EP1179022A2 - Bufornin 1 as a specific inhibitor and therapeutic agent for botulinum toxin b and tetanus neurotoxins - Google Patents
Bufornin 1 as a specific inhibitor and therapeutic agent for botulinum toxin b and tetanus neurotoxinsInfo
- Publication number
- EP1179022A2 EP1179022A2 EP00948495A EP00948495A EP1179022A2 EP 1179022 A2 EP1179022 A2 EP 1179022A2 EP 00948495 A EP00948495 A EP 00948495A EP 00948495 A EP00948495 A EP 00948495A EP 1179022 A2 EP1179022 A2 EP 1179022A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- alanine
- serine
- glycine
- threonine
- glutamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108030001720 Bontoxilysin Proteins 0.000 title claims description 14
- 229940053031 botulinum toxin Drugs 0.000 title claims description 13
- 206010043376 Tetanus Diseases 0.000 title claims description 11
- 239000003112 inhibitor Substances 0.000 title description 19
- 239000002581 neurotoxin Substances 0.000 title description 8
- 231100000618 neurotoxin Toxicity 0.000 title description 8
- 239000003814 drug Substances 0.000 title description 4
- 229940124597 therapeutic agent Drugs 0.000 title description 3
- 150000001413 amino acids Chemical class 0.000 claims abstract description 81
- 150000001875 compounds Chemical class 0.000 claims abstract description 59
- 230000000694 effects Effects 0.000 claims abstract description 41
- 108091005804 Peptidases Proteins 0.000 claims abstract description 30
- 239000004365 Protease Substances 0.000 claims abstract description 30
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims abstract description 29
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 23
- 150000003839 salts Chemical group 0.000 claims abstract description 19
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims abstract description 14
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 10
- 108010055044 Tetanus Toxin Proteins 0.000 claims abstract description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 110
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 100
- 235000001014 amino acid Nutrition 0.000 claims description 77
- 229940024606 amino acid Drugs 0.000 claims description 76
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 71
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 68
- 235000004279 alanine Nutrition 0.000 claims description 68
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 67
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 64
- 239000004473 Threonine Substances 0.000 claims description 64
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 62
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 61
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 61
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 60
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims description 60
- 235000009582 asparagine Nutrition 0.000 claims description 60
- 229960001230 asparagine Drugs 0.000 claims description 60
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 54
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 53
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 53
- 239000004472 Lysine Substances 0.000 claims description 51
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 50
- 239000004474 valine Substances 0.000 claims description 50
- 239000004475 Arginine Substances 0.000 claims description 49
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 49
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 49
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 49
- 229960000310 isoleucine Drugs 0.000 claims description 49
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 48
- 108010040767 buforin I Proteins 0.000 claims description 43
- 239000004471 Glycine Substances 0.000 claims description 42
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 42
- 239000003053 toxin Substances 0.000 claims description 40
- 231100000765 toxin Toxicity 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 39
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 claims description 36
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 29
- 235000004554 glutamine Nutrition 0.000 claims description 28
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims description 26
- 235000004400 serine Nutrition 0.000 claims description 22
- 235000008521 threonine Nutrition 0.000 claims description 22
- 238000003556 assay Methods 0.000 claims description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 12
- 108010025307 buforin II Proteins 0.000 claims description 12
- UKVZSPHYQJNTOU-IVBHRGSNSA-N chembl1240717 Chemical compound C([C@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)[C@H](C)O)CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(O)=O)C1=CC=CC=C1 UKVZSPHYQJNTOU-IVBHRGSNSA-N 0.000 claims description 12
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 11
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 claims description 10
- 230000003993 interaction Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 10
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 9
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 9
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 9
- 230000035987 intoxication Effects 0.000 claims description 6
- 231100000566 intoxication Toxicity 0.000 claims description 6
- 230000026731 phosphorylation Effects 0.000 claims description 6
- 238000006366 phosphorylation reaction Methods 0.000 claims description 6
- 229940118376 tetanus toxin Drugs 0.000 claims description 6
- 238000006731 degradation reaction Methods 0.000 claims description 5
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 5
- 230000015556 catabolic process Effects 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 230000003278 mimic effect Effects 0.000 claims description 4
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 239000000443 aerosol Substances 0.000 claims description 3
- 238000011109 contamination Methods 0.000 claims description 3
- 229960001330 hydroxycarbamide Drugs 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- UKVZSPHYQJNTOU-GQJPYGCMSA-N (2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-amino-3-hydroxybutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]acetyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]acetyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]hexanoic acid Chemical compound C([C@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)[C@@H](C)O)CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(O)=O)C1=CC=CC=C1 UKVZSPHYQJNTOU-GQJPYGCMSA-N 0.000 claims description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims 2
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 claims 2
- 238000005470 impregnation Methods 0.000 claims 2
- 239000002773 nucleotide Substances 0.000 claims 2
- 125000003729 nucleotide group Chemical group 0.000 claims 2
- 238000003259 recombinant expression Methods 0.000 claims 2
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims 2
- UXVCEKRAZBZVSL-UHFFFAOYSA-N 2-pyridin-2-ylacetamide Chemical compound NC(=O)CC1=CC=CC=N1 UXVCEKRAZBZVSL-UHFFFAOYSA-N 0.000 claims 1
- 238000012258 culturing Methods 0.000 claims 1
- 239000002243 precursor Substances 0.000 claims 1
- 125000002252 acyl group Chemical group 0.000 abstract description 4
- 150000001408 amides Chemical group 0.000 abstract description 4
- 150000002148 esters Chemical group 0.000 abstract description 4
- 108700012359 toxins Proteins 0.000 description 38
- 102000004196 processed proteins & peptides Human genes 0.000 description 34
- 239000000758 substrate Substances 0.000 description 30
- 210000004027 cell Anatomy 0.000 description 25
- 108090000623 proteins and genes Proteins 0.000 description 21
- 102000003786 Vesicle-associated membrane protein 2 Human genes 0.000 description 18
- 108090000169 Vesicle-associated membrane protein 2 Proteins 0.000 description 18
- 238000009472 formulation Methods 0.000 description 16
- 230000005764 inhibitory process Effects 0.000 description 15
- 238000003776 cleavage reaction Methods 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- 230000007017 scission Effects 0.000 description 12
- 238000006467 substitution reaction Methods 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 11
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 10
- 235000018417 cysteine Nutrition 0.000 description 10
- 238000011144 upstream manufacturing Methods 0.000 description 10
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- -1 instructions Substances 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 8
- 238000007792 addition Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- UIQMVEYFGZJHCZ-SSTWWWIQSA-N Nalorphine Chemical compound C([C@@H](N(CC1)CC=C)[C@@H]2C=C[C@@H]3O)C4=CC=C(O)C5=C4[C@@]21[C@H]3O5 UIQMVEYFGZJHCZ-SSTWWWIQSA-N 0.000 description 7
- 208000005374 Poisoning Diseases 0.000 description 7
- 125000003275 alpha amino acid group Chemical group 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 230000029087 digestion Effects 0.000 description 7
- 210000002569 neuron Anatomy 0.000 description 7
- 231100000572 poisoning Toxicity 0.000 description 7
- 230000000607 poisoning effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 108010059378 Endopeptidases Proteins 0.000 description 6
- 102000005593 Endopeptidases Human genes 0.000 description 6
- KSPIYJQBLVDRRI-UHFFFAOYSA-N N-methylisoleucine Chemical compound CCC(C)C(NC)C(O)=O KSPIYJQBLVDRRI-UHFFFAOYSA-N 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000010561 standard procedure Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000012736 aqueous medium Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 5
- 125000001183 hydrocarbyl group Chemical group 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000004007 reversed phase HPLC Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical compound C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 4
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Natural products CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 4
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000011321 prophylaxis Methods 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- MRTPISKDZDHEQI-YFKPBYRVSA-N (2s)-2-(tert-butylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC(C)(C)C MRTPISKDZDHEQI-YFKPBYRVSA-N 0.000 description 3
- NPDBDJFLKKQMCM-SCSAIBSYSA-N (2s)-2-amino-3,3-dimethylbutanoic acid Chemical compound CC(C)(C)[C@H](N)C(O)=O NPDBDJFLKKQMCM-SCSAIBSYSA-N 0.000 description 3
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 3
- 101710118538 Protease Proteins 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 229910001410 inorganic ion Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 102200080102 rs121908643 Human genes 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000271566 Aves Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 101800003032 Buforin-1 Proteins 0.000 description 2
- 150000008574 D-amino acids Chemical group 0.000 description 2
- 102100039869 Histone H2B type F-S Human genes 0.000 description 2
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 2
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 2
- 101710138657 Neurotoxin Proteins 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229960001948 caffeine Drugs 0.000 description 2
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- XVOYSCVBGLVSOL-UHFFFAOYSA-N cysteic acid Chemical compound OC(=O)C(N)CS(O)(=O)=O XVOYSCVBGLVSOL-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000006471 dimerization reaction Methods 0.000 description 2
- 230000003467 diminishing effect Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000002702 enteric coating Substances 0.000 description 2
- 238000009505 enteric coating Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229930186900 holotoxin Natural products 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 2
- USRGIUJOYOXOQJ-GBXIJSLDSA-N phosphothreonine Chemical compound OP(=O)(O)O[C@H](C)[C@H](N)C(O)=O USRGIUJOYOXOQJ-GBXIJSLDSA-N 0.000 description 2
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 235000021055 solid food Nutrition 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- QDZOEBFLNHCSSF-PFFBOGFISA-N (2S)-2-[[(2R)-2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-1-[(2R)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-N-[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]pentanediamide Chemical compound C([C@@H](C(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CCCNC(N)=N)C1=CC=CC=C1 QDZOEBFLNHCSSF-PFFBOGFISA-N 0.000 description 1
- FDKWRPBBCBCIGA-REOHCLBHSA-N (2r)-2-azaniumyl-3-$l^{1}-selanylpropanoate Chemical compound [Se]C[C@H](N)C(O)=O FDKWRPBBCBCIGA-REOHCLBHSA-N 0.000 description 1
- BVAUMRCGVHUWOZ-ZETCQYMHSA-N (2s)-2-(cyclohexylazaniumyl)propanoate Chemical compound OC(=O)[C@H](C)NC1CCCCC1 BVAUMRCGVHUWOZ-ZETCQYMHSA-N 0.000 description 1
- RWLSBXBFZHDHHX-VIFPVBQESA-N (2s)-2-(naphthalen-2-ylamino)propanoic acid Chemical compound C1=CC=CC2=CC(N[C@@H](C)C(O)=O)=CC=C21 RWLSBXBFZHDHHX-VIFPVBQESA-N 0.000 description 1
- BWKMGYQJPOAASG-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid Chemical compound C1=CC=C2CNC(C(=O)O)CC2=C1 BWKMGYQJPOAASG-UHFFFAOYSA-N 0.000 description 1
- LBTUTDYXOOUODJ-UHFFFAOYSA-N 2-pyrrolidin-1-ylacetamide Chemical compound NC(=O)CN1CCCC1 LBTUTDYXOOUODJ-UHFFFAOYSA-N 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 241001415440 Bufo gargarizans Species 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 244000068485 Convallaria majalis Species 0.000 description 1
- 235000009046 Convallaria majalis Nutrition 0.000 description 1
- FDKWRPBBCBCIGA-UWTATZPHSA-N D-Selenocysteine Natural products [Se]C[C@@H](N)C(O)=O FDKWRPBBCBCIGA-UWTATZPHSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 235000000836 Epigaea repens Nutrition 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 208000006877 Insect Bites and Stings Diseases 0.000 description 1
- QUOGESRFPZDMMT-UHFFFAOYSA-N L-Homoarginine Natural products OC(=O)C(N)CCCCNC(N)=N QUOGESRFPZDMMT-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- QUOGESRFPZDMMT-YFKPBYRVSA-N L-homoarginine Chemical compound OC(=O)[C@@H](N)CCCCNC(N)=N QUOGESRFPZDMMT-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- UCUNFLYVYCGDHP-BYPYZUCNSA-N L-methionine sulfone Chemical compound CS(=O)(=O)CC[C@H](N)C(O)=O UCUNFLYVYCGDHP-BYPYZUCNSA-N 0.000 description 1
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000801963 Lebeda Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 206010028347 Muscle twitching Diseases 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- ZPHBZEQOLSRPAK-UHFFFAOYSA-N Phosphoramidon Natural products C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O ZPHBZEQOLSRPAK-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 101000870565 Pisum sativum Glutathione reductase, cytosolic Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 101800001357 Potential peptide Proteins 0.000 description 1
- 102400000745 Potential peptide Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 108010005730 R-SNARE Proteins Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 208000004078 Snake Bites Diseases 0.000 description 1
- 102400000096 Substance P Human genes 0.000 description 1
- 101800003906 Substance P Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102000002215 Synaptobrevin Human genes 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 206010048629 Wound secretion Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000000397 acetylating effect Effects 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- WTOFYLAWDLQMBZ-LURJTMIESA-N beta(2-thienyl)alanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CS1 WTOFYLAWDLQMBZ-LURJTMIESA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 238000002983 circular dichroism Methods 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229960003983 diphtheria toxoid Drugs 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000003475 metalloproteinase inhibitor Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- CWWARWOPSKGELM-SARDKLJWSA-N methyl (2s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-2-[[(2s)-5-amino-2-[[(2s)-5-amino-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s)-1-[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-5 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)OC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 CWWARWOPSKGELM-SARDKLJWSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000000715 neuromuscular junction Anatomy 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000037368 penetrate the skin Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- BWSDNRQVTFZQQD-AYVHNPTNSA-N phosphoramidon Chemical compound O([P@@](O)(=O)N[C@H](CC(C)C)C(=O)N[C@H](CC=1[C]2C=CC=CC2=NC=1)C(O)=O)[C@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@@H]1O BWSDNRQVTFZQQD-AYVHNPTNSA-N 0.000 description 1
- 108010072906 phosphoramidon Proteins 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 102220058659 rs767802663 Human genes 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- ZKZBPNGNEQAJSX-UHFFFAOYSA-N selenocysteine Natural products [SeH]CC(N)C(O)=O ZKZBPNGNEQAJSX-UHFFFAOYSA-N 0.000 description 1
- 229940055619 selenocysteine Drugs 0.000 description 1
- 235000016491 selenocysteine Nutrition 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 229940002004 the magic bullet Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/8107—Endopeptidase (E.C. 3.4.21-99) inhibitors
- C07K14/8146—Metalloprotease (E.C. 3.4.24) inhibitors, e.g. tissue inhibitor of metallo proteinase, TIMP
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/02—Antidotes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the invention relates to a class of peptide and peptide-like compounds, "Buforinins” which inhibit the enzymatic activity of Botulinum toxin B and Tetanus neurotoxins.
- Bttxs The Botulinum toxins (Bttxs) are among the most potent toxins to animals, e. g. the LD 50 in mice is about 1 ng/kg.
- Bttxs comprise a family of seven distinct serotypes (A-G).
- Bttxs are composed of two subunits comprising a 100 kdal nerve-cell targeting heavy chain and a 50 kdal endoproteolytically active light chain. These toxins are Zn-metalloproteases and contain a Zn-protein binding motif HEXXH.
- Zn-metalloprotease inhibitors such as angiotensin converting enzyme inhibitors, captopril and phosphoramidon
- Zn-chelators inhibit Bttx protease activity in vitro, they merely delay the protease activity in vivo and in tissue preparations comprising intact nerve and muscles cells and/or tissues.
- some Zn-chelators are toxic at concentrations necessary to delay the Bttx protease activity.
- dithiocarbamates inhibit other Zn-containing proteins such as SOD, they are ineffective against the Bttx serotype B (BttxB).
- BttxB Bttx serotype B
- VAMP2 synaptobrevin
- phenylalanine 77 QF bond or cleavage site
- VAMP2 synaptobrevin
- V2 a peptide derived from VAMP2, is a sequence of 10 amino acids located 4 residues upstream from the cleavage site, and was found to inhibit Bttx activity.
- VAMP2 Computer-aided secondary structure analysis of VAMP2 predicted two stretches of ⁇ - helical structure flanking the cleavage site QF. See Witcome, M. R. et al. (1996) FEBS Let. 386: 133-136. Computer-aided tertiary structure analysis indicates that the two helices could self associate to form a supersecondary structure of a helix bundle with the helices separated by a reverse turn. See Lebeda F. J., et al. (1996) Med. Defense Biosci. Rev. 204.
- the invention is directed to a class of peptides and peptide-like compounds,
- Buforinins which have an internal QF bond and the ability to inhibit BttxB protease activities. As the tetanus toxin cleavage site is the same as BttxB, Buforinins may also competitively inhibit tetanus protease activity.
- the invention is directed to compounds of the formula: X ⁇ X 2 B 3 X 4 B 5 X* 6 X 7 X B 9 X ⁇ oB ⁇ ⁇ X ⁇ 2 Bi 3 X ⁇ 4 Bi 5 X] B ⁇ X* ⁇ 8 X* ⁇ 9 B 2 oX 2 ⁇ X 2 X 3 Q 24 F 2 Z* 26
- Up to 15 amino acids may be truncated from the N-terminus and up to 6 amino acids may be truncated from the C- terminus.
- Each position represented by a letter indicates a single amino acid residue
- B is a basic or polar/large amino acid or a modified form thereof
- X is a small or hydrophobic amino acid or a modified form thereof
- X* is a small or polar/large amino acid or a modified form thereof
- Z is a polar/large or hydrophobic amino acid or a modified form thereof
- Z* is Proline or a polar/large or hydrophobic amino acid or a modified form thereof.
- one or more of the peptide linkages between the amino acid residues may be replaced by a peptide linkage mimic.
- the invention is directed to recombinant materials useful for the production of those peptides of the invention that contain gene-encoded amino acids, as well as plants or animals modified to contain expression systems for the production of these peptides.
- the invention also includes methods to prepare and manipulate these recombinant materials.
- the invention is directed to pharmaceutical compositions containing the compounds of the invention as active ingredients and to compositions which contain expression systems for the production of the peptides.
- the invention is also directed to methods to prepare the invention compounds synthetically, to antibodies specific for these compounds, and to the use of the compounds as preservatives, therapeutics, and prophylactics.
- the invention is also directed to the use of the compounds of the invention in assays for detection of BttxB and Tttx by the use of selective inhibition and for determining inhibitors and substrates for a given toxin.
- the present invention relates to materials, compositions, kits and methods for inhibiting the enzymatic activity of Botulinum toxin B and Tetanus neurotoxins.
- the invention further relates to materials, compositions, kits and methods for preventing or treating toxic poisoning such as Botulinum toxin B and tetanus poisoning.
- the kits can provide single or multiple dosage and can include other conventional ancillary materials such as instructions, solutions and compositions needed for operation.
- the compositions and solutions may be placed in containers, test tubes, etc.
- Containers could be similar to those employed in insect/snake bite kits that includes an injector which provides the Buforinin, and TCEP in separate chambers. If chaotropes are present, they are separately included in one or more containers.
- a kit for determining whether a sample contains a Buforinin, the amount of said Buforinin or the type of said Buforinin may include antibodies immunospecific for Buforinins.
- a kit for determining whether a sample contains a Botulinum toxin or the type of the Botulinum toxin may include antibodies immunospecific for at least one Buforinin having an interaction with a Botulinum toxin.
- a kit for determining whether a sample contains a Tetanus toxin would include antibodies immunospecific for at least one Buforinin having an interaction with a Tetanus toxin.
- kits may also include a stable peptide mixture or powder which includes Buforinin for sprinkling over food or wounds for detoxification.
- Figure 1 shows that Substance P is not a substrate of BttxB.
- FIG. 2 shows that Buforinins are not substrates of Bttx B.
- Figure 3 shows a double reciprocal plot of inhibition of BttxB endopro tease activity by Buforin I.
- FIG. 4 illustrates the inhibition of BttxB endoprotease activity by various Buforinins.
- Figure 5 illustrates the X-ray crystallographic structure of avian chromosomal protein histone octamer H2A residues Lysl5-Try39 produced by Brookhaven Protein Database #1HI0.
- Helix 1 and 2 are the helices predicted for sequence upstream and downstream of the QF site respectively (see Table 2). Mutants were selected to increase the amphipathicity of the helix indicated.
- B-I Helix 2 is shown as the companion to which Helix 1 is predicted to associate.
- C Helical wheel projections of mutant Buforinins. The amino acid order is indicated by the concentric numbering.
- FIG. 6A is a comparison of the amino acid sequences of Buforin I, and mutant B-I Rl IL and mutant B-I Rl IL, K15L, S18L.
- Figure 6B shows helical wheel projections for Buforin I of Helix I and Helix 2.
- Figure 6C shows helical wheel projections for Helix 1 of mutants B-I R11L and B-I Rl IL, K15L, S18L.
- Figure 7 shows inhibition of Botulinum toxin B endoprotease activity with peptide 05P (Sequence: TRSRAKGLQFPGLLNHRLLRKGNY).
- Figure 8 shows the rapid uptake of Buforin I in to blood over time.
- Truncated B-I peptides were evaluated with our endopeptidase activity assay.
- the truncated peptides evaluated were Peptide 36 which contains amino acids 1-36 of B-I and Peptide 24 which contains amino acids 16-39 of B-I. Like B-I, these truncated peptides were not substrates of BttxB; however, the truncated peptides are less effective inhibitors of BttxB activity as B-I. See Figure 2.
- Peptide 36 was about 50% as effective as B-I.
- Peptide 24 was about 25%) as effective as B-I.
- Buforin II (B-II) which contains amino acids 16-36 of B-I, was also evaluated and found to be 25% as effective as B-I.
- B-I is derived from histone protein 2A (H2A) of the toad which is nearly identical to the sequence of avian H2A. See 7 ⁇ b/e 2 and see Park, C.B., et al. (1996) Biochem. Biophys. Res. Comm. 218:408-413.
- X-ray crystallographic analysis of the chicken histone protein particle shows that, for the region K15 to Y39, there are helices upstream and downstream of the QF site. See Fig 5 and see Arents, G., et al. (1991) PNAS 88:10148-52 and Wang, S. W., et al. (1985) Nucleic Acids Res. 13:1369-138.
- NMR analysis of B-II shows that the region upstream from the QF site could form ⁇ -helix. See Yi, et al. (1996) FEBS Lett. 398:87-90.
- Buforinins which includes Buforin I (39 amino acids), Buforin II (21 amino acids), Peptide 36 and Peptide 24, and other analogous peptides having a QF bond, that competitively inhibit BttxB protease activity was defined.
- Each position represented by a letter indicates a single amino acid residue
- B is a basic or polar/large amino acid or a modified form thereof
- X is a small or hydrophobic amino acid or a modified form thereof
- X* is a small or polar/large amino acid or a modified form thereof
- Z is a polar/large or hydrophobic amino acid or a modified form thereof
- Z* is Proline or a polar/large or hydrophobic amino acid or a modified form thereof.
- one or more of the peptide linkages between the amino acid residues may be replaced by a peptide linkage mimic.
- the invention compounds include those represented by formula (1) as well as analogous peptides.
- "Analogous” forms are peptides which retain the ability to form the supersecondary structure, alpha-helical-turn-alpha-helical configuration and inhibit BttxB protease activity in reaction with the toxin (since it apparently has no secondary structure in aqueous solution).
- "Analogous” forms also include peptides having amino acid sequences which mimic the conformational structure of either B-I or B-II and interact with BttxB to inhibit its protease activity.
- “Analogous” forms also include peptides which are isolatable from the amphibian stomach and inhibit BttxB protease activity.
- the amino terminus of the peptide may be in the free amino form or may be acylated by a group of the formula RCO-, wherein R represents a hydrocarbyl group of 1-6C.
- R represents a hydrocarbyl group of 1-6C.
- the hydrocarbyl group is saturated or unsaturated and is typically, for example, methyl, ethyl, i-propyl, t-butyl, n-pentyl, cyclohexyl, cyclohexene-2-yl, hexene-3-yl, hexyne-4-yl, and the like.
- the C-terminus of the peptides of the invention may be in the form of the underivatized carboxyl group, either as the free acid or an acceptable salt, such as the potassium, sodium, calcium, magnesium, or other salt of an inorganic ion or of an organic ion such as caffeine.
- the carboxyl terminus may also be derivatized by formation of an ester with an alcohol of the formula ROH, or may be amidated by an amine of the formula NH 3 , or R H 2 , or R NH, wherein each R is independently hydrocarbyl of 1-6C as defined above.
- Amidated forms of the peptides wherein the C-terminus has the formula CONH are preferred.
- the peptides of the invention may be supplied in the form of the acid addition salts.
- Typical acid addition salts include those of inorganic ions such as chloride, bromide, iodide, fluoride or the like, sulfate, nitrate, or phosphate, or may be salts of organic anions such as acetate, formate, benzoate and the like. The acceptability of each of such salts is dependent on the intended use, as is commonly understood.
- amino acids in the peptides of the invention may be those encoded by the gene or analogs thereof, and may also be the D-isomers thereof.
- a preferred embodiment is a compound of the formula (1) wherein the compound is resistant to protease activity by having at least some of its residues in the D-configuration, yet retains the ability to inhibit BttxB protease activity.
- amino acid notations used herein are conventional and are as follows:
- the compounds of the invention are peptides or peptide-like compounds which are partially defined in terms of amino acid residues of designated classes.
- Amino acid residues can be generally subclassified into major subclasses as follows: Acidic: The residue has a negative charge due to loss of H ion at physiological pH and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.
- the residue has a positive charge due to association with H ion at physiological pH or within one or two pH units thereof (e.g., histidine) and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.
- Hydrophobic The residues are not charged at physiological pH and the residue is repelled by aqueous solution so as to seek the inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium.
- Neutral/polar The residues are not charged at physiological pH, but the residue is not sufficiently repelled by aqueous solutions so that it would seek inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium.
- Amino acid residues can be further subclassified as cyclic or noncyclic, and aromatic or nonaromatic, self-explanatory classifications with respect to the side-chain substituent groups of the residues, and as small or large.
- the residue is considered small if it contains a total of four carbon atoms or less, inclusive of the carboxyl carbon, provided an additional polar substituent is present; three or less if not.
- Small residues are, of course, always nonaromatic.
- subclassification according to the foregoing scheme is as follows.
- proline is a special case due to its known effects on the secondary conformation of peptide chains, i.e. helix structure disruptions. Therefore, proline may only be allowed in position 26 where it would help to disrupt the helix structures found on both sides of the QF cleavage site and force the helix -turn-helix structure.
- Cysteine residues are also not included in these classifications since their capacity to form disulfide bonds to provide secondary structure may override the general polarity/nonpolarity of the residue. However, if a cysteine, which is, technically speaking, a small amino acid, is modified so as to prevent its participation in secondary structure, those locations indicated "S" in the compound of formula (1) may be inhabited by such modified cysteine residues.
- cysteine or methionine there are no cysteine or methionine in any of the sequences (VAMP2 substrate, B-I, B-II, Peptide 24, Peptide 36).
- the side chain of cysteine is somewhat hydrophobic, but it is highly reactive.
- the sulfur moiety has the potential to react with the sulfur in other cysteine to from a cystine or disulfide bond. If a single cysteine is introduced then dimerization may occur between two buforoxins. If more than one cysteine is introduced then polymerization could occur.
- cysteine and methionine residues are the potential for oxidation to cysteic acid or methionine sulfoxide or methionine sulfone respectively. These conversions would significantly alter the peptide properties since a hydrophobic weakly polar or ionizable form would be converted to an acidic or strongly polarized form.
- cysteine it may be advantageous to incorporate cysteine on either end of a Buforinin for use as a reactive site to label a Buforinin with fluorescent markers where the aforementioned problems may be minimized
- the "modified" amino acids that may be included in the Buforinins are gene-encoded amino acids which have been processed after translation of the gene, e.g., by the addition of methyl groups or derivatization through covalent linkage to other substituents or oxidation or reduction or other covalent modification.
- the classification into which the resulting modified amino acid falls will be determined by the characteristics of the modified form. For example, if lysine were modified by acylating the, -amino group, the modified form would not be classed as basic but as polar/large amino acid.
- amino acids which are not encoded by the genetic code, include, for example, beta-alanine (beta- Ala), or other omega-amino acids, such as 3-aminopropionic, 2,3-diaminopropionic (2,3-diaP), 4-aminobutyric and so forth, alpha- aminisobutyric acid (Aib), sarcosine (Sar), ornithine (Orn), citrulline (Cit), t-butylalanine (t-BuA), t-butylglycine (t-BuG), N-methylisoleucine (N-Melle), phenylglycine (Phg), and cyclohexylalanine (Cha), norleucine (Nle), 2-naphthylalanine (2-Nal); 1,2,3,4- tetrahydroisoquinoline-3-carboxylic acid (Tic); 3-2-thienylalanine (Th) s
- Cit, Acetyl Lys and MSO are neutral/polar/large.
- the various omega-amino acids are classified according to size as small (beta- Ala and 3-aminopropionic) or as large and hydrophobic (all others).
- amino acid substitutions which are not gene encoded, are included in peptide compounds within the scope of the invention and can be classified within this general scheme according to their structure.
- D-amino acid substitutions would be desirable to circumvent potential stability problems due to endogenous protease activity; especially important for an oral dosage route.
- This replacement can be made by methods known in the art.
- the following references describe preparation of peptide analogs which include these alternative-linking moieties: Spatola, A.F., Vega Data (March 1983), Vol.
- Xi is Glycine, Serine, Threonine, Isoleucine, Leucine, Naline, or preferably Alanine;
- X 2 is Alanine, Serine, Threonine, Isoleucine, Leucine, Naline, or preferably Glycine;
- B 3 is Histidine, Lysine, Asparagine, Glutamine, or preferably Arginine;
- X 4 is Alanine, Serine, Threonine, Isoleucine, Leucine, Naline, or preferably Glycine;
- B 5 is Arginine, Histidine, Asparagine, Glutamine, or preferably Lysine;
- X* 6 is Alanine, Glycine, Serine, Threonine, Asparagine, or preferably Glutamine;
- X 7 is Alanine, Serine, Threonine, Isoleucine, Leucine, Naline, or preferably Glycine;
- X 8 Alanine, Serine, Threonine, Isoleucine, Leucine, Valine, or preferably Glycine;
- B 9 is Arginine, Histidine, Asparagine, Glutamine, or preferably Lysine;
- Xio is Alanine, Glycine, Serine, Threonine, Isoleucine, Leucine, or preferably Valine;
- Bn is Histidine, Lysine, Asparagine, Glutamine, or preferably Arginine;
- Xi 2 is Glycine, Serine, Threonine, Isoleucine, Leucine, Naline, or preferably Alanine;
- B ⁇ is Arginine, Histidine, Asparagine, Glutamine, or preferably Lysine;
- X ⁇ 4 is Glycine, Serine, Threonine, Isoleucine, Leucine, Naline, or preferably Alanine;
- Bi 5 is Arginine, Histidine, Asparagine, Glutamine, or preferably Lysine;
- Xi 6 is Alanine, Glycine, Serine, Isoleucine, Leucine, Naline, or preferably Threonine;
- B ⁇ 7 is Histidine, Lysine, Asparagine, Glutamine, or preferably Arginine;
- X* ⁇ s is Alanine, Asparagine, Glutamine, Glycine, Threonine, or preferable Serine;
- X* ⁇ is Alanine, Asparagine, Glutamine, Glycine, Threonine, or preferable Serine;
- B 20 is Histidine, Lysine, Asparagine, Glutamine, or preferably Arginine;
- X 2 ⁇ is Glycine, Serine, Threonine, Isoleucine, Leucine, Valine, or preferably Alanine;
- X 22 is Alanine, Serine, Threonine, Isoleucine, Leucine, Valine, or preferably Glycine;
- X 23 is Asparagine, Glutamine, Alanine, Serine, Threonine, Isoleucine, Glycine, Valine, or preferably Leucine;
- Z* 26 is Asparagine, Glutamine, Phenylalanine, Tryptophan, Tyrosine or preferably Proline;
- X 2 is Alanine, Serine, Threonine, Isoleucine, Leucine, Glycine , or preferably Valine;
- X 28 is Alanine, Serine, Threonine, Isoleucine, Leucine, Valine, or preferably Glycine;
- B 29 is Asparagine, Glutamine, Histidine, Lysine, or preferably Arginine;
- X 30 is Alanine, Glycine, Leucine Serine, Threonine, Isoleucine or preferably; Valine;
- B 3 ⁇ is Arginine, Lysine, Asparagine, Glutamine, or preferably Histidine;
- B 32 is Arginine, Histidine, Asparagine, Glutamine, or preferably Lysine
- X 3 is Alanine, Glycine, Serine, Threonine, Isoleucine, Valine, or preferably Leucine;
- X 34 is Alanine, Glycine, Serine, Threonine, Isoleucine, Valine, or preferably Leucine;
- B 35 is Lysine , Histidine, Asparagine, Glutamine, or preferably Arginine;
- B 36 is Arginine, Histidine, Asparagine, Glutamine, or preferably Lysine;
- X 37 * is Alanine, Glutamine, Serine, Threonine, Asparagine, or preferably Glycine
- Z 38 is Glutamine, Phenylalanine, Tryptophan, Tyrosine or preferably Asparagine;
- Z 3 is Asparagine, Glutamine, Phenylalanine, Tryptophan, or preferably Tyrosine.
- Typical compounds within the scope of the Buforinins are:
- Buforinins are defined as those peptides that fit the invention sequence description and inhibit BttxB and/or Tttx protease activities.
- the conformation of the Buforinins may be determined by circular dichroism and FT-IR. See CBnaves, J. M., et al. (1998) J. Biol. Chem. 273:43214-34221. Proton NMR may also be used. See Yi, G. et al. (1996) FEBS Lett. 398:87-90. X-ray crystallography may also be used. See Sutton, R. B., et al. (1998) Nature 395, 347-353.
- Buforinins are defined as those peptides fitting the invention description that have amino acid modifications such as Buforinin peptides containing 'unnatural' amino acids other than the known 21 amino acids (20 common, and then selenocysteine, which is an uncommon but naturally occurring non-gene encoded amino acid) or additions such as cysteine and lysine on termini to provide a reactive center for conjugation to other chemicals, labels or proteins.
- Truncated Buforinins include compounds of the formula (1) such as B-II.
- Amino acids can be truncated, asymmetrically, upstream and downstream while maintaining the helix-turn-helix supersecondary structure.
- B-II could be optimized by amino acid substitutions to promote a helical structure upstream of the QF site. See, e.g. SEQ ID NO:5 and SEQ NO:6.
- Businins are essentially peptide backbones which may be modified at the N- or C-terminus.
- Standard methods can be used to synthesize peptides similar in size and conformation to the Buforinins. Most commonly used currently are solid phase synthesis techniques; indeed, automated equipment for systematically constructing peptide chains can be purchased. Solution phase synthesis can also be used but is considerably less convenient. When synthesized using these standard techniques, amino acids not encoded by the gene and D-enantiomers can be employed in the synthesis.
- the N- and/or C-terminus can be modified with conventional chemical techniques.
- the compounds of the invention may optionally contain an acyl or an acetyl group at the amino terminus. Methods for acetylating or, more generally, acylating, the free amino group at the N-terminus are generally known in the art.
- the carboxyl group may be present in the form of a salt; and in the case of pharmaceutical compositions, the salt will be a pharmaceutically acceptable salt.
- Suitable salts include those formed with inorganic ions such as NH + , Na + , K + , Mg ++ , Ca ++ , and the like as well as salts formed with organic cations such as those of caffeine and other highly substituted amines.
- the carboxy terminus may also be esterified using alcohols of the formula ROH wherein R is hydrocarbyl (1-6C) as defined above.
- carboxy terminus may be amidated so as to have the formula -CONH 2 , -CONHR, or -CONR 2 , wherein each R is independently hydrocarbyl (1-6C) as herein defined.
- Techniques for esterification and amidation as well as neutralizing in the presence of base to form salts are all standard organic chemical techniques.
- the side- chain amino groups of the basic amino acids will be in the form of the relevant acid addition salts.
- the peptide backbone is comprised entirely of gene-encoded amino acids, or if some portion of it is so composed, the peptide or the relevant portion may also be synthesized using recombinant DNA techniques.
- the DNA encoding the peptides of the invention may be synthesized using standard techniques in the art such as solid phase DNA synthesis with conventional equipment that includes, for example, an ABI 3948 Nucleic Acid Synthesis System (Perkin Elmer Applied Biosystems, Foster City, CA) utilizing phosphoramidite synthesis chemistry (Beaucage, S. L. et al. (81) Tefrahedorn Lett. 22:1859-1862). DNA oligomers would be synthesized with overlapping matching complimentary sequences.
- Annealing of these sequences would form a double-stranded synthetic gene. Building on this process would give larger and larger double-stranded products till the requisite gene is built.
- DNA recombinant means would be employed by cloning Buforinins, or like- fragment of H2A protein, and then modifying by site-directed mutagenesis or DNA-cassette replacement or other means in the art (Methods Enzymology vol. 152; Eds. S. L. Berge and A. R. Kimmel, Academic Press, Inc., Orlando, FL, 1998) to achieve the modification desired. Codon choice can be integrated into the synthesis depending on the nature of the host.
- the DNA encoding the Buforinins is included in an expression system which places these coding sequences under the control of a suitable promoter and other control sequences which are compatible with an intended host cell.
- suitable promoter and other control sequences which are compatible with an intended host cell.
- Types of host cells available span almost the entire range of the plant and animal kingdoms.
- the Buforinins of the invention could be produced in bacteria or yeast (to the extent that they can be produced in a nontoxic or refractile form or utilize resistant strains) as well as in animal cells, insect cells and plant cells.
- the Buforinins can be produced in a form that will result in their secretion from the host cell by fusing to the DNA encoding the Buforinin, a DNA encoding a suitable signal peptide, or may be produced intracellularly. They may also be produced as fusion proteins with additional amino acid sequence which may or may not need to be subsequently removed prior to the use of these compounds as an inhibitor of BttxB protease activity.
- Buforinins of the invention can be produced in a variety of modalities including chemical synthesis and recombinant production or some combination of these techniques.
- purified and isolated any members of the Buforinin class which occur naturally are supplied in purified and isolated form.
- purified and isolated is meant free from the environment in which the peptide normally occurs (in the case of such naturally occurring peptides) and in a form where it can be used practically.
- purified and isolated form means that the peptide is substantially pure, i.e., more than 90%> pure, preferably more than 95% pure and more preferably more than 99% pure or is in a completely different context such as that of a pharmaceutical preparation.
- the invention is also directed to the screening assays for the Buforinin analogues and assays utilizing the analogues.
- the invention is also directed to the use of Buforinins as intracellular inhibitors of BttxB.
- Bttxs specifically target nerve cells because of the receptor-like recognition of cell surface gangliosides and synaptogamin by the nerve-cell targeting heavy chain (HC) subunit of the toxin.
- HC nerve-cell targeting heavy chain
- Buforonins may be linked to BttxB HC with a linkage such as a disulfide bond.
- Buforinins may be linked to BttxB HC with a carrier protein such as human albumin or another bridge to form a multi-protein conjugate. This conjugate should then target the susceptible cells in a manner similar to BttxB. Once inside the cell, the conjugate may inhibit BttxB or the linkage may be cleaved to free the Buforinins or carrier- Buforinins to inhibit BttxB.
- Antibodies to the Buforinins may be produced using standard immunological techniques for production of polyclonal antisera and, if desired, immortalizing the antibody- producing cells of the immunized host for sources of monoclonal antibody production. Techniques for producing antibodies to any substance of interest are well known. It may be necessary to enhance the immunogenicity of the substance, particularly as here, where the material is only a short peptide, by coupling the hapten to a carrier. Suitable carriers for this purpose include substances which do not themselves produce an immune response in the mammal to be administered the hapten-carrier conjugate.
- Common carriers used include keyhole limpet hemocyanin (KLH), diphtheria toxoid, serum albumin, and the viral coat protein of rotavirus, VP6.
- KLH keyhole limpet hemocyanin
- VP6 the viral coat protein of rotavirus
- Coupling of the hapten to the carrier is effected by standard techniques such as contacting the carrier with the peptide in the presence of a dehydrating agent such as dicyclohexylcarbodiimide or through the use of linkers such as those available through Pierce Chemical Company, Chicago, IL.
- Buforinins in immunogenic form are then injected into a suitable mammalian host and antibody titers in the serum are monitored.
- Polyclonal antisera may be harvested when titers are sufficiently high.
- antibody-producing cells of the host such as spleen cells or peripheral blood lymphocytes may be harvested and immortalized.
- the immortalized cells are then cloned as individual colonies and screened for the production of the desired monoclonal antibodies.
- the genes encoding monoclonal antibodies secreted by selected hybridomas or other cells may be recovered, manipulated if desired, for example, to provide multiple epitope specificity or to encode a single-chain form and may be engineered for expression in alternative host cells, such as CHO cells.
- antibodies also includes any immunologically reactive fragment of the immunoglobulins such as Fab, Fab' and F(ab') 2 fragments as well as modified immunoreactive forms such as Fv regions, which are produced by manipulation of the relevant genes (isolatable, for example, from the appropriate hybridoma).
- the antibodies of the invention are, of course, useful in immunoassays for determining the amount or presence of the Buforinins. Such assays are essential in quality controlled production of compositions containing the Buforinins of the invention.
- the antibodies can be used to assess the efficacy of recombinant production of the Buforinins, as well as for screening expression libraries for the presence of Buforinin encoding genes.
- Buforinins may also be used as affinity ligands for purifying and/or isolating the Buforinins. They may also be used for detecting and measuring Buforinins in sera or plasma by methods well known in the art such as RIA and ELISA. Therefore, one may monitor circulating Buforinin levels to assure sufficient dosage.
- compositions Containing the Buforinins and Methods of Use Containing the Buforinins and Methods of Use
- the Buforinins are effective in inhibiting the protease activity of BttxB and tetanus neurotoxins. Accordingly, they can be used in prevention, prophylaxis and therapies for BttxB and Tttx poisoning.
- a Buforinin may be administered alone, or a variety of Buforinins may be administered, or the Buforinin or the variety of Buforinins may be administered as a mixture with additional protease inhibitors or adjunct chemicals such as tris-(2-carboxyethl)phosphine (TCEP).
- TCEP is a non-odorous, non-sulfhydryl containing reducing agent that is relatively non-toxic in animals (P-CH 2 CH 2 COOH) 3 HCl; Molecular Probes, Inc. Eugene OR).
- TCEP can reduce the disulfide bond between the HC and LC and allow the dissociation of the BttxB or Tttx subunits. TCEP would work on any BOT. This dissociation increases the availability of the active QF site to Buforinins. Additionally, the disassociation of the toxin prevents nerve cell penetration.
- Other reducing agents such as dithiothreitol (DTT) may be used; however, they may be objectionable due to their distinctive odors and toxicity.
- DTT dithiothreitol
- TCEP can be used in conjunction with chaotropes. Therefore, TCEP is preferred.
- the peptides of the invention are also useful as standards in monitoring assays and in assays for evaluating the effectiveness of later-generation Buforinins. This could be done by utilizing the endopeptidase activity assay for BttxB. In this endopeptidase assay, one may evaluate whether potential peptides function as inhibitors or substrates of BttxB by the ability to cleave of a synthetic peptide substrate comprising amino acids 55-94 of the intracellular target VAMP2. The cleavage products may be separated by a C ⁇ 8 reverse-phase HPLC column and detected by absorbance at 205 nm.
- the Buforinins can be formulated as pharmaceutical or veterinary compositions.
- the mode of administration, and the type of treatment desired e.g., prevention, prophylaxis, therapy; the Buforinins are formulated in ways consonant with these parameters.
- a summary of such techniques is found in Remington's Pharmaceutical Sciences, latest edition, Mack Publishing Co., Easton, PA.
- the Buforinins may be used alone or in combination with other compounds which inhibit protease activity such as VAMP2.
- Use of the enantiomeric forms containing all D-amino acids may confer advantages such as resistance to those proteases, such as trypsin and chymotrypsin.
- the Buforinins can be administered singly or as mixtures of several Buforinins or in combination with other pharmaceutically active components, and in single or multiple administrations.
- the formulations may be prepared in a manner suitable for systemic administration.
- Systemic formulations include those designed for injection, e.g. intramuscular, intravenous or subcutaneous injection, or may be prepared for transdermal, transmucosal, or oral administration.
- the formulation will generally include a diluent as well as, in some cases, adjuvants, buffers, preservatives and the like.
- the Buforinins can be administered also in liposomal compositions or as microemulsions using conventional techniques.
- the Buforinins of the invention must be protected from degradation in the stomach using a suitable enteric coating. This may be avoided to some extent by utilizing amino acids in the D-configuration, thus providing resistance to protease. However, the peptide is still susceptible to acid hydrolysis; thus, some degree of enteric coating may still be required.
- the manner of administration and formulation of the compounds useful in the invention and their related compounds will depend on the nature of the condition, the severity of the condition, the particular subject to be treated, and the judgement of the practitioner; formulation will depend on mode of administration.
- the compounds of the invention are small molecules, they are conveniently administered by oral administration by compounding them with suitable pharmaceutical excipients so as to provide tablets, capsules, syrups, and the like.
- suitable formulations for oral administration may also include minor components such as buffers, flavoring agents and the like.
- the amount of active ingredient in the formulations will be in the range of 5%-95% of the total formulation, but wide variation is permitted depending on the carrier.
- Suitable carriers include sucrose, pectin, magnesium stearate, lactose, peanut oil, olive oil, water, and the like.
- the compounds useful in the invention may also be administered through suppositories or other transmucosal vehicles.
- formulations will include excipients that facilitate the passage of the compound through the mucosa such as pharmaceutically acceptable detergents.
- the compounds may also be administered topically, for topical conditions such as psoriasis, or in formulation intended to penetrate the skin.
- topical conditions such as psoriasis
- formulation intended to penetrate the skin include lotions, creams, ointments and the like which can be formulated by known methods.
- the compounds may also be administered by injection, including intravenous, intramuscular, subcutaneous or intraperitoneal injection.
- Typical formulations for such use are liquid formulations in isotonic vehicles such as Hank's solution or Ringer's solution.
- Suitable alternative formulations also include nasal sprays, liposomal formulations, slow-release formulations, and the like.
- Any suitable formulation may be used.
- a compendium of art-known formulations is found in Remington's Pharmaceutical Sciences, latest edition, Mack Publishing Company, Easton, PA. Reference to this manual is routine in the art.
- a preferred means to deliver the Buforinins would include the use TCEP. Since TCEP cleaves the holotoxin which yields a site available to the Buforinin. TCEP also disassociates the toxins into individual components which prevents nerve cell penetration.
- the Buforinins could be coupled to a variety of compounds including a BttxB heavy chain, which excludes the toxin light chain, to target the Buforinin to the toxin affected cells.
- the dosages of the compounds of the invention will depend on a number of factors which will vary from patient to patient.
- Example 1 Endopeptidase Activity Assay The toxin was activated immediately prior to use by incubating at 25°C for 30 minutes in an activation mixture that contained, in a volume of 7.5 ⁇ l per digest: 2.4 ⁇ g (16 pmol) of toxin, 30 mM NaHEPES buffer, pH 7.3, and 5 mM DTT or TCEP.
- a substrate peptide mix was prepared that contained 1 nmol of the substrate peptide (VAMP2 55-94), 4% DMSO, 4% Triton X-100, and 80 mM NaHEPES buffer, pH 7.3, per digest.
- the final reaction mix was made by adding 25 ⁇ l of the substrate peptide mix, 4.5 ⁇ l of fresh 10 mM DTT, 13 ⁇ l H 2 O or test peptide, and 7.5 ⁇ l of activation mixture. The reaction was initiated by incubation at 37°C. The reaction was stopped by the addition of 1 vol trifluoroacetic acid (TFA) to 0.25%). The samples were clarified by centrifugation.
- TFA trifluoroacetic acid
- Digested peptide products were fractionated by RP-HPLC on a Waters :Bondapak analytical Cj 8 column (3.9 mm x 30 cm) attached to Beckman 126 pumps and a model 168 Diode Array Detector, controlled by Beckman System Gold Ver 8.1 software.
- the solvent system consisted of buffer A (BA; H 2 O - 0.1% TFA) and buffer B (BB; CH 3 CN - 0.1%TFA).
- the development program consisted of the following: 97%> BA, 0-1 min; to 33% BB, 1-30 min; then wash with 97% BB for 5 min, followed by equilibration in 97% BA for 10 min.
- the flow rate was ml min " except during the wash and equilibrium phase where it was 1.5 ml min "1 .
- 75 ⁇ l injections were made with a Waters Intelligent Sample Processor (WISP Model 712).
- WISP Model 712 Waters Intelligent Sample Processor
- the effluent was monitored at dual wavelengths of 205 and 280 nm.
- digestion products are identified by peptide sequencing using automated Edman-degradation on an ABI 477A protein sequencer attached in-line with a HPLC (ABI model 120A) for detection of phenlythiohydratoin derivatized amino acids.
- the extent of digestion was determined by comparison of peak areas of undigested controls (no added toxin) and total digests (digests allowed to go to completion, typically 2-3 h).
- the extent of inhibition or digestion will be determined from examination of the chromatograms by peak area comparison with standards and/or products formed compared with quantified standards or digests without added inhibitor that have gone to completion.
- the Buforinins may be obtained from amphibian stomach by gut lavage using methods as described by Park, C. B. et al. See Park, C.B., et al. (1996) Biochem. Biophys. Res. Comm. 218:408-413.
- the Buforinins may be synthesized by solid-phase peptide synthesis (SSPS) as described by L.A. Carpino, J. Am. Chem. Soc. 79,4427 (1957), CD. Chang et al, Int. J. Pept. Protein Res. 11, 246 (1978), E. Atherton, et al, J. Chem Soc. Chem. Commun., 537 (1978) and R.B. Merrifield, J. Am. Chem. Soc. 85, 2149 (1963) and Barlos, K., et al, (1989) Tetrahedron Lett. 30:3947.
- SSPS solid-phase peptide synthesis
- the Buforinins may also be produced by DNA recombinant means commonly known in the art whereby a suitable promoter for expression in heterologous systems, i.e. bacterial, fungi, insect, or mammalian cell cultures may be used.
- the DNA sequence may be optimized for the particular host and tRNA content.
- the endopeptidase assay and reverse phase HPLC as described in Examples 1 and 2 may be used to detect the cleavage products and the extent of protease inhibition. Briefly, potential inhibitors may be added to the substrate peptide mix immediately before the addition of the activation mix containing the toxin as described in Garica, et al. After incubation for 45 min at 37°C, the reaction should be stopped and the digestion products may be analyzed by using RP HPLC. If a fluorescent-labeled substrate is used then product formation will be determined with an in-line fluorescent detector.
- the extent of inhibition or digestion will be determined as described in Example 2 of undigested substrate remaining and/or products formed compared with quantified standards or digests without added inhibitor that have gone to completion.
- Alternatives also include in vivo protection or tissue-specific function assays.
- an experimental animal would be dosed with the inhibitor with or with out adjuncts and then challenged with the toxin, e.g. i.v. injection of a Buforinin with a reducing agent such as TCEP.
- a Buforinin with a reducing agent such as TCEP.
- Tissue protection assays would employ an intact nerve-muscle preparation wherein muscle twitch response to nerve cell stimulation would be evaluated.
- the toxin would be preincubated with a Buforinin and adjuncts and are then added to the tissue preparation.
- the peptides of the invention may be modified by either making mutations or substitutions which include substituting Pro 26 with glutamine to make the active site more like the substrate, or other amino acid, that favors turn formation without the turn constraint imposed by Pro. Such substitutions are predicted to result in more effective helix bundling for toxin association to occur. Other amino acid substitutions or mutations in the helix region could be made so that either the helix becomes more amphipathic to improve helix bundling or improve interaction with the toxin. Such changes would include a substitution of Rl 1 with L or another helix favoring amino acid. See Figs. 6A and B. Similarly, multiple substitutions RllL, K15L, and S18L or other amino acids could be made to favor helix formation and bundling.
- B-II which lacks the predicted upstream helix of B-I may be modified to enhance and improve its ability to inhibit BttxB protease activity.
- a peptide having substitutions S3A and S4A (SEQ ID NO:5) has a predicted helix upstream of the QF site.
- Another example would be a peptide having substitutions S2L and S4L (SEQ ID NO:6).
- this peptide has a predicted helix upstream of the QF site.
- Buforinins may be used to pretreat food and liquids that might be contaminated with BttxB or Tttx.
- an effective amount of a Buforinin may be mixed into water having BttxB to inhibit the protease activity of the BttxB, e.g. 100 ml of water containing 1 ug of BttxB would be treated with lOOug of Buforinin and 0.1 mmol reducing agent, i.e. TCEP in tablet, powder, or liquid form.
- Buforinin reducing agent such as TCEP
- a liquid form could be made from a tablet or powder that is pre-dissolved prior to use.
- a Buforinin solution may be applied on the surface of solid food having BttxB on the surface.
- an effective amount of a Buforinin may be used to treat solid food which has been ground into small particles in order to allow the Buforinin access to amounts of BttxB which is not found on the surface of the food.
- Contaminated or suspect non-food surfaces may also be washed with solutions of Buforinin.
- Buforinins could be applied as a spray, foam, towelette, or sponge used to soak or wipe the surface.
- the amounts would be typically 200 ug per ml of solution applied; however, the concentrations required would depend on the extent of contamination and the appropriate Buforinin concentration may be adjusted as needed.
- Buforinins could be used as a prophylactic against BttxB or Tttx poisoning. Subjects could be treated with Buforinins prior to entering situations where they are likely to be in contact with BttxB or Tttx.
- the dosage mode and amount could be dependent on the amount of toxin expected to contact and the time in which contact might occur.
- the preferred administration for immediate contact would be i.v.
- the preferred form administration for a slower and more prolonged exposure would be by ingestion. However, other slow release forms of delivery such as a patch may be used.
- Buforinins may be incorporated into a disposable, moist-filter, breathing mask for inactivating BttxB in aerosol form.
- the toxin would be trapped in moist-filter whereupon it would inactivated by a Buforinin.
- Such a filter design would protect against toxin particles smaller than bacteria, e.g. 1 micron such as HEPA.
- the filters could be supplied premoistened and impregnated with Buforinins and adjunct chemicals such as TCEP.
- the filters could be prepared by wetting a dry filter pre-impregnated or by soaking the filter in a solution of Buforinins. Enclosed areas that have air processing capabilities may also be protected in this fashion with appropriate sized filters.
- a powder mixture containing Buforinins and adjuncts which include a reducing agent and other stabilizers or fillers may be applied directly to the wound. This approach relies on the wound weeping to dissolve the Buforinins.
- an ointment, liquid, spray, foam, or towelette having Buforinins may be applied to the wound surface. The towelette could be supplied or made in a similar manner as the filters of Example 10.
- Example 11 Post Exposure Subjects already suffering from BttxB or Tttx poisoning could be treated with Buforinins. These of treatments would scavenge accessible toxin not yet compartmentalized into susceptible cells. Intoxication of susceptible cells leads to cell function inhibition but is not itself lethal to the cells. Given sufficient time the cells can recover and become functional again. This recovery process may last up to several months. Therefore, treatment with Buforinins will aid in the recovery of the subject and reduce the need of alternative life supporting measures.
- the treatment may comprise use of Buforinin-BttxB HC or other like conjugates.
- the Bttx-HC portion would specifically direct the conjugate to susceptible cells where uptake would occur in a manner similar as the toxin. Inside the cell, the Buforinins would access to the toxin and inhibit the protease activity, thereby protecting the cell against further toxin damage until the toxin is removed from the cells by endogenous proteolysis.
- Buforinins may be used for the identification of BttxB or Tttx.
- An unknown Bttx or Tttx would be incubated with substrates and a Buforinin that would specifically inhibit BttxB and Tttx if present. Detection of uncleaved substrate or reduction of digest products would allow the identification of the toxin.
- a C-terminal fluorescent-labeled substrate such as VAMP2
- VAMP2 C-terminal fluorescent-labeled substrate
- the unknown sample is then added to the well and allowed to incubate. The reaction would be stopped and the well rinsed. Reduction of fluorescence would indicate susceptibility of the substrate to the toxin. If Buforinins are included in the digest mix then BttxB or Tttx toxin would be specifically inhibited and the fluorescence levels would be higher than those reactions containing BttxB without inhibitor.
- Example 13 Long-lived peptide in vivo
- the pharmacokinetic parameters of buforin I in the blood were examined. Since human studies are not possible, a rat model was used. Buforin I was injected intraperitoneally at a dose of 100 ng/kg containing radiolabeled 125 I-buforin 1 (2,000 Ci/mmol) as a tracer with the radioactive dose constant at 11 ⁇ Ci/kg. Blood (100 ⁇ l) was collected at timed intervals from the tail vein and flash frozen on dry-ice.
- buforin I would have a long life in vivo and therefore be an effective therapeutic agent since it is distributed to the blood in a rapid manner and the level of buforin I persists over time at a high steady-state level.
- Example 14 Phosphorylation of Peptides Phosphorylation provides peptides with additional properties that could improve the circulatory half-life, solubility, resistance to degradation, and the interaction of the peptide with the active site of the toxin, making it a more potent inhibitor.
- the natural substrate VAMP2 has been found to be a good phosphorylation substrate and whose function may be affected by its phosphorylation state (Neilander, HB, et al. (95) J. Neurochem. 65:1712-20).
- Example 15 General botulinum toxin/tetanus toxin inhibitor in vivo Use of TCEP and chaotropes Disruption of non-covalent interactions between the light and heavy chains of neurotoxins.
- a replacement for the foul-smelling and toxic sulfhydryl reducing agents such as 2-mercaptoethanol that functions equivalently to activate the neurotoxin in vitro was found.
- the disulfide bond covalently joining the heavy and light chains is broken.
- the neurotoxin chains apparently remain together due to strong hydrophobic interactions.
- biocompatible chaotropes In conjunction with TCEP, the use of biocompatible chaotropes will aid in completely separating holotoxins into its two chains, then the light chain would be effectively diluted in the body and could not target neuronal cells (or other cell types).
- Some biocompatible chaotropes include hydroxyurea or 2-oxo-l pyrrolidine acetamide, compounds that are used for treatment of sickle cell anemia.
- the combination of TCEP and biocompatible chaotropes to open the active site of all botulinum serotypes and similar toxins to pharmacological intervention before translocation into target cells will provide more effective and serotype nonspecific therapeutic peptides.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Toxicology (AREA)
- Communicable Diseases (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Oncology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13421699P | 1999-05-14 | 1999-05-14 | |
| US134216P | 1999-05-14 | ||
| PCT/US2000/012909 WO2000069895A2 (en) | 1999-05-14 | 2000-05-11 | Bufornin 1 as a specific inhibitor and therapeutic agent for botulinum toxin b and tetanus neurotoxins |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1179022A2 true EP1179022A2 (en) | 2002-02-13 |
Family
ID=22462297
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP00948495A Withdrawn EP1179022A2 (en) | 1999-05-14 | 2000-05-11 | Bufornin 1 as a specific inhibitor and therapeutic agent for botulinum toxin b and tetanus neurotoxins |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP1179022A2 (en) |
| JP (1) | JP2003502023A (en) |
| AU (1) | AU781608B2 (en) |
| CA (1) | CA2369369A1 (en) |
| IL (1) | IL146411A0 (en) |
| WO (1) | WO2000069895A2 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7563874B2 (en) | 1998-08-31 | 2009-07-21 | The Regents Of The University Of California | Therapeutic monoclonal antibodies that neutralize botulinum neurotoxins |
| KR20020051124A (en) * | 2000-12-22 | 2002-06-28 | 이한웅 | Anti-cancer Agent Comprising Bufforin Derivatives |
| JP2003009897A (en) | 2001-07-03 | 2003-01-14 | Keiji Oguma | Method for separating and purifying botulinus toxin |
| CN101146554B (en) | 2005-01-27 | 2012-10-10 | 加州大学评议会 | Therapeutic monoclonal antibodies that neutralize botulinum neurotoxin |
| US8598321B2 (en) | 2007-03-22 | 2013-12-03 | The Regents Of The University Of California | Therapeutic monoclonal antibodies that neutralize botulinum neurotoxins |
| WO2010014854A2 (en) | 2008-07-31 | 2010-02-04 | The Regents Of The University Of California | Antibodies that neutralize botulinum neurotoxins |
| US9243057B2 (en) | 2010-08-31 | 2016-01-26 | The Regents Of The University Of California | Antibodies for botulinum neurotoxins |
| CN111100195B (en) * | 2018-10-25 | 2024-04-09 | 安尼根有限公司 | Buforin derivative and application thereof |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9411138D0 (en) * | 1994-06-03 | 1994-07-27 | Microbiological Res Authority | Toxin assay |
| WO1998007440A1 (en) * | 1996-08-24 | 1998-02-26 | Samyang Genex Co., Ltd. | A novel antimicrobial peptide isolated from bufo bufo gargarizans |
| KR100263583B1 (en) * | 1997-05-28 | 2000-08-01 | 박종헌 | Mass production of antimicrobial peptides and plasmid beta useful therein |
| KR100314721B1 (en) * | 1998-01-22 | 2001-11-23 | 김일웅 | Biologically active peptides |
-
2000
- 2000-05-11 CA CA002369369A patent/CA2369369A1/en not_active Abandoned
- 2000-05-11 WO PCT/US2000/012909 patent/WO2000069895A2/en not_active Ceased
- 2000-05-11 AU AU61975/00A patent/AU781608B2/en not_active Ceased
- 2000-05-11 IL IL14641100A patent/IL146411A0/en unknown
- 2000-05-11 JP JP2000618311A patent/JP2003502023A/en active Pending
- 2000-05-11 EP EP00948495A patent/EP1179022A2/en not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| CB PARK ET AL.: "A Novel Antimicrobial Peptide from Bufo bufo gargarizans", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 218, 1996, pages 408 - 413 * |
Also Published As
| Publication number | Publication date |
|---|---|
| AU781608B2 (en) | 2005-06-02 |
| AU6197500A (en) | 2000-12-05 |
| IL146411A0 (en) | 2002-07-25 |
| WO2000069895A2 (en) | 2000-11-23 |
| CA2369369A1 (en) | 2000-11-23 |
| WO2000069895A3 (en) | 2001-08-09 |
| JP2003502023A (en) | 2003-01-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Olivera et al. | Purification and sequence of a presynaptic peptide toxin from Conus geographus venom | |
| US6890537B2 (en) | Antimicrobial theta defensins and methods of using same | |
| US5464823A (en) | Mammalian antibiotic peptides | |
| SANDBERG et al. | Synthesis and biological properties of enzyme‐resistant analogues of substance P | |
| US6573244B1 (en) | Previns as specific inhibitors and therapeutic agents for Botulinum toxin B and Tetanus neurotoxins | |
| KR100287461B1 (en) | ANTIBIOTIC CRYPTDIN PEPTIDES AND METHODS OF THEIR USE | |
| CN112041330A (en) | Compstatin analogs and their medical uses | |
| Sabatier et al. | Leiurotoxin I, a scorpion toxin specific for Ca2+‐activated K+ channels Structure‐activity analysis using synthetic analogs | |
| Habersetzer-Rochat et al. | Structure-function relations of scorpion neurotoxins | |
| JP2791957B2 (en) | Polypeptides isolated from the venom of Horona cruta spider venom | |
| AU781608B2 (en) | Buforin I as a specific inhibitor and therapeutic agent for botulinum toxin B and tetanus neurotoxins | |
| Lecomte et al. | Chemical synthesis and structure–activity relationships of Ts κ, a novel scorpion toxin acting on apamin‐sensitive SK channel | |
| US6713444B1 (en) | Buforin I as a specific inhibitor and therapeutic agent for botulinum toxin B and tetanus neurotoxins | |
| US7235521B1 (en) | Previns as specific inhibitors and therapeutic agents for botulinum toxin B and tetanus neurotoxins | |
| Takagi et al. | Aplysia myoglobins with an unusual amino acid sequence | |
| WO1991019512A1 (en) | Antimicrobial peptides | |
| AU719632B2 (en) | Contryphan peptides | |
| WO2017115367A1 (en) | Composition and method for treating amyotrophic lateral sclerosis | |
| Biondi et al. | Synthesis, conformation and biological activity of dermorphin and deltorphin I analogues containing N‐alkylglycine in place of residues in position 1, 3, 5 and 6 | |
| Lin et al. | Chemical modification of cationic groups of a novel α-neurotoxin (Oh-4) from king cobra (Ophiophagus hannah) venom | |
| WO2003028666A2 (en) | Isolated polypeptides and compositions from the venom of p. transvaalicus and methods of use | |
| WO1998020028A2 (en) | Clavanins | |
| JPS6136839B2 (en) | ||
| CA2228730A1 (en) | Styelins | |
| Takahashi et al. | Human Urinary Prokallikrein-Structural Analysis on Activation Mechanism |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20011205 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: U.S. ARMY MEDICAL RESEARCH AND MATERIEL COMMAND |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DOCTOR, BHUPENDRA, P. Inventor name: GARCIA, GREGORY E. Inventor name: GORDON, RICHARD, K. Inventor name: MOORAD, DEBORAH, R. |
|
| 17Q | First examination report despatched |
Effective date: 20061010 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20091008 |