent/WO2000018859A1/en not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO0018859A1 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013174843A1 (en) | 2012-05-24 | 2013-11-28 | Bayer Cropscience Ag | N-(tetrazol-5-yl)- and n-(triazol-5-yl)arylcarboxylic thioamides and use thereof as herbicides |
| WO2014037342A1 (en) | 2012-09-05 | 2014-03-13 | Bayer Cropscience Ag | Herbicidally active bicycloaryl carboxylic acid amides |
Also Published As
| Publication number | Publication date |
|---|---|
| MXPA01003100A (en) | 2001-10-01 |
| WO2000018859A1 (en) | 2000-04-06 |
| AU9510998A (en) | 2000-04-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1121406B1 (en) | Detergent compositions or components | |
| EP1115819B1 (en) | Detergent granules | |
| US6630439B1 (en) | Solid detergent compositions comprising sesquicarbonate | |
| CA2343895C (en) | Detergent compositions | |
| EP1115835B1 (en) | Solid detergent compositions | |
| WO2000018859A1 (en) | Solid detergent compositions | |
| GB2343456A (en) | Speckle particles and compositions containing the speckle particles | |
| US6673766B1 (en) | Solid detergent compositions containing mixtures of surfactant/builder particles | |
| EP1196526A1 (en) | Detergent compositions | |
| US6964945B1 (en) | Solid detergent compositions | |
| CA2344434C (en) | Solid detergent compositions | |
| GB2339575A (en) | Cellulose disintegrant for detergent compositions | |
| GB2339194A (en) | Layered crystalline silicate as detergent builder component | |
| WO2000061718A1 (en) | Light reflecting particles | |
| EP1752527A2 (en) | Solid detergent compositions | |
| GB2339574A (en) | Disintegrating components | |
| GB2339204A (en) | Detergent composition | |
| EP1095129A1 (en) | Method for dispensing | |
| GB2347681A (en) | Detergent compositions or components |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20010326 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
| 17Q | First examination report despatched |
Effective date: 20030715 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20050601 |