EP1161681A2 - Utilisation d'analogues nucleosidiques bloques en spectrometrie de masse - Google Patents
Utilisation d'analogues nucleosidiques bloques en spectrometrie de masseInfo
- Publication number
- EP1161681A2 EP1161681A2 EP00910582A EP00910582A EP1161681A2 EP 1161681 A2 EP1161681 A2 EP 1161681A2 EP 00910582 A EP00910582 A EP 00910582A EP 00910582 A EP00910582 A EP 00910582A EP 1161681 A2 EP1161681 A2 EP 1161681A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nucleic acid
- oligonucleotide
- acid sequence
- acid molecule
- target nucleic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004949 mass spectrometry Methods 0.000 title claims abstract description 85
- 150000007523 nucleic acids Chemical group 0.000 claims abstract description 266
- 108091034117 Oligonucleotide Proteins 0.000 claims abstract description 170
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 162
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 162
- 238000000034 method Methods 0.000 claims abstract description 98
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 90
- 230000008569 process Effects 0.000 claims abstract description 74
- 230000035772 mutation Effects 0.000 claims abstract description 48
- 230000000295 complement effect Effects 0.000 claims abstract description 37
- 108020004414 DNA Proteins 0.000 claims abstract description 33
- 238000009396 hybridization Methods 0.000 claims abstract description 30
- 238000003795 desorption Methods 0.000 claims abstract description 12
- 238000004252 FT/ICR mass spectrometry Methods 0.000 claims abstract description 3
- -1 LNA modified oligonucleotides Chemical class 0.000 claims description 117
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 50
- 239000001226 triphosphate Substances 0.000 claims description 38
- 235000011178 triphosphate Nutrition 0.000 claims description 38
- 239000012472 biological sample Substances 0.000 claims description 37
- 238000001514 detection method Methods 0.000 claims description 37
- 239000007787 solid Substances 0.000 claims description 35
- 239000002777 nucleoside Substances 0.000 claims description 33
- 125000003729 nucleotide group Chemical group 0.000 claims description 30
- 239000002773 nucleotide Substances 0.000 claims description 28
- 230000003321 amplification Effects 0.000 claims description 22
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 22
- 239000012634 fragment Substances 0.000 claims description 17
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 claims description 17
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 claims description 14
- 238000007834 ligase chain reaction Methods 0.000 claims description 13
- 238000003752 polymerase chain reaction Methods 0.000 claims description 13
- 230000002441 reversible effect Effects 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 9
- 230000001419 dependent effect Effects 0.000 claims description 8
- 208000015181 infectious disease Diseases 0.000 claims description 8
- 239000000523 sample Substances 0.000 claims description 8
- 238000013518 transcription Methods 0.000 claims description 8
- 230000035897 transcription Effects 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 7
- 208000026350 Inborn Genetic disease Diseases 0.000 claims description 6
- 208000016361 genetic disease Diseases 0.000 claims description 6
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 5
- 101710163270 Nuclease Proteins 0.000 claims description 5
- 238000010367 cloning Methods 0.000 claims description 5
- 230000001143 conditioned effect Effects 0.000 claims description 5
- 201000010099 disease Diseases 0.000 claims description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 208000031404 Chromosome Aberrations Diseases 0.000 claims description 4
- 108010042407 Endonucleases Proteins 0.000 claims description 4
- 102000004533 Endonucleases Human genes 0.000 claims description 4
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 claims description 4
- 108020005187 Oligonucleotide Probes Proteins 0.000 claims description 4
- 239000005549 deoxyribonucleoside Substances 0.000 claims description 4
- 239000002751 oligonucleotide probe Substances 0.000 claims description 4
- 102000012410 DNA Ligases Human genes 0.000 claims description 3
- 108010061982 DNA Ligases Proteins 0.000 claims description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 claims description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 claims description 3
- 208000035143 Bacterial infection Diseases 0.000 claims description 2
- 206010017533 Fungal infection Diseases 0.000 claims description 2
- 208000031888 Mycoses Diseases 0.000 claims description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 claims description 2
- 208000036142 Viral infection Diseases 0.000 claims description 2
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 2
- 230000003362 replicative effect Effects 0.000 claims description 2
- 230000009385 viral infection Effects 0.000 claims description 2
- 239000003298 DNA probe Substances 0.000 abstract description 2
- 125000001424 substituent group Chemical group 0.000 description 78
- 229910052739 hydrogen Inorganic materials 0.000 description 74
- 239000001257 hydrogen Substances 0.000 description 74
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 52
- 150000002431 hydrogen Chemical group 0.000 description 41
- 239000003446 ligand Substances 0.000 description 41
- 239000012625 DNA intercalator Substances 0.000 description 39
- 125000006853 reporter group Chemical group 0.000 description 39
- 239000000178 monomer Substances 0.000 description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 32
- 229910052736 halogen Inorganic materials 0.000 description 32
- 150000002367 halogens Chemical class 0.000 description 32
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 28
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 28
- 125000003118 aryl group Chemical group 0.000 description 27
- 102000053602 DNA Human genes 0.000 description 25
- 125000001072 heteroaryl group Chemical group 0.000 description 24
- 239000000047 product Substances 0.000 description 23
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 21
- 229940127073 nucleoside analogue Drugs 0.000 description 20
- 125000006850 spacer group Chemical group 0.000 description 20
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 20
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 19
- 125000003835 nucleoside group Chemical group 0.000 description 18
- 229930024421 Adenine Natural products 0.000 description 15
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 15
- 229960000643 adenine Drugs 0.000 description 15
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 229910052698 phosphorus Inorganic materials 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- 239000002585 base Substances 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 12
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- 229940104302 cytosine Drugs 0.000 description 11
- 235000011180 diphosphates Nutrition 0.000 description 11
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 11
- 125000003396 thiol group Chemical class [H]S* 0.000 description 11
- 239000001177 diphosphate Substances 0.000 description 10
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 10
- 125000000524 functional group Chemical group 0.000 description 10
- 150000004712 monophosphates Chemical class 0.000 description 10
- 229920002477 rna polymer Polymers 0.000 description 10
- 229940113082 thymine Drugs 0.000 description 10
- 125000004104 aryloxy group Chemical group 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 150000001447 alkali salts Chemical class 0.000 description 8
- 125000005129 aryl carbonyl group Chemical group 0.000 description 8
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 125000004043 oxo group Chemical group O=* 0.000 description 8
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- 125000002619 bicyclic group Chemical group 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 125000004093 cyano group Chemical group *C#N 0.000 description 7
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 150000003833 nucleoside derivatives Chemical class 0.000 description 7
- YHULXGUCQZFROV-UHFFFAOYSA-N sulfane;urea Chemical compound S.NC(N)=O YHULXGUCQZFROV-UHFFFAOYSA-N 0.000 description 7
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 6
- 150000001721 carbon Chemical group 0.000 description 6
- 125000005223 heteroarylcarbonyl group Chemical group 0.000 description 6
- 125000005553 heteroaryloxy group Chemical group 0.000 description 6
- 125000005226 heteroaryloxycarbonyl group Chemical group 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 6
- 238000002515 oligonucleotide synthesis Methods 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- 150000008300 phosphoramidites Chemical class 0.000 description 6
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 5
- 150000004056 anthraquinones Chemical class 0.000 description 5
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 5
- 230000002458 infectious effect Effects 0.000 description 5
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108020004635 Complementary DNA Proteins 0.000 description 4
- 241000233866 Fungi Species 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 238000010804 cDNA synthesis Methods 0.000 description 4
- 150000001793 charged compounds Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 230000005291 magnetic effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 3
- 206010003210 Arteriosclerosis Diseases 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 229930194542 Keto Natural products 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 208000008589 Obesity Diseases 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 125000000641 acridinyl group Chemical class C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 235000008206 alpha-amino acids Nutrition 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 208000011775 arteriosclerosis disease Diseases 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 229910000397 disodium phosphate Inorganic materials 0.000 description 3
- 238000013467 fragmentation Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 3
- 150000002243 furanoses Chemical group 0.000 description 3
- 125000001841 imino group Chemical group [H]N=* 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 125000000468 ketone group Chemical group 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 235000020824 obesity Nutrition 0.000 description 3
- 229920001542 oligosaccharide Polymers 0.000 description 3
- 150000002482 oligosaccharides Polymers 0.000 description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 150000004053 quinones Chemical class 0.000 description 3
- 229910052705 radium Inorganic materials 0.000 description 3
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 3
- 229910052701 rubidium Inorganic materials 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 125000003003 spiro group Chemical group 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 3
- 125000000464 thioxo group Chemical group S=* 0.000 description 3
- 229940035893 uracil Drugs 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N 2,4-diaminobutyric acid Chemical compound NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 2
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 2
- DCXJOVUZENRYSH-UHFFFAOYSA-N 4,4-dimethyloxazolidine-N-oxyl Chemical compound CC1(C)COCN1[O] DCXJOVUZENRYSH-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 108020004394 Complementary RNA Proteins 0.000 description 2
- 201000003883 Cystic fibrosis Diseases 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 2
- 201000010374 Down Syndrome Diseases 0.000 description 2
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 208000023105 Huntington disease Diseases 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 108010039918 Polylysine Proteins 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 206010044688 Trisomy 21 Diseases 0.000 description 2
- 208000026928 Turner syndrome Diseases 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 229940000635 beta-alanine Drugs 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 2
- 150000001731 carboxylic acid azides Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001733 carboxylic acid esters Chemical group 0.000 description 2
- 150000001735 carboxylic acids Chemical group 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000001360 collision-induced dissociation Methods 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 2
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002085 enols Chemical class 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 2
- 150000002429 hydrazines Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 125000005439 maleimidyl group Chemical class C1(C=CC(N1*)=O)=O 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 229920002842 oligophosphate Polymers 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 108010094020 polyglycine Proteins 0.000 description 2
- 229920000232 polyglycine polymer Polymers 0.000 description 2
- 229920000656 polylysine Polymers 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 150000003349 semicarbazides Chemical class 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 150000003431 steroids Chemical group 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 150000003459 sulfonic acid esters Chemical class 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000004885 tandem mass spectrometry Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 2
- 150000003583 thiosemicarbazides Chemical class 0.000 description 2
- 206010053884 trisomy 18 Diseases 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- BWBHIIJKOYBHON-YFKPBYRVSA-N (2s)-2-(2-carboxyethylamino)pentanedioic acid Chemical compound OC(=O)CCN[C@H](C(O)=O)CCC(O)=O BWBHIIJKOYBHON-YFKPBYRVSA-N 0.000 description 1
- BTLHODXEDLCLAD-VKHMYHEASA-N (2s)-2-(carboxymethylamino)butanedioic acid Chemical compound OC(=O)CN[C@H](C(O)=O)CC(O)=O BTLHODXEDLCLAD-VKHMYHEASA-N 0.000 description 1
- FVOSQFWUIBXTHB-ZDUSSCGKSA-N (2s)-2-(n-benzylanilino)propanoic acid Chemical compound C=1C=CC=CC=1N([C@@H](C)C(O)=O)CC1=CC=CC=C1 FVOSQFWUIBXTHB-ZDUSSCGKSA-N 0.000 description 1
- MQGZWOFMPTYSLC-ZDUSSCGKSA-N (2s)-3-(3,5-dibromo-4-hydroxyphenyl)-2-[(3,5-dibromo-4-hydroxyphenyl)methylamino]propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=C(Br)C(O)=C(Br)C=1)C1=CC(Br)=C(O)C(Br)=C1 MQGZWOFMPTYSLC-ZDUSSCGKSA-N 0.000 description 1
- WJUWYGGQWIKWOY-ZDUSSCGKSA-N (2s)-3-(3,5-dichloro-4-hydroxyphenyl)-2-[(3,5-dichloro-4-hydroxyphenyl)methylamino]propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=C(Cl)C(O)=C(Cl)C=1)C1=CC(Cl)=C(O)C(Cl)=C1 WJUWYGGQWIKWOY-ZDUSSCGKSA-N 0.000 description 1
- BVKHGDVAQCMOFM-ZDUSSCGKSA-N (2s)-3-(3,5-difluoro-4-hydroxyphenyl)-2-[(3,5-difluoro-4-hydroxyphenyl)methylamino]propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=C(F)C(O)=C(F)C=1)C1=CC(F)=C(O)C(F)=C1 BVKHGDVAQCMOFM-ZDUSSCGKSA-N 0.000 description 1
- ZAGBZCDCSBIVAW-HNNXBMFYSA-N (2s)-3-(4-aminophenyl)-2-[(4-aminophenyl)methylamino]propanoic acid Chemical compound C1=CC(N)=CC=C1CN[C@H](C(O)=O)CC1=CC=C(N)C=C1 ZAGBZCDCSBIVAW-HNNXBMFYSA-N 0.000 description 1
- VTWWGTQSERUWIM-HNNXBMFYSA-N (2s)-3-(4-bromophenyl)-2-[(4-bromophenyl)methylamino]propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=CC(Br)=CC=1)C1=CC=C(Br)C=C1 VTWWGTQSERUWIM-HNNXBMFYSA-N 0.000 description 1
- OSDSYPJDEJVQLM-HNNXBMFYSA-N (2s)-3-(4-chlorophenyl)-2-[(4-chlorophenyl)methylamino]propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=CC(Cl)=CC=1)C1=CC=C(Cl)C=C1 OSDSYPJDEJVQLM-HNNXBMFYSA-N 0.000 description 1
- NAWZNAQVBGLUQR-HNNXBMFYSA-N (2s)-3-(4-fluorophenyl)-2-[(4-fluorophenyl)methylamino]propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=CC(F)=CC=1)C1=CC=C(F)C=C1 NAWZNAQVBGLUQR-HNNXBMFYSA-N 0.000 description 1
- KMIKQJUMVKILPT-ZDUSSCGKSA-N (2s)-3-(4-hydroxy-3,5-diiodophenyl)-2-[(4-hydroxy-3,5-diiodophenyl)methylamino]propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=C(I)C(O)=C(I)C=1)C1=CC(I)=C(O)C(I)=C1 KMIKQJUMVKILPT-ZDUSSCGKSA-N 0.000 description 1
- CUPNEZGKTTXXDG-HNNXBMFYSA-N (2s)-3-(4-iodophenyl)-2-[(4-iodophenyl)methylamino]propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=CC(I)=CC=1)C1=CC=C(I)C=C1 CUPNEZGKTTXXDG-HNNXBMFYSA-N 0.000 description 1
- SIPHCNMBBKPVRX-KRWDZBQOSA-N (2s)-3-(4-methoxyphenyl)-2-[(4-methoxyphenyl)methylamino]propanoic acid Chemical compound C1=CC(OC)=CC=C1CN[C@H](C(O)=O)CC1=CC=C(OC)C=C1 SIPHCNMBBKPVRX-KRWDZBQOSA-N 0.000 description 1
- RPZQBKZDZKFQRM-HNNXBMFYSA-N (2s)-3-(4-nitrophenyl)-2-[(4-nitrophenyl)methylamino]propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=CC(=CC=1)[N+]([O-])=O)C1=CC=C([N+]([O-])=O)C=C1 RPZQBKZDZKFQRM-HNNXBMFYSA-N 0.000 description 1
- INDUXFLKWIANMM-YFKPBYRVSA-N (2s)-3-cyano-2-(cyanomethylamino)propanoic acid Chemical compound N#CC[C@@H](C(=O)O)NCC#N INDUXFLKWIANMM-YFKPBYRVSA-N 0.000 description 1
- CHQLDUGBMZSNKB-ZDUSSCGKSA-N (2s)-3-pyridin-3-yl-2-(pyridin-3-ylmethylamino)propanoic acid Chemical compound C([C@@H](C(=O)O)NCC=1C=NC=CC=1)C1=CC=CN=C1 CHQLDUGBMZSNKB-ZDUSSCGKSA-N 0.000 description 1
- ZAYJDMWJYCTABM-CRCLSJGQSA-N (2s,3r)-2-azaniumyl-3-hydroxy-4-methylpentanoate Chemical compound CC(C)[C@@H](O)[C@H]([NH3+])C([O-])=O ZAYJDMWJYCTABM-CRCLSJGQSA-N 0.000 description 1
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DVFAVJDEPNXAME-UHFFFAOYSA-N 1,4-dimethylanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(C)=CC=C2C DVFAVJDEPNXAME-UHFFFAOYSA-N 0.000 description 1
- HASUWNAFLUMMFI-UHFFFAOYSA-N 1,7-dihydropyrrolo[2,3-d]pyrimidine-2,4-dione Chemical compound O=C1NC(=O)NC2=C1C=CN2 HASUWNAFLUMMFI-UHFFFAOYSA-N 0.000 description 1
- FDFVVBKRHGRRFY-UHFFFAOYSA-N 1-hydroxy-2,2,5,5-tetramethylpyrrolidine Chemical compound CC1(C)CCC(C)(C)N1O FDFVVBKRHGRRFY-UHFFFAOYSA-N 0.000 description 1
- 125000004066 1-hydroxyethyl group Chemical group [H]OC([H])([*])C([H])([H])[H] 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- VUZNLSBZRVZGIK-UHFFFAOYSA-N 2,2,6,6-Tetramethyl-1-piperidinol Chemical compound CC1(C)CCCC(C)(C)N1O VUZNLSBZRVZGIK-UHFFFAOYSA-N 0.000 description 1
- XQCZBXHVTFVIFE-UHFFFAOYSA-N 2-amino-4-hydroxypyrimidine Chemical compound NC1=NC=CC(O)=N1 XQCZBXHVTFVIFE-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical group OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- QSECPQCFCWVBKM-UHFFFAOYSA-N 2-iodoethanol Chemical compound OCCI QSECPQCFCWVBKM-UHFFFAOYSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- 125000003143 4-hydroxybenzyl group Chemical group [H]C([*])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- PLUDYDNNASPOEE-UHFFFAOYSA-N 6-(aziridin-1-yl)-1h-pyrimidin-2-one Chemical compound C1=CNC(=O)N=C1N1CC1 PLUDYDNNASPOEE-UHFFFAOYSA-N 0.000 description 1
- SXQMWXNOYLLRBY-UHFFFAOYSA-N 6-(methylamino)purin-8-one Chemical compound CNC1=NC=NC2=NC(=O)N=C12 SXQMWXNOYLLRBY-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- VKKXEIQIGGPMHT-UHFFFAOYSA-N 7h-purine-2,8-diamine Chemical compound NC1=NC=C2NC(N)=NC2=N1 VKKXEIQIGGPMHT-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 102400000967 Bradykinin Human genes 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001247414 Couma Species 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 102100029764 DNA-directed DNA/RNA polymerase mu Human genes 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 229930193152 Dynemicin Natural products 0.000 description 1
- 201000006360 Edwards syndrome Diseases 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- JNCMHMUGTWEVOZ-UHFFFAOYSA-N F[CH]F Chemical group F[CH]F JNCMHMUGTWEVOZ-UHFFFAOYSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- DHMQDGOQFOQNFH-LGLHGEJLSA-N Glycine-d5 Chemical compound [2H]OC(=O)C([2H])([2H])N([2H])[2H] DHMQDGOQFOQNFH-LGLHGEJLSA-N 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 108091027305 Heteroduplex Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 108091092878 Microsatellite Proteins 0.000 description 1
- 208000016679 Monosomy X Diseases 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- RPDUDBYMNGAHEM-UHFFFAOYSA-N PROXYL Chemical compound CC1(C)CCC(C)(C)N1[O] RPDUDBYMNGAHEM-UHFFFAOYSA-N 0.000 description 1
- 201000009928 Patau syndrome Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 102000009609 Pyrophosphatases Human genes 0.000 description 1
- 108010009413 Pyrophosphatases Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229910007161 Si(CH3)3 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 208000002903 Thalassemia Diseases 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 208000037280 Trisomy Diseases 0.000 description 1
- 206010044686 Trisomy 13 Diseases 0.000 description 1
- 208000006284 Trisomy 13 Syndrome Diseases 0.000 description 1
- 208000007159 Trisomy 18 Syndrome Diseases 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 238000012793 UV/ Vis spectrometry Methods 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- XXFXTBNFFMQVKJ-UHFFFAOYSA-N [diphenyl(trityloxy)methyl]benzene Chemical group C=1C=CC=CC=1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)OC(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 XXFXTBNFFMQVKJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 150000001351 alkyl iodides Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 208000036878 aneuploidy Diseases 0.000 description 1
- 231100001075 aneuploidy Toxicity 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- ZAYJDMWJYCTABM-UHFFFAOYSA-N beta-hydroxy leucine Natural products CC(C)C(O)C(N)C(O)=O ZAYJDMWJYCTABM-UHFFFAOYSA-N 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007698 birth defect Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol group Chemical group [C@@H]1(CC[C@H]2[C@@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)[C@H](C)CCCC(C)C HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- BPLKXBNWXRMHRE-UHFFFAOYSA-N copper;1,10-phenanthroline Chemical compound [Cu].C1=CN=C2C3=NC=CC=C3C=CC2=C1 BPLKXBNWXRMHRE-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 229940119679 deoxyribonucleases Drugs 0.000 description 1
- 230000027832 depurination Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 150000004845 diazirines Chemical class 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000000804 electron spin resonance spectroscopy Methods 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-O hydrazinium(1+) Chemical compound [NH3+]N OAKJQQAXSVQMHS-UHFFFAOYSA-O 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- DRAVOWXCEBXPTN-UHFFFAOYSA-N isoguanine Chemical compound NC1=NC(=O)NC2=C1NC=N2 DRAVOWXCEBXPTN-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 125000005524 levulinyl group Chemical group 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 125000004372 methylthioethyl group Chemical group [H]C([H])([H])SC([H])([H])C([H])([H])* 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- UPBAOYRENQEPJO-UHFFFAOYSA-N n-[5-[[5-[(3-amino-3-iminopropyl)carbamoyl]-1-methylpyrrol-3-yl]carbamoyl]-1-methylpyrrol-3-yl]-4-formamido-1-methylpyrrole-2-carboxamide Chemical compound CN1C=C(NC=O)C=C1C(=O)NC1=CN(C)C(C(=O)NC2=CN(C)C(C(=O)NCCC(N)=N)=C2)=C1 UPBAOYRENQEPJO-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- SBOJXQVPLKSXOG-UHFFFAOYSA-N o-amino-hydroxylamine Chemical compound NON SBOJXQVPLKSXOG-UHFFFAOYSA-N 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960001639 penicillamine Drugs 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical compound NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 239000002279 physical standard Substances 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 125000002577 pseudohalo group Chemical group 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 210000003765 sex chromosome Anatomy 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 108010042747 stallimycin Proteins 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- WGTODYJZXSJIAG-UHFFFAOYSA-N tetramethylrhodamine chloride Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C(O)=O WGTODYJZXSJIAG-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- HOGVTUZUJGHKPL-HTVVRFAVSA-N triciribine Chemical class C=12C3=NC=NC=1N(C)N=C(N)C2=CN3[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O HOGVTUZUJGHKPL-HTVVRFAVSA-N 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
Definitions
- the present invention relates to DNA diagnostics based on mass spectrometry where fully or partially LNA modified DNA probes are used in order to enhance stability and resolution.
- DNA deoxyribonucleic acid
- DNA deoxyribonucleic acid
- the complete genome is comprised of about 1 00,000 genes located on 24 chromosomes (The Human Genome, T. Strachan, BIOS Scientific Publishers, 1992).
- Each gene codes for a specific protein which after its expression via transcription and translation, fulfils a specific biochemical function within a living cell. Changes in a DNA sequence are known as mutations and can result in proteins with altered or in some cases even lost biochemical activities; this in turn can cause genetic disease. Mutations include nucleotide deletions, insertions or alterations (i.e. point mutations).
- Point mutations can be either "mis-sense", resulting in a change in the amino acid sequence of a protein or "nonsense" coding for a stop codon and thereby leading to a truncated protein. Furthermore, the detection of polymorphisms might be equally interesting.
- More than 3000 genetic diseases are currently known (Human Genome Mutations, D. N. Cooper and M. Krawczak, BIOS Publishers, 1 993), including hemophilias, thalassemias, Duchenne Muscular Dystrophy (DMD), Huntington's Disease (HD), Alzheimer's Disease and Cystic Fibrosis (CF).
- DMD Duchenne Muscular Dystrophy
- HD Huntington's Disease
- CF Cystic Fibrosis
- certain birth defects are the result of chromosomal abnormalities such as Trisomy 21 (Down's Syndrome).
- Trisomy 1 3 Panau Syndrome
- Trisomy 18 Edward's Syndrome
- Monosomy X Teurner's Syndrome
- XXY sex chromosome aneuploidies
- certain DNA sequences may predispose an individual to any of a number of diseases such as diabetes, arteriosclerosis, obesity, various autoimmune diseases and cancer (e.g. colorectal, breast, ovarian, lung).
- Viruses, bacteria, fungi and other infectious organisms contain distinct nucleic acid sequences, which are different from the sequences contained in the host cell. Therefore, infectious organisms can also be detected and identified based on their specific DNA sequences.
- nucleic acid sequences can be used to detect normal and defective genes in higher organisms and to detect infectious microorganisms (e.g. bacteria, fungi, protists and yeast) and viruses. DNA sequences can serve as a fingerprint for detection of different individuals within the same species.
- mass spectrometry provides a means of "weighing" individual molecules by ionising the molecules in vacuo and making them “fly” by volatilisation. Under the influence of combinations of electric and magnetic fields, the ions follow trajectories depending on their individual mass (m) and charge (z). In the range of molecules with low molecular weight, mass spectrometry has long been part of the routine physical- organic repertoire for analysis and characterisation of organic molecules by the determination of the mass of the parent molecular ion. In addition, by arranging collisions of this parent molecular ion with other particles (e.g. argon atoms), the molecular ion is fragmented forming secondary ions by the so-called collision induced dissociation (CID).
- CID collision induced dissociation
- ES mass spectrometry has been introduced by Fenn et al. (J . Phys. Chem. 88, 4451 -59 ( 1 984); PCT Application No. WO 90/14148) and current applications are summarised in recent review articles (R. D. Smith et al., Anal. Chem., 62, .882-89 ( 1 990) and B. Ardrey. Electrospray Mass Spectrometry, Spectroscopy Europe, 4, 1 0-1 8 (1 992)) . As a mass analyser, a quadrupole is most frequently used. The determination of molecular weights in femtomole amounts of sample is very accurate due to the presence of multiple ion peaks which all could be used for the mass calculation.
- MALDI mass spectrometry in contrast, can be particularly attractive when a time-of- flight (TOF) configuration is used as a mass analyser.
- TOF time-of- flight
- the MALDI-TOF mass spectrometry has been introduced by Hillenkamp et al. ("Matrix Assisted UV-Laser Desorption/ionisation: A New Approach to Mass Spectrometry of Large Biomolecules. " Biological Mass Spectrometry (Burlingame and McCloskey, editors), Elsevier Science Publishers, Amsterdam, pp. 49-60, 1 990) . Since, in most cases, no multiple molecular ion peaks are produced with this technique, the mass spectra, in principle, look simpler compared to ES mass spectrometry.
- WO 94/16101 (K ⁇ ster) describes DNA sequencing by means of mass spectrometry and WO 94/21822 (K ⁇ ster) describes DNA sequencing by means of mass spectrometry via exonuclease degradation.
- WO 96/29431 (Sequenom) describes various ways of determining the sequence of and mutations in nucleic acid molecules by means of mass spectrometry analysis. It is described that introduction of mass differentiating markers facilitates the resolution of the mass spectrometry signals and thereby allows for multiplexing.
- bicyclic nucleotide analogues i.e. nucleotide analogues containing bicyclic sugars
- LNA Locked Nucleoside Analogues
- LNA modified oligonucleotides in processes for the detection of a target nucleic acid sequence of a nucleic acid molecule or for the detection of a mutation in a nucleic acid sequence of a nucleic acid molecule by mass spectrometry offers at least three major advantages, namely (a) the possibility of adjusting (typically increasing) the specificity and/or affinity of an oligonucleotide involved in the detection process for the nucleic acid molecule, (b) the direct inclusion of mass differentiation markers, and (c) increased stability of the LNA modified oligonucleotides under conditions of mass spectrometry.
- the present invention provides a process for detecting a target nucleic acid sequence of a nucleic acid molecule or for detecting a mutation in a nucleic acid sequence of a nucleic acid molecule, wherein (a) the nucleic acid molecule or (b) a part of the nucleic acid molecule or (c) an oligonucleotide complementary to the sequence or at least a sub-sequence of the nucleic acid molecule is analysed by mass spectrometry in order to obtain direct or indirect information about said target nucleic acid sequence or mutation, and wherein the process involves the hybridisation of an LNA modified oligonucleotide to the nucleic acid molecule.
- the present invention thus, provides a highly useful and valuable improvement to the known diagnostic method for analysis of DNA.
- the present invention provides a process for detecting a target nucleic acid sequence of a nucleic acid molecule or for detecting a mutation in a nucleic acid sequence of a nucleic acid molecule, wherein (a) the nucleic acid molecule or (b) a part of the nucleic acid molecule or (c) an oligonucleotide complementary to the sequence or at least a sub-sequence of the nucleic acid molecule is analysed by mass spectrometry in order to obtain direct or indirect information about said target nucleic acid sequence or mutation, and wherein the process involves the hybridisation of an LNA modified oligonucleotide to the nucleic acid molecule.
- Such processes are described in WO 96/29431 , WO 94/16101 and WO 94/21822 which are hereby incorporated by reference.
- the hybridisation between the LNA modified oligonucleotide and the nucleic acid molecule plays an important role in the process according to the invention, it is often desirable to modify the hybridisation properties so that either the specificity or the affinity, or both, are adjusted so as to obtain more reliable results.
- the present invention it is now possible to improve the specificity and/or the affinity and at the same time include mass differentiation markers which can be used for improving the resolution of the mass spectrum.
- mass differentiation markers which can be used for improving the resolution of the mass spectrum.
- the stability of an oligonucleotide to be analysed by mass spectrometry is improved so as to provide more reliable and reproducible results.
- the LNA modified oligonucleotide which is hybridised to the nucleic acid molecule is typically selected from detector oligonucleotides, capture oligonucleotides, primers, extended primers, ligation educts and ligation products, of course depending on the construction and type of the detection analysis.
- the LNA modified oligonucleotide is analysed by mass spectrometry in order to obtain information about the target nucleic acid sequence or mutation. It should, however, be understood that improved affinity and specificity alone may also be highly useful, e.g. for capture of nucleic acid molecules which then are analysed directly by mass spectrometry (see below).
- the LNA modified oligonucleotide is preferably the oligomer to be analysed by mass spectroscopy.
- the LNA modified oligonucleotide which is hybridised to the nucleic acid molecule is preferably the oligonucleotide which is analysed by mass spectroscopy in order to obtain direct or indirect information about the sequence or mutation of said target nucleic acid.
- the LNA modified oligonucleotide is preferably selected from detector oligonucleotides, primers, extended primers, ligation educts and ligation products in the mass spectrometry process.
- a nucleic acid molecule containing a nucleic acid sequence to be detected can be immobilised to a solid support.
- solid supports include beads (e.g. silica gel, controlled pore glass, magnetic, Sephadex, Sepharose, cellulose), flat surfaces or chips (e.g. glass fibre filters, glass surfaces, metal surfaces (steel, gold, silver, aluminium, copper and silicon), capillaries, plastic (e.g. polyethylene, polypropylene, polyamide, polyvinylidenedifluoride membranes or microtiter plates)), or pins or combs made from similar materials comprising beads or flat surfaces or beads placed into pits in flat surfaces such as wafers (e.g. silicon wafers).
- beads e.g. silica gel, controlled pore glass, magnetic, Sephadex, Sepharose, cellulose
- flat surfaces or chips e.g. glass fibre filters, glass surfaces, metal surfaces (steel, gold, silver, aluminium, copper and silicon), capillaries, plastic (e.
- Immobilisation can be accomplished, for example, based on hybridisation between a capture oligonucleotide, which has already been immobilised to the support and a complementary nucleic acid sequence, which is also contained within the nucleic acid molecule containing the nucleic acid sequence to be detected. So that hybridisation between the complementary nucleic acid molecules is not hindered by the support, the capture nucleic acid can include a spacer region of at least about five nucleotides in length between the solid support and the capture nucleic acid sequence. The duplex formed will be cleaved under the influence of the laser pulse and desorption can be initiated.
- the solid support-bound capture oligonucleotide can be presented through natural oligoribo- or oligodeoxyribonucleotide as well as analogues (e.g. thio- modified phosphodiester or phosphotriester backbone) or employing oligonucleotide mimetics such as PNA analogues which render the base sequence less susceptible to enzymatic degradation and hence increases overall stability of the solid support- bound capture base sequence.
- analogues e.g. thio- modified phosphodiester or phosphotriester backbone
- PNA analogues e.g. oligonucleotide mimetics
- the capture oligonucleotide is preferably an immobilised LNA modified oligonucleotide.
- a target detection site can be directly linked to a solid support via a reversible or irreversible bond between an appropriate functionality (L') on the target nucleic acid molecule (T) and an appropriate functionality (L) on a capture molecule bound to the solid support.
- a reversible linkage can be such that it is cleaved under the conditions of mass spectrometry (i .e. a photocleavable bond such as a charge transfer complex or a labile bond being formed between relatively stable organic radicals).
- the linkage can be formed with L' being a quaternary ammonium group, in which case, preferably, the surface of the solid support carries negative charges which repel the negatively charged nucleic acid backbone and thus facilitate the desorption required for analysis by a mass spectrometer.
- Desorption can occur either by the heat created by the laser pulse and/or, depending on L' by specific absorption of laser energy which is in resonance with the L' chromophore.
- the L-L' chemistry can be of a type of disulfide bond (chemically cleavable, for example, by mercaptoethanol or dithioerythrol), a biotin/streptavidin system, a heterobifunctional derivative of a trityl ether group which can be cleaved under mildly acidic conditions as well as under conditions of mass spectrometry, a levulinyl group cleavable under almost neutral conditions with a hydrazinium/acetate buffer, an arginine-arginine or lysine-lysine bond cleavable by an endopeptidase enzyme like trypsin or a pyrophosphate bond cleavable by a pyrophosphatase, or a ribonucleotide bond in between the oligodeoxynucleotide sequence, which can be cleaved, for example, by a ribonuclease or alkal
- the functionalities, L and L' can also form a charge transfer complex and thereby form the temporary L-L' linkage. Since in many cases the "charge-transfer band" can be determined by UV/vis spectrometry, the laser energy can be tuned to the corresponding energy of the charge-transfer wavelength and. thus, a specific desorption off the solid support can be initiated. Those skilled in the art will recognise that several combinations can serve this purpose and that the donor functionality can be either on the solid support or coupled to the nucleic acid molecule to be detected or vice versa.
- a reversible L-L' linkage can be generated by homolytically forming relatively stable radicals. Under the influence of the laser pulse, desorption (as discussed above) as well as ionisation will take place at the radical position.
- desorption as discussed above
- ionisation will take place at the radical position.
- other organic radicals can be selected and that, in relation to the dissociation energies needed to homolytically cleave the bond between them, a corresponding laser wavelength can be selected (see e.g. Reactive Molecules by C. Wentrup, John Wiley B: Sons, 1 984) .
- An anchoring function L' can also be incorporated into a target capturing sequence (TCS) by using appropriate primers during an amplification procedure, such as PCR, LCR or transcription amplification.
- TCS target capturing sequence
- the capture oligonucleotide or the target nucleic acid can also be immobilised directly to the solid support by means of a photochemical coupling agent, e.g. an anthra- quinone reagent as described in WO 96/31 577 (Havsteen Jakobsen and Koch).
- a photochemical coupling agent e.g. an anthra- quinone reagent as described in WO 96/31 577 (Havsteen Jakobsen and Koch).
- the instant invention provides mass spectrometric processes for detecting a particular nucleic acid sequence of nucleic acid molecules. Such nucleic acid molecules are often obtained from biological samples.
- nucleic acid molecules are often obtained from biological samples.
- biological sample refers to any material obtained from any living source (e.g. human, animal, plant, bacteria, fungi, protist virus).
- the biological sample should contain a nucleic acid molecule.
- appropriate biological samples for use in the instant invention include: solid materials (e.g. tissue, cell pellets, biopsies) and biological fluids (e.g. urine, blood, saliva, amniotic fluid, mouth wash) .
- Nucleic acid molecules can be isolated from a particular biological sample using any of a number of procedures, which are well-known in the art, the particular isolation procedure chosen being appropriate for the particular biological sample. For example, freeze/thaw and alkaline lysis procedures can be useful for obtaining nucleic acid molecules from solid materials, heat and alkaline lysis procedures can be useful for obtaining nucleic acid molecules from urine, and proteinase K extraction can be used to obtain nucleic acid from blood.
- amplification may be necessary.
- appropriate amplification procedures for use in the invention include: cloning (Sambrook et al. , Molecular Cloning : A Laboratory Manual. Cold Spring Harbor Laboratory Press. 1 989) . polymerase chain reaction (PCR) (C. R. Newton and A. Graham. PCR, BIOS Publishers, 1 994), ligase chain reaction (LCR) (Wiedmann, M., et. al., (1 994) PCR Methods Appl., Vol. 3. Pp. 57-64; F. Barany, Proc. Nat/. Acad.
- Nucleic acids molecules include deoxyribonucleic acids (DNA) and ribonucleic acids (RNA).
- the mass spectrometry analysis typically utilises matrix-Assisted Laser Desorption/- lonisation Time-of-Flight (MALDI-TOF) mass spectrometry, Electrospray (ES) mass spectrometry, Ion Cyclotron Resonance (ICR) mass spectrometry, Fourier Transform mass spectrometry, or combinations thereof. These techniques are well-known to the person skilled in the art.
- Preferred mass spectrometer formats for use in the invention are matrix assisted laser desorption ionisation (MALDI), electrospray (ES), ion cyclotron resonance (ICR) and Fourier Transform.
- MALDI matrix assisted laser desorption ionisation
- ES electrospray
- ICR ion cyclotron resonance
- ES the samples, dissolved in water or in a volatile buffer, are injected either continuously or discontinuously into an atmospheric pressure ionisation interface (API) and then mass analysed by a quadrupole.
- API atmospheric pressure ionisation interface
- the generation of multiple ion peaks which can be obtained using ES mass spectrometry can increase the accuracy of the mass determination. Even more detailed information on the specific structure can be obtained using an MS/MS quadrupole configuration.
- TOF can also be used with ES for increased accuracy and resolution.
- mass analysers can be used , e.g., magnetic sector/magnetic deflection instruments in single or triple quadrupole mode (MS/MS).
- MS/MS single or triple quadrupole mode
- TOF time-of-flight
- matrix/laser combinations can be used for the desorption/ionisation process.
- Ion-trap and reflectron configurations can also be employed .
- LNA modified oligomers are believed to improve the stability of oligomers to be analysed by mass spectrometry (see below), it might be in certain instances be advantageous to (further) "condition" nucleic acid molecules, for example to decrease the laser energy required for volatilisation and/or to (further) minimise fragmentation. Conditioning is preferably performed while a target detection site is immobilised.
- An example of conditioning is modification of the phosphodiester backbone of the nucleic acid molecule (e.g. cation exchange), which can be useful for eliminating peak broadening due to a heterogeneity in the cations bound per nucleotide unit.
- nucleic acid molecule Contacting a nucleic acid molecule with an alkylating agent such as alkyliodide. iodoacetamide, ⁇ -iodoethanol, or 2,3-epoxy-1 -propanol, the monothio phosphodiester bonds of a nucleic acid molecule can be transformed into a phosphotriester bond. Likewise, phosphodiester bonds may be transformed to uncharged derivatives employing trialkylsilyl chlorides.
- alkylating agent such as alkyliodide. iodoacetamide, ⁇ -iodoethanol, or 2,3-epoxy-1 -propanol
- Further conditioning involves incorporating nucleotides which reduce sensitivity for depurination (fragmentation during mass spectrometry) such as N7- or N9-deazapurine nucleotides, or RNA building blocks or using oligonucleotide triesters or incorporating phosphorothioate functions which are alkylated or employing oligonucleotide mimetics such as PNA.
- Conditioning may also be relevant when LNA modified oligonucleotides are used, even though the LNAs in the LNA modified oligonucleotides may be constructed so that conditioning is unnecessary, e.g. by utilising LNA modified oligonucleotides where the phosphate backbone is modified (see below) .
- Multiplexing can be achieved by several different methodologies. For example, several mutations can be simultaneously detected on one target sequence by employing corresponding detector oligonucleotides. However, the molecular weight differences between the detector oligonucleotides D 1 , D2 and D3 must be large enough so that simultaneous detection (multiplexing) is possible.
- LNA modification of the detector oligonucleotide can provide the necessary molecular weight differences in that a bridge of incorporated LNAs in themselves provide at least a increase in molecular weight by 1 0 D per modification (one carbon substituting two hydrogens in the case of a -0-CH 2 - bridge substituting a -H and an -OH substituent, e.g. as in the case where R 2* and R 4* together forms a -0-CH 2 - bridge in an LNA, see below).
- the introduction of a -S-CH 2 - or -NR-CH 2 - bridge will offer to possibility of introducing other combination of mass differences.
- introduction of further mass-modifying functionalities are generally not necessary.
- Mass modifying moieties can if desired be attached, for instance, to either the 5'-end of the oligonucleotide-, to the nucleobase (or bases), to the phosphate backbone, and to the 2-position of the nucleoside (nucleosides) or/and to the terminal 3'-position.
- mass modifying moieties include, for example, a halogen, an azido, or of the type, XR, wherein X is a linking group and R is a mass-modifying functionality.
- the mass-modifying functionality can thus be used to introduce further defined mass increments into the oligonucleotide molecule.
- mass-modifying moiety can be attached either to the nucleobase (in case of the C 7 -deazanucleosides also to C-7), to the triphosphate group at the alpha phosphate, or to the 3'-position of the sugar ring of the nucleoside triphosphate.
- mass-modifying functionality can be added so as to affect chain termination, such as by attaching it to the 3'-position of the sugar ring in the nucleoside triphosphate.
- chain-elongating nucleoside triphosphates can also be mass-modified in a similar fashion with numerous variations and combinations in functionality and attachment positions.
- mass modifications can be introduced by incorporating stable isotopes, e.g. 32 S, 33 S, 34 S, 36 S.
- the mass-modification, M can be introduced for X in XR as well as using oligo-/polyethylene glycol derivatives for R.
- the oligo/polyethylene glycols can also be monoalkylated by a lower alkyl such as methyl, ethyl, propyl, isopropyl, t-butyl and the like.
- linking functionalities X
- Other chemistries can be used in the mass- modified compounds, as for example, those described recently in Oligonucleotides and Analogues. A Practical Approach, F. Eckstein, editor, IRL Press, Oxford, 1991 .
- various mass-modifying functionalities, R can be selected and attached via appropriate linking chemistries, X.
- a simple mass-modification can be achieved by substituting H for halogens like F, Cl, Br and/or I, or pseudohalogens such as SCN, NCS, or by using different alkyl, aryl or aralkyl moieties such as methyl, ethyl, propyl, isopropyl, t- butyl, hexyl, phenyl, substituted phenyl, benzyl, or functional groups such as CH 2 F, CHF 2 , CF 3 , Si(CH 3 ) 3 , Si(CH 3 ) 2 (C 2 H 5 ), Si(CH 3 )(C 2 H 5 ) 2 , Si(C 2 H 5 ) 3 .
- Yet another mass- modification can be obtained by attaching homo- or heteropeptides through the nucleic acid molecule (e.g. detector (D)) or nucleoside triphosphates.
- D detector
- Different mass-modified detector oligonucleotides can be used to simultaneously detect all possible variants/mutants simultaneously.
- all four base permutations at the site of a mutation can be detected by designing and positioning a detector oligonucleotide, so that it serves as a primer for a DNA/RNA polymerase.
- mass modifications also can be incorporated during the amplification process.
- the above-mentioned mass modifications primarily apply to any native nucleotides in the oligonucleotides or LNA modified oligonucleotides since the described mass modifications already are integral features of the LNA modified oligonucleotides (see the definitions below).
- the sample is conditioned by mass differentiating at least two detector oligonucleotides or oligonucleotide mimetics to detect and distinguish at least two target nucleic acid sequences simultaneously, where at least one detector oligonucleotide is a LNA modified oligonucleotide. This application is especially relevant in connection with multiplexing.
- the target nucleic acid sequence is a DNA fingerprint or is implicated in a disease or condition selected from the group consisting of a genetic disease, a chromosomal abnormality, a genetic predisposition, a viral infection, a fungal infection, a bacterial infection and a protist infection.
- a disease or condition selected from the group consisting of a genetic disease, a chromosomal abnormality, a genetic predisposition, a viral infection, a fungal infection, a bacterial infection and a protist infection.
- a disease or condition selected from the group consisting of a genetic disease, a chromosomal abnormality, a genetic predisposition, a viral infection, a fungal infection, a bacterial infection and a protist infection.
- chromosomal pneuploidy or genetic predisposition can be preformed either pre-or postnatally.
- Viruses, bacteria, fungi and other infectious organisms contain distinct nucleic acid sequences, which are different from the sequences contained in the host cell.
- Detecting or quantitating nucleic acid sequences that are specific to the infectious organism is important for diagnosing or monitoring infection.
- a specific capture sequence (C; which might be the LNA modified oligonucleotide) is attached to a solid support (ss) via a spacer (S).
- the capture sequence is chosen to specifically interact with a complementary sequence on the target sequence (T), the target capture site (TCS) to be detected through hybridisation.
- TDS target detection site
- X which increases or decreases the molecular weight
- mutated TDS can be distinguished from wildtype by mass spectrometry. For example, in the case of an adenine base (dA) insertion, the difference in molecular weights between D wt and D mut would be about 314 daltons.
- the detector nucleic acid (D; which might be the LNA modified oligonucleotide) is designed such that the mutation would be in the middle of the molecule and the flanking regions are short enough so that a stable hybrid would not be formed if the wildtype detector oligonucleotide (D wt ) is contacted with the mutated target detector sequence as a control.
- the mutation can also be detected if the mutated detector oligonucleotide (D mut ) with the matching base at the mutated position is used for hybridisation. If a nucleic acid obtained from a biological sample is heterozygous for the particular sequence (i. e. contain both D wt and D mu ), both D wt and Dmut will be bound to the appropriate strand and the mass difference allows both D wt and D mut to be detected simultaneously.
- the process of this invention makes use of the known sequence information of the target sequence and known mutation sites. Although new mutations can also be detected. For example transcription of a nucleic acid molecule obtained from a biological sample can be specifically digested using one or more nucleases and the fragments captured on a solid support carrying the corresponding complementary nucleic acid sequences. Detection of hybridisation and the molecular weights of the captured target sequences provide information on whether and where in a gene a mutation is present. Alternatively, DNA can be cleaved by one or more specific endonucleases to form a mixture of fragments. Comparison of the molecular weights between wildtype and mutant fragment mixtures results in mutation detection.
- the process of the present invention can be performed in a number of ways depending on the nature of the nucleic acid and the type of result desired. Some of the possible variants are described in the following.
- One variant for detecting a target nucleic acid sequence present in a biological sample comprising the steps of: a) obtaining a nucleic acid molecule from a biological sample; b) immobilising the nucleic acid molecule onto a solid support to produce an immobilised nucleic acid molecule; c) hybridising a detector oligonucleotide with the immobilised nucleic acid molecule and removing unhybridised detector oligonucleotide: d) ionising and volatilising the product of step c); and e) detecting the detector oligonucleotide by mass spectrometry, wherein detection of the detector oligonucleotide indicates the presence of the target nucleic acid sequence in the biological sample.
- a LNA modified oligonucleotide can either be the detector oligonucleotide or be used to immobilise the nucleic acid molecule.
- detector oligonucleotide is a positive marker for a specific sequence or a specific mutation in the nucleic acid sequence. It is of course preferred that the detector oligonucleotide is an LNA modified oligonucleotide.
- the nucleic acid molecule is typically obtained from a biological sample. This nucleic acid molecule may be purified and amplified before analysis as described above. Preferably, the target nucleic acid sequence is amplified prior to step b), e.g. by an amplification procedure selected from the group consisting of: cloning, transcription based amplification, the polymerase chain reaction (PCR), the ligase chain reaction (LCR), and strand displacement amplification (SDA).
- amplification procedure selected from the group consisting of: cloning, transcription based amplification, the polymerase chain reaction (PCR), the ligase chain reaction (LCR), and strand displacement amplification (SDA).
- the immobilisation is can be accomplished either by direct bonding of the nucleic acid molecule to a solid support (e.g. via a linker) by means of a photochemical coupling reagent (e.g. an anthraquinone) or by means of a biotin/streptavidin system.
- the immobilisation may be accomplished by hybridisation between a complementary capture nucleic acid molecule, which has been previously immobilised to a solid support, and a complementary specific sequence on the target nucleic acid sequence.
- a complementary capture nucleic acid molecule is preferably an LNA modified oligonucleotide.
- immobilisation is accomplished by hybridisation between an array of complementary capture nucleic acid molecules, which have been previously immobilised to a solid support, and a portion of the nucleic acid molecule, which is distinct from the target nucleic acid sequence.
- the complementary capture nucleic acid molecules are typically oligonucleotides or oligonucleotide mimetics, preferably LNA modified oligonucleotides.
- a detector nucleic acid molecule (e.g. an oligonucleotide or oligonucleotide mimetic), which is complementary to the target detection site can then be contacted with the target detection site and formation of a duplex indicating the presence of the target detection site can be detected by mass spectrometry.
- the target detection site is amplified prior to detection and the nucleic acid molecules are conditioned.
- the target detection sequences are arranged in a format that allows multiple simultaneous detections (multiplexing), as well as parallel processing using oligonucleotide arrays ("DNA chips" - see e.g. Nature Biotechnology, Vol. 1 6, October 1 998, page 981 -983).
- step b) is reversible so that the nucleic acid molecule can be liberated either for purification or for analytical purposes.
- One interesting feature of the present invention which is applicable for the variants where a detector oligonucleotide is analysed, is the possibility of designing an array of oligonucleotides wherein the sequence (or a subsequence) is a direct function of the molecular weight. If, e.g., C - > G mutations are found in three positions (A,B,C) of a nucleic acid molecule, seven possible mutations (2* 2 * 2-1 ) beside the wild-type exist. By construction of eight "unmodified" detector oligonucleotides, it is not possible to distinguish between a single mutation i position A, B and C. However, by, e.g.
- each and every oligonucleotide will have a distinctive mass.
- the mixture of oligonucleotides only one LNA modified oligonucleotide will hybridise, and by subsequent mass spectroscopic analysis, the number and location of the mutations is directly detectable.
- Another variant for detecting a target nucleic acid sequence present in a biological sample, comprising the steps of:
- the detector oligonucleotide is an LNA modified oligonucleotide.
- the target nucleic acid is preferably amplified by an amplification procedure selected from the group consisting of: cloning, transcription based amplification, the polymerase chain reaction (PCR), the ligase chain reaction (LCR), and strand displacement amplification (SDA).
- the amplified target nucleic acid sequences are preferably immobilised onto a solid support to produce immobilised target nucleic acid sequences, and hybridisation between a complementary capture nucleic acid molecule (preferably an LNA modified oligonucleotide), which has been previously immobilised to a solid support, and the target nucleic acid sequence is subsequently conducted.
- a complementary capture nucleic acid molecule preferably an LNA modified oligonucleotide
- step b) is reversible so that the nucleic acid molecule can be liberated either for purification or for analytical purposes.
- a further variant for detecting a target nucleic acid sequence present in a biological sample comprising the steps of:
- LNA modified oligonucleotides may be used as capture nucleic acids or LNA monomers may be used in the replication of the nucleic acid molecule.
- nucleic acid molecules which have been replicated from a nucleic acid molecule obtained from a biological sample can be specifically digested using one or more nucleases (using deoxyribonucleases for DNA or ribonucleases for RNA) and the fragments captured on a solid support carrying the corresponding complementary sequences. Hybridisation events and the actual molecular weights of the captured target sequences provide information on whether and where mutations in the gene are present.
- the array can be analysed spot by spot using mass spectrometry.
- DNA can be similarly digested using a cocktail of nucleases including restriction endonucleases.
- the nucleic acid fragments are conditioned prior to mass spectrometric detection.
- the target nucleic acid sequence may be replicated into DNA using mass modified deoxynucleoside and/or dideoxynucleoside triphosphates and RNA dependent DNA polymerase.
- the mass modified deoxyribonucleoside and/or dideoxynucleoside triphosphates may be monomeric LNAs.
- the target nucleic acid sequence is replicated into RNA using mass modified ribonucleoside and/or 3'-deoxynucleoside triphosphates and DNA dependent RNA polymerase.
- the mass modified ribonucleoside and/or 3'-deoxynucleoside triphosphates may be monomeric LNAs.
- the target nucleic acid may be replicated into DNA using mass modified deoxynucleoside and/or dideoxynucleoside triphosphates and a DNA dependent DNA polymerase.
- the mass modified deoxyribonucleoside and/or dideoxynucleoside triphosphates may be monomeric LNAs.
- the complementary capture nucleic acid sequences are typically oligonucleotides or oligonucleotide mimetics, such as LNA modified oligonucleotides.
- the immobilisation is preferable reversible.
- a still further variant for detecting a target nucleic acid sequence present in a biological sample comprising the steps of:
- At least one primer with 3' terminal base complementarity to an allele is hybridised with a target nucleic acid molecule, which contains the allele.
- An appropriate polymerase and a complete set of nucleoside triphosphates or only one of the nucleoside triphosphates are used in separate reactions to furnish a distinct extension of the primer. Only if the primer is appropriately annealed (i. e. no 3' mismatch) and if the correct (i. e. complementary) nucleotide is added, will the primer be extended. Products can be resolved by molecular weight shifts as determined by mass spectrometry .
- the primer is an LNA modified oligonucleotide.
- a still further variant for detecting a target nucleotide present in a biological sample comprising the steps of:
- a nucleic acid molecule containing the nucleic acid sequence to be detected is initially immobilised to a solid support.
- Immobilisation can be accomplished, for example, based on hybridisation between a portion of the target nucleic acid molecule, which is distinct from the target detection site and a capture nucleic acid molecule, which has been previously immobilised to a solid support.
- immobilisation can be accomplished by direct bonding of the target nucleic acid molecule and the solid support.
- a nucleic acid molecule that is complementary to a portion of the target detection site that is immediately 5' of the site of a mutation is then hybridised with the target nucleic acid molecule.
- the addition of a complete set of dideoxynucleosides or 3'- deoxynucleoside triphosphates (e.g. pppAdd, pppTdd, pppCdd and pppGdd) and a DNA dependent DNA polymerase allows for the addition only of the one dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to X.
- the hybridisation product can then be detected by mass spectrometry.
- either the a capture nucleic acid molecule or the extended primer is an LNA modified oligonucleotide.
- This latter is preferably the case and can either be accomplished by using an LNA modified oligonucleotide as primer or using LNAs monomers as substrates for the nucleic acid polymerase.
- a still further variant for detecting a mutation in a nucleic acid molecule comprising the steps of:
- a target nucleic acid is hybridised with a complementary oligonucleotides that hybridise to the target within a region that includes a mutation M.
- the heteroduplex is then contacted with an agent that can specifically cleave at an unhybridised portion (e.g. a single strand specific endonuclease), so that a mismatch, indicating the presence of a mutation, results in the cleavage of the target nucleic acid.
- the two cleavage products can then be detected by mass spectrometry.
- the oligonucleotide probe is an LNA modified oligonucleotide.
- a even still further variant for detecting a target nucleic acid sequence present in a biological sample comprising the steps of a) obtaining a nucleic acid containing a target nucleic acid sequence from a biological sample; b) performing at least one hybridisation of the target nucleic acid sequence with a set of ligation educts and a thermostable DNA ligase, thereby forming a ligation product; c) ionising and volatilising the product of step b); and d) detecting the ligation product by mass spectrometry and comparing the value obtained with a known value to determine the target nucleic acid sequence.
- This variant is based on the ligase chain reaction (LCR) where a target nucleic acid is hybridised with a set of ligation educts and a thermostable DNA ligase, so that the ligase educts become covalently linked to each other, forming a ligation product.
- the ligation product can then be detected by mass spectrometry and compared to a known value. If the reaction is performed in a cyclic manner, the ligation product obtained can be amplified to better facilitate detection of small volumes of the target nucleic acid. Selection between wildtype and mutated primers at the ligation point can result in the detection of a point mutation. It is preferred that one of the ligation educts and/or the ligation product is an LNA modified oligonucleotide.
- the processes of the invention provide for increased accuracy and reliability of nucleic acid detection by mass spectrometry.
- the processes allow for rigorous controls to prevent false negative or positive results.
- the processes of the invention avoid electrophoretic steps: labelling and subsequent detection of a label.
- the entire procedure, including nucleic acid isolation, amplification, and mass spectrometry analysis requires only about 2-3 hours time. Therefore the instant disclosed processes of the invention are faster and less expensive to perform than existing DNA detection systems.
- the instant disclosed processes allow the nucleic acid fragments to be identified and detected at the same time by their specific molecular weights (an unambiguous physical standard), the disclosed processes are also much more accurate and reliable than currently, available procedures.
- the LNA modified oligonucleotide has a substantially similar or a higher affinity towards the nucleic acid sequence compared to a corresponding unmodified oligonucleotide.
- the LNA modified oligonucleotide comprises at least one nucleoside analogue which imparts to the oligomer a T m with a complementary DNA oligonucleotide which is at least 0.5 °C higher, such as at least 1.5 °C higher or 2.5 °C higher, preferably at least 3.5 °C higher, in particular at least 4.0 °C higher, especially at least 5.0 °C higher, than that of the corresponding unmodified reference oligonucleotide which does not comprise any nucleoside analogue.
- a complementary DNA oligonucleotide which is at least 0.5 °C higher, such as at least 1.5 °C higher or 2.5 °C higher, preferably at least 3.5 °C higher, in particular at least 4.0 °C higher, especially at least 5.0 °C higher, than that of the corresponding unmodified reference oligonucleotide which does not comprise any nucleoside analogue.
- the T m of the oligomer is at least 2.5 x N °C higher, preferably at least 3.5 x N °C higher, in particular at least 4.0 x N °C higher, especially at least 5.0 x N°C higher, than that of the corresponding unmodified reference oligonucleotide which does not comprise any LNAs, where N is the number of LNAs.
- the at least one nucleoside analogue imparts to the oligomer a T m with the complementary DNA oligonucleotide which is at least 0.5 °C higher, such as at least 1.5 °C higher or 2.5 °C higher, 4.0 °C higher, preferably at least 5.0 °C higher, in particular at least 6.0 °C higher, especially at least 7.0 °C higher, than that of the corresponding unmodified reference oligonucleotide which does not comprise any nucleoside analogue.
- the T m of the oligomer is at least 4.0 x N °C higher, preferably at least 5.0 x N °C higher, in particular at least 6.0 x N °C higher, especially at least 7.0 x N °C higher, than that of the corresponding unmodified reference oligonucleotide which does not comprise any LNA nucleoside analogues, where N is the number of nucleoside analogues.
- corresponding unmodified reference oligonucleotide is intended to mean an oligonucleotide solely consisting of naturally occurring nucleotides which represents the same nucleobases in the same absolute order (and the same orientation).
- the T m is measured under one of the following conditions:
- TMAC tetrametylammoniumchlorid
- the LNA modified oligonucleotide should also have a substantially similar or a higher specificity towards the nucleic acid sequence compared to a corresponding unmodified oligonucleotide.
- the oligomer when hybridised with a partially complementary DNA oligonucleotide, or a partially complementary RNA oligonucleotide, having one or more mismatches with said oligomer, should exhibit a reduction in T m , as a result of said mismatches, which is equal to or greater than the reduction which would be observed with the corresponding unmodified reference oligonucleotide which does not comprise any nucleoside analogues.
- the oligomer should have substantially the same sensitivity of T m to the ionic strength of the hybridisation buffer as that of the corresponding unmodified reference oligonucleotide.
- the specific feature of the processes of the present invention is the use of LNA modified oligonucleotides in mass spectrometry detection of a target nucleic acid sequence of a nucleic acid molecule or in mass spectrometry detection of a mutation in a nucleic acid sequence of a nucleic acid molecule.
- LNA modified oligonucleotides in mass spectrometry detection of a target nucleic acid sequence of a nucleic acid molecule or in mass spectrometry detection of a mutation in a nucleic acid sequence of a nucleic acid molecule.
- the present invention relates to processes which utilise oligomers (LNA modified oligonucleotides) comprising at least one nucleoside analogue (hereinafter termed "LNA") of the general formula I
- X is selected from -0-, -S-, -N(R N* )-, -C(R 6 R 6 >, -0-C(R 7 R 7* )-, -C(R 6 R 6* )-0-, -S- C(R 7 R 7 , -C(R 6 R 6* )-S-, -N(R N* )-C(R 7 R 7* )-, -C(R 6 R 6* )-N(R N >, and -C(R 6 R 6* )-C(R 7 R 7' )-;
- B is selected from hydrogen, hydroxy, optionally substituted C ⁇ -alkoxy, optionally substituted C ⁇ -alkyl, optionally substituted.
- -acyloxy nucleobases, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands;
- P designates the radical position for an internucleoside linkage to a succeeding monomer, or a 5'-terminal group, such internucleoside linkage or 5'-terminal group optionally including the substituent R 5 ;
- one of the substituents R 2 , R 2* , R 3 , and R 3* is a group P * which designates an internucleoside linkage to a preceding monomer, or a 3'-terminal group;
- each of the substituents R , R 2 , R 2* , R 3 , R 4* , R 5 , R 5* , R 6 and R 6* , R ⁇ and R which are present and not involved in P, P * or the biradical(s), is independently selected from hydrogen, optionally substituted C ⁇ _ 12 -alkyl, optionally substituted C 2 . 12 -alkenyl, optionally substituted C 2 . ⁇ 2 -alkynyl, hydroxy, d. ⁇ -alkoxy, C 2 . 12 -alkenyloxy, carboxy, C-,.
- LNAs nucleoside analogues
- substituent B is selected from nucleobases, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands;
- X is selected from -0-, -S-, -N(R N , and -C(R 6 R 6* )-;
- one of the substituents R 2 , R 2* , R 3 , and R 3* is a group Q*;
- each of Q and Q * is independently selected from hydrogen, azido, halogen, cyano, nitro, hydroxy, Prot-O-, Act-0-, mercapto, Prot-S-, Act-S-, d. 6 -alkylthio, amino, Prot-N(R H )-, Act-N(R H )-, mono- or di(C . 6 -alkyl)amino, optionally substituted d_ 6 -alkoxy, optionally substituted d-e-alkyl, optionally substituted C 2 . 6 -alkenyl, optionally substituted C 2 . 6 - alkenyloxy, optionally substituted C 2 .
- 6 -alkynyl optionally substituted C 2 . 6 -alkynyloxy, monophosphate, diphosphate, triphosphate, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, ligands, carboxy, sulphono, hydroxymethyl, Prot-O-CH 2 -, Act-0-CH 2 -, aminomethyl, Prot-N(R H )- CH 2 -, Act-N(R H )-CH 2 -, carboxymethyl, sulphonomethyl, where Prot is a protection group for -OH, -SH, and -NH(R H ), respectively, Act is an activation group for -OH, -SH, and - NH(R H ), respectively, and R H is selected from hydrogen and d.. 6 -alkyl;
- R 2* and R 4* together designate a biradical selected from -O-, -(CR * R * ) r+s+ ⁇ -,
- R 2 and R 3 together designate a biradical selected from -O-, -(CR * R * ) r+s -,
- R 2* and R 3 together designate a biradical selected from -O-, -(CR * R * ) r+s -,
- R 3 and R 4* together designate a biradical selected from -(CR * R * ) r -O-(CR * R * ) s -,
- R 3 and R 5 together designate a biradical selected from -(CR * R * ) r -O-(CR * R * ) s -,
- R 1* and R 4* together designate a biradical selected from -(CR * R * ) r -0-(CR * R * ) s -, -(CR * R * ) r -S-(CR * R * ) s -, and -(CR * R * ) r -N(R * )-(CR * R * ) s -; or (vi) R 1* and R 4* together designate a biradical selected from -(CR * R * ) r -0-(CR * R * ) s -, -(CR * R * ) r -S-(CR * R * ) s -, and -(CR * R * ) r -N(R * )-(CR * R * ) s -; (vii) R 1* and R 2* together designate a biradical selected from -(CR * R * ) r -O-(CR * R * ) s
- each R * is independently selected from hydrogen, halogen, azido, cyano, nitro, hydroxy, mercapto, amino, mono- or di(C 1 . 6 -alkyl)amino, optionally substituted d. 6 -alkoxy, optionally substituted d. 6 -alkyl, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, and/or two adjacent (non-geminal) R * may together designate a double bond, and each of r and s is 0-3 with the proviso that the sum r+s is 1-4;
- each of the substituents R , R 2 , R 2* , R 3 , R 4* , R 5 , and R 5* which are not involved in Q, Q * or the biradical, is independently selected from hydrogen, optionally substituted d- ⁇ 2 -alkyl, optionally substituted C 2 . ⁇ 2 -alkenyl, optionally substituted C 2 . 12 -alkynyl, hydroxy, C ⁇ . 12 - alkoxy, C 2 . 12 -alkenyloxy, carboxy, d.
- R N* when present and not involved in a biradical, is selected from hydrogen and d ⁇ -alkyl;
- LNA Locked Nucleoside Analogues
- LNA modified oligonucleotides generally formula I
- discrete chemical species generally formula II
- oligomers LNA modified oligonucleotides
- LNA polycyclic nucleoside analogues
- X is selected from -O- (the furanose motif), -S-, -N(R N , -C(R 6 R 6* )-, -0-C(R 7 R 7* )-, -C(R 6 R 6* )-O-, -S-C(R 7 R 7* )-, -C(R 6 R 6* )-S-, -N(R N* )-C(R 7 R 7* )-, -C(R 6 R 6* )-N(R N , and -C(R 6 R 6* )-C(R 7 R 7* )-, where R 6 , R 6* , R 7 , R 7* , and R N* are as defined further below.
- the substituent B may designate a group which, when the oligomer is complexing with DNA or RNA, is able to interact (e.g. by hydrogen bonding or covalent bonding or electronic interaction) with DNA or RNA, especially nucleobases of DNA or RNA.
- the substituent B may designate a group which acts as a label or a reporter, or the substituent B may designate a group (e.g. hydrogen) which is expected to have little or no interactions with DNA or RNA.
- the substituent B is preferably selected from hydrogen, hydroxy, optionally substituted C ⁇ -. 4 -alkoxy, optionally substituted d. - alkyl, optionally substituted d_ 4 -acyloxy, nucleobases, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands.
- nucleobase covers naturally occurring nucleobases as well as non-naturally occurring nucleobases. It should be clear to the person skilled in the art that various nucleobases which previously have been considered “non-naturally occurring” have subsequently been found in nature. Thus, “nucleobase” includes not only the known purine and pyrimidine heterocycles, but also heterocyclic analogues and tautomers thereof.
- nucleobases are adenine, guanine, thymine, cytosine, uracil, purine, xanthine, diaminopurine, 8-oxo-N 6 -methyladenine, 7- deazaxanthine, 7-deazaguanine, N 4 ,N 4 -ethanocytosin, N 6 ,N 6 -ethano-2,6-diaminopurine, 5-methylcytosine, 5-(C 3 -C 6 )-alkynylcytosine, 5-fluorouracil, 5-bromouracil, pseudoiso- cytosine, 2-hydroxy-5-methyl-4-triazolopyhdin, isocytosine, isoguanin, inosine and the "non-naturally occurring" nucleobases described in Benner et al., U.S.
- nucleobase is intended to cover every and all of these examples as well as analogues and tautomers thereof.
- Especially interesting nucleobases are adenine, guanine, thymine, cytosine, and uracil, which are considered as the naturally occurring nucleobases in relation to therapeutic and diagnostic application in humans.
- DNA intercalator means a group which can intercalate into a DNA or RNA helix, duplex or triplex.
- functional parts of DNA intercalators are achdines, anthracene, quinones such as anthraquinone, indole, quinoline, isoquinoline, dihydroquinones, anthracyclines, tetracyclines, methylene blue, anthracyclinone, psoralens, couma ns, ethidium-halides, dynemicin, metal complexes such as 1 ,10-phenanthroline-copper, tris(4,7-diphenyl-1 ,10-phenanthroline)ruthenium- cobalt-enediynes such as calcheamicin, porphyrins, distamycin, netropcin, viologen, daunomycin.
- acridines quinones such as anthraquinone, indole, quinoline,
- thermochemically active groups covers compounds which are able to undergo chemical reactions upon irradiation with light.
- functional groups hereof are quinones, especially 6-methyl-1 ,4-naphtoquinone, anthraquinone, naphtoquinone, and 1 ,4-dimethyl-anthraquinone, diazirines, aromatic azides, benzophenones, psoralens, diazo compounds, and diazirino compounds.
- thermally reactive group is defined as a functional group which is able to undergo thermochemically-induced covalent bond formation with other groups.
- thermochemically reactive groups are carboxylic acids, carboxylic acid esters such as activated esters, carboxylic acid halides such as acid fluorides, acid chlorides, acid bromide, and acid iodides, carboxylic acid azides, carboxylic acid hydrazides, sulfonic acids, sulfonic acid esters, sulfonic acid halides, semicarbazides, thiosemicarbazides, aldehydes, ketones, primary alkohols, secondary alkohols, tertiary alkohols, phenols, alkyl halides, thiols, disulphides, primary amines, secondary amines, tertiary amines, hydrazines, epoxides, maleimides, and boronic acid derivatives.
- carboxylic acids carboxylic acid esters such as activated esters
- carboxylic acid halides such as acid fluorides, acid chlorides, acid bromid
- chelating group means a molecule that contains more than one binding site and frequently binds to another molecule, atom or ion through more than one binding site at the same time.
- functional parts of chelating groups are iminodiacetic acid, nitrilotriacetic acid, ethylenediamine tetraacetic acid (EDTA), aminophosphonic acid, etc.
- reporter group means a group which is detectable either by itself or as a part of an detection series.
- functional parts of reporter groups are biotin, digoxigenin, fluorescent groups (groups which are able to absorb electromagnetic radiation, e.g.
- dansyl (5-dimethylamino)-1-naphthalenesulfonyl
- DOXYL N-oxyl-4,4- dimethyloxazolidine
- PROXYL N-oxyl-2,2,5,5-tetramethylpyrrolidine
- TEMPO N-oxyl- 2,2,6,6-tetramethylpiperidine
- dinitrophenyl acridines, coumarins, Cy3 and Cy5 (trademarks for Biological Detection Systems, Inc.), erytrosine, coumaric acid, umbelliferone, texas red, rhodamine, tetramethyl rhodamine, Rox, 7-nitrobenzo-2-oxa-1- diazole (NBD), pyrene, fluorescein, Europium, Ruthenium, Sama
- paramagnetic probes e.g. Cu 2+ , Mg 2+
- enzymes such as peroxidases, alkaline phosphatases, ⁇ -galactosidases, and glucose oxidases
- antigens antibodies
- haptens groups which are able to combine with an antibody, but which cannot initiate an immune response by itself, such as peptides and steroid hormones
- carrier systems for cell membrane penetration such as: fatty acid residues, steroid moieties (cholesteryl), vitamin A, vitamin D, vitamin E, folic acid peptides for specific receptors, groups for mediating endocytose, epidermal growth factor (EGF), bradykinin, and platelet derived growth factor (PDGF).
- biotin fluorescein, Texas Red, rhodamine, dinitrophenyl, digoxigen
- Ligands can comprise functional groups such as: aromatic groups (such as benzene, pyridine, naphtalene, anthracene, and phenanthrene), heteroaromatic groups (such as thiophene, furan, tetrahydrofuran, pyridine, dioxane, and pyrimidine), carboxylic acids, carboxylic acid esters, carboxylic acid halides, carboxylic acid azides, carboxylic acid hydrazides, sulfonic acids, sulfonic acid esters, sulfonic acid halides, semicarbazides, thiosemicarbazides, aldehydes, ketones, primary alcohols, secondary alcohols, tertiary alcohols, phenols, alkyl halides, thiols, disulphides, primary amines, secondary amines, tertiary amines, hydrazines, epoxide
- aromatic groups such as benzene, pyridine
- DNA intercalators photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands correspond to the "active/functional" part of the groups in question.
- DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands are typically represented in the form M-K- where M is the "active/functional" part of the group in question and where K is a spacer through which the "active/functional" part is attached to the 5- or 6-membered ring.
- the group B in the case where B is selected from DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, has the form M-K-, where M is the "active/functional" part of the DNA intercalator, photochemically active group, thermochemically active group, chelating group, reporter group, and ligand, respectively, and where K is an optional spacer comprising 1-50 atoms, preferably 1-30 atoms, in particular 1-15 atoms, between the 5- or 6-membered ring and the "active/functional" part.
- spacer means a thermochemically and photochemically non-active distance-making group and is used to join two or more different moieties of the types defined above. Spacers are selected on the basis of a variety of characteristics including their hydrophobicity , hydrophilicity, molecular flexibility and length (e.g. see Hermanson et. al., "Immobilised Affinity Ligand Techniques", Academic Press, San Diego, California (1992), p. 137-ff). Generally, the length of the spacers are less than or about 400 A, in some applications preferably less than 100 A.
- the spacer thus, comprises a chain of carbon atoms optionally interrupted or terminated with one or more heteroatoms, such as oxygen atoms, nitrogen atoms, and/or sulphur atoms.
- the spacer K may comprise one or more amide, ester, amino, ether, and/or thioether functionalities, and optionally aromatic or mono/polyunsaturated hydrocarbons, polyoxyethylene such as polyethylene glycol, oiigo/polyamides such as poly- ⁇ -alanine, polyglycine, polylysine, and peptides in general, oligosaccharides, oligo/polyphosphates.
- the spacer may consist of combined units thereof.
- the length of the spacer may vary, taking into consideration the desired or necessary positioning and spatial orientation of the "active/functional" part of the group in question in relation to the 5- or 6-membered ring.
- the spacer includes a chemically cleavable group. Examples of such chemically cleavable groups include disulphide groups cleavable under reductive conditions, peptide fragments cleavable by peptidases, etc.
- K designates a single bond so that the "active/functional" part of the group in question is attached directly to the 5- or 6- membered ring.
- the substituent B in the general formulae I and II is preferably selected from nucleobases, in particular from adenine, guanine, thymine, cytosine and urasil.
- P designates the radical position for an internucleoside linkage to a succeeding monomer, or a 5'-terminal group.
- the first possibility applies when the LNA in question is not the 5'-terminal "monomer", whereas the latter possibility applies when the LNA in question is the 5'-terminal "monomer”.
- R 5 or equally applicable: the substituent R 5* ) thereby forming a double bond to the group P.
- 5'-Terminal refers to the position corresponding to the 5' carbon atom of a ribose moiety in a nucleoside.
- an internucleoside linkage to a preceding monomer or a 3'-terminal group (P ) may originate from the positions defined by one of the substituents R 2 , R 2* , R 3 , and R 3* , preferably from the positions defined by one of the substituents R 3 and R 3* .
- the first possibility applies where the LNA in question is not the 3'-terminal "monomer", whereas the latter possibility applies when the LNA in question is the 3'- terminal "monomer".
- (3'-Terminal refers to the position corresponding to the 3' carbon atom of a ribose moiety in a nucleoside.
- the term "monomer” relates to naturally occurring nucleosides, non-naturally occurring nucleosides, PNA monomers, etc. as well as LNAs.
- the term “succeeding monomer” relates to the neighbouring monomer in the 5'-terminal direction and the “preceding monomer” relates to the neighbouring monomer in the 3'- terminal direction.
- Such succeeding and preceding monomers seen from the position of an LNA monomer, may be naturally occurring nucleosides or non-naturally occurring nucleosides, or even further LNA monomers.
- oligomer means an oligonucleotide modified by the incorporation of one or more LNA(s).
- LNA LNA
- the term "present” indicates that the existence of some of the substituents, i.e. R 6 , R 6* , R 7 , R 7* , R
- Z is selected from -O-, -S-, and -N(R a )-, and R a and R b each is independently selected from hydrogen, optionally substituted d. ⁇ 2 -alkyl, optionally substituted C 2 . 12 -alkenyl, optionally substituted C 2 . 12 -alkynyl, hydroxy, C M 2 - alkoxy, C 2 . 12 -alkenyloxy, carboxy, d.
- DNA intercalators photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands (where the latter groups may include a spacer as defined for the substituent B), where aryl and heteroaryl may be optionally substituted.
- each of the pair(s) of non-geminal substituents thereby forms a mono- or bicyclic entity together with (i) the atoms to which the non-geminal substituents are bound and (ii) any intervening atoms.
- the one or two pairs of non-geminal substituents which are constituting one or two biradical(s), respectively, are selected from the present substituents of R r , R 1* , R 6 , R 6* , R 7 , R 7* , R N* , and the ones of R 2 , R 2* , R 3 , and R 3* not designating P * .
- the LNAs incorporated in the oligomers comprise only one biradical constituted by a pair of (two) non-geminal substituents.
- R 3* designates P * and that the biradical is formed between R 2* and R 4* or R 2 and R 3 .
- the orientation of the biradicals are so that the left-hand side represents the substituent with the lowest number and the right-hand side represents the substituent with the highest number, thus, when R 3 and R 5 together designate a biradical "-O-CH 2 -", it is understood that the oxygen atom represents R 3 , thus the oxygen atom is e.g. attached to the position of R 3 , and the methylene group represents R 5 .
- DNA intercalators photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, and/or two adjacent (non-geminal) R * may together designate a double bond; and each of r and s is 0-4 with the proviso that the sum r+s is 1-5.
- each biradical is independently selected from -Y-, -(CR * R * ) r+s -, -(CR * R * ) r -Y-(CR * R * ) s -, and -Y-(CR * R * ) r+s -Y-, wherein and each of r and s is 0-3 with the proviso that the sum r+s is 1-4.
- R 2* and R 4* together designate a biradical selected from -Y-, -(CR * R * ) r+s+1 -, -(CR * R * ) r -Y-(CR * R * ) s -, and -Y-(CR * R * ) r+s -Y-;
- R 2 and R 3 together designate a biradical selected from -Y-, -(CR * R * ) r+s -, -(CR * R * ) r -Y-(CR * R * ) s -, and -Y-(CR * R * ) r+s -Y-;
- R 2* and R 3 together designate a biradical selected from -Y-, - (CR * R * ) r+s -, -(CR * R * ) r -Y-(
- Particularly interesting oligomers are those wherein one of the following criteria applies for at least one LNA in an oligomer: R 2* and R 4* together designate a biradical selected from - 0-, -S-, -N(R , -(CR * R * ) r+s+ ⁇ -, -(CR * R * ) r O-(CR * R * ) s -, -(CR * R * ) r -S-(CR * R * ) s -, -(CR * R * ) r -N(R * )- (CR * R * )s-, -O-(CR * R * ) r+s -O-, -S-(CR * R * ) r+s -0-, -O-(CR * R * ) r+s -S-, -N(R * )-(CR * R * ) r+s -S-, -N(R *
- R R s - designate a biradical selected from -(CR R ) r -0-(CR R ) s , -(CR * R * ) r -S-(CR * R * ) s -, and -(CR * R * ) r -N(R * )-(CR * R * ) s -; wherein each of r and s is 0-3 with the proviso that the sum r+s is 1-4, and where R H designates hydrogen or d ⁇ -alkyl.
- R 3* is preferably P * .
- one R * is selected from hydrogen, hydroxy, optionally substituted d. 6 -alkoxy, optionally substituted d. 6 -alkyl, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, and any remaining substituents R * are hydrogen.
- one group R in the biradical of at least one LNA is selected from DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands (where the latter groups may include a spacer as defined for the substituent B).
- R , R 2 , R 2* , R 3 , R 4* , R 5 , R 5* , R 6 and R 6* , R 7 , and R 7* are independently selected from hydrogen, optionally substituted d. 12 -alkyl, optionally substituted C 2 . ⁇ 2 -alkenyl, optionally substituted C 2 . 12 -alkynyl, hydroxy, d penal 12 -alkoxy, C 2 . 12 -alkenyloxy, carboxy, C ⁇ .
- ⁇ r alkoxycarbonyl C ⁇ . ⁇ 2 -alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(d. 6 -alkyl)amino, carbamoyl, mono- and di(C 1 . 6 -alkyl)-amino-carbonyl, amino-d-e-alkyl- aminocarbonyl, mono- and di(C 1 . 6 -alkyl)amino-C 1 .
- each of the substituents R r , R 2 , R 2* , R 3 , R 3* , Ff , R 5 , R 5* , R 6 , R 6* , R 7 , and R 7* of the LNA(s), which are present and not involved in P, P * or the biradical(s), is independently selected from hydrogen, optionally substituted d_ 6 -alkyl, optionally substituted C 2 . 6 -alkenyl, hydroxy, d. 6 -alkoxy, C 2 .
- DNA intercalators photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, and halogen, where two geminal substituents together may designate oxo, and where R N* , when present and not involved in a biradical, is selected from hydrogen and C ⁇ . 4 -alkyl.
- X is selected from -O-, -S-, and -NR N* -, in particular -O-, and each of the substituents R , R 2 , FT, R 3 , R 3* , R 4* , R 5 , R 5* , R 6 , R 6* , R 7 , and R 7* of the LNA(s), which are present and not involved in P, P * or the biradical(s), designate hydrogen.
- R 2* and R 4* of an LNA incorporated into an oligomer together designate a biradical.
- X is O
- R 2 selected from hydrogen, hydroxy, and optionally substituted d-e-alkoxy
- R 1* , R 3 , R 5 , and R 5* designate hydrogen
- the biradical is selected from -0-, -(CH 2 )o- ⁇ -O-(CH 2 ) 1 . 3 -, -(CH 2 )o. 1 -S-(CH 2 ) 1 . 3 -, -(CH 2 ) 0 . 1 -N(R N )-(CH 2 ) 1 .
- LNA modified oligonucleotide are those where R 2* and R 4* of an incorporated LNA of formula la together designate a biradical selected from -O-CH 2 -, -S- CH 2 -, and -NR H -CH 2 -; X is O, B designates a nucleobase selected from adenine, guanine, thymine, cytosine and urasil; R 2 is hydrogen, and R , R 3 , R 5 , and R 5* designate hydrogen.
- R 2 and R 3 of an LNA incorporated into an oligomer together designate a biradical.
- X is O
- R 2* is selected from hydrogen, hydroxy, and optionally substituted d. 6 -alkoxy
- R , R 4* , R 5 , and R 5* designate hydrogen
- the biradical is selected from -(CH 2 ) 0 . ⁇ -O-(CH 2 ) ⁇ -. 3 -, -(CH 2 )o- ⁇ -S-(CH 2 ) ⁇ .3-, -(CH 2 ) 0 - ⁇ -N(R H )-(CH 2 ) 1 .
- R 2* and R 3 of an LNA incorporated into an oligomer together designate a biradical.
- X is O
- R 2 is selected from hydrogen, hydroxy, and optionally substituted d. 6 -alkoxy
- R , R 4* , R 5 , and R 5* designate hydrogen
- the biradical is selected from -(CH 2 ) 0 - ⁇ - O-(CH 2 ) ⁇ -3- and -(CH 2 ) 2 . 4 -.
- R 3 and R 4* of an LNA incorporated into an oligomer together designate a biradical.
- X is O
- R 2* selected from hydrogen, hydroxy, and optionally substituted d_ 6 -alkoxy
- R , R 2 , R 5 , and R 5* designate hydrogen
- the biradical is -(CH 2 ) 0 - 2 -O-(CH 2 ) 0 . 2 -.
- R 3 and R 5* of an LNA incorporated into an oligomer together designate a biradical.
- X is O
- R 2* selected from hydrogen, hydroxy, and optionally substituted d_ 6 -alkoxy
- R 1* , R 2 , R 4 , and R 5 designate hydrogen
- the biradical is selected from -O-(CHR * ) 2 . 3 - and -(CHR * ) 1 . 3 -0-(CHR * )o.3-.
- R and R 4* of an LNA incorporated into an oligomer together designate a biradical.
- X is O
- R 2* selected from hydrogen, hydroxy, and optionally substituted d-e-alkoxy
- R 2 , R 3 , R 5 , and R 5* designate hydrogen
- the biradical is -(CH 2 ) 0 - 2 -O-(CH 2 ) 0 - 2 -.
- At least one LNA incorporated in an oligomer includes a nucleobase (substituent B) selected from adenine and guanine.
- a nucleobase substituted with nucleobase B
- an oligomer have LNA incorporated therein both include at least one nucleobase selected from thymine, urasil and cytosine and at least one nucleobase selected from adenine and guanine.
- the nucleobase is selected from adenine and guanine.
- the LNA(s) has/have the general formula la (see below).
- all monomers of an oligonucleotide are LNA monomers.
- oligomers prepared according to the method of the invention are intended to include all stereoisomers arising from the presence of any and all isomers of the individual monomer fragments as well as mixtures thereof, including racemic mixtures
- certain stereochemical configurations will be especially interesting, e g the following
- R preferably designates P
- the oligomers according typically comprise 1-10000 LNA(s) of the general formula I (or of the more detailed general formula la) and 0-10000 nucleosides selected from naturally occurring nucleosides and nucleoside analogues
- the sum of the number of nucleosides and the number of LNA(s) is at least 2, preferably at least 3, in particular at least 5, especially at least 7, such as in the range of 2-15000, preferably in the range of 2-100, such as 3-100, in particular in the range of 2-50, such as 3-50 or 5-50 or 7-50.
- At least one LNA comprises a nucleobase as the substituent B.
- nucleoside means a glycoside of a heterocyclic base.
- nucleoside is used broadly as to include non-naturally occurring nucleosides, naturally occurring nucleosides as well as other nucleoside analogues.
- Illustrative examples of nucleosides are ribonucleosides comprising a ribose moiety as well as deoxyribonuclesides comprising a deoxyribose moiety.
- bases of such nucleosides it should be understood that this may be any of the naturally occurring bases, e.g. adenine, guanine, cytosine, thymine, and uracil, as well as any modified variants thereof or any possible unnatural bases.
- an oligomer may comprise one or more LNA(s) (which may be identical or different both with respect to the selection of substituent and with respect to selection of biradical) and one or more nucleosides and/or nucleoside analogues.
- oligonucleotide means a successive chain of nucleosides connected via internucleoside linkages, however, it should be understood that a nucleobase in one or more nucleotide units (monomers) in an oligomer (oligonucleotide) may have been modified with a substituent B as defined above.
- the oligomers may be linear, branched or cyclic.
- the branching points may be located in a nucleoside, in an internucleoside linkage or, in an interesting embodiment, in an LNA. It is believed that in the latter case, the substituents R 2 , R 2* , R 3 , and R 3* may designate two groups P * each designating an internucleoside linkage to a preceding monomer, in particular, one of R 2 and R 2* designate P * and one or R 3 and R 3* designate a further P * .
- -alkyl, and R" is selected from d-e-alkyl and phenyl, are especially preferred. Further illustrative examples are given in Mesmaeker et. al., Current Opinion in Structural Biology 1995, 5, 343-355.
- the left-hand side of the internucleoside linkage is bound to the 5- or 6-membered ring as substituent P * , whereas the right-hand side is bound to the 5'-position of a preceding monomer.
- the group P may also designate a 5'-terminal group in the case where the LNA in question is the 5'-terminal monomer.
- 5'- terminal groups are hydrogen, hydroxy, optionally substituted d-e-alkyl, optionally substituted d_ 6 -alkoxy, optionally substituted d.
- the terms "monophosphate”, “diphosphate”, and “triphosphate” mean groups of the formula: -O-P(O) 2 -O " , -O-P(O) 2 -O-P(O) 2 -O " , and -O- P(O) 2 -O-P(O) 2 -0-P(O) 2 -O " , respectively.
- the group P designates a 5'-terminal groups selected from monophosphate, diphosphate and triphosphate.
- the triphosphate variant is interesting as a substrate for nucleic acid polymerases.
- the group P * may designate a 3'-terminal group in the case where the LNA in question is the 3'-terminal monomer.
- 3'-terminal groups are hydrogen, hydroxy, optionally substituted C ⁇ .6-alkoxy, optionally substituted d-e- alkylcarbonyloxy, optionally substituted aryloxy, and -W-A', wherein W is selected from - -O-, -S-, and -N(R H )- where R H is selected from hydrogen and d. 6 -alkyl, and where A' is selected from DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands (where the latter groups may include a spacer as defined for the substituent B).
- the oligomer has the following formula V:
- each of n(0), .., n(q) is independently 0-10000; each of m(1), .., m(q) is independently 1-10000; with the proviso that the sum of n(0), .., n(q) and m(1), .., m(q) is 2-15000;
- G designates a 5'-terminal group; each Nu independently designates a nucleoside selected from naturally occurring nucleosides and nucleoside analogues; each LNA independently designates a nucleoside analogue; each L independently designates an internucleoside linkage between two groups selected from Nu and LNA, or L together with G * designates a 3'-terminal group; and each LNA-L independently designates a nucleoside analogue of the general formula I as defined above, or preferably of the general formula la as defined above.
- the construction of the LNA modified oligomers used in the present invention depends on the function, i.e. whether the LNA modified oligonucleotide is to be used, e.g., as a capture probe, which is not to be analysed by mass spectrometry, or whether the LNA modified oligonucleotide is to be used as the oligomer to be analysed by mass spectrometry.
- the degree of LNA modification might be low in that the number of LNAs in the LNA modified oligonucleotide should just ensure that the hybridisation between the target nucleic acid and the LNA modified oligonucleotide is sufficiently stable, i.e. more stable that by using an unmodified oligonucleotide.
- Such LNA modified oligonucleotide might, thus, be relatively long, e.g. 10-200 nucleotides long, and in this instance, the LNA modified oligonucleotide might include a domain of, e.g.
- LNAs/nucleotides for hybridisation to the target nucleic acid and a further domain primarily constituted by nucleotides (e.g. a 2-200 base DNA) for spacing and immobilisation to a solid support.
- nucleotides e.g. a 2-200 base DNA
- an example would be: q is 1 , and n(0) or n(1) is 1-200, preferable 2-50 such as 2-20, and the other of n(0) and n(1) is 0, m(1) is 1- 50 such as 2-20 or 3-15.
- the "long" oligonucleotide typically comprises a ratio of LNAs to nucleotides in the oligonucleotide of 1 :20 to 1 :1 , such as 1 :10 to 1 :2, e.g. 1 :8 to 1 :4.
- the degree of LNA modification is typically relatively high (see below) and the LNA modified oligonucleotide is relatively short, e.g. 2-30 LNAs/nucleotides long, due to the fact that the resolution of the mass spectrometry signal decreases with increasing length (molecular mass).
- the "short" oligonucleotide typically comprises a ratio of LNAs to nucleotides in the oligonucleotide of at least 1 :2, such as at least 1 :1 , preferably at least 2:1.
- the present invention provides the intriguing possibility of including LNAs in oligonucleotides with different nucleobases (and thereby different molecular masses), in particular both nucleobases selected from thymine, cytosine and urasil and nucleobases selected from adenine and guanine.
- the oligomer may further comprises a PNA mono- or oligomer segment of the formula
- B is a defined above for the formula I
- AASC designates hydrogen or an amino acid side chain
- t is 1-5
- w is 1-50.
- amino acid side chain means a group bound to the ⁇ -atom of an ⁇ -amino acids, i.e. corresponding to the ⁇ -amino acid in question without the glycine moiety, preferably an either naturally occurring or a readily available ⁇ -amino acid.
- Illustrative examples are hydrogen (glycine itself), deuterium (deuterated glycine), methyl (alanine), cyanomethyl ( ⁇ -cyano-alanine), ethyl, 1 -propyl (norvaline), 2-propyl (valine), 2-methyl-1 -propyl (leucine), 2-hydroxy-2-methyl-1 -propyl ( ⁇ -hydroxy-leucine), 1- butyl (norleucine), 2-butyl (isoleucine), methylthioethyl (methionine), benzyl (phenyl- alanine), p-amino-benzyl (p-amino-phenylalanine), p-iodo-benzyl (p-iodo-phenylalanine), p-fluoro-benzyl (p-fluoro-phenylalanine), p-bromo-benzyl (p-bromo-phenylalanine), p- chloro-
- PNA mono- or oligomer segment may be incorporated in a oligomer as described in EP 0672677 A2.
- the oligomers are also intended to cover chimeric oligomers.
- Chimeric oligomers means two or more oligomers with monomers of different origin joined either directly or via a spacer.
- Illustrative examples of such oligomers which can be combined are peptides, PNA-oligomers, oligomers containing LNAs, and oligonucleotide oligomers.
- the present invention also utilises monomeric LNAs (preferably triphosphates) as substrates for, e.g., nucleic acid polymerases, polynucleotide kinases, and as terminal transferases.
- monomeric LNAs correspond in the overall structure (especially with respect to the possible biradicals) to the LNAs defined as constituents in oligomers, however with respect to the groups P and P * , the monomeric LNAs differ slightly as will be explained below.
- the monomeric LNAs may comprise functional group protecting groups, especially in the cases where the monomeric LNAs are to be incorporated into oligomers by chemical synthesis.
- LNAs bicyclic nucleoside analogues
- substituent B is selected from nucleobases, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands;
- X is selected from -O-, -S-, -N(R N* )-, and -C(R 6 R 6* )-, preferably from -O-, -S-, and -N(R N* )-;
- one of the substituents R 2 , R 2* , R 3 , and R 3* is a group Q*;
- each of Q and Q * is independently selected from hydrogen, azido, halogen, cyano, nitro, hydroxy, Prot-O-, Act-O-, mercapto, Prot-S-, Act-S-, d-e-alkylthio, amino, Prot-N(R H )-, Act-N(R H )-, mono- or di(C 1 . 6 -alkyl)amino, optionally substituted d. 6 -alkoxy, optionally substituted d-e-alkyl. optionally substituted C 2 . 6 -alkenyl, optionally substituted C 2 . 6 - alkenyloxy, optionally substituted C 2 .
- 6 -alkynyl optionally substituted C 2 . 6 -alkynyloxy, monophosphate, diphosphate, triphosphate, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, ligands, carboxy, sulphono, hydroxymethyl, Prot-0-CH 2 -, Act-0-CH 2 -, aminomethyl, Prot-N(R H )- CH 2 -, Act-N(R H )-CH 2 -, carboxymethyl, sulphonomethyl, where Prot is a protection group for -OH, -SH, and -NH(R H ), respectively, Act is an activation group for -OH, -SH, and - NH(R H ), respectively, and R H is selected from hydrogen and d. 6 -alkyl;
- R 2* and R 4* together designate a biradical selected from -0-, -S-, -N(R * )-, -(CR * R * ) r+s+1 -, -(CR * R * ) r -O-(CR * RV, -(CR * R * ) r -S-(CR * R * ) s -, -(CR * R * ) r N(R * )-(CR * R * ) s -, -O-(CR * R * ) r+s -O-, -S-(CR * R * ) r+s -O-, -O-(CR * R * ) r+s -S-, -O-(CR * R * ) r+s -S-, -N(R * )-(CR * R * ) r+s -O-, -O-(CR * R * ) r+s -S-
- R 3 and R 5 together designate a biradical selected from -(CR * R * ) r -O-(CR * R * ) s -, -(CR * R * ) r -S-(CR * R * ) s -, and -(CR * R * ) r -N(R * )-(CR * R * ) s -;
- R and R 4* together designate a biradical selected from -(CR * R * ) r -O-(CR * R * ) s -, -(CR * R * ) r -S-(CR * RV, and -(CR * R * ) r -N(R * )-(CR * R ) s -; or
- R 1* and R 2* together designate a biradical selected from -(CR * R * ) r -O-(CR * R * ) s - > -(CR * R * )
- the monomeric LNAs also comprise basic salts and acid addition salts thereof.
- any chemical group including any nucleobase
- which is reactive under the conditions prevailing in chemical oligonucleotide synthesis is optionally functional group protected as known in the art.
- groups such as hydroxy, amino, carboxy, sulphono, and mercapto groups, as well as nucleobases, of a monomeric LNA are optionally functional group protected. Protection (and deprotection) is performed by methods known to the person skilled in the art (see, e.g., Greene, T. W. and Wuts, P. G. M., "Protective Groups in Organic Synthesis", 2 nd ed., John Wiley, N.Y. (1991), and M.J. Gait, Oligonucleotide Synthesis, IRL Press, 1984).
- the group B in a monomeric LNA is preferably selected from nucleobases and protected nucleobases, preferably nucleobases selected from adenine, guanine, cytosine, thymine and urasil.
- one of Q and Q * designates a group selected from Act-O-, Act-S-, Act-N(R H )-, Act-O-CH 2 -, Act-S-CH 2 -, Act-N(R H )-CH 2 -, and the other of Q and Q * , preferably Q, designates a group selected from hydrogen, azido, halogen, cyano, nitro, hydroxy, Prot-O-, mercapto, Prot-S-, d-e-alkylthio, amino, Prot-N(R H )-, mono- or di(C 1 -. 6 -alkyl)amino, optionally substituted d.
- the group Prot designates a protecting group for -OH, -SH, and -NH(R H ), respectively.
- protection groups are selected from the same as defined above for hydroxy protection groups, mercapto protection group, and amino protection groups, respectively, however taking into consideration the need for a stable and reversible protection group.
- any protection group for -OH is selected from optionally substituted trityl, such as dimethoxytrityl (DMT), monomethoxytrityl (MMT), and trityl, and 9-(9-phenyl)xanthenyl (pixyl), optionally substituted, tetrahydropyranyl (thp) (further suitable hydroxy protection groups for phosphoramidite oligonucleotide synthesis are described in Agrawal, ed. "Protocols for Oligonucleotide Conjugates"; Methods in Molecular Biology, vol.
- any protection group for -SH is selected from trityl, such as dimethoxytrityl (DMT), monomethoxytrityl (MMT), and trityl, and 9-(9-phenyl)xanthenyl (pixyl), optionally substituted, tetrahydropyranyl (thp) (further suitable mercapto protection groups for phosphoramidite oligonucleotide synthesis are also described in Agrawal (see above); and that any protecting group for -NH(R H ) is selected from trityl, such as dimethoxytrityl (DMT), monomethoxytrityl (MMT), and trityl, and 9-(9-pheny
- Act designates an activation group for -OH, -SH, and -NH(R H ), respectively.
- activation groups are, e.g., selected from optionally substituted O-phosphoramidite, optionally substituted O- phosphortriester, optionally substituted O-phosphordiester, optionally substituted H- phosphonate, and optionally substituted O-phosphonate.
- the term "phosphoramidite” means a group of the formula -P(OR x )- N(R y ) 2 , wherein R x designates an optionally substituted alkyl group, e.g. methyl, 2-cyanoethyl, or benzyl, and each of R y designate optionally substituted alkyl groups, e.g. ethyl or isopropyl, or the group -N(R y ) 2 forms a morpholino group (-N(CH 2 CH 2 ) 2 0).
- R x preferably designates 2-cyanoethyl and the two R y are preferably identical and designate isopropyl.
- an especially relevant phosphoramidite is N,N-diisopropyl- 0-(2-cyanoethyl)phosphoramidite.
- the protecting groups used herein for a single monomeric LNA or several monomeric LNAs may be selected so that when this/these LNA(s) are incorporated in an oligomer, it will be possible to perform either a simultaneous deprotection or a sequential deprotection of the functional groups.
- the latter situation opens for the possibility of regioselectively introducing one or several "active/functional" groups such as DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, where such groups may be attached via a spacer as described above.
- Q is selected from hydrogen, azido, halogen, cyano, nitro, hydroxy, Prot-O-, mercapto, Prot-S-, Ci-e-alkylthio, amino, Prot-N(R H )-, mono- or di(C ⁇ -6- alkyl)amino, optionally substituted d e-alkoxy, optionally substituted d. 6 -alkyl, optionally substituted C 2 . 6 -alkenyl, optionally substituted C 2 . 6 -alkenyloxy, optionally substituted C 2 . 6 - alkynyl, optionally substituted C 2 .
- Q * is selected from hydrogen, azido, halogen, cyano, nitro, hydroxy, Act-O-, mercapto, Act-S-, d. 6 -alkylthio, amino, Act-N(R H )-, mono- or di(C 1 . 6 - alkyl)amino, optionally substituted d. 6 -alkoxy, optionally substituted d-e-alkyl, optionally substituted C 2 . 6 -alkenyl, optionally substituted C 2 . 6 -alkenyloxy, optionally substituted C 2 . 6 - alkynyl, optionally substituted C 2 .
- the monomeric LNAs of the general formula II may, as the LNAs incorporated into oligomers, represent various stereoisomers.
- the stereochemical variants described above for the LNAs incorporated into oligomers are believed to be equally applicable in the case of monomeric LNAs (however, it should be noted that P should then be replaced with Q).
- the monomeric LNA has the general formula lla
- B designates a nucleobase, preferably a nucleobase selected from thymine, cytosine, urasil, adenine and guanine (in particular adenine and guanine),
- X is -O-
- R 2* and R 4* together designate a biradical selected from -(CH 2 ) 0 - ⁇ -O-(CH 2 ) 1 . 3 -, -(CH 2 ) 0 - ⁇ -S-(CH 2 ) 1 .
- R N may also be selected from DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups and ligands.
- B designates a nucleobase, preferably a nucleobase selected from thymine, cytosine, urasil, adenine and guanine (in particular adenine and guanine),
- X is -O-
- R 2* and R 4* together designate a biradical selected from -(CH 2 ) 0 - ⁇ -O-(CH 2 ) 1 - 3 -, -(CH 2 ) 0 - ⁇ -S-(CH 2 ) 1 . 3 -, and -(CH 2 ) 0 -r N(R N )-(CH 2 ) 1 .
- R N is selected from hydrogen and d_ -alkyl
- Q is selected from hydroxy, mercapto, d. 6 -alkylthio, amino, mono- or di(C ⁇ . 6 -alkyl)amino, optionally substituted d_ 6 -aikoxy, optionally substituted C 2 . 6 - alkenyloxy, optionally substituted C 2 .
- R 3* is Q * which is selected from hydrogen, azido, halogen, cyano, nitro, hydroxy, mercapto, C ⁇ . 6 -alkylthio, amino, mono- or di(d. 6 -a!kyl)amino, optionally substituted C ⁇ . 6 -alkoxy, optionally substituted d-e-alkyl, optionally substituted C 2 . 6 -alkenyl, optionally substituted C 2 . 6 -alkenyloxy, optionally substituted C 2 . 6 -alkynyl, and optionally substituted C 2 .
- R 3 is selected from hydrogen, optionally substituted C ⁇ . 6 -alkyl, optionally substituted C 2 . 6 -alkenyl, and optionally substituted C 2 . 6 -alkynyl, and R 1* , R 2 , R 5 , and R 5* each designate hydrogen.
- R N may also be selected from DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups and ligands.
- B designates a nucleobase
- X is -O-
- Q is selected from hydroxy, mercapto, d. 6 -alkylthio, amino, mono- or di(C 1 . 6 -alkyl)amino, optionally substituted d.
- R 3* is Q * which is selected from hydrogen, azido, halogen, cyano, nitro, hydroxy, mercapto, C ⁇ _ 6 -alkylthio, amino, mono- or di(d. 6 -alkyl)amino, optionally substituted C ⁇ - 6 -alkoxy, optionally substituted d-e-alkyl, optionally substituted C 2 . 6 -alkenyl, optionally substituted C 2 . 6 -alkenyloxy, optionally substituted C 2 . 6 -alkynyl, and optionally substituted C 2 . 6 -alkynyloxy, and R 1* , R 2* , R 4* , R 5 , and R 5* each designate hydrogen.
- the oligomer comprising at least one LNA of the general formula la
- X is -0-;
- B is selected from nucleobases, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands;
- P designates the radical position for an internucleoside linkage to a succeeding monomer, or a 5'-terminal group, such internucleoside linkage or 5'-terminal group optionally including the substituent R 5 ;
- R 3* is a group P* which designates an internucleoside linkage to a preceding monomer, or a 3'-terminal group;
- R 2* and R 4* together designate a biradical selected from -O-, -S, -N(R * )-, -(CR * R * ) r+s+1 -, -(CR * R * ) r -O- (CR * R * ) S -, -(CR * R " ) r -S-(CR * R * )
- 6 -alkyl)amino, optionally substituted d- 6 -alkoxy, optionally substituted C ⁇ . 6 -alkyl, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, and/or two adjacent (non- geminal) R * may together designate a double bond, and each of r and s is 0-3 with the proviso that the sum r+s is 1-4; each of the substituents R , R ⁇ R 3 , R 5 , and R 5* is independently selected from hydrogen, optionally substituted d. 6 -alkyl, optionally substituted C 2 . 6 -alkenyl, hydroxy, d.
- R * is selected from hydrogen, hydroxy, optionally substituted d-e-alkoxy, optionally substituted d. 6 -alkyl, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, and any remaining substituents R * are hydrogen.
- the biradical is selected from -0-, -(CH 2 ) 0 -rO-(CH 2 ) 1 .
- the present invention relates to an LNA of the general formula I la wherein X is -O-; B is selected from nucleobases, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands; R 3* is a group Q * ; each of Q and Q * is independently selected from hydrogen, azido, halogen, cyano, nitro, hydroxy, Prot-O-, Act-O-, mercapto, Prot-S-, Act-S-, d-e- alkylthio, amino, Prot-N(R H )-, Act-N(R H )-, mono- or di(d-e-alkyl)amino, optionally substituted C ⁇ .
- 6 -alkyl)amino optionally substituted d. 6 -alkoxy, optionally substituted d_ 6 -alkyl, DNA intercalators, photochemically active groups, thermochemically active groups, chelating groups, reporter groups, and ligands, and/or two adjacent (non-geminal) R * may together designate a double bond, and each of r and s is 0-3 with the proviso that the sum r+s is 1- 4; each of the substituents R 1* , R 2 , R 3 , R 5 , and R 5* is independently selected from hydrogen, optionally substituted d. 6 -alkyl, optionally substituted C 2 .
- the biradical is selected from -0-, -(CH 2 )o.i-O-(CH 2 ) 1 .3-, -(CH 2 )o. 1 -S-(CH 2 ) 1 . 3 -, -(CH 2 ) 0 . ⁇ -N(R N )-(CH 2 ) 1 . 3 -, and -(CH 2 ) 2 . 4 -.
- d. 12 -alkyl means a linear, cyclic or branched hydrocarbon group having 1 to 12 carbon atoms, such as methyl, ethyl, propyl, / ' so-propyl, cyclopropyl, butyl, te/ ⁇ -butyl, /so-butyl, cyclobutyl, pentyl, cyclopentyl, hexyl, cyclohexyl, and dodecyl.
- d- 6 -alkyl means a linear, cyclic or branched hydrocarbon group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, /so-propyl, pentyl, cyclopentyl, hexyl, cyclohexyl, and the term "C ⁇ . -alkyl” is intended to cover linear, cyclic or branched hydrocarbon groups having 1 to 4 carbon atoms, e.g. methyl, ethyl, propyl, /so-propyl, cyclopropyl, butyl, /so-butyl, te/ ⁇ -butyl, cyclobutyl.
- d-e-alkyl are methyl, ethyl, propyl, /so-propyl, butyl, te/ ⁇ -butyl, /so- butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, in particular methyl, ethyl, propyl, /so-propyl, tett-butyl, /so-butyl and cyclohexyl.
- Preferred examples of "d_ -alkyl” are methyl, ethyl, propyl, /so-propyl, butyl, tert-butyl, and /so-butyl.
- C 2 . ⁇ 2 -alkenyl covers linear, cyclic or branched hydrocarbon groups having 2 to 12 carbon atoms and comprising one unsaturated bond.
- alkenyl groups are vinyl, allyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, dodecaenyl.
- C 2 . 6 -alkenyl is intended to cover linear, cyclic or branched hydrocarbon groups having 2 to 6 carbon atoms and comprising one unsaturated bond.
- Preferred examples of alkenyl are vinyl, allyl, butenyl, especially allyl.
- C 2 . 12 -alkynyl means a linear or branched hydrocarbon group having 2 to 12 carbon atoms and comprising a triple bond. Examples hereof are ethynyl, propynyl, butynyl, octynyl, and dodecanyl. In the present context, i.e.
- alkyl in connection with the terms “alkyl”, “alkenyl”, and “alkynyl”
- the term “optionally substituted” means that the group in question may be substituted one or several times, preferably 1-3 times, with group(s) selected from hydroxy (which when bound to an unsaturated carbon atom may be present in the tautomeric keto form), d- ⁇ - alkoxy (i.e. d- ⁇ -alkyl-oxy), C 2 .
- the substituents are selected from hydroxy, d_ 6 -alkoxy, carboxy, d-6- alkoxycarbonyl, d. 6 -alkylcarbonyl, formyl, aryl, aryloxycarbonyl, arylcarbonyl, heteroaryl, amino, mono- and di(C 1 . 6 -alkyl)amino, carbamoyl, mono- and di(C 1 - 6 -alkyl)aminocarbonyl, amino-d_ 6 -alkyl-aminocarbonyl, mono- and di(C 1 . 6 -alkyl)amino-C 1 .
- aryl and heteroaryl may be substituted 1-5 times, preferably 1-3 times, with d_ -alkyl, d. -alkoxy, nitro, cyano, amino or halogen.
- Especially preferred examples are hydroxy, d. 6 -alkoxy, carboxy, aryl, heteroaryl, amino, mono- and di(C 1 -. 6 -alkyl)amino, and halogen, where aryl and heteroaryl may be substituted 1-3 times with d. -alkyl, d.. 4 -alkoxy, nitro, cyano, amino or
- aryl means a fully or partially aromatic carbocyclic ring or ring system, such as phenyl, naphthyl, 1 ,2,3,4-tetrahydronaphthyl, anthracyl, phenanthracyl, pyrenyl, benzopyrenyl, fluorenyl and xanthenyl, among which phenyl is a preferred example.
- heteroaryl groups examples include oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridinyl, pyrazinyl, pyridazinyl, piperidinyl, coumaryl, furyl, quinolyl, benzothiazolyl, benzotriazolyl, benzodiazolyl, benzooxozolyl, phthalazinyl, phthalanyl, triazolyl, tetrazolyl, isoquinolyl, acridinyl, carbazolyl, dibenzazepinyl, indolyl, benzopyrazolyl, phenoxazonyl.
- the term “optionally substituted” means that the group in question may be substituted one or several times, preferably 1-5 times, in particular 1-3 times) with group(s) selected from hydroxy (which when present in an enol system may be represented in the tautomeric keto form), d-e-alkyl, C ⁇ . 6 -alkoxy, oxo (which may be represented in the tautomeric enol form), carboxy, d-e-alkoxycarbonyl, d.
- 6 -alkylcarbonyl formyl, aryl, aryloxy, aryloxy- carbonyl, arylcarbonyl, heteroaryl, amino, mono- and di(C 1 . 6 -alkyl)amino; carbamoyl, mono- and di(C 1 . 6 -alkyl)aminocarbonyl, amino-d. 6 -alkyl-aminocarbonyl, mono- and di(d. 6 -alkyl)amino-C 1 .. 6 -alkyl-a ⁇ inocarbonyl, d-e-alkylcarbonylamino, cyano, guanidino, carbamido, d.
- Halogen includes fluoro, chloro, bromo, and iodo.
- oligomers (LNA modified oligonucleotides) and LNAs as such include possible salts thereof, of which pharmaceutically acceptable salts are especially relevant.
- Salts include acid addition salts and basic salts.
- acid addition salts are hydrochloride salts, sodium salts, calcium salts, potassium salts, etc.
- basic salts are salts where the (remaining) counter ion is selected from alkali metals, such as sodium and potassium, alkaline earth metals, such as calcium, and ammonium ions ( + N(R 9 ) 3 R h , where each of R 9 and R h independently designates optionally substituted d-e- alkyl, optionally substituted C 2 .
- salts are, e.g., those described in Remington's Pharmaceutical Sciences, 17. Ed. Alfonso R. Gennaro (Ed.), Mack Publishing Company, Easton, PA, U.S.A., 1985 and more recent editions and in Encyclopedia of Pharmaceutical Technology.
- an acid addition salt or a basic salt thereof used herein is intended to comprise such salts.
- the oligomers and LNAs as well as any intermediates or starting materials therefor may also be present in hydrate form.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DK38199 | 1999-03-18 | ||
| DKPA199900381 | 1999-03-18 | ||
| PCT/DK2000/000126 WO2000057180A2 (fr) | 1999-03-18 | 2000-03-17 | Utilisation d'analogues nucleosidiques bloques en spectrometrie de masse |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1161681A2 true EP1161681A2 (fr) | 2001-12-12 |
Family
ID=8092860
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP00910582A Withdrawn EP1161681A2 (fr) | 1999-03-18 | 2000-03-17 | Utilisation d'analogues nucleosidiques bloques en spectrometrie de masse |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP1161681A2 (fr) |
| JP (1) | JP2002540402A (fr) |
| AU (1) | AU3274400A (fr) |
| IL (1) | IL145421A0 (fr) |
| WO (1) | WO2000057180A2 (fr) |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2217597A (en) * | 1996-03-18 | 1997-10-22 | Sequenom, Inc. | Dna sequencing by mass spectrometry |
| US5821060A (en) * | 1996-08-02 | 1998-10-13 | Atom Sciences, Inc. | DNA sequencing, mapping, and diagnostic processes using hybridization chips and unlabeled DNA |
| CA2270132A1 (fr) * | 1996-11-06 | 1998-05-14 | Sequenom, Inc. | Diagnostics de l'adn fondes sur la spectrometrie de masse |
| GB9716231D0 (en) * | 1997-07-31 | 1997-10-08 | Amersham Int Ltd | Base analogues |
-
2000
- 2000-03-17 JP JP2000607004A patent/JP2002540402A/ja active Pending
- 2000-03-17 IL IL14542100A patent/IL145421A0/xx unknown
- 2000-03-17 WO PCT/DK2000/000126 patent/WO2000057180A2/fr not_active Ceased
- 2000-03-17 AU AU32744/00A patent/AU3274400A/en not_active Abandoned
- 2000-03-17 EP EP00910582A patent/EP1161681A2/fr not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| See references of WO0057180A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2000057180A2 (fr) | 2000-09-28 |
| AU3274400A (en) | 2000-10-09 |
| WO2000057180A3 (fr) | 2001-02-08 |
| WO2000057180A8 (fr) | 2001-05-03 |
| JP2002540402A (ja) | 2002-11-26 |
| IL145421A0 (en) | 2002-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6436640B1 (en) | Use of LNA in mass spectrometry | |
| EP0979305B1 (fr) | Sondes d'hybridation couplees a des marqueurs de masse | |
| JP4608171B2 (ja) | 質量ラベル | |
| CN103459407B (zh) | 用于电化学检定的新二茂铁标记物及其在分析方法中的用途 | |
| EP1161554B1 (fr) | Detection de mutations dans des genes par des amorces de lna specifiques | |
| US7618780B2 (en) | Use of mass labelled probes to detect target nucleic acids using mass spectrometry | |
| US20050042625A1 (en) | Mass label linked hybridisation probes | |
| US20020137057A1 (en) | Rapid, quantitative method for the mass spectrometric analysis of nucleic acids for gene expression and genotyping | |
| US7867714B2 (en) | Target-specific compomers and methods of use | |
| JP2003230394A (ja) | マススペクトロメトリーによるdna配列決定法 | |
| JP2001524808A (ja) | 放出可能な不揮発性の質量標識分子 | |
| KR20070012779A (ko) | 반복적 올리고뉴클레오티드 합성을 위한 조성물, 방법 및검출 기법 | |
| US6699668B1 (en) | Mass label linked hybridisation probes | |
| EP1161681A2 (fr) | Utilisation d'analogues nucleosidiques bloques en spectrometrie de masse | |
| US20040023217A1 (en) | Method for the analysis of nucleic acid sequences | |
| HK1103107B (en) | Target-specific compomers and methods of use |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20010919 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL PAYMENT 20010919;LT PAYMENT 20010919;LV PAYMENT 20010919;MK PAYMENT 20010919;RO PAYMENT 20010919;SI PAYMENT 20010919 |
|
| 17Q | First examination report despatched |
Effective date: 20020812 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20030415 |