EP1159398A2 - Perfumed detergent tablet - Google Patents
Perfumed detergent tabletInfo
- Publication number
- EP1159398A2 EP1159398A2 EP00917788A EP00917788A EP1159398A2 EP 1159398 A2 EP1159398 A2 EP 1159398A2 EP 00917788 A EP00917788 A EP 00917788A EP 00917788 A EP00917788 A EP 00917788A EP 1159398 A2 EP1159398 A2 EP 1159398A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- tablet
- coating
- acid
- tablet according
- detergent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 98
- 150000001875 compounds Chemical class 0.000 claims abstract description 72
- 239000003352 sequestering agent Substances 0.000 claims abstract description 20
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 19
- 239000002734 clay mineral Substances 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims description 136
- 238000000576 coating method Methods 0.000 claims description 109
- 239000011248 coating agent Substances 0.000 claims description 104
- 239000000463 material Substances 0.000 claims description 63
- 239000004927 clay Substances 0.000 claims description 59
- -1 alkali metal ethane 1-hydroxy diphosphonates Chemical class 0.000 claims description 52
- 239000002304 perfume Substances 0.000 claims description 46
- 239000002253 acid Substances 0.000 claims description 40
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 38
- VAMXMNNIEUEQDV-UHFFFAOYSA-N methyl anthranilate Chemical compound COC(=O)C1=CC=CC=C1N VAMXMNNIEUEQDV-UHFFFAOYSA-N 0.000 claims description 36
- 239000002245 particle Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 32
- 239000011236 particulate material Substances 0.000 claims description 30
- 239000007788 liquid Substances 0.000 claims description 25
- 239000004094 surface-active agent Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 20
- 239000001361 adipic acid Substances 0.000 claims description 19
- 235000011037 adipic acid Nutrition 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 18
- 230000008018 melting Effects 0.000 claims description 18
- 229940102398 methyl anthranilate Drugs 0.000 claims description 18
- 239000004615 ingredient Substances 0.000 claims description 16
- 239000008394 flocculating agent Substances 0.000 claims description 12
- 239000002262 Schiff base Substances 0.000 claims description 10
- 150000004753 Schiff bases Chemical class 0.000 claims description 10
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical compound O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 7
- WPFVBOQKRVRMJB-UHFFFAOYSA-N hydroxycitronellal Chemical compound O=CCC(C)CCCC(C)(C)O WPFVBOQKRVRMJB-UHFFFAOYSA-N 0.000 claims description 7
- ORMHZBNNECIKOH-UHFFFAOYSA-N 4-(4-hydroxy-4-methylpentyl)cyclohex-3-ene-1-carbaldehyde Chemical compound CC(C)(O)CCCC1=CCC(C=O)CC1 ORMHZBNNECIKOH-UHFFFAOYSA-N 0.000 claims description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 6
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 5
- 230000003014 reinforcing effect Effects 0.000 claims description 4
- MZZRKEIUNOYYDF-UHFFFAOYSA-N 2,4-dimethylcyclohex-3-ene-1-carbaldehyde Chemical compound CC1C=C(C)CCC1C=O MZZRKEIUNOYYDF-UHFFFAOYSA-N 0.000 claims description 3
- NFAVNWJJYQAGNB-UHFFFAOYSA-N 2-methylundecanal Chemical compound CCCCCCCCCC(C)C=O NFAVNWJJYQAGNB-UHFFFAOYSA-N 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 2
- 239000003826 tablet Substances 0.000 description 189
- 239000010410 layer Substances 0.000 description 51
- 239000007844 bleaching agent Substances 0.000 description 37
- 102000004190 Enzymes Human genes 0.000 description 30
- 108090000790 Enzymes Proteins 0.000 description 30
- 229940088598 enzyme Drugs 0.000 description 29
- 239000011230 binding agent Substances 0.000 description 27
- 230000000694 effects Effects 0.000 description 22
- 239000000243 solution Substances 0.000 description 20
- 239000012190 activator Substances 0.000 description 19
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 19
- 239000011734 sodium Substances 0.000 description 19
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 18
- 239000002585 base Substances 0.000 description 18
- 239000000843 powder Substances 0.000 description 18
- 229910052708 sodium Inorganic materials 0.000 description 18
- 235000015424 sodium Nutrition 0.000 description 18
- 150000003839 salts Chemical class 0.000 description 17
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 15
- 238000004090 dissolution Methods 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- 239000007884 disintegrant Substances 0.000 description 13
- 239000003752 hydrotrope Substances 0.000 description 13
- 239000010457 zeolite Substances 0.000 description 13
- 239000000440 bentonite Substances 0.000 description 12
- 229910000278 bentonite Inorganic materials 0.000 description 12
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 12
- 235000014113 dietary fatty acids Nutrition 0.000 description 12
- 239000004744 fabric Substances 0.000 description 12
- 239000000194 fatty acid Substances 0.000 description 12
- 229930195729 fatty acid Natural products 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- 238000004806 packaging method and process Methods 0.000 description 12
- 238000005406 washing Methods 0.000 description 12
- 229910021536 Zeolite Inorganic materials 0.000 description 11
- 229910000323 aluminium silicate Inorganic materials 0.000 description 11
- 238000007906 compression Methods 0.000 description 11
- 230000006835 compression Effects 0.000 description 11
- 229910021647 smectite Inorganic materials 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- 108090001060 Lipase Proteins 0.000 description 10
- 102000004882 Lipase Human genes 0.000 description 10
- 108091005804 Peptidases Proteins 0.000 description 10
- 229920005646 polycarboxylate Polymers 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 239000004367 Lipase Substances 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 9
- 150000004665 fatty acids Chemical class 0.000 description 9
- 235000019421 lipase Nutrition 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 159000000000 sodium salts Chemical class 0.000 description 9
- 238000005507 spraying Methods 0.000 description 9
- 230000035882 stress Effects 0.000 description 9
- 238000009472 formulation Methods 0.000 description 8
- 239000008187 granular material Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 108010059892 Cellulase Proteins 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 238000004061 bleaching Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- UYNKVBYVIGUBMK-UHFFFAOYSA-N CC.OOP(=O)OP(O)=O Chemical compound CC.OOP(=O)OP(O)=O UYNKVBYVIGUBMK-UHFFFAOYSA-N 0.000 description 6
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N Caprolactam Natural products O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- 102000035195 Peptidases Human genes 0.000 description 6
- 239000004365 Protease Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 125000002091 cationic group Chemical group 0.000 description 6
- 229940106157 cellulase Drugs 0.000 description 6
- 239000003205 fragrance Substances 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- 229930002839 ionone Natural products 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 6
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 6
- 239000002689 soil Substances 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 102000013142 Amylases Human genes 0.000 description 5
- 108010065511 Amylases Proteins 0.000 description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 150000008051 alkyl sulfates Chemical class 0.000 description 5
- 235000019418 amylase Nutrition 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 5
- 238000004851 dishwashing Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 230000002538 fungal effect Effects 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002736 nonionic surfactant Substances 0.000 description 5
- 150000004760 silicates Chemical class 0.000 description 5
- 235000019832 sodium triphosphate Nutrition 0.000 description 5
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- 108010084185 Cellulases Proteins 0.000 description 4
- 102000005575 Cellulases Human genes 0.000 description 4
- 241000402754 Erythranthe moschata Species 0.000 description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 4
- 102000003992 Peroxidases Human genes 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 239000004902 Softening Agent Substances 0.000 description 4
- 108010056079 Subtilisins Proteins 0.000 description 4
- 102000005158 Subtilisins Human genes 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- HFJRKMMYBMWEAD-UHFFFAOYSA-N dodecanal Chemical compound CCCCCCCCCCCC=O HFJRKMMYBMWEAD-UHFFFAOYSA-N 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 239000003906 humectant Substances 0.000 description 4
- 238000004900 laundering Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 239000000344 soap Substances 0.000 description 4
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 4
- 229910021653 sulphate ion Inorganic materials 0.000 description 4
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 4
- QUMXDOLUJCHOAY-UHFFFAOYSA-N 1-Phenylethyl acetate Chemical compound CC(=O)OC(C)C1=CC=CC=C1 QUMXDOLUJCHOAY-UHFFFAOYSA-N 0.000 description 3
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 3
- 229920001353 Dextrin Polymers 0.000 description 3
- 239000004375 Dextrin Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 3
- 208000035874 Excoriation Diseases 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229920002873 Polyethylenimine Polymers 0.000 description 3
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 150000004996 alkyl benzenes Chemical class 0.000 description 3
- 229940025131 amylases Drugs 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005056 compaction Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000001627 detrimental effect Effects 0.000 description 3
- 235000019425 dextrin Nutrition 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 239000002355 dual-layer Substances 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 150000002499 ionone derivatives Chemical class 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000012768 molten material Substances 0.000 description 3
- 229910052901 montmorillonite Inorganic materials 0.000 description 3
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229960001922 sodium perborate Drugs 0.000 description 3
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 3
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 238000009492 tablet coating Methods 0.000 description 3
- 239000002700 tablet coating Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 2
- WLDGDTPNAKWAIR-UHFFFAOYSA-N 1,4,7-trimethyl-1,4,7-triazonane Chemical compound CN1CCN(C)CCN(C)CC1 WLDGDTPNAKWAIR-UHFFFAOYSA-N 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- WRFXXJKURVTLSY-UHFFFAOYSA-N 2,6-dimethyloctan-2-ol Chemical compound CCC(C)CCCC(C)(C)O WRFXXJKURVTLSY-UHFFFAOYSA-N 0.000 description 2
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 description 2
- DLHQZZUEERVIGQ-UHFFFAOYSA-N 3,7-dimethyl-3-octanol Chemical compound CCC(C)(O)CCCC(C)C DLHQZZUEERVIGQ-UHFFFAOYSA-N 0.000 description 2
- FAGGUIDTQQXDSJ-UHFFFAOYSA-N 3-benzoylazepan-2-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCCNC1=O FAGGUIDTQQXDSJ-UHFFFAOYSA-N 0.000 description 2
- NTPLXRHDUXRPNE-UHFFFAOYSA-N 4-methoxyacetophenone Chemical compound COC1=CC=C(C(C)=O)C=C1 NTPLXRHDUXRPNE-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000014493 Crataegus Nutrition 0.000 description 2
- 241001092040 Crataegus Species 0.000 description 2
- FKUPPRZPSYCDRS-UHFFFAOYSA-N Cyclopentadecanolide Chemical compound O=C1CCCCCCCCCCCCCCO1 FKUPPRZPSYCDRS-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 229940022663 acetate Drugs 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- IGODOXYLBBXFDW-UHFFFAOYSA-N alpha-Terpinyl acetate Chemical compound CC(=O)OC(C)(C)C1CCC(C)=CC1 IGODOXYLBBXFDW-UHFFFAOYSA-N 0.000 description 2
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 230000003625 amylolytic effect Effects 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 229940092714 benzenesulfonic acid Drugs 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical class OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920006184 cellulose methylcellulose Polymers 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- HQKQRXZEXPXXIG-VJOHVRBBSA-N chembl2333940 Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@H]1[C@@](OC(C)=O)(C)CC2 HQKQRXZEXPXXIG-VJOHVRBBSA-N 0.000 description 2
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 2
- 235000000484 citronellol Nutrition 0.000 description 2
- JOZKFWLRHCDGJA-UHFFFAOYSA-N citronellol acetate Chemical compound CC(=O)OCCC(C)CCC=C(C)C JOZKFWLRHCDGJA-UHFFFAOYSA-N 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 239000011872 intimate mixture Substances 0.000 description 2
- 239000007942 layered tablet Substances 0.000 description 2
- SDQFDHOLCGWZPU-UHFFFAOYSA-N lilial Chemical compound O=CC(C)CC1=CC=C(C(C)(C)C)C=C1 SDQFDHOLCGWZPU-UHFFFAOYSA-N 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- 230000002366 lipolytic effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- BFBPISPWJZMWJN-UHFFFAOYSA-N methyl 2-[(7-hydroxy-3,7-dimethyloctylidene)amino]benzoate Chemical compound COC(=O)C1=CC=CC=C1N=CCC(C)CCCC(C)(C)O BFBPISPWJZMWJN-UHFFFAOYSA-N 0.000 description 2
- RBAUBIIMPLZNGC-UHFFFAOYSA-N methyl 2-[[3-(4-tert-butylphenyl)-2-methylpropylidene]amino]benzoate Chemical compound COC(=O)C1=CC=CC=C1N=CC(C)CC1=CC=C(C(C)(C)C)C=C1 RBAUBIIMPLZNGC-UHFFFAOYSA-N 0.000 description 2
- KVWWIYGFBYDJQC-UHFFFAOYSA-N methyl dihydrojasmonate Chemical compound CCCCCC1C(CC(=O)OC)CCC1=O KVWWIYGFBYDJQC-UHFFFAOYSA-N 0.000 description 2
- 108010020132 microbial serine proteinases Proteins 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000005026 oriented polypropylene Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000012437 perfumed product Substances 0.000 description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 229940124531 pharmaceutical excipient Drugs 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical class OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 239000000429 sodium aluminium silicate Substances 0.000 description 2
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 229940048086 sodium pyrophosphate Drugs 0.000 description 2
- 229940080313 sodium starch Drugs 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 108010075550 termamyl Proteins 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- LWBHHRRTOZQPDM-UHFFFAOYSA-N undecanedioic acid Chemical compound OC(=O)CCCCCCCCCC(O)=O LWBHHRRTOZQPDM-UHFFFAOYSA-N 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- HLCSDJLATUNSSI-JXMROGBWSA-N (2e)-3,7-dimethylocta-2,6-dienenitrile Chemical compound CC(C)=CCC\C(C)=C\C#N HLCSDJLATUNSSI-JXMROGBWSA-N 0.000 description 1
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 1
- JIRHAGAOHOYLNO-UHFFFAOYSA-N (3-cyclopentyloxy-4-methoxyphenyl)methanol Chemical compound COC1=CC=C(CO)C=C1OC1CCCC1 JIRHAGAOHOYLNO-UHFFFAOYSA-N 0.000 description 1
- VSRVCSJJKWDZSH-UHFFFAOYSA-N (3-pentyloxan-4-yl) acetate Chemical compound CCCCCC1COCCC1OC(C)=O VSRVCSJJKWDZSH-UHFFFAOYSA-N 0.000 description 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- YPZUZOLGGMJZJO-XRGAULLZSA-N (3as,5as,9as,9br)-3a,6,6,9a-tetramethyl-2,4,5,5a,7,8,9,9b-octahydro-1h-benzo[e][1]benzofuran Chemical compound CC([C@@H]1CC2)(C)CCC[C@]1(C)[C@@H]1[C@@]2(C)OCC1 YPZUZOLGGMJZJO-XRGAULLZSA-N 0.000 description 1
- MTDAKBBUYMYKAR-SNVBAGLBSA-N (3r)-3,7-dimethyloct-6-enenitrile Chemical compound N#CC[C@H](C)CCC=C(C)C MTDAKBBUYMYKAR-SNVBAGLBSA-N 0.000 description 1
- VCOCESNMLNDPLX-BTXGZQJSSA-N (3s,6s)-2,2,8,8-tetramethyl-octahydro-1h-2,4a-methanonapthalene-10-one Chemical compound O=C1CCC(C)(C)[C@@]2(C3)C1C(C)(C)[C@H]3CC2 VCOCESNMLNDPLX-BTXGZQJSSA-N 0.000 description 1
- 239000001724 (4,8-dimethyl-2-propan-2-ylidene-3,3a,4,5,6,8a-hexahydro-1H-azulen-6-yl) acetate Substances 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- UFLHIIWVXFIJGU-ARJAWSKDSA-N (Z)-hex-3-en-1-ol Chemical compound CC\C=C/CCO UFLHIIWVXFIJGU-ARJAWSKDSA-N 0.000 description 1
- KHQDWCKZXLWDNM-KPKJPENVSA-N (e)-2-ethyl-4-(2,2,3-trimethylcyclopent-3-en-1-yl)but-2-en-1-ol Chemical compound CC\C(CO)=C/CC1CC=C(C)C1(C)C KHQDWCKZXLWDNM-KPKJPENVSA-N 0.000 description 1
- BGLLQCPSNQUDKF-UHFFFAOYSA-N 1,2,3,4-tetrahydronaphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)CCCC2=C1 BGLLQCPSNQUDKF-UHFFFAOYSA-N 0.000 description 1
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 1
- VDBHOHJWUDKDRW-UHFFFAOYSA-N 1-(1,1,2,3,3,6-hexamethyl-2h-inden-5-yl)ethanone Chemical compound CC1=C(C(C)=O)C=C2C(C)(C)C(C)C(C)(C)C2=C1 VDBHOHJWUDKDRW-UHFFFAOYSA-N 0.000 description 1
- FVUGZKDGWGKCFE-UHFFFAOYSA-N 1-(2,3,8,8-tetramethyl-1,3,4,5,6,7-hexahydronaphthalen-2-yl)ethanone Chemical compound CC1(C)CCCC2=C1CC(C(C)=O)(C)C(C)C2 FVUGZKDGWGKCFE-UHFFFAOYSA-N 0.000 description 1
- CRIGTVCBMUKRSL-FNORWQNLSA-N 1-(2,6,6-trimethylcyclohex-2-en-1-yl)but-2-enone Chemical compound C\C=C\C(=O)C1C(C)=CCCC1(C)C CRIGTVCBMUKRSL-FNORWQNLSA-N 0.000 description 1
- ILAPVZVYHKSGFM-UHFFFAOYSA-N 1-(carboxymethoxy)ethane-1,1,2-tricarboxylic acid Chemical class OC(=O)COC(C(O)=O)(C(O)=O)CC(O)=O ILAPVZVYHKSGFM-UHFFFAOYSA-N 0.000 description 1
- IMRYETFJNLKUHK-SJKOYZFVSA-N 1-[(2r,3r)-1,1,2,6-tetramethyl-3-propan-2-yl-2,3-dihydroinden-5-yl]ethanone Chemical compound CC1=C(C(C)=O)C=C2[C@H](C(C)C)[C@@H](C)C(C)(C)C2=C1 IMRYETFJNLKUHK-SJKOYZFVSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 1
- OFHHDSQXFXLTKC-UHFFFAOYSA-N 10-undecenal Chemical compound C=CCCCCCCCCC=O OFHHDSQXFXLTKC-UHFFFAOYSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- FYERTDTXGGOMGT-UHFFFAOYSA-N 2,2-diethoxyethylbenzene Chemical compound CCOC(OCC)CC1=CC=CC=C1 FYERTDTXGGOMGT-UHFFFAOYSA-N 0.000 description 1
- WNJSKZBEWNVKGU-UHFFFAOYSA-N 2,2-dimethoxyethylbenzene Chemical compound COC(OC)CC1=CC=CC=C1 WNJSKZBEWNVKGU-UHFFFAOYSA-N 0.000 description 1
- DFKNUKQYBKNNMA-UHFFFAOYSA-N 2,3-di(propan-2-yl)benzenesulfonic acid Chemical class CC(C)C1=CC=CC(S(O)(=O)=O)=C1C(C)C DFKNUKQYBKNNMA-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- XSNQECSCDATQEL-SECBINFHSA-N 2,6-dimethyl-7-octen-2-ol Chemical compound C=C[C@@H](C)CCCC(C)(C)O XSNQECSCDATQEL-SECBINFHSA-N 0.000 description 1
- BEARMGATPGLSKG-UHFFFAOYSA-N 2,6-dimethyloct-7-en-2-yl acetate Chemical compound C=CC(C)CCCC(C)(C)OC(C)=O BEARMGATPGLSKG-UHFFFAOYSA-N 0.000 description 1
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 1
- AWNOGHRWORTNEI-UHFFFAOYSA-N 2-(6,6-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)ethyl acetate Chemical compound CC(=O)OCCC1=CCC2C(C)(C)C1C2 AWNOGHRWORTNEI-UHFFFAOYSA-N 0.000 description 1
- ROKSAUSPJGWCSM-UHFFFAOYSA-N 2-(7,7-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)ethanol Chemical compound C1C2C(C)(C)C1CC=C2CCO ROKSAUSPJGWCSM-UHFFFAOYSA-N 0.000 description 1
- HWQVXNFIYABVIW-UHFFFAOYSA-N 2-(carboxymethylamino)-4,5-dihydroxypentanoic acid Chemical compound OCC(O)CC(C(O)=O)NCC(O)=O HWQVXNFIYABVIW-UHFFFAOYSA-N 0.000 description 1
- LUZDYPLAQQGJEA-UHFFFAOYSA-N 2-Methoxynaphthalene Chemical compound C1=CC=CC2=CC(OC)=CC=C21 LUZDYPLAQQGJEA-UHFFFAOYSA-N 0.000 description 1
- FLUWAIIVLCVEKF-UHFFFAOYSA-N 2-Methyl-1-phenyl-2-propanyl acetate Chemical compound CC(=O)OC(C)(C)CC1=CC=CC=C1 FLUWAIIVLCVEKF-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- MJTPMXWJHPOWGH-UHFFFAOYSA-N 2-Phenoxyethyl isobutyrate Chemical compound CC(C)C(=O)OCCOC1=CC=CC=C1 MJTPMXWJHPOWGH-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical group CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- GOKVKLCCWGRQJV-UHFFFAOYSA-N 2-[6-(decanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O GOKVKLCCWGRQJV-UHFFFAOYSA-N 0.000 description 1
- ISBYGXCCBJIBCG-UHFFFAOYSA-N 2-[6-(nonanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O ISBYGXCCBJIBCG-UHFFFAOYSA-N 0.000 description 1
- JKZLOWDYIRTRJZ-UHFFFAOYSA-N 2-[6-(octanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O JKZLOWDYIRTRJZ-UHFFFAOYSA-N 0.000 description 1
- XSAYZAUNJMRRIR-UHFFFAOYSA-N 2-acetylnaphthalene Chemical compound C1=CC=CC2=CC(C(=O)C)=CC=C21 XSAYZAUNJMRRIR-UHFFFAOYSA-N 0.000 description 1
- GGAVUMZUOHJGGM-UHFFFAOYSA-N 2-decanoyloxybenzenesulfonic acid Chemical compound CCCCCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O GGAVUMZUOHJGGM-UHFFFAOYSA-N 0.000 description 1
- GZFRVDZZXXKIGR-UHFFFAOYSA-N 2-decanoyloxybenzoic acid Chemical compound CCCCCCCCCC(=O)OC1=CC=CC=C1C(O)=O GZFRVDZZXXKIGR-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-UHFFFAOYSA-N 2-dodec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCC=CC(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-UHFFFAOYSA-N 0.000 description 1
- ZDKYIHHSXJTDKX-UHFFFAOYSA-N 2-dodecanoyloxybenzenesulfonic acid Chemical compound CCCCCCCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O ZDKYIHHSXJTDKX-UHFFFAOYSA-N 0.000 description 1
- PJXHBTZLHITWFX-UHFFFAOYSA-N 2-heptylcyclopentan-1-one Chemical compound CCCCCCCC1CCCC1=O PJXHBTZLHITWFX-UHFFFAOYSA-N 0.000 description 1
- GCVQVCAAUXFNGJ-UHFFFAOYSA-N 2-hexadecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)CC(O)=O GCVQVCAAUXFNGJ-UHFFFAOYSA-N 0.000 description 1
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 1
- HGECJFVPNUYRJZ-UHFFFAOYSA-N 2-methyl-2-(4-propan-2-ylphenyl)propanal Chemical compound CC(C)C1=CC=C(C(C)(C)C=O)C=C1 HGECJFVPNUYRJZ-UHFFFAOYSA-N 0.000 description 1
- DXPLEDYRQHTBDJ-UHFFFAOYSA-N 2-pentadec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O DXPLEDYRQHTBDJ-UHFFFAOYSA-N 0.000 description 1
- BYORIRBJKXLXTH-UHFFFAOYSA-N 2-phenylethanol;2-phenylethyl acetate Chemical compound OCCC1=CC=CC=C1.CC(=O)OCCC1=CC=CC=C1 BYORIRBJKXLXTH-UHFFFAOYSA-N 0.000 description 1
- MWTDCUHMQIAYDT-UHFFFAOYSA-N 2-tetradecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCC(C(O)=O)CC(O)=O MWTDCUHMQIAYDT-UHFFFAOYSA-N 0.000 description 1
- BJLRAKFWOUAROE-UHFFFAOYSA-N 2500-83-6 Chemical compound C12C=CCC2C2CC(OC(=O)C)C1C2 BJLRAKFWOUAROE-UHFFFAOYSA-N 0.000 description 1
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical compound O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- HLCSDJLATUNSSI-UHFFFAOYSA-N 3,7-dimethylocta-2,6-dienenitrile Chemical compound CC(C)=CCCC(C)=CC#N HLCSDJLATUNSSI-UHFFFAOYSA-N 0.000 description 1
- PRNCMAKCNVRZFX-UHFFFAOYSA-N 3,7-dimethyloctan-1-ol Chemical compound CC(C)CCCC(C)CCO PRNCMAKCNVRZFX-UHFFFAOYSA-N 0.000 description 1
- BWVZAZPLUTUBKD-UHFFFAOYSA-N 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol Chemical compound CC1(C)C(C)C2CC1CC2C1CCCC(O)C1 BWVZAZPLUTUBKD-UHFFFAOYSA-N 0.000 description 1
- CDWQJRGVYJQAIT-UHFFFAOYSA-N 3-benzoylpiperidin-2-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCNC1=O CDWQJRGVYJQAIT-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- OLDXODLIOAKDPY-UHFFFAOYSA-N 3-decanoylpiperidin-2-one Chemical compound CCCCCCCCCC(=O)C1CCCNC1=O OLDXODLIOAKDPY-UHFFFAOYSA-N 0.000 description 1
- DRRJQOTXGHFQQU-UHFFFAOYSA-N 3-ethyl-2-methylbenzenesulfonic acid Chemical class CCC1=CC=CC(S(O)(=O)=O)=C1C DRRJQOTXGHFQQU-UHFFFAOYSA-N 0.000 description 1
- ZISGOYMWXFOWAM-UHFFFAOYSA-N 3-methyl-2-pentylcyclopentan-1-one Chemical compound CCCCCC1C(C)CCC1=O ZISGOYMWXFOWAM-UHFFFAOYSA-N 0.000 description 1
- NGYMOTOXXHCHOC-UHFFFAOYSA-N 3-methyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pentan-2-ol Chemical compound CC(O)C(C)CCC1CC=C(C)C1(C)C NGYMOTOXXHCHOC-UHFFFAOYSA-N 0.000 description 1
- WVILLSKUJNGUKA-UHFFFAOYSA-N 3-nonanoylpiperidin-2-one Chemical compound CCCCCCCCC(=O)C1CCCNC1=O WVILLSKUJNGUKA-UHFFFAOYSA-N 0.000 description 1
- YILDPURCUKWQHU-UHFFFAOYSA-N 3-octanoylpiperidin-2-one Chemical compound CCCCCCCC(=O)C1CCCNC1=O YILDPURCUKWQHU-UHFFFAOYSA-N 0.000 description 1
- INIOTLARNNSXAE-UHFFFAOYSA-N 4,8-dimethyl-2-propan-2-ylidene-3,3a,4,5,6,8a-hexahydro-1h-azulen-6-ol Chemical compound CC1CC(O)C=C(C)C2CC(=C(C)C)CC12 INIOTLARNNSXAE-UHFFFAOYSA-N 0.000 description 1
- MQBIZQLCHSZBOI-UHFFFAOYSA-N 4-(4-Methyl-3-pentenyl)-3-cyclohexene-1-carboxaldehyde Chemical compound CC(C)=CCCC1=CCC(C=O)CC1 MQBIZQLCHSZBOI-UHFFFAOYSA-N 0.000 description 1
- CVLHGLWXLDOELD-UHFFFAOYSA-N 4-(Propan-2-yl)benzenesulfonic acid Chemical compound CC(C)C1=CC=C(S(O)(=O)=O)C=C1 CVLHGLWXLDOELD-UHFFFAOYSA-N 0.000 description 1
- KOEDSBONUVRKAF-UHFFFAOYSA-N 4-(nonylamino)-4-oxobutaneperoxoic acid Chemical compound CCCCCCCCCNC(=O)CCC(=O)OO KOEDSBONUVRKAF-UHFFFAOYSA-N 0.000 description 1
- IKTHMQYJOWTSJO-UHFFFAOYSA-N 4-Acetyl-6-tert-butyl-1,1-dimethylindane Chemical compound CC(=O)C1=CC(C(C)(C)C)=CC2=C1CCC2(C)C IKTHMQYJOWTSJO-UHFFFAOYSA-N 0.000 description 1
- LMYSNFBROWBKMB-UHFFFAOYSA-N 4-[2-(dipropylamino)ethyl]benzene-1,2-diol Chemical compound CCCN(CCC)CCC1=CC=C(O)C(O)=C1 LMYSNFBROWBKMB-UHFFFAOYSA-N 0.000 description 1
- MBZRJSQZCBXRGK-UHFFFAOYSA-N 4-tert-Butylcyclohexyl acetate Chemical compound CC(=O)OC1CCC(C(C)(C)C)CC1 MBZRJSQZCBXRGK-UHFFFAOYSA-N 0.000 description 1
- IURMGGCMSVXMBV-UHFFFAOYSA-N 5-(cyclohexen-1-yl)-3-hexyl-2-propylhexanedioic acid Chemical compound CCCCCCC(C(CCC)C(O)=O)CC(C(O)=O)C1=CCCCC1 IURMGGCMSVXMBV-UHFFFAOYSA-N 0.000 description 1
- AVLQNPBLHZMWFC-UHFFFAOYSA-N 6-(nonylamino)-6-oxohexaneperoxoic acid Chemical compound CCCCCCCCCNC(=O)CCCCC(=O)OO AVLQNPBLHZMWFC-UHFFFAOYSA-N 0.000 description 1
- LJSJTXAZFHYHMM-UHFFFAOYSA-N 7-methyloctyl acetate Chemical compound CC(C)CCCCCCOC(C)=O LJSJTXAZFHYHMM-UHFFFAOYSA-N 0.000 description 1
- 244000283070 Abies balsamea Species 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000750142 Auricula Species 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000717739 Boswellia sacra Species 0.000 description 1
- 108010073997 Bromide peroxidase Proteins 0.000 description 1
- FHNUZQMQPXBPJV-UHFFFAOYSA-N CC(C)(C)CC(C)CC(=O)C1CCCNC1=O Chemical compound CC(C)(C)CC(C)CC(=O)C1CCCNC1=O FHNUZQMQPXBPJV-UHFFFAOYSA-N 0.000 description 1
- 101100148128 Caenorhabditis elegans rsp-4 gene Proteins 0.000 description 1
- 101100201838 Caenorhabditis elegans rsp-6 gene Proteins 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- 108010035722 Chloride peroxidase Proteins 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- 240000008772 Cistus ladanifer Species 0.000 description 1
- 235000005241 Cistus ladanifer Nutrition 0.000 description 1
- JOZKFWLRHCDGJA-LLVKDONJSA-N Citronellyl acetate Natural products CC(=O)OCC[C@H](C)CCC=C(C)C JOZKFWLRHCDGJA-LLVKDONJSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000016649 Copaifera officinalis Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241001459693 Dipterocarpus zeylanicus Species 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 241000237379 Dolabella Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- TWLLPUMZVVGILS-UHFFFAOYSA-N Ethyl 2-aminobenzoate Chemical compound CCOC(=O)C1=CC=CC=C1N TWLLPUMZVVGILS-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- XRHCAGNSDHCHFJ-UHFFFAOYSA-N Ethylene brassylate Chemical compound O=C1CCCCCCCCCCCC(=O)OCCO1 XRHCAGNSDHCHFJ-UHFFFAOYSA-N 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 239000004863 Frankincense Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- DUKPKQFHJQGTGU-UHFFFAOYSA-N Hexyl salicylic acid Chemical compound CCCCCCOC(=O)C1=CC=CC=C1O DUKPKQFHJQGTGU-UHFFFAOYSA-N 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001480714 Humicola insolens Species 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 239000004869 Labdanum Substances 0.000 description 1
- 235000019501 Lemon oil Nutrition 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- LQKRYVGRPXFFAV-UHFFFAOYSA-N Phenylmethylglycidic ester Chemical compound CCOC(=O)C1OC1(C)C1=CC=CC=C1 LQKRYVGRPXFFAV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 240000002505 Pogostemon cablin Species 0.000 description 1
- 235000011751 Pogostemon cablin Nutrition 0.000 description 1
- 229920002518 Polyallylamine hydrochloride Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 235000006894 Primula auricula Nutrition 0.000 description 1
- 101710180012 Protease 7 Proteins 0.000 description 1
- 101710127332 Protease I Proteins 0.000 description 1
- 101710194948 Protein phosphatase PhpP Proteins 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000145542 Pseudomonas marginata Species 0.000 description 1
- 101000968491 Pseudomonas sp. (strain 109) Triacylglycerol lipase Proteins 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241000934878 Sterculia Species 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 241000223258 Thermomyces lanuginosus Species 0.000 description 1
- 101710137710 Thioesterase 1/protease 1/lysophospholipase L1 Proteins 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- UAVFEMBKDRODDE-UHFFFAOYSA-N Vetiveryl acetate Chemical compound CC1CC(OC(C)=O)C=C(C)C2CC(=C(C)C)CC12 UAVFEMBKDRODDE-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- ZUBJEHHGZYTRPH-KTKRTIGZSA-N [(z)-octadec-9-enyl] hydrogen sulfate Chemical compound CCCCCCCC\C=C/CCCCCCCCOS(O)(=O)=O ZUBJEHHGZYTRPH-KTKRTIGZSA-N 0.000 description 1
- PXLVUBPOUFMYMH-UHFFFAOYSA-N [Na+].OB(O)O.OB(O)[O-] Chemical compound [Na+].OB(O)O.OB(O)[O-] PXLVUBPOUFMYMH-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 125000004171 alkoxy aryl group Chemical group 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- HMKKIXGYKWDQSV-KAMYIIQDSA-N alpha-Amylcinnamaldehyde Chemical compound CCCCC\C(C=O)=C\C1=CC=CC=C1 HMKKIXGYKWDQSV-KAMYIIQDSA-N 0.000 description 1
- GUUHFMWKWLOQMM-NTCAYCPXSA-N alpha-hexylcinnamaldehyde Chemical compound CCCCCC\C(C=O)=C/C1=CC=CC=C1 GUUHFMWKWLOQMM-NTCAYCPXSA-N 0.000 description 1
- GUUHFMWKWLOQMM-UHFFFAOYSA-N alpha-n-hexylcinnamic aldehyde Natural products CCCCCCC(C=O)=CC1=CC=CC=C1 GUUHFMWKWLOQMM-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 239000005030 aluminium foil Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 229940062909 amyl salicylate Drugs 0.000 description 1
- 229960004543 anhydrous citric acid Drugs 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- WWLOCCUNZXBJFR-UHFFFAOYSA-N azanium;benzenesulfonate Chemical class [NH4+].[O-]S(=O)(=O)C1=CC=CC=C1 WWLOCCUNZXBJFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- LSVYFFDZLQBSCB-UHFFFAOYSA-N bis(1,2,6,10-tetramethylcyclododeca-2,5,9-trien-1-yl)methanone Chemical compound C1CC(C)=CCCC(C)=CCC=C(C)C1(C)C(=O)C1(C)C(C)=CCC=C(C)CCC=C(C)CC1 LSVYFFDZLQBSCB-UHFFFAOYSA-N 0.000 description 1
- FZJUFJKVIYFBSY-UHFFFAOYSA-N bourgeonal Chemical compound CC(C)(C)C1=CC=C(CCC=O)C=C1 FZJUFJKVIYFBSY-UHFFFAOYSA-N 0.000 description 1
- XNOQNFJEPBFKLL-UHFFFAOYSA-N butanedioic acid;1,2-diaminopropan-2-ol Chemical compound CC(N)(O)CN.OC(=O)CCC(O)=O.OC(=O)CCC(O)=O XNOQNFJEPBFKLL-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 125000000271 carboxylic acid salt group Chemical group 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- SVURIXNDRWRAFU-OGMFBOKVSA-N cedrol Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@@H]1[C@@](O)(C)CC2 SVURIXNDRWRAFU-OGMFBOKVSA-N 0.000 description 1
- 229940026455 cedrol Drugs 0.000 description 1
- PCROEXHGMUJCDB-UHFFFAOYSA-N cedrol Natural products CC1CCC2C(C)(C)C3CC(C)(O)CC12C3 PCROEXHGMUJCDB-UHFFFAOYSA-N 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000001926 citrus aurantium l. subsp. bergamia wright et arn. oil Substances 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- BLBJUGKATXCWET-UHFFFAOYSA-N cyclaprop Chemical compound C12CC=CC2C2CC(OC(=O)CC)C1C2 BLBJUGKATXCWET-UHFFFAOYSA-N 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- KVFDZFBHBWTVID-UHFFFAOYSA-N cyclohexane-carboxaldehyde Natural products O=CC1CCCCC1 KVFDZFBHBWTVID-UHFFFAOYSA-N 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- XSNQECSCDATQEL-UHFFFAOYSA-N dihydromyrcenol Chemical compound C=CC(C)CCCC(C)(C)O XSNQECSCDATQEL-UHFFFAOYSA-N 0.000 description 1
- 229930008394 dihydromyrcenol Natural products 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- XQRLCLUYWUNEEH-UHFFFAOYSA-L diphosphonate(2-) Chemical compound [O-]P(=O)OP([O-])=O XQRLCLUYWUNEEH-UHFFFAOYSA-L 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- JHUXOSATQXGREM-UHFFFAOYSA-N dodecanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCCCC(=O)OO JHUXOSATQXGREM-UHFFFAOYSA-N 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- IGBSXRIJNMDLFB-UHFFFAOYSA-N ethane-1,2-diamine;pentanedioic acid Chemical compound NCCN.OC(=O)CCCC(O)=O.OC(=O)CCCC(O)=O IGBSXRIJNMDLFB-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- UZABCLFSICXBCM-UHFFFAOYSA-N ethoxy hydrogen sulfate Chemical class CCOOS(O)(=O)=O UZABCLFSICXBCM-UHFFFAOYSA-N 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- NYNCZOLNVTXTTP-UHFFFAOYSA-N ethyl 2-(1,3-dioxoisoindol-2-yl)acetate Chemical compound C1=CC=C2C(=O)N(CC(=O)OCC)C(=O)C2=C1 NYNCZOLNVTXTTP-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940093468 ethylene brassylate Drugs 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- JPZROSNLRWHSQQ-UHFFFAOYSA-N furan-2,5-dione;prop-2-enoic acid Chemical compound OC(=O)C=C.O=C1OC(=O)C=C1 JPZROSNLRWHSQQ-UHFFFAOYSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000000451 gelidium spp. gum Substances 0.000 description 1
- HIGQPQRQIQDZMP-UHFFFAOYSA-N geranil acetate Natural products CC(C)=CCCC(C)=CCOC(C)=O HIGQPQRQIQDZMP-UHFFFAOYSA-N 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- HIGQPQRQIQDZMP-DHZHZOJOSA-N geranyl acetate Chemical compound CC(C)=CCC\C(C)=C\COC(C)=O HIGQPQRQIQDZMP-DHZHZOJOSA-N 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 239000010651 grapefruit oil Substances 0.000 description 1
- 210000000514 hepatopancreas Anatomy 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- UFLHIIWVXFIJGU-UHFFFAOYSA-N hex-3-en-1-ol Natural products CCC=CCCO UFLHIIWVXFIJGU-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Chemical group 0.000 description 1
- 229910052739 hydrogen Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical class OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- HEBMCVBCEDMUOF-UHFFFAOYSA-N isochromane Chemical compound C1=CC=C2COCCC2=C1 HEBMCVBCEDMUOF-UHFFFAOYSA-N 0.000 description 1
- SVURIXNDRWRAFU-UHFFFAOYSA-N juniperanol Natural products C1C23C(C)CCC3C(C)(C)C1C(O)(C)CC2 SVURIXNDRWRAFU-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000000231 karaya gum Substances 0.000 description 1
- 229940039371 karaya gum Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000010501 lemon oil Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 108010062085 ligninase Proteins 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- 108010021666 lipase II Proteins 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 150000007931 macrolactones Chemical class 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- FODOUIXGKGNSMR-UHFFFAOYSA-L magnesium;2-oxidooxycarbonylbenzoate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-]OC(=O)C1=CC=CC=C1C([O-])=O FODOUIXGKGNSMR-UHFFFAOYSA-L 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- LULAYUGMBFYYEX-UHFFFAOYSA-N metachloroperbenzoic acid Natural products OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- IPWBXORAIBJDDQ-UHFFFAOYSA-N methyl 2-hexyl-3-oxocyclopentane-1-carboxylate Chemical compound CCCCCCC1C(C(=O)OC)CCC1=O IPWBXORAIBJDDQ-UHFFFAOYSA-N 0.000 description 1
- HRGPYCVTDOECMG-RHBQXOTJSA-N methyl cedryl ether Chemical compound C1[C@@]23[C@H](C)CC[C@H]2C(C)(C)[C@]1([H])[C@@](OC)(C)CC3 HRGPYCVTDOECMG-RHBQXOTJSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical class CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Chemical class OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- ZRXJXIVOMZDPKQ-UHFFFAOYSA-N phenyl 6-(nonanoylamino)hexanoate Chemical compound CCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1 ZRXJXIVOMZDPKQ-UHFFFAOYSA-N 0.000 description 1
- SIENSFABYFDZCL-UHFFFAOYSA-N phenyl decanoate Chemical compound CCCCCCCCCC(=O)OC1=CC=CC=C1 SIENSFABYFDZCL-UHFFFAOYSA-N 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- SATCULPHIDQDRE-UHFFFAOYSA-N piperonal Chemical compound O=CC1=CC=C2OCOC2=C1 SATCULPHIDQDRE-UHFFFAOYSA-N 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000223 polyglycerol Chemical class 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- NJGBTKGETPDVIK-UHFFFAOYSA-N raspberry ketone Chemical compound CC(=O)CCC1=CC=C(O)C=C1 NJGBTKGETPDVIK-UHFFFAOYSA-N 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- DAPMZWDGZVFZMK-UHFFFAOYSA-N sodium;2-[2-[4-[4-[2-(2-sulfophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonic acid Chemical group [Na].[Na].OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=C(C=2C=CC(C=CC=3C(=CC=CC=3)S(O)(=O)=O)=CC=2)C=C1 DAPMZWDGZVFZMK-UHFFFAOYSA-N 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 229920005613 synthetic organic polymer Polymers 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- MSLRPWGRFCKNIZ-UHFFFAOYSA-J tetrasodium;hydrogen peroxide;dicarbonate Chemical compound [Na+].[Na+].[Na+].[Na+].OO.OO.OO.[O-]C([O-])=O.[O-]C([O-])=O MSLRPWGRFCKNIZ-UHFFFAOYSA-J 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- DXNCZXXFRKPEPY-UHFFFAOYSA-N tridecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCC(O)=O DXNCZXXFRKPEPY-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 235000019263 trisodium citrate Nutrition 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- ZFNVDHOSLNRHNN-UHFFFAOYSA-N xi-3-(4-Isopropylphenyl)-2-methylpropanal Chemical compound O=CC(C)CC1=CC=C(C(C)C)C=C1 ZFNVDHOSLNRHNN-UHFFFAOYSA-N 0.000 description 1
- PHXATPHONSXBIL-UHFFFAOYSA-N xi-gamma-Undecalactone Chemical compound CCCCCCCC1CCC(=O)O1 PHXATPHONSXBIL-UHFFFAOYSA-N 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- FUQAYSQLAOJBBC-PAPYEOQZSA-N β-caryophyllene alcohol Chemical compound C1C[C@](C2)(C)CCC[C@]2(O)[C@H]2CC(C)(C)[C@@H]21 FUQAYSQLAOJBBC-PAPYEOQZSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
- C11D17/0073—Tablets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
- C11D17/0073—Tablets
- C11D17/0082—Coated tablets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
- C11D3/126—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2082—Polycarboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/36—Organic compounds containing phosphorus
- C11D3/361—Phosphonates, phosphinates or phosphonites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/36—Organic compounds containing phosphorus
- C11D3/364—Organic compounds containing phosphorus containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
Definitions
- the present invention relates to perfumed detergent tablets, especially those adapted for use in washing machines, and to processes for making such tablets.
- perfumed products are well-known in the art. However, consumer acceptance of such perfumed products like laundry and cleaning products is determined not only by the performance achieved with these products but also by the aesthetics associated therewith. The perfume components are therefore an important aspect of the successful formulation of such commercial products.
- a clay mineral compound is a desirable ingredient of such laundry and cleaning product, in particular those products which are in tablet form.
- the clay can provide softening benefit but can also serve as a disintegrant of such detergent tablets.
- a problem encountered with perfumed detergent tablets containing a clay mineral compound is that the clay can have a detrimental effect on the performance of the perfume contained therein.
- the perfume is absorbed into the clay where it can interact with heavy metal ions and acid or base sites within the clay which as result may cause a discoloration of the clay. Still, the interaction between the perfume and the clay may also result in the tablet having a less attractive odour.
- a perfumed detergent tablet comprising a clay mineral compound which exhibit good perfume performance with reduced discoloration of the clay.
- GB-A-0 989 683 published on 22nd April 1965, discloses a process for preparing a particulate detergent from surfactants and inorganic salts; spraying on water- soluble silicate; and pressing the detergent particles into a solid form-retaining tablet.
- a readily water-soluble organic film-forming polymer for example, polyvinyl alcohol
- EP-A-0 716 144 published on 12th June 1996, also discloses laundry detergent tablets with water-soluble coatings which may be organic polymers including acrylic/maleic co-polymer, polyethylene glycoi, PVPVA, and sugar.
- W09518215 published on 6th July 1995, provides water-insoluble coatings for solid cast tablets.
- the tablets are provided with hydrophobic coatings including wax, fatty acid, fatty acid amides, and polyethylene glycoi.
- EP-A-0 846 754 published on the 10 th of June 1998, provides a tablet having a coating comprising a dicarboxylic acid, the coating material typically having a melting point of from 40°C to 200°C.
- EP-A-0 846 755 published on the 10 th of June 1998, provides a tablet having a coating comprising a material insoluble in water at 25°C, such as C12-C22 fatty acids, adipic acid or C8-C13 dicarboxylic acids.
- coated tablets can be provided with a coating so that they can be stored, shipped and handled without damage, the coating being easily broken when the tablet is in the washing machine, releasing the active ingredients into the wash solution.
- Typical of such disclosure can be found in pending European patent applications EP 99870017.3, EP 99870018.1 , and EP 99870019.9.
- the coating also comprises an acid having a melting point of at least 40°C, more particularly with a melting point of at least 145°C.
- the detergent formulator is also faced with the problems of providing a coated tablet having a coating which has satisfactory appearance, is sufficiently hard to protect the tablet from mechanical forces when stored, shipped and handled, and disperses readily in an aqueous solution whilst still giving satisfactory perfume performance.
- Smectite clays are disclosed in the US Patents No.s 3,862,058, 3,948,790, 3,954,632 and 4,062,647 and European Patents No.s EP-A-299,575 and EP-A-313,146 all in the name of the Procter and Gamble Company.
- Suitable smectite clays include those selected from the classes of the montmorillonites, hectorites, volchonskoites, nontronites, saponites and sauconites, particularly those having an alkali or alkaline earth metal ion within the crystal lattice structure.
- Sodium or calcium montmorillonite are particularly preferred.
- Suitable smectite clays are sold by various suppliers including English China Clays, Laviosa, Fordamin, Georgia Kaolin and Colin Stewart Minerals (CSM).
- Preferred smectite clays are sold under the tradename of White Bentonite STP by Fordamin and Detercal P7 by Laviosa Chemical Mineria SPA.
- Clays for use herein may be subjected to an acid washing treatment with any suitable mineral or organic acid. Such clays give rise to an acid pH on dissolution in distilled water.
- a commercially available "acid clay” of this type is sold under the tradename Tonsil P by Sud Chemie AG. Substitution of small cations, such as protons, sodium ions, potassium ions, magnesium ions and calcium ions, and of certain organic molecules including those having positively charged functional groups can typically take place within the crystal lattice structure of the smectite clays.
- a clay may be chosen for its ability to preferentially absorb one cation type, such ability being assessed by measurements of relative ion exchange capacity.
- the smectite clays suitable herein typically have a cation exchange capacity of at least 50 meq/100g.
- U.S. Patent No. 3,954,632 describes a method for measurement of cation exchange capacity.
- a preferred commercially available "hydrophobically activated" clay is a bentonite clay containing approximately 40% by weight of a dimethyl ditallow quaternary ammonium salt sold under the tradename Claytone EM by English China Clays International.
- the clay in the detergent composition is preferably mixed with one or more surfactants and optionally builders and optionally water, in which case the mixture is preferably subsequently dried.
- a mixture is further processed in a spray-drying method to obtain a spray dried particle comprising the clay.
- the intimate mixture comprises a chelating agent.
- the clay will preferably be present in different particles size.
- at least 50% by weight, preferably substantially all (e.g. at least 90% or 95%) by weight of the clay is present as granules.
- granules it is meant that the particles of the clay mineral compound which is present in the detergent composition are included as components of agglomerate particles optionally containing other detergent compounds.
- the term "largest particle dimension" of the clay mineral compound refers to the largest dimension of the clay mineral component as such, and not to the agglomerated particle as a whole.
- the granules will have a particle size of at least 100 micrometers, generally 100-1700 micrometers.
- the tablet is a softening tablet.
- softening tablet it is meant that the level of clay will typically be of at least 5%, preferably at least 8%, and most preferably at least 10% by weight of the tablet. The amount may be less than 25%, usually less than 20%, and preferably not more than 15% by weight of the tablet.
- the detergent compositions tablet of the invention also contains a heavy metal ion sequestrant, that being either present in the coating if present or in the detergent composition, or even in both the coating and the detergent composition, preferably, it is present in both the coating and the detergent composition or only in the detergent composition.
- heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
- Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1 % to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the tablet.
- Heavy metal ion sequestrants which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
- a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
- any salts/complexes are water soluble.
- the molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least 1 :1.
- Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
- diethylene triamine penta methylene phosphonate
- ethylene diamine tri methylene phosphonate
- hexamethylene diamine tetra methylene phosphonate
- hydroxy-ethylene 1 ,1 diphosphonate nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
- EDDS ethylenediamine-N.N'-disuccinic acid
- Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof.
- Examples of such preferred sodium salts of EDDS include Na2EDDS and Na ⁇ EDDS.
- Examples of such preferred magnesium complexes of EDDS include MgEDDS and Mg2EDDS.
- Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
- the iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N- carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP- A-516,102 are also suitable herein.
- the ⁇ -alanine-N,N'-diacetic acid, aspartic acid-N.N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
- EP-A-476,257 describes suitable amino based sequestrants.
- EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein.
- EP-A- 528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1 ,2,4-tricarboxylic acid are alos suitable.
- Glycinamide- N,N'-disuccinic acid (GADS), ethylenediamine-N,N'-diglutaric acid (EDDG) and 2- hydroxypropylenediamine- N.N'-disuccinic acid (HPDDS) are also suitable.
- Most preferred heavy metal ions for use herein is alkali metal ethane 1-hydroxy diphosphonates, in particular when used in combination with diethylene triamine penta (methylene phosphonate).
- the tablets of the present invention may also optionally comprise a perfume composition, that being either present in the coating if present or in the detergent composition, or even in both the coating and the detergent composition.
- Suitable perfumes herein include materials which provide an olfactory aesthetic benefit such as to make such tablets more aesthetically pleasing to the consumer, imparting a pleasant fragrance to fabrics treated therewith and/or cover any "chemical" odor that the product may have.
- perfume includes fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances.
- natural i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants
- artificial i.e., a mixture of different nature oils or oil constituents
- synthetic i.e., synthetically produced
- perfumes are complex mixtures of a plurality of organic compounds.
- perfume ingredients useful in the perfume compositions include, but are not limited to, hexyl cinnamic aldehyde; amyl cinnamic aldehyde; amyl salicylate; hexyl salicylate; terpineol; 3,7-dimethyl-c/s-2,6-octadien-1-ol; 2,6- dimethyl-2-octanol; 2,6-dimethyl-7-octen-2-ol; 3,7-dimethyl-3-octanol; 3,7- dimethyl-frans-2,6-octadien-1-ol; 3,7-dimethyl-6-octen-1-ol; 3,7-dimethyl-l- octanol; 2-methyl-3-(para-tert-butylphenyl)-propionaldehyde; 4-(4-hydroxy-4- methylpentyl)-3-cyclohexene-1 -carboxaldehyl
- fragrance materials include, but are not limited to, orange oil; lemon oil; grapefruit oil; bergamot oil; clove oil; dodecalactone gamma; methyl-2-(2-pentyl-3-oxo-cyclopentyl) acetate; beta-naphthol methylether; methyl-beta-naphthylketone; coumarin; decylaldehyde; benzaldehyde; 4-tert- butylcyclohexyl acetate; alpha, alpha-dimethylphenethyl acetate; methylphenylcarbinyl acetate; cyclic ethyleneglycol diester of tridecandioic acid; 3,7-dimethyl-2,6-octadiene-1-nitrile; ionone gamma methyl; ionone alpha; ionone beta; petitgrain; methyl cedrylone; 7-acetyl-1 , 2,3,
- perfume components are geraniol; geranyl acetate; linalool; linalyl acetate; tetrahydrolinalool; citronellol; citronellyl acetate; dihydromyrcenol; dihydromyrcenyl acetate; tetrahydromyrcenol; terpinyl acetate; nopol; nopyl acetate; 2-phenylethanol; 2-phenylethyl acetate; benzyl alcohol; benzyl acetate; benzyl salicylate; benzyl benzoate; styrallyl acetate; dimethylbenzylcarbinol; trichloromethylphenylcarbinyl methylphenylcarbinyl acetate; isononyl acetate; vetiveryl acetate; vetiverol; 2-methyl-3-(p-tert-butylphenyl)-propanal; 2-methyl-3-(
- the perfumes useful in the present invention compositions are substantially free of halogenated materials and nitromusks.
- the perfume composition contains less than 0.6% by weight of the perfume composition of Schiff-base.
- the perfume for use herein is used at levels of up to 5 grams per tablet and preferably is substantially free of Schiff-Base.
- the perfume composition comprises less than 0.4 % by weight of Schiff Base, and more preferably is free of Schiff base.
- Schiff-Bases are the condensation of an aldehyde perfume ingredient with an anthranilate. A typical description can be found in US 4853369.
- the Schiff Bases can be added directly to the perfume composition or can be formed in situ in the perfume composition by adding to it an Anthranilate such as Methyl or Ethyl Anthranilate along with an aldehyde which can react with the Anthranilate to form the Schiff Base.
- an Anthranilate such as Methyl or Ethyl Anthranilate along with an aldehyde which can react with the Anthranilate to form the Schiff Base.
- Typical of Schiff bases are selected from Schiffs base of 4-(4-hydroxy-4- methylpentyl)-3-cyclohexene-1-carboxaldehyde and methyl anthranilate; condensation products of: hydroxycitronellal and methyl anthranilate; 4-(4- hydroxy-4-methyl pentyl)-3-cyclohexene-1-carboxaldehyde and methyl anthranilate; Methyl Anthranilate and Hydroxycitronellal commercially available under the tradename Aurantiol; Methyl Anthranilate and Methyl Nonyl Acetaldehyde commercially available under the tradename Agrumea; Methyl Anthranilate and PT Bucinal commercially available under the tradename Verdantiol; Methyl anthranilate and Lyral commercially available under the tradename Lyrame; Methyl Anthranilate and Ligustral commercially available under the tradename Ligantral; and mixtures
- the perfume composition is free of perfume ingredients selected from Methyl Anthranilate and Hydroxycitronellal commercially available under the tradename Aurantiol; Methyl Anthranilate and Methyl Nonyl Acetaldehyde commercially available under the tradename Agrumea; Methyl Anthranilate and PT Bucinal commercially available under the tradename Verdantiol; Methyl anthranilate and Lyral commercially available under the tradename Lyrame; Methyl Anthranilate and Ligustral commercially available under the tradename Ligantral; and mixtures thereof.
- perfume ingredients selected from Methyl Anthranilate and Hydroxycitronellal commercially available under the tradename Aurantiol; Methyl Anthranilate and Methyl Nonyl Acetaldehyde commercially available under the tradename Agrumea; Methyl Anthranilate and PT Bucinal commercially available under the tradename Verdantiol; Meth
- Suitable solvents, diluents or carriers for perfumes ingredients mentioned above are for examples, ethanol, isopropanol, diethylene glycoi, monoethyl ether, dipropylene glycoi, diethyl phthalate, triethyl citrate, etc.
- the amount of such solvents, diluents or carriers incorporated in the perfumes is preferably kept to the minimum needed to provide a homogeneous perfume solution. Tablets of the present invention as well as coated tablets according to the invention provide improved fabric perfume deposition.
- the perfume composition is present in an amount of 0.001 % to 10%, preferably from 0.005% to 5%, more preferably from 0.01 % to 3%, and even more preferably from 0.02% to 2% by weight of the tablet.
- the perfume can be incorporated to the tablet by any conventional means known to the skilled person.
- One preferred means is by spray-on of the perfume composition onto the tablet.
- the tablets may comprise components such as surfactants, enzymes, detergent etc....
- Typical tablet compositions for the preferred embodiment of the present invention are disclosed in the pending European applications of the Applicant n° 96203471.6, 96203462.5, 96203473.2 and 96203464.1 for example.
- Elements typically entering in the composition of detergent tablets or of other forms of detergents such as liquids or granules are detailed in the following paragraphs.
- the conventional nonionic and amphoteric surfactants such as the C
- the C-I Q-C-I S N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12-C-I8 N-methylglucamides.
- sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C-
- 8 glucamides can be used for low sudsing.
- C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C-
- Other conventional useful surfactants are listed in standard texts.
- the tablet comprises at least 5% per weight of surfactant, more preferably at least 15% per weight, even more preferably at least 25% per weight, and most preferably between 35% and 45% per weight of surfactant.
- Non gelling binders can be integrated in detergent compositions to further facilitate dissolution. If non gelling binders are used, suitable non-gelling binders include synthetic organic polymers such as polyethylene glycols, polyvinylpyrrolidones, polyacrylates and water-soluble acrylate copolymers.
- binders classification Acacia, Alginic Acid, Carbomer, Carboxymethylcellulose sodium, Dextrin, Ethylcellulose, Gelatin, Guar gum, Hydrogenated vegetable oil type I, Hydroxyethyl cellulose, Hydroxypropyl methylcellulose, Liquid glucose, Magnesium aluminum silicate, Maltodextrin, Methylcellulose, polymethacrylates, povidone, sodium alginate, starch and zein. Most preferable binders also have an active cleaning function in the laundry wash such as cationic polymers, i.e. ethoxylated hexamethylene diamine quaternary compounds, bishexamethylene triamines, or others such as pentaamines, ethoxylated polyethylene amines, maleic acrylic polymers.
- cationic polymers i.e. ethoxylated hexamethylene diamine quaternary compounds, bishexamethylene triamines, or others such as pentaamines,
- Non-gelling binder materials are preferably sprayed on and hence have an appropriate melting point temperature below 90°C, preferably below 70°C and even more preferably below 50°C so as not to damage or degrade the other active ingredients in the matrix.
- Most preferred are non-aqueous liquid binders (i.e. not in aqueous solution) which may be sprayed in molten form. However, they may also be solid binders incorporated into the matrix by dry addition but which have binding properties within the tablet.
- Non-gelling binder materials are preferably used in an amount within the range from 0.1 to 15% of the composition, more preferably below 5% and especially if it is a non laundry active material below 2% by weight of the tablet.
- gelling binders such as nonionic surfactants are avoided in their liquid or molten form.
- Nonionic surfactants and other gelling binders are not excluded from the compositions, but it is preferred that they be processed into the detergent tablets as components of particulate materials, and not as liquids.
- Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils.
- Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates
- compositions herein function surprisingly well even in the presence of the so-called “weak” builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt” situation that may occur with zeolite or layered silicate builders.
- silicate builders are the alkali metal silicates, particularly those having a SiO2:Na2O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
- NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
- Hoechst commonly abbreviated herein as "SKS-6”
- the Na SKS-6 silicate builder does not contain aluminum.
- NaSKS-6 has the delta-Na2Si ⁇ 5 morphology form of layered silicate.
- SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula
- y is a number from 0 to 20, preferably 0 can be used herein.
- Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and
- Na2SiO5 (NaSKS-6 form) is most preferred for use herein.
- Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
- carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321 ,001 published on November 15, 1973.
- Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:
- aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X.
- bleaching agents may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators.
- bleaching agents will typically be at levels of from about 1 % to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering.
- the amount of bleach activators will typically be from about 0.1 % to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
- the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
- Perborate bleaches e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
- Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino- 4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
- Such bleaching agents are disclosed in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1 , 1983.
- Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551 , issued January 6, 1987 to Burns et al.
- Peroxygen bleaching agents can also be used.
- Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo- peroxidase.
- Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A S.
- the clay flocculating agent functions such as to bring together the particles of clay compound in the wash solution and hence to aid their deposition onto the surface of the fabrics in the wash. This functional requirement is hence different from that of clay dispersant compounds which are commonly added to laundry detergent compositions to aid the removal of clay soils from fabrics and enable their dispersion within the wash solution.
- Preferred as clay flocculating agents herein are organic polymeric materials having an average weight of from 100,000 to 10,000,000, preferably from 150,000 to 5,000,000, more preferably from 200,000 to 2,000,000.
- Inorganic clay flocculating agents are also suitable herein, typical examples of which include lime and alum.
- the flocculating agent is preferably present in a detergent base granule such as a detergent agglomerate, extrudate or spray-dried particle, comprising generally one or more surfactants and builders.
- the weight ratio of clay to the flocculating polymer is preferably from 1000:1 to 1 :1 , more preferably from 500:1 to 1 :1 , most preferably from 300:1 to 1 :1 , or even more preferably from 80:1 to 10:1 , or in certain applications even from 60:1 to 20:1.
- detergent compositions include chelating agents, soil release agents, soil antiredeposition agents, dispersing agents, suds suppressors, fabric softeners, dye transfer inhibition agents and mixtures thereof.
- a solution is prepared as follows comprising de-ionised water as well as 20 grams per litre of a specific compound: 1- 20 g of the specific compound is placed in a Sotax Beaker. This beaker is placed in a constant temperature bath set at 10°C. A stirrer with a marine propeller is placed in the beaker so that the bottom of the stirrer is at 5 mm above the bottom of the Sotax beaker. The mixer is set at a rotation speed of
- Step 3 is repeated after 20, 30, 40, 50, 1 min, 2 min, 5 min and 10 min after step 2.
- 5- The measurement taken at 10 min is used as the plateau value or maximum value.
- composition comprising a highly soluble compound as well as a surfactant is disclosed in EP-A-0 524 075, this composition being a liquid composition.
- the dissolution of the tablet or layer is further facilitated, resulting in a synergy leading to facilitated dissolution for a tablet according to the invention.
- the ingredients such as builder and surfactant can be spray-dried in a conventional manner and then compacted at a suitable pressure.
- the tablets according to the invention are compressed using a force of less than 100000N, more preferably of less than 50000N, even more preferably of less than 5000N and most preferably of less than 3000 N.
- the components of the particulate material may be mixed together by any conventional means. Batch is suitable in, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s).
- Non-gelling binder can be sprayed on to the mix of some, or all of, the components of the particulate material.
- Other liquid ingredients may also be sprayed on to the mix of components either separately or premixed. For example perfume and slurries of optical brighteners may be sprayed.
- a finely divided flow aid dustting agent such as zeolites, carbonates, silicas
- the tablets may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting.
- Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy®, Korch®,
- the tablets prepared according to this invention preferably have a diameter of between 20mm and 60mm, preferably of at least 35 and up to 55 mm, and a weight between 25 and 100 g.
- the ratio of height to diameter (or width) of the tablets is preferably greater than 1 :3, more preferably greater than 1 :2.
- the compaction pressure used for preparing these tablets need not exceed 100000 kN/m 2 , preferably not exceed 30000 kN/m 2 , more preferably not exceed 5000 kN/m 2 , even more preferably not exceed 3000kN/m 2 and most preferably not exceed 1000kN/m 2 .
- the tablet has a density of at least 0.9 g/cc, more preferably of at least 1.0 g/cc, and preferably of less than 2.0 g/cc, more preferably of less than 1.5 g/cc, even more preferably of less than 1.25 g/cc and most preferably of less than 1.1 g/cc.
- Multi layered tablets are typically formed in rotating presses by placing the matrices of each layer, one after the other in matrix force feeding flasks. As the process continues, the matrix layers are then pressed together in the pre- compression and compression stages stations to form the multilayer layer tablet. With some rotating presses it is also possible to compress the first feed layer before compressing the whole tablet.
- a highly soluble compound having a cohesive effect may be integrated to a detergent tablet, whereby this compound is also a hydrotrope compound.
- Such hydrotrope compound may be generally used to favour surfactant dissolution by avoiding gelling.
- a specific compound is defined as being hydrotrope as follows (see S.E. Friberg and M. Chiu, J. Dispersion Science and Technology, 9(5&6), pages 443 to 457, (1988-1989)):
- a solution is prepared comprising 25% by weight of the specific compound and 75% by weight of water.
- Octanoic Acid is thereafter added to the solution in a proportion of 1.6 times the weight of the specific compound in solution, the solution being at a temperature of 20°Celsius.
- the solution is mixed in a Sotax beaker with a stirrer with a marine propeller, the propeller being situated at about 5mm above the bottom of the beaker, the mixer being set at a rotation speed of 200 rounds per minute.
- the specific compound is hydrotrope if the the Octanoic Acid is completely solubilised, i.e . if the solution comprises only one phase, the phase being a liquid phase. It should be noted that in a preferred embodiment of the invention, the hydrotrope compound is a flowable material made of solid particles at operating conditions between 15 and 60° Celsius. Hydrotrope compounds include the compounds listed thereafter:
- Compounds of interest also include:
- Solvent hydrotropes such as alkoxylated glycerines and alkoxylated glycerides, esters slakoxylated glycerines, alkoxylated fatty acids, esters of glycerin, polyglycerol esters.
- Preferred alkoxylated glycerines have the following structure:
- R represents H, CH 3 or
- R1 and R2 are each C n COO or -(CH2CHR 3 -0)*-H
- R 3 H, CH 3 or C 2 H 5 and I is a number from 1 to about 60
- n is a number from about 6 to about 24.
- R is H or a C1-C10 alkyl group or is a hydrophilic functional group; R1 is H a lower alkyl group or an aromatic group, R2 is H or a cyclic alkyl or aromatic group.
- the polymer typically has a molecular weight of between about 1000 and 1000000.
- Such compound would further increase the dissolution rate of the tablet, as a hydrotrope compound facilitates dissolution of surfactants, for example.
- a hydrotrope compound facilitates dissolution of surfactants, for example.
- Such a compound could be formed from a mixture or from a single compound.
- the layer may be considered as a tablet itself.
- the used compacting force may be adjusted to not affect the tensile strength, and the disintegration time in the washing machine.
- This process may be used to prepare homogenous or layered tablets of any size or shape.
- the tensile strength corresponds to the diametrical fracture stress (DFS) which is a way to express the strength of a tablet or layer, and is determined by the following equation :
- DFS diametrical fracture stress
- F is the maximum force (Newton) to cause tensile failure (fracture) measured by a VK 200 tablet hardness tester supplied by Van Kell industries, Inc.
- D is the diameter of the tablet or layer, and t the thickness of the tablet or layer. For a non round tablet, ⁇ D may simply be replaced by the perimeter of the tablet.
- the rate of dispensing of a detergent tablet can be determined in the following way:
- the water supply to the washing machine is set to a temperature of 20 °C and a hardness of 21 grains per gallon, the dispenser water inlet flow-rate being set to 8 l/min.
- the level of tablet residues left in the dispenser is checked by switching the washing on and the wash cycle set to wash program 4 (white/colors, short cycle).
- the level of residues is determined by repeating the procedure 10 times and an average residue level is calculated based on the ten individual measurements.
- Effervescency as defined herein means the evolution of bubbles of gas from a liquid, as the result of a chemical reaction between a soluble acid source and an alkali metal carbonate, to produce carbon dioxide gas, i.e. C 6 H8 ⁇ 7 + 3NaHC03 ⁇ » Na 3 C 6 H 5 ⁇ 7 + 3C0 2 + 3H20
- acid and carbonate sources and other effervescent systems may be found in : (Pharmaceutical Dosage Forms : Tablets Volume 1 Page 287 to 291 ).
- An effervescent may be added to the tablet mix in addition to the detergent ingredients.
- the addition of this effervescent to the detergent tablet improves the disintegration time of the tablet.
- the amount will preferably be between 5 and 20 % and most preferably between 10 and 20% by weight of the tablet.
- the effervescent should be added as an agglomerate of the different particles or as a compact, and not as separated particles. Due to the gas created by the effervescency in the tablet, the tablet can have a higher D.F.S. and still have the same disintegration time as a tablet without effervescency. When the D.F.S. of the tablet with effervescency is kept the same as a tablet without, the disintegration of the tablet with effervescency will be faster.
- dissolution aid could be provided by using compounds such as sodium acetate or urea.
- suitable dissolution aid may also be found in Pharmaceutical Dosage Forms: Tablets, Volume 1 , Second edition, Edited by H.A. Lieberman et all, ISBN 0-8247-8044-2.
- Solidity of a tablet may be improved by making a coated tablet, the coating covering a non-coated tablet, thereby further improving the mechanical characteristics of the tablet while maintaining or further improving dissolution.
- the tablets may then be coated so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate.
- the coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition.
- the coating is preferably brittle so that the tablet breaks up quickly when subjected to stronger mechanical shock.
- the coating material is dissolved under alkaline conditions, or is readily emulsified by surfactants. This contributes to avoiding the problem of visible residue in the window of a front-loading washing machine during the wash cycle, and also avoids deposition of undissolved particles or lumps of coating material on the laundry load.
- Water solubility is measured following the test protocol of ASTM E1148-87 entitled, "Standard Test Method for Measurements of Aqueous Solubility". Fracture of the coating in the wash is improved by adding a disintegrant in the coating. This disintegrant will swell once in contact with water and break the coating in small pieces. This will improve the dissolution of the coating in the wash solution. Typically, the disintegrant is suspended in the coating melt at a level of up to 30%, preferably between 5% and 20%, most preferably between 5 and 10% by weight.
- Clay mineral compound as above described, is a disintegrant for use herein.
- disintegrants include starch: natural, modified or pregelatinized starch, sodium starch gluconate; gum: agar gum, guar gum, locust bean gum, karaya gum, pectin gum, tragacanth gum; croscarmylose Sodium, crospovidone, cellulose, carboxymethyl cellulose, algenic acid and its salts including sodium alginate, silicone dioxide, clay, polyvinylpyrrolidone, soy polysacharides, ion exchange resins, polymers containing cationic (e.g. quaternary ammonium) groups, amine-substituted polyacrylates, polymerised cationic amino acids such as poly-L-lysine, polyallylamine hydrochloride) and mixtures thereof.
- cationic e.g. quaternary ammonium
- the coating material has a melting point of at least 40°C, preferably of from 40°C to 200 °C.
- melting point is meant the temperature at which the material when heated slowly in, for example, a capillary tube becomes a clear liquid.
- the coating material which has a melting point of at least 40°C is an acid.
- Acid having a melting temperature of at least 40°C are for example dicarboxylic acids.
- Particularly suitable dicarboxylic acids are selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid and mixtures thereof. Most preferred is adipic acid.
- the coating can be applied in a number of ways. Two preferred coating methods are a) coating with a molten material and b) coating with a solution of the material.
- the coating material is applied at a temperature above its melting point, and solidifies on the tablet.
- the coating is applied as a solution, the solvent being dried to leave a coherent coating.
- the substantially insoluble material can be applied to the tablet by, for example, spraying or dipping. Normally when the molten material is sprayed on to the tablet, it will rapidly solidify to form a coherent coating. When tablets are dipped into the molten material and then removed, the rapid cooling again causes rapid solidification of the coating material. During the solidification phase, the coating undergoes some internal stress (e.g.
- the coating comprises a component which is liquid at 25°C.
- this liquid component will allow the coating to better withstand and absorb mechanical stress by rendering the coating structure more flexible.
- the component which is liquid at 25°C is preferably added to the coating materials in proportions of less than 10% by weight of the coating, more preferably less than 5% by weight, and most preferably of less than 3% by weight.
- the component which is liquid at 25°C is preferably added to the coating materials in proportions of more than 0.1 % by weight of the coating, more preferably more than 0.3% by weight, and most preferably of more than 0.5% by weight.
- optional components which are liquid at 25°C includes polyethylene glycols, thermal oil, silicon oil, esters of dicarboxylic acids, mono carboxylic acids, parafin, triacetin, perfumes or alkaline solutions.
- polyethylene glycols thermal oil, silicon oil, esters of dicarboxylic acids, mono carboxylic acids, parafin, triacetin, perfumes or alkaline solutions.
- NaOH solution particularly good results were obtained by use of NaOH solution as alkaline solution.
- the structure of the components which is liquid at 25°C is close to the material forming the crystallised structure, so that the structure is not excessively disrupted.
- the optional component which is liquid at 25°C may advantageously have a functionality in the washing of laundry, for example silicone oil which provides suds suppression benefits or perfume oil.
- the perfume oil may be the perfume composition as per described herein, or a different perfume composition to that already contained by the tablet, provided it contains less than 0.6% by weight of Schiff-Base.
- the coating may also comprise materials other than the optional component which is liquid at 25°C. Hence, further preferred, is the addition of reinforcing fibres to the coating in order to further reinforce the structure.
- the crystallised structure is made of adipic acid, the component which is liquid at 25°C being available under the name CoasolTM from Chemoxy International, being a blend of the di-isobutyl esters of the glutaric, succinic and adipic acid.
- CoasolTM from Chemoxy International
- the advantage of the use of this component being the good dispersion in the adipic acid to provide flexibility. It should be noted that disintegration of the adipic acid is further improved by the adipate content of CoasolTM.
- the coating comprises an acid having a melting temperature of at least 145°C, such as adipic acid for example, as well as a clay, such as a bentonite clay for example, whereby the clay is used as a disintegrant and also to render the structure of adipic acid more favourable for water penetration, thus improving the dispersion of the adipic acid in a aqueous medium.
- a clay such as a bentonite clay for example
- Preferred clays are bentonite clays.
- the coating further comprises reinforcing fibres.
- Such fibres have been found to improve further the resistance of the coating to mechanical stress and minimise the splitting defect occurence.
- Such fibres are preferably having a length of at least 100 ⁇ m, more preferably of at least 200 ⁇ m and most preferably of at least 250 ⁇ m to allow structure reinforcement.
- Such fibres are preferably having a length of at less than 500 ⁇ m, more preferably of less than 400 ⁇ m and most preferably of less than 350 ⁇ m in order not to impact onto dispersion of the coating in an aqueous medium.
- Materials which may be used for these fibres include viscose rayon, natural nylon, synthetic nylon (polyamides types 6 and 6,6), acrylic, polyester, cotton and derivatives of cellulose such as CMCs. Most preferred is a cellulosic material available under the trade mark Solka-FlocTM from Fibers Sales & Development. It should be noted that such fibres do not normally need pre-compression for reinforcing the coating structure. Such fibres are preferably added at a level of less than 5% by weight of the coating, more preferably less than 3% by weight. Such fibres are preferably added at a level of more than 0.5% by weight of the coating, more preferably more than 1 % by weight.
- a coating of any desired thickness can be applied according to the present invention.
- the coating forms from 1 % to 10%, preferably from 1.5% to 5%, of the tablet weight.
- a preferred process for making a tablet according to the invention comprises the steps of:
- Another preferred process for making a tablet according to the invention comprises the steps of :
- a packaging system may be formed from a sheet of flexible material.
- Materials suitable for use as a flexible sheet include mono-layer, co-extruded or laminated films.
- Such films may comprise various components, such as poly-ethylene, polypropylene, poly-styrene, poly-ethylene-terephtalate.
- the packaging system is composed of a poly-ethylene and bi-oriented-poly-propylene co- extruded film with an MVTR of less than 5 g/day/m 2 .
- the MVTR of the packaging system is preferably of less than 10 g/day/m 2 , more preferably of less than 5 g/day/m 2 .
- the film (2) may have various thicknesses. The thickness should typically be between 10 and 150 ⁇ m, preferably between 15 and 120 ⁇ m, more preferably between 20 and 100 ⁇ m, even more preferably between 25 and 80 ⁇ m and most preferably between 30 and 40 ⁇ m.
- a packaging material preferably comprises a barrier layer typically found with packaging materials having a low oxygen transmission rate, typically of less than 300 cm 3 /m 2 /day, preferably of less than 150 cm 3 /m 2 /day, more preferably of less than 100 cm 3 /m 2 /day, even more preferably of less than 50 cm 3 /m 2 /day and most preferably of less than 10 cm 3 /m 2 /day.
- Typical materials having such barrier properties include bi oriented polypropylene, poly ethylene terephthalate, Nylon, poly(ethylene vinyl alcohol) , or laminated materials comprising one of these, as well as SiOx (Silicium oxydes), or metallic foils such as aluminium foils for example.
- Anionic agglomerates 1 comprise of 40% anionic surfactant, 27% zeolite and
- the abbreviated component identifications have the following meanings: LAS Sodium linear C-
- Nai2(A1 ⁇ 2Si ⁇ 2)i2-27H2 ⁇ having a primary particle size in the range from 0J to 10 micrometers (weight expressed on an anhydrous basis)
- Citric acid Anhydrous citric acid
- Amylase II Amylolytic enzyme, as disclosed in PCT/ US9703635 Lipase Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase
- Lipase II Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra
- Endolase Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries A/S PB4 Sodium perborate tetrahydrate of nominal formula
- NACA-OBS (6-nonamidocaproyl) oxybenzene sulfonate LOBS Dodecanoyloxybenzene sulfonate in the form of the sodium salt DOBS Decanoyloxybenzene sulfonate in the form of the sodium salt
- DOBA Decanoyl oxybenzoic acid
- TAED Tetraacetylethylenediamine DTPA
- DTPMP Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Tradename
- Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl
- Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5- triazin-2-yl)amino) stilbene-2:2'-disulfonate
- PEO Polyethylene oxide with an average molecular weight of 50,000
- PEI Polyethyleneimine with an average molecular weight of 1800 and an average ethoxylation degree of 7 ethyleneoxy residues per nitrogen
- Flocculating agent III polymer of acrylamide and/ or acrylic acid of average molecular weight of 200,000 and 400,000
- SRP II Polysaccheride soil release polymer
- SRP 1 Nonionically end capped poly esters
- SRP 2 Diethoxylated poly (1 , 2 propylene terephtalate) short block polymer Silicone antifoam Polydimethylsiloxane foam controller with siloxane- oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1
- Opacifier Water based monostyrene latex mixture, sold by BASF Aktiengesellschaft under the tradename Lytron 621
- a detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing drum or spray drum to form a homogenous particulate mixture, apart from the binder spray-on system, the fluorescer or brightener, and the photobleach
- Zinc Phthalocyanine sulphonate The particulate mixture was thereafter divided in two equal parts, one part for making a white layer, another part for making a green layer.
- the white layer material is obtained by spraying the brightener or fluorescer together with half of the binder.
- the green layer material is obtained by spraying the photobleach Zinc Phthalocyanine sulphonate together with the rest of the binder.
- the layer where then processed independently in a Loedige KM 600 ® . ii) Using a Bonals ® rotary press both matrices were filled in two independent force feeding flasks. Both layers are compressed together in the pre- compression and compression stations to form a dual layer tablet.
- the tablets have a square cross section of 45 mm side, a height of 24 mm and a weight of 45 gr.
- the height of the green bottom layer corresponded to 50% of the total height of the tablet.
- the tensile strength of the uncoated tablets was 13 kpa.
- the tablet was thereafter coated with 2.5 g of coating formed from 89% by weight of adipic acid and 10% by weight of Bentonite clay from CSM, and 1 % by weight of ethane 1-hydroxy diphosphonate.
- Example 2 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing drum or spray drum to form a homogenous particulate mixture, apart from the binder spray-on system, the fluorescer or brightener, and the photobleach Zinc Phthalocyanine sulphonate. The particulate mixture was thereafter divided in two equal parts, one part for making a white layer, another part for making a green layer. The white layer material is obtained by spraying the brightener or fluorescer together with half of the binder. The green layer material is obtained by spraying the photobleach Zinc Phthalocyanine sulphonate together with the rest of the binder.
- the layer where then processed independently in a Loedige KM 600 ® .
- ii) Using a Bonals ® rotary press both matrices were filled in two independent force feeding flasks. Both layers are compressed together in the pre- compression and compression stations to form a dual layer tablet.
- the tablets have a square cross section of 45 mm side, a height of 24 mm and a weight of 45 gr. The height of the green bottom layer corresponded to 50% of the total height of the tablet.
- the tensile strength of the uncoated tablets was 13 kpa.
- the tablet was thereafter coated with 2.5 g of coating formed from 89% by weight of adipic acid and 10% by weight of Bentonite clay from CSM, and
- Example 3 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing drum or spray drum to form a homogenous particulate mixture, apart from the binder spray-on system, the fluorescer or brightener, and the photobleach Zinc Phthalocyanine sulphonate. The particulate mixture was thereafter divided in two equal parts, one part for making a white layer, another part for making a green layer. The white layer material is obtained by spraying the brightener or fluorescer together with half of the binder. The green layer material is obtained by spraying the photobleach Zinc Phthalocyanine sulphonate together with the rest of the binder.
- the layer where then processed independently in a Loedige KM 600 ® .
- ii) Using a Bonals ® rotary press both matrices were filled in two independent force feeding flasks. Both layers are compressed together in the pre- compression and compression stations to form a dual layer tablet.
- the tablets have a square cross section of 45 mm side, a height of 24 mm and a weight of 45 gr. The height of the green bottom layer corresponded to 50% of the total height of the tablet.
- the tensile strength of the uncoated tablets was 13 kpa.
- the tablet was thereafter coated with 2.5 g of coating formed from 89% by weight of adipic acid and 10% by weight of Bentonite clay from CSM, and
- Example 4 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition was mixed together in a mixing drum or spray drum to form a homogenous particulate mixture. The binder system was then sprayed on. The powder where then processed in a Loedige KM 600 ® . ⁇ ) Using a Instron® Laboratory bench press, detergent powder was filled in the die. The powder had been compressed with a force so that the tensile strength of the tablet was 10kpa. iii) In this particular example, the tablets have a diameter of 54 mm side, a height of 24 mm and a weight of 45 gr.
- Example 5 A detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing drum or spray drum to form a homogenous particulate mixture. The binder system was then sprayed on. The powder where then processed in a Loedige
- the tablets have a diameter of 54 mm side, a height of 24 mm and a weight of 45 gr.
- the tablet was thereafter coated with 2.5 g of coating formed from 88% by weight of Adipic acid, 10% by weight of bentonite clay from and 1 % of CoasolTM, and 1 % by weight of ethane 1 -hydroxy diphosphonate.
- Example 6 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing drum or spray drum to form a homogenous particulate mixture. The binder system was then sprayed on. The powder where then processed in a Loedige
- the tablets have a diameter of 54 mm side, a height of 24 mm and a weight of 45 gr.
- the tablet was thereafter coated with 2.5 g of coating formed from 86% by weight of Adipic acid, 10% by weight of bentonite clay from and 1% by weight of CoasolTM and.2 % by weight of Solka-FlocTM 1016, and 0.5% by weight of ethane 1-hydroxy diphosphonate and 0.5% by weight of diethylene triamine penta (methylene phosphonate).
- compositions suitable for use herein are compositions suitable for use herein;
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
- Cosmetics (AREA)
Abstract
The present invention relates to a perfumed detergent tablet, the tablet comprising a clay mineral compound and a heavy metal ion sequestrant.
Description
PERFUMED DETERGENT TABLET
Technical field of the invention
The present invention relates to perfumed detergent tablets, especially those adapted for use in washing machines, and to processes for making such tablets.
Background of the invention
Perfumed products are well-known in the art. However, consumer acceptance of such perfumed products like laundry and cleaning products is determined not only by the performance achieved with these products but also by the aesthetics associated therewith. The perfume components are therefore an important aspect of the successful formulation of such commercial products.
In addition, a clay mineral compound is a desirable ingredient of such laundry and cleaning product, in particular those products which are in tablet form. Indeed, the clay can provide softening benefit but can also serve as a disintegrant of such detergent tablets.
However, a problem encountered with perfumed detergent tablets containing a clay mineral compound is that the clay can have a detrimental effect on the performance of the perfume contained therein. Hence, not to be bound by theory, it is believed that due to the close physical proximity given by the tablet, the perfume is absorbed into the clay where it can interact with heavy metal ions and acid or base sites within the clay which as result may cause a discoloration of the clay. Still, the interaction between the perfume and the clay may also result in the tablet having a less attractive odour.
Accordingly, it is an object of the invention to provide a perfumed detergent tablet comprising a clay mineral compound which exhibit good perfume performance with reduced discoloration of the clay.
Further, cleaning compositions in tablet form have often been proposed, however these have not (with the exception of soap bars for personal washing) gained any substantial success, despite the several advantages of products in a unit dispensing form. One of the reasons for this may be that detergent tablets require a relatively complex manufacturing process. In particular, it is often desirable to provide the tablet with a coating and this adds to the difficulties of manufacture.
While tablets without a coating are entirely effective in use, they usually lack the necessary surface hardness to withstand the abrasion that is a part of normal manufacture, packaging and handling. The result is that non-coated tablets suffer from abrasion during these processes, resulting in chipped tablets and loss of active material.
Finally, coating of tablets is often desired for aesthetic reasons, to improve the outer appearance of the tablet or to achieve some particular aesthetic effect.
Numerous methods of tablet coating have been proposed, and many of these have been suggested for detergent tablets. However, all of these methods have certain disadvantages, as will be explained below.
GB-A-0 989 683, published on 22nd April 1965, discloses a process for preparing a particulate detergent from surfactants and inorganic salts; spraying on water- soluble silicate; and pressing the detergent particles into a solid form-retaining tablet. Finally, a readily water-soluble organic film-forming polymer (for example, polyvinyl alcohol) provides a coating to make the detergent tablet resistant to abrasion and accidental breakage.
EP-A-0 002 293, published on 13th June 1979, discloses a tablet coating comprising hydrated salt such as acetate, metaborate, orthophosphate, tartrate, and sulphate.
EP-A-0 716 144, published on 12th June 1996, also discloses laundry detergent tablets with water-soluble coatings which may be organic polymers including acrylic/maleic co-polymer, polyethylene glycoi, PVPVA, and sugar.
W09518215, published on 6th July 1995, provides water-insoluble coatings for solid cast tablets. The tablets are provided with hydrophobic coatings including wax, fatty acid, fatty acid amides, and polyethylene glycoi.
EP-A-0 846 754, published on the 10th of June 1998, provides a tablet having a coating comprising a dicarboxylic acid, the coating material typically having a melting point of from 40°C to 200°C.
EP-A-0 846 755, published on the 10th of June 1998, provides a tablet having a coating comprising a material insoluble in water at 25°C, such as C12-C22 fatty acids, adipic acid or C8-C13 dicarboxylic acids.
EP-A-0 846 756, published on the 10th of June 1998, provides a tablet having a coating comprising a disintegrant material and preferably an effervescent material.
Recently, it has been found means by which coated tablets can be provided with a coating so that they can be stored, shipped and handled without damage, the coating being easily broken when the tablet is in the washing machine, releasing the active ingredients into the wash solution. Typical of such disclosure can be found in pending European patent applications EP 99870017.3, EP 99870018.1 , and EP 99870019.9.
However, whilst giving satisfactory results, it has now also been found that where a clay mineral compound is present in the coating of the detergent tablet, the clay, for the same believed reasons stated above, can have a detrimental effect on the performance of the perfume contained therein as well as on the appearance of the coating, i.e. discoloration of the coating.
These problems have further been found more acute overtime, and more particularly where the coating also comprises an acid having a melting point of at least 40°C, more particularly with a melting point of at least 145°C.
Accordingly, the detergent formulator is also faced with the problems of providing a coated tablet having a coating which has satisfactory appearance, is sufficiently hard to protect the tablet from mechanical forces when stored, shipped and handled, and disperses readily in an aqueous solution whilst still giving satisfactory perfume performance.
Further, the perfuming of detergent tablet is a concern to the detergent formulator. Hence, the presence of the coating on the tablet can reduce the diffusion of the perfume from the tablet resulting in a less attractive odour.
It has now surprisingly been found that the addition of a heavy metal ion sequestrant to perfumed detergent tablet overcomes these problems.
Summary of the Invention
The present invention is a perfumed detergent tablet, the coating comprising a clay mineral compound and a heavy metal ion sequestrant.
By "perfumed detergent tablet", it is meant that the perfume can be present in the coating if present, or in the detergent composition, or both.
Detailed Description of the Invention
Clay An essential ingredient of the detergent tablet is a clay. The clay may be present in any of the detergent composition, the coating if present, or both.
By clay mineral compound (or in abbreviation, "clay"), it is meant herein a hydrous phyllosilicate, typically having a two or three layer crystal structure. For clarity, it is noted that the term clay mineral compound, as used herein, excludes sodium aluminosilicate zeolite builder compounds, which however, may be included in the compositions of the invention as optional components. Further description of clays may be found in Kirk-Othmer, Encyclopaedia of Chemical Technology, 4th edition, Volume 6, page 381 , as published by John Wiley and Sons.
The clay mineral compound is preferably a smectite clay compound. Smectite clays are disclosed in the US Patents No.s 3,862,058, 3,948,790, 3,954,632 and 4,062,647 and European Patents No.s EP-A-299,575 and EP-A-313,146 all in the name of the Procter and Gamble Company.
The term smectite clays herein includes both the clays in which aluminium oxide is present in a silicate lattice and the clays in which magnesium oxide is present in a silicate lattice. Typical smectite clay compounds include the compounds having the general formula Al2(Si2θ5)2(OH)2.nH2θ and the compounds having the general formula Mg3(Si2θ5)2(OH)2-nH2θ. Smectite clays tend to adopt an expandable three layer structure.
Specific examples of suitable smectite clays include those selected from the classes of the montmorillonites, hectorites, volchonskoites, nontronites, saponites and sauconites, particularly those having an alkali or alkaline earth metal ion within the crystal lattice structure. Sodium or calcium montmorillonite are particularly preferred.
Suitable smectite clays, particularly montmorillonites, are sold by various suppliers including English China Clays, Laviosa, Fordamin, Georgia Kaolin and Colin Stewart Minerals (CSM).
Preferred smectite clays are sold under the tradename of White Bentonite STP by Fordamin and Detercal P7 by Laviosa Chemical Mineria SPA.
Clays for use herein may be subjected to an acid washing treatment with any suitable mineral or organic acid. Such clays give rise to an acid pH on dissolution in distilled water. A commercially available "acid clay" of this type is sold under the tradename Tonsil P by Sud Chemie AG.
Substitution of small cations, such as protons, sodium ions, potassium ions, magnesium ions and calcium ions, and of certain organic molecules including those having positively charged functional groups can typically take place within the crystal lattice structure of the smectite clays. A clay may be chosen for its ability to preferentially absorb one cation type, such ability being assessed by measurements of relative ion exchange capacity. The smectite clays suitable herein typically have a cation exchange capacity of at least 50 meq/100g. U.S. Patent No. 3,954,632 describes a method for measurement of cation exchange capacity.
The crystal lattice structure of the clay mineral compounds may have, in a preferred execution, a cationic fabric softening agent substituted therein. Such substituted clays have been termed 'hydrophobically activated' clays. The cationic fabric softening agents are typically present at a weight ratio, cationic fabric softening agent to clay, of from 1 :200 to 1 :10, preferably from 1 :100 to 1 :20. Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP- B-0 011 340.
A preferred commercially available "hydrophobically activated" clay is a bentonite clay containing approximately 40% by weight of a dimethyl ditallow quaternary ammonium salt sold under the tradename Claytone EM by English China Clays International.
Preferably, the clay which is present in the detergent composition is present in an intimate mixture or in a particle with a humectant and a hydrophobic compound, preferably a wax or oil, such as paraffin oil. Preferred humectants are organic compounds, including propylene glycoi, ethylene glycoi, dimers or trimers of glycoi, most preferably glycerol. The particle is preferably an agglomerate. Alternatively, the particle may be such that the wax or oil and optionally the humectant form an encapsulate on the clay or alternatively, the clay be an
encapsulate for the wax or oil and the humectant. It may be preferred that the particle comprises an organic salt or silica or silicate.
In another embodiment, the clay in the detergent composition is preferably mixed with one or more surfactants and optionally builders and optionally water, in which case the mixture is preferably subsequently dried. Preferably, such a mixture is further processed in a spray-drying method to obtain a spray dried particle comprising the clay.
It may also be preferred that the intimate mixture comprises a chelating agent.
Depending on its end use, the clay will preferably be present in different particles size. Hence, when softening is desired, it is preferred that at least 50% by weight, preferably substantially all (e.g. at least 90% or 95%) by weight of the clay is present as granules. By granules, it is meant that the particles of the clay mineral compound which is present in the detergent composition are included as components of agglomerate particles optionally containing other detergent compounds. Where present as such components, the term "largest particle dimension" of the clay mineral compound refers to the largest dimension of the clay mineral component as such, and not to the agglomerated particle as a whole. Typically, the granules will have a particle size of at least 100 micrometers, generally 100-1700 micrometers.
When a coating is present, it is often desired to have a clay as disintegrant in the coating. In this instance, the clay is preferably present in the coating, having a particle size of less than 75 μm, more preferably of less than 53 μm.
Preferably, the tablet is a softening tablet. By softening tablet, it is meant that the level of clay will typically be of at least 5%, preferably at least 8%, and most preferably at least 10% by weight of the tablet. The amount may be less than 25%, usually less than 20%, and preferably not more than 15% by weight of the tablet.
Heavy metal ions sequestrants
The detergent compositions tablet of the invention also contains a heavy metal ion sequestrant, that being either present in the coating if present or in the detergent composition, or even in both the coating and the detergent composition, preferably, it is present in both the coating and the detergent composition or only in the detergent composition. By heavy metal ion sequestrant, it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1 % to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the tablet.
Heavy metal ion sequestrants, which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof. Preferably any salts/complexes are water soluble. The molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least 1 :1.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1 ,1 diphosphonate.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
Especially preferred is ethylenediamine-N.N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof. Examples of such preferred sodium salts of EDDS include Na2EDDS and NaβEDDS. Examples of such preferred magnesium complexes of EDDS include MgEDDS and Mg2EDDS.
Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N- carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP- A-516,102 are also suitable herein. The β-alanine-N,N'-diacetic acid, aspartic acid-N.N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A- 528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1 ,2,4-tricarboxylic acid are alos suitable. Glycinamide- N,N'-disuccinic acid (GADS), ethylenediamine-N,N'-diglutaric acid (EDDG) and 2- hydroxypropylenediamine- N.N'-disuccinic acid (HPDDS) are also suitable.
Most preferred heavy metal ions for use herein is alkali metal ethane 1-hydroxy diphosphonates, in particular when used in combination with diethylene triamine penta (methylene phosphonate).
Perfume
The tablets of the present invention may also optionally comprise a perfume composition, that being either present in the coating if present or in the detergent composition, or even in both the coating and the detergent composition. Suitable perfumes herein include materials which provide an olfactory aesthetic benefit such as to make such tablets more aesthetically pleasing to the consumer, imparting a pleasant fragrance to fabrics treated therewith and/or cover any "chemical" odor that the product may have.
As used herein, perfume includes fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances. Such materials are often accompanied by auxiliary materials, such as fixatives, extenders, stabilizers and solvents. These auxiliaries are also included within the meaning of "perfume", as used herein. Typically, perfumes are complex mixtures of a plurality of organic compounds.
Suitable perfumes are disclosed in U.S. Pat. 5,500,138, said patent being incorporated herein by reference.
Examples of perfume ingredients useful in the perfume compositions include, but are not limited to, hexyl cinnamic aldehyde; amyl cinnamic aldehyde; amyl salicylate; hexyl salicylate; terpineol; 3,7-dimethyl-c/s-2,6-octadien-1-ol; 2,6- dimethyl-2-octanol; 2,6-dimethyl-7-octen-2-ol; 3,7-dimethyl-3-octanol; 3,7- dimethyl-frans-2,6-octadien-1-ol; 3,7-dimethyl-6-octen-1-ol; 3,7-dimethyl-l- octanol; 2-methyl-3-(para-tert-butylphenyl)-propionaldehyde; 4-(4-hydroxy-4- methylpentyl)-3-cyclohexene-1 -carboxaldehyde; tricyclodecenyl propionate;
tricyclodecenyl acetate; anisaldehyde; 2-methyl-2-(para-iso-propylphenyl)- propionaldehyde; ethyl-3-methyl-3-phenyl glycidate; 4-(para-hydroxyphenyl)- butan-2-one; 1 -(2,6,6-trimethyl-2-cyclohexen-1 -yl)-2-buten-1 -one; para- methoxyacetophenone; para-methoxy-alpha-phenylpropene; methyl-2-n-hexyl-3- oxo-cyclopentane carboxylate; undecalactone gamma.
Additional examples of fragrance materials include, but are not limited to, orange oil; lemon oil; grapefruit oil; bergamot oil; clove oil; dodecalactone gamma; methyl-2-(2-pentyl-3-oxo-cyclopentyl) acetate; beta-naphthol methylether; methyl-beta-naphthylketone; coumarin; decylaldehyde; benzaldehyde; 4-tert- butylcyclohexyl acetate; alpha, alpha-dimethylphenethyl acetate; methylphenylcarbinyl acetate; cyclic ethyleneglycol diester of tridecandioic acid; 3,7-dimethyl-2,6-octadiene-1-nitrile; ionone gamma methyl; ionone alpha; ionone beta; petitgrain; methyl cedrylone; 7-acetyl-1 , 2,3,4, 5,6,7,8-octahydro-1 , 1 ,6,7- tetramethyl-naphthalene; ionone methyl; methyl-1 ,6,10-trimethyl-2,5,9- cyclododecatrien-1-yl ketone; 7-acetyl-1 J ,3,4,4, 6-hexamethyl tetralin; 4-acetyl-6- tert-butyl-1 ,1 -dimethyl indane; benzophenone; 6-acetyl-1 ,1 ,2,3,3,5-hexamethyl indane; 5-acetyl-3-isopropyl-1 ,1 ,2,6-tetramethyl indane; 1-dodecanal; 7-hydroxy- 3,7-dimethyl octanal; 10-undecen-1-al; iso-hexenyl cyclohexyl carboxaldehyde; formyl tricyclodecan; cyclopentadecanolide; 16-hydroxy-9-hexadecenoic acid lactone; 1 , 3,4,6, 7,8-hexahydro-4, 6, 6,7,8, 8-hexamethylcyclopenta-gamma-2- benzopyrane; ambroxane; dodecahydro-3a,6,6,9a-tetramethylnaphtho-
[2,1 b]furan; cedrol; 5-(2,2,3-trimethylcyclopent-3-enyl)-3-methylpentan-2-ol; 2- ethyl-4-(2,2,3-trimethyl-3-cyclopenten-1-yl)-2-buten-1-ol; caryophyllene alcohol; cedryl acetate; para-tert-butylcyclohexyl acetate; patchouli; olibanum resinoid; labdanum; vetivert; copaiba balsam; fir balsam; hydroxycitronellal and indol; phenyl acetaldehyde and indol;
More examples of perfume components are geraniol; geranyl acetate; linalool; linalyl acetate; tetrahydrolinalool; citronellol; citronellyl acetate; dihydromyrcenol; dihydromyrcenyl acetate; tetrahydromyrcenol; terpinyl acetate; nopol; nopyl acetate; 2-phenylethanol; 2-phenylethyl acetate; benzyl alcohol; benzyl acetate; benzyl salicylate; benzyl benzoate; styrallyl acetate; dimethylbenzylcarbinol;
trichloromethylphenylcarbinyl methylphenylcarbinyl acetate; isononyl acetate; vetiveryl acetate; vetiverol; 2-methyl-3-(p-tert-butylphenyl)-propanal; 2-methyl-3- (p-isopropylphenyl)-propanal; 3-(p-tert-butylphenyl)-propanal; 4-(4-methyl-3- pentenyl)-3-cyclohexenecarbaldehyde; 4-acetoxy-3-pentyltetrahydropyran; methyl dihydrojasmonate; 2-n-heptylcyclopentanone; 3-methyl-2-pentyl- cyclopentanone; n-decanal; n-dodecanal; 9-decenol-1 ; phenoxyethyl isobutyrate; phenylacetaldehyde dimethylacetal; phenylacetaldehyde diethylacetal; geranonitrile; citronellonitrile; cedryl acetal; 3-isocamphylcyclohexanol; cedryl methylether; isolongifolanone; aubepine nitrile; aubepine; heliotropine; eugenol; vanillin; diphenyl oxide; hydroxycitronellal ionones; methyl ionones; isomethyl ionomes; irones; cis-3-hexenol and esters thereof; indane musk fragrances; tetralin musk fragrances; isochroman musk fragrances; macrocyclic ketones; macrolactone musk fragrances; ethylene brassylate.
The perfumes useful in the present invention compositions are substantially free of halogenated materials and nitromusks.
Preferably, the perfume composition contains less than 0.6% by weight of the perfume composition of Schiff-base. The perfume for use herein is used at levels of up to 5 grams per tablet and preferably is substantially free of Schiff-Base.
By "substantially free", it is meant that the perfume composition comprises less than 0.4 % by weight of Schiff Base, and more preferably is free of Schiff base.
Schiff-Bases are the condensation of an aldehyde perfume ingredient with an anthranilate. A typical description can be found in US 4853369. The Schiff Bases can be added directly to the perfume composition or can be formed in situ in the perfume composition by adding to it an Anthranilate such as Methyl or Ethyl Anthranilate along with an aldehyde which can react with the Anthranilate to form the Schiff Base.
Not to be bound by theory, it is believed that when this compound comes in contact with the clay it can undergo reactions most likely catalysed by the metal ions present in the clay and that these reactions produce more highly coloured by-products.
Typical of Schiff bases are selected from Schiffs base of 4-(4-hydroxy-4- methylpentyl)-3-cyclohexene-1-carboxaldehyde and methyl anthranilate; condensation products of: hydroxycitronellal and methyl anthranilate; 4-(4- hydroxy-4-methyl pentyl)-3-cyclohexene-1-carboxaldehyde and methyl anthranilate; Methyl Anthranilate and Hydroxycitronellal commercially available under the tradename Aurantiol; Methyl Anthranilate and Methyl Nonyl Acetaldehyde commercially available under the tradename Agrumea; Methyl Anthranilate and PT Bucinal commercially available under the tradename Verdantiol; Methyl anthranilate and Lyral commercially available under the tradename Lyrame; Methyl Anthranilate and Ligustral commercially available under the tradename Ligantral; and mixtures thereof.
Preferably, the perfume composition is free of perfume ingredients selected from Methyl Anthranilate and Hydroxycitronellal commercially available under the tradename Aurantiol; Methyl Anthranilate and Methyl Nonyl Acetaldehyde commercially available under the tradename Agrumea; Methyl Anthranilate and PT Bucinal commercially available under the tradename Verdantiol; Methyl anthranilate and Lyral commercially available under the tradename Lyrame; Methyl Anthranilate and Ligustral commercially available under the tradename Ligantral; and mixtures thereof.
Suitable solvents, diluents or carriers for perfumes ingredients mentioned above are for examples, ethanol, isopropanol, diethylene glycoi, monoethyl ether, dipropylene glycoi, diethyl phthalate, triethyl citrate, etc. The amount of such solvents, diluents or carriers incorporated in the perfumes is preferably kept to the minimum needed to provide a homogeneous perfume solution.
Tablets of the present invention as well as coated tablets according to the invention provide improved fabric perfume deposition.
Preferably, the perfume composition is present in an amount of 0.001 % to 10%, preferably from 0.005% to 5%, more preferably from 0.01 % to 3%, and even more preferably from 0.02% to 2% by weight of the tablet.
The perfume can be incorporated to the tablet by any conventional means known to the skilled person. One preferred means is by spray-on of the perfume composition onto the tablet.
Detergent ingredients
The tablets may comprise components such as surfactants, enzymes, detergent etc.... Typical tablet compositions for the preferred embodiment of the present invention are disclosed in the pending European applications of the Applicant n° 96203471.6, 96203462.5, 96203473.2 and 96203464.1 for example. Elements typically entering in the composition of detergent tablets or of other forms of detergents such as liquids or granules are detailed in the following paragraphs.
Detersive su rfactants
Surfactant are typically comprised in a detergent composition. The dissolution of surfactants is favoured by the addition of the highly soluble compound. Nonlimiting examples of surfactants useful herein typically at levels from about 1 % to about 55%, by weight, include the conventional C-*| -|_C<|8 alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C-10-C20 alky' sulfates ("AS"), the C-10-C18 secondary (2,3) alkyl sulfates of the formula
CH3(CH2)x(CHOSθ3_M+) CH3 and CH3 (CH2)y(CHOSO3_M+) CH2CH3 where x and (y + 1 ) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C-10-C18 a|M alkoxy sulfates ("AEXS"; especially EO 1-7 ethoxy
sulfates), C-10-C18 alkY- alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C-I Q-18 glycerol ethers, the C-10-C18 alkyl polyglycosides and their corresponding sulfated polyglycosides, and C12-C18 alpha-sulfonated fatty acid esters. If desired, the conventional nonionic and amphoteric surfactants such as the C | 2-C-|8 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C-12 -alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C12-C18 betaines and sulfobetaines ("sultaines"), C<|o-C-|8 amine oxides, and the like, can also be included in the overall compositions. The C-I Q-C-I S N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12-C-I8 N-methylglucamides. See WO 9,206,154. Other sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C-|rj-Ci8 N-(3-methoxypropyl) glucamide. The N-propyl through N-hexyl C-|2-C-|8 glucamides can be used for low sudsing. C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C-|o-C-|6 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts. In a preferred embodiment, the tablet comprises at least 5% per weight of surfactant, more preferably at least 15% per weight, even more preferably at least 25% per weight, and most preferably between 35% and 45% per weight of surfactant.
Non gelling binders
Non gelling binders can be integrated in detergent compositions to further facilitate dissolution. If non gelling binders are used, suitable non-gelling binders include synthetic organic polymers such as polyethylene glycols, polyvinylpyrrolidones, polyacrylates and water-soluble acrylate copolymers. The handbook of Pharmaceutical Excipients second edition, has the following binders classification: Acacia, Alginic Acid, Carbomer, Carboxymethylcellulose sodium, Dextrin, Ethylcellulose, Gelatin, Guar gum, Hydrogenated vegetable oil type I,
Hydroxyethyl cellulose, Hydroxypropyl methylcellulose, Liquid glucose, Magnesium aluminum silicate, Maltodextrin, Methylcellulose, polymethacrylates, povidone, sodium alginate, starch and zein. Most preferable binders also have an active cleaning function in the laundry wash such as cationic polymers, i.e. ethoxylated hexamethylene diamine quaternary compounds, bishexamethylene triamines, or others such as pentaamines, ethoxylated polyethylene amines, maleic acrylic polymers.
Non-gelling binder materials are preferably sprayed on and hence have an appropriate melting point temperature below 90°C, preferably below 70°C and even more preferably below 50°C so as not to damage or degrade the other active ingredients in the matrix. Most preferred are non-aqueous liquid binders (i.e. not in aqueous solution) which may be sprayed in molten form. However, they may also be solid binders incorporated into the matrix by dry addition but which have binding properties within the tablet. Non-gelling binder materials are preferably used in an amount within the range from 0.1 to 15% of the composition, more preferably below 5% and especially if it is a non laundry active material below 2% by weight of the tablet. It is preferred that gelling binders, such as nonionic surfactants are avoided in their liquid or molten form. Nonionic surfactants and other gelling binders are not excluded from the compositions, but it is preferred that they be processed into the detergent tablets as components of particulate materials, and not as liquids.
Builders
Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils.
The level of builder can vary widely depending upon the end use of the composition. Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates
(exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric
meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the compositions herein function surprisingly well even in the presence of the so- called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders.
Examples of silicate builders are the alkali metal silicates, particularly those having a SiO2:Na2O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na2Siθ5 morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3, 742,043. SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula
NaMSixθ2χ+ι -y^O wherein M is sodium or hydrogen, x is a number from 1.9 to
4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and
NaSKS-11 , as the alpha, beta and gamma forms. As noted above, the delta-
Na2SiO5 (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321 ,001 published on November 15, 1973.
Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid
detergent formulations. Aluminosilicate builders include those having the empirical formula:
Mz(zAlθ2)y]-xH2θ wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula: Na-|2t(Alθ2)i2(Siθ2)i2] xH2θ wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (x = 0 - 10) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0J-10 microns in diameter. Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred. Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S.
Patent 4,663,071 , issued to Bush et al, on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903. Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1 , 3, 5- trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1 ,3,5-tricarboxyiic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations. Also suitable in the detergent compositions of the present invention are the 3,3- dicarboxy-4-oxa-1 ,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986. Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.
Fatty acids, e.g., C12-C18 monocarboxylic acids, can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity. Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
In situations where phosphorus-based builders can be used, and especially in the formulation of bars used for hand-laundering operations, the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such as ethane-1-hydroxy-1 ,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581 ; 3,213,030; 3,422,021 ; 3,400,148 and 3,422,137) can also be used.
Bleach The detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. When present, bleaching agents will typically be at levels of from about 1 % to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from about 0.1 % to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
The bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents. Perborate bleaches, e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein. Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino- 4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching
agents are disclosed in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1 , 1983. Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551 , issued January 6, 1987 to Burns et al. Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used. A preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1 ,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1 ,250 micrometers. Optionally, the percarbonate can be coated with silicate, borate or water-soluble surfactants. Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka. Mixtures of bleaching agents can also be used.
Peroxygen bleaching agents, the perborates, the percarbonates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator. Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934. The nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U.S. 4,634,551 for other typical bleaches and activators useful herein. Highly preferred amido-derived bleach activators are those of the formulae:
R1 N(R5)C(0)R2C(0)L or R1 C(0)N(R5)R2C(0)L
wherein R1 is an alkyl group containing from about 6 to about 12 carbon atoms, R2 is an alkylene containing from 1 to about 6 carbon atoms, R5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group. A leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion. A preferred leaving group is phenyl sulfonate.
Preferred examples of bleach activators of the above formulae include (6- octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzene- sulfonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551 , incorporated herein by reference. Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference. A highly preferred activator of the benzoxazin- type is:
Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
wherein R^ is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms. Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and
mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate. Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
If desired, the bleaching compounds can be catalyzed by means of a manganese compound. Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621 , U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,114,606; and European Pat. App. Pub. Nos. 549,271 A1 , 549.272A1 , 544.440A2, and 544.490A1 ;
Preferred examples of these catalysts include Mn'V2(u-0)3(1 ,4,7-trimethyl-1 ,4,7- triazacyclononane)2(PF6)2. Mn'"2(u-0)-| (u-OAc)2(1 ,4,7-trimethyl-1 ,4,7- triazacyclononane)2-(CI04)2, Mn'V4(u-0)6(1 ,4,7-triazacyclononane)4(CI04)4, Mnl"MnlV4(u-0)-| (u-OAc)2-(1 ,4,7-trimethyM ,4,7-triazacyclononane)2(CI04)3, Mnlv(1 ,4,7-trimethyl-1 ,4,7-triazacyclononane)- (OCH3)3(PFs), and mixtures thereof. Other metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611. The use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161 ; and 5,227,084.
As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more
preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
Enzymes Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration. The enzymes to be incorporated include proteases, amylases, lipases, cellulases, and peroxidases, as well as mixtures thereof. Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001 % to about 5%, preferably 0.01 %-1 % by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0J Anson units (AU) of activity per gram of composition.
Suitable examples of proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1 ,243,784 of Novo. Proteolytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradenames ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands). Other proteases include Protease A (see
European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985). Amylases include, for example, α-amylases described in British Patent Specification No. 1 ,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
The cellulase usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander). suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS- 2.247.832. CAREZYME (Novo) is especially useful.
Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1 ,372,034. See also lipases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P." Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. The LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo (see also EPO 341 ,947) is a preferred lipase for use herein. Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from
substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo- peroxidase. Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A S.
A wide range of enzyme materials and means for their incorporation into synthetic detergent compositions are also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. Patent 4,101 ,457, Place et al, issued July 18, 1978, and in U.S. Patent 4,507,219, Hughes, issued March 26, 1985, both. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. Patent 4,261 ,868, Hora et al, issued April 14, 1981. Enzymes for use in detergents can be stabilized by various techniques. Enzyme stabilization techniques are disclosed and exemplified in U.S. Patent 3,600,319, issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patent 3,519,570.
Flocculating agent
The detergent composition may contain a clay flocculating agent, preferably present at a level of from 0.005% to 10%, more preferably from 0.05% to 5%, most preferably from 0.1 % to 2% by weight of the composition.
The clay flocculating agent functions such as to bring together the particles of clay compound in the wash solution and hence to aid their deposition onto the surface of the fabrics in the wash. This functional requirement is hence different from that of clay dispersant compounds which are commonly added to laundry detergent compositions to aid the removal of clay soils from fabrics and enable their dispersion within the wash solution.
Preferred as clay flocculating agents herein are organic polymeric materials having an average weight of from 100,000 to 10,000,000, preferably from 150,000 to 5,000,000, more preferably from 200,000 to 2,000,000.
Suitable organic polymeric materials comprise homopolymers or copolymers containing monomeric units selected from alkylene oxide, particularly ethylene oxide, acrylamide, acrylic acid, vinyl alcohol, vinyl pyrrolidone, and ethylene imine. Homopolymers of, on particular, ethylene oxide, but also acrylamide and acrylic acid are preferred.
European Patents No.s EP-A-299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe preferred organic polymeric clay flocculating agents for use herein.
Inorganic clay flocculating agents are also suitable herein, typical examples of which include lime and alum.
The flocculating agent is preferably present in a detergent base granule such as a detergent agglomerate, extrudate or spray-dried particle, comprising generally one or more surfactants and builders.
It may be preferred that the flocculating agent is also comprised in the particle or granule comprising the clay.
When present, the weight ratio of clay to the flocculating polymer is preferably from 1000:1 to 1 :1 , more preferably from 500:1 to 1 :1 , most preferably from 300:1 to 1 :1 , or even more preferably from 80:1 to 10:1 , or in certain applications even from 60:1 to 20:1.
Other components which are commonly used in detergent compositions and which may be incorporated into detergent tablets include chelating agents, soil
release agents, soil antiredeposition agents, dispersing agents, suds suppressors, fabric softeners, dye transfer inhibition agents and mixtures thereof.
Highly soluble Compounds The tablet may comprise a highly soluble compound. Such a compound could be formed from a mixture or from a single compound. A highly soluble compound is defined as follow:
A solution is prepared as follows comprising de-ionised water as well as 20 grams per litre of a specific compound: 1- 20 g of the specific compound is placed in a Sotax Beaker. This beaker is placed in a constant temperature bath set at 10°C. A stirrer with a marine propeller is placed in the beaker so that the bottom of the stirrer is at 5 mm above the bottom of the Sotax beaker. The mixer is set at a rotation speed of
200 turns per minute. 2- 980 g of the de-ionised water is introduced into the Sotax beaker.
3- 10 s after the water introduction, the conductivity of the solution is measured, using a conductivity meter.
4- Step 3 is repeated after 20, 30, 40, 50, 1 min, 2 min, 5 min and 10 min after step 2. 5- The measurement taken at 10 min is used as the plateau value or maximum value.
The specific compound is highly soluble according to the invention when the conductivity of the solution reaches 80% of its maximum value in less than 10 seconds, starting from the complete addition of the de-ionised water to the compound. Indeed, when monitoring the conductivity in such a manner, the conductivity reaches a plateau after a certain period of time, this plateau being considered as the maximum value. Such a compound is preferably in the form of a flowable material constituted of solid particles at temperatures comprised between 10 and 80°Celsius for ease of handling, but other forms may be used such as a paste or a liquid.
Example of highly soluble compounds include Sodium di isoalkylbenzene sulphonate (DIBS) or Sodium toluene sulphonate.
Cohesive Effect
The tablet may comprise a compound having a Cohesive Effect on the particulate material of a detergent matrix forming the tablet. The Cohesive Effect on the particulate material of a detergent matrix forming the tablet or a layer of the tablet is characterised by the force required to break a tablet or layer based on the examined detergent matrix pressed under controlled compression conditions. For a given compression force, a high tablet or layer strength indicates that the granules stuck highly together when they were compressed, so that a strong cohesive effect is taking place. Means to assess tablet or layer strength (also refer to diametrical fracture stress) are given in Pharmaceutical dosage forms : tablets volume 1 Ed. H.A. Lieberman et al, published in 1989.
The cohesive effect is measured by comparing the tablet or layer strength of the original base powder without compound having a cohesive effect with the tablet or layer strength of a powder mix which comprises 97 parts of the original base powder and 3 parts of the compound having a cohesive effect. The compound having a cohesive effect is preferably added to the matrix in a form in which it is substantially free of water (water content below 10% (pref. below 5%)). The temperature of the addition is between 10 and 80C, more pref. between 10 and 40C.
A compound is defined as having a cohesive effect on the particulate material according to the invention when at a given compacting force of 3000N, tablets with a weight of 50g of detergent particulate material and a diameter of 55mm have their tablet tensile strength increased by over 30% (preferably 60 and more preferably 100%) by means of the presence of 3% of the compound having a cohesive effect in the base particulate material.
An example of a compound having a cohesive effect is Sodium di isoalkylbenzene sulphonate. When integrating a highly soluble compound having also a cohesive effect on the particulate material used for a tablet or layer formed by compressing a
particulate material comprising a surfactant, the dissolution of the tablet or layer in an aqueous solution is significantly increased.
In a preferred embodiment, at least 1% per weight of a tablet or layer is formed from the highly soluble compound, more preferably at least 2%, even more preferably at lest 3% and most preferably at least 5% per weight of the tablet or layer being formed from the highly soluble compound having a cohesive effect on the particulate material.
It should be noted that a composition comprising a highly soluble compound as well as a surfactant is disclosed in EP-A-0 524 075, this composition being a liquid composition.
A highly soluble compound having a cohesive effect on the particulate material allows to obtain a tablet having a higher tensile strength at constant compacting force or an equal tensile strength at lower compacting force when compared to traditional tablets. Typically, a whole tablet will have a tensile strength of more than 5kPa, preferably of more than 10kPa, more preferably, in particular for use in laundry applications, of more than 15kPa, even more preferably of more than 30 kPa and most preferably of more than 50 kPa, in particular for use in dish washing or auto dish washing applications; and a tensile strength of less than
300 kPa, preferably of less than 200 kPa, more preferably of less than 100 kPa, even more preferably of less than 80 kPa and most preferably of less than 60 kPa. Indeed, in case of laundry application, the tablets should be less compressed than in case of auto dish washing applications for example, whereby the dissolution is more readily achieved, so that in a laundry application, the tensile strength is preferably of less than 30 kPa.
This allows to produce tablets or layers which have a solidity and mechanical resistance comparable to the solidity or mechanical resistance of traditional tablets while having a less compact tablet or layer thus dissolving more readily.
Furthermore, as the compound is highly soluble, the dissolution of the tablet or
layer is further facilitated, resulting in a synergy leading to facilitated dissolution for a tablet according to the invention.
Tablet Manufacture The tablet may comprise several layers. For the purpose of manufacture of a single layer, the layer may be considered as a tablet itself. Detergent tablets can be prepared simply by mixing the solid ingredients together and compressing the mixture in a conventional tablet press as used, for example, in the pharmaceutical industry. Preferably the principal ingredients, in particular gelling surfactants, are used in particulate form. Any liquid ingredients, for example surfactant or suds suppressor, can be incorporated in a conventional manner into the solid particulate ingredients.
In particular for laundry tablets, the ingredients such as builder and surfactant can be spray-dried in a conventional manner and then compacted at a suitable pressure. Preferably, the tablets according to the invention are compressed using a force of less than 100000N, more preferably of less than 50000N, even more preferably of less than 5000N and most preferably of less than 3000 N.
Indeed, the most preferred embodiment is a tablet suitable for laundry compressed using a force of less than 2500N, but tablets for auto dish washing may also be considered for example, whereby such auto dish washing tablets are usually more compressed than laundry tablets.
The particulate material used for making a tablet can be made by any particuiation or granulation process. An example of such a process is spray drying (in a co-current or counter current spray drying tower) which typically gives low bulk densities 600g/l or lower. Particulate materials of higher density can be prepared by granulation and densification in a high shear batch mixer/granulator or by a continuous granulation and densification process (e.g. using Lodige® CB and/or Lodige® KM mixers). Other suitable processes include fluid bed processes, compaction processes (e.g. roll compaction), extrusion, as well as
any particulate material made by any chemical process like flocculation, crystallisation sentering, etc. Individual particles can also be any other particle, granule, sphere or grain.
The components of the particulate material may be mixed together by any conventional means. Batch is suitable in, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s). Non-gelling binder can be sprayed on to the mix of some, or all of, the components of the particulate material. Other liquid ingredients may also be sprayed on to the mix of components either separately or premixed. For example perfume and slurries of optical brighteners may be sprayed. A finely divided flow aid (dusting agent such as zeolites, carbonates, silicas) can be added to the particulate material after spraying the binder, preferably towards the end of the process, to make the mix less sticky.
The tablets may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting. Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy®, Korch®,
Manesty®, or Bonals®). The tablets prepared according to this invention preferably have a diameter of between 20mm and 60mm, preferably of at least 35 and up to 55 mm, and a weight between 25 and 100 g. The ratio of height to diameter (or width) of the tablets is preferably greater than 1 :3, more preferably greater than 1 :2. The compaction pressure used for preparing these tablets need not exceed 100000 kN/m2, preferably not exceed 30000 kN/m2, more preferably not exceed 5000 kN/m2, even more preferably not exceed 3000kN/m2 and most preferably not exceed 1000kN/m2. In a preferred embodiment according to the invention, the tablet has a density of at least 0.9 g/cc, more preferably of at least 1.0 g/cc, and preferably of less than 2.0 g/cc, more preferably of less than 1.5
g/cc, even more preferably of less than 1.25 g/cc and most preferably of less than 1.1 g/cc.
Multi layered tablets are typically formed in rotating presses by placing the matrices of each layer, one after the other in matrix force feeding flasks. As the process continues, the matrix layers are then pressed together in the pre- compression and compression stages stations to form the multilayer layer tablet. With some rotating presses it is also possible to compress the first feed layer before compressing the whole tablet.
Hydrotrope compound
A highly soluble compound having a cohesive effect may be integrated to a detergent tablet, whereby this compound is also a hydrotrope compound. Such hydrotrope compound may be generally used to favour surfactant dissolution by avoiding gelling. A specific compound is defined as being hydrotrope as follows (see S.E. Friberg and M. Chiu, J. Dispersion Science and Technology, 9(5&6), pages 443 to 457, (1988-1989)):
1. A solution is prepared comprising 25% by weight of the specific compound and 75% by weight of water. 2. Octanoic Acid is thereafter added to the solution in a proportion of 1.6 times the weight of the specific compound in solution, the solution being at a temperature of 20°Celsius. The solution is mixed in a Sotax beaker with a stirrer with a marine propeller, the propeller being situated at about 5mm above the bottom of the beaker, the mixer being set at a rotation speed of 200 rounds per minute.
3. The specific compound is hydrotrope if the the Octanoic Acid is completely solubilised, i.e . if the solution comprises only one phase, the phase being a liquid phase. It should be noted that in a preferred embodiment of the invention, the hydrotrope compound is a flowable material made of solid particles at operating conditions between 15 and 60° Celsius.
Hydrotrope compounds include the compounds listed thereafter:
A list of commercial hydrotropes can be found in McCutcheon's Emulsifiers and Detergents published by the McCutcheon division of Manufacturing Confectioners Company.
Compounds of interest also include:
1. Nonionic hydrotrope with the following structure:
R - O - (CH2CH20)x( CH - CH20)yH CH3 where R is a C8-C10 alkyl chain, x ranges from 1 to 15, y from 3 to 10.
2. Anionic hydrotropes such as alkali metal aryl sulfonates. This includes alkali metal salts of benzoic acid, salicylic acid, bezenesulfonic acid and its many derivatives, naphthoic acid and various hydroaromatic acids. Examples of these are sodium, potassium and ammonium benzene sulfonate salts derived from toluene sulfonic acid, xylene sulfonic acid, cumene sulfonic acid, tetralin sulfonic acid, naphtalene sulfonic acid, methyl- naphtalene sulfonic acid, dimethyl naphtalene sulfonic acid, trimethyl naphtalene sulfonic acid= Other examples include salts of dialkyl benzene sulfonic acid such as salts of di- isopropyl benzene sulfonic acid, ethyl methyl benzene sulfonic acid, alkyl benzene sulfonic acid with an alkyl chain length with 3 to 10, (pref. 4 to 9), linear or branched alkyl sulfonates with an alkyl chain with 1 to 18 carbons.
3. Solvent hydrotropes such as alkoxylated glycerines and alkoxylated glycerides, esters slakoxylated glycerines, alkoxylated fatty acids, esters of glycerin, polyglycerol esters. Preferred alkoxylated glycerines have the following structure:
where I, m and n are each a number from 0 to about 20, with l+m+n = from about
2 to about 60, preferably from about 10 to about 45 and R represents H, CH3 or
Preferred alkoxylated glycerides have the following struture
H2G-K1
HC-R2 H2C-0-(CH2CH-0)-H where R1 and R2 are each CnCOO or -(CH2CHR3-0)*-H where R3 = H, CH3 or C2H5 and I is a number from 1 to about 60, n is a number from about 6 to about 24.
4. Polymeric hydrotropes such as those described in EP636687:
where E is a hydrophilic functional group,
R is H or a C1-C10 alkyl group or is a hydrophilic functional group; R1 is H a lower alkyl group or an aromatic group, R2 is H or a cyclic alkyl or aromatic group. The polymer typically has a molecular weight of between about 1000 and 1000000.
5. Hydrotrope of unusual structure such as 5-carboxy-4-hexyl-2-cyclohexene-1-yl octanoic acid (Diacid®).
Use of such compound in the invention would further increase the dissolution rate of the tablet, as a hydrotrope compound facilitates dissolution of surfactants, for example. Such a compound could be formed from a mixture or from a single compound.
Tensile Strength
For the purpose of measuring tensile strength of a layer, the layer may be considered as a tablet itself.
Depending on the composition of the starting material, and the shape of the tablets, the used compacting force may be adjusted to not affect the tensile strength, and the disintegration time in the washing machine. This process may be used to prepare homogenous or layered tablets of any size or shape. For a cylindrical tablet, the tensile strength corresponds to the diametrical fracture stress (DFS) which is a way to express the strength of a tablet or layer, and is determined by the following equation : Tensile strength = 2 F/ πDt
Where F is the maximum force (Newton) to cause tensile failure (fracture) measured by a VK 200 tablet hardness tester supplied by Van Kell industries, Inc. D is the diameter of the tablet or layer, and t the thickness of the tablet or layer. For a non round tablet, πD may simply be replaced by the perimeter of the tablet.
(Method Pharmaceutical Dosage Forms : Tablets Volume 2 Page 213 to 217). A tablet having a diametral fracture stress of less than 20 kPa is considered to be fragile and is likely to result in some broken tablets being delivered to the consumer. A diametral fracture stress of at least 25 kPa is preferred. This applies similarly to non cylindrical tablets, to define the tensile strength, whereby the cross section normal to the height of the tablet is non round, and whereby the force is applied along a direction perpendicular to the direction of the height of the tablet and normal to the side of the tablet, the side being perpendicular to the non round cross section.
Tablet Dispensing
The rate of dispensing of a detergent tablet can be determined in the following way:
Two tablets, nominally 50 grams each, are weighed, and then placed in the dispenser of a Baucknecht® WA9850 washing machine. The water supply to the washing machine is set to a temperature of 20 °C and a hardness of 21 grains per gallon, the dispenser water inlet flow-rate being set to 8 l/min. The level of
tablet residues left in the dispenser is checked by switching the washing on and the wash cycle set to wash program 4 (white/colors, short cycle). The dispensing percentage residue is determined as follows: % dispensing = residue weight x 100 / original tablet weight The level of residues is determined by repeating the procedure 10 times and an average residue level is calculated based on the ten individual measurements. In this stressed test a residue of 40 % of the starting tablet weight is considered to be acceptable. A residue of less than 30% is preferred, and less than 25% is more preferred. It should be noted that the measure of water hardness is given in the traditional "grain per gallon" unit, whereby 0.001 mole per litre = 7.0 grain per gallon, representing the concentration of Ca2+ ions in solution.
Effervescent Detergent tablets may further comprise an effervescent.
Effervescency as defined herein means the evolution of bubbles of gas from a liquid, as the result of a chemical reaction between a soluble acid source and an alkali metal carbonate, to produce carbon dioxide gas, i.e. C6H8θ7 + 3NaHC03 ■» Na3C6H5θ7 + 3C02 + 3H20 Further examples of acid and carbonate sources and other effervescent systems may be found in : (Pharmaceutical Dosage Forms : Tablets Volume 1 Page 287 to 291 ).
An effervescent may be added to the tablet mix in addition to the detergent ingredients. The addition of this effervescent to the detergent tablet improves the disintegration time of the tablet. The amount will preferably be between 5 and 20 % and most preferably between 10 and 20% by weight of the tablet. Preferably the effervescent should be added as an agglomerate of the different particles or as a compact, and not as separated particles. Due to the gas created by the effervescency in the tablet, the tablet can have a higher D.F.S. and still have the same disintegration time as a tablet without effervescency. When the D.F.S. of the tablet with effervescency is kept the
same as a tablet without, the disintegration of the tablet with effervescency will be faster.
Further dissolution aid could be provided by using compounds such as sodium acetate or urea. A list of suitable dissolution aid may also be found in Pharmaceutical Dosage Forms: Tablets, Volume 1 , Second edition, Edited by H.A. Lieberman et all, ISBN 0-8247-8044-2.
Coating
Solidity of a tablet may be improved by making a coated tablet, the coating covering a non-coated tablet, thereby further improving the mechanical characteristics of the tablet while maintaining or further improving dissolution.
This very advantageously applies to multi-layer tablets, whereby the mechanical characteristics of a more elastic layer can be transmitted via the coating to the rest of the tablet, thus combining the advantage of the coating with the advantage of the more elastic layer. Indeed, mechanical constraints will be transmitted through the coating, thus improving mechanical integrity of the tablet.
In one embodiment of the present invention, the tablets may then be coated so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate. The coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition. Finally the coating is preferably brittle so that the tablet breaks up quickly when subjected to stronger mechanical shock. Furthermore it is advantageous if the coating material is dissolved under alkaline conditions, or is readily emulsified by surfactants. This contributes to avoiding the problem of visible residue in the window of a front-loading washing machine during the wash cycle, and also avoids deposition of undissolved particles or lumps of coating material on the laundry load.
Water solubility is measured following the test protocol of ASTM E1148-87 entitled, "Standard Test Method for Measurements of Aqueous Solubility".
Fracture of the coating in the wash is improved by adding a disintegrant in the coating. This disintegrant will swell once in contact with water and break the coating in small pieces. This will improve the dissolution of the coating in the wash solution. Typically, the disintegrant is suspended in the coating melt at a level of up to 30%, preferably between 5% and 20%, most preferably between 5 and 10% by weight.
Clay mineral compound, as above described, is a disintegrant for use herein.
Other possible disintegrants which may be use in addition to the clay disintegrants are described in Handbook of Pharmaceutical Excipients (1986). Examples of suitable disintegrants include starch: natural, modified or pregelatinized starch, sodium starch gluconate; gum: agar gum, guar gum, locust bean gum, karaya gum, pectin gum, tragacanth gum; croscarmylose Sodium, crospovidone, cellulose, carboxymethyl cellulose, algenic acid and its salts including sodium alginate, silicone dioxide, clay, polyvinylpyrrolidone, soy polysacharides, ion exchange resins, polymers containing cationic (e.g. quaternary ammonium) groups, amine-substituted polyacrylates, polymerised cationic amino acids such as poly-L-lysine, polyallylamine hydrochloride) and mixtures thereof.
Preferably, the coating material has a melting point of at least 40°C, preferably of from 40°C to 200 °C.
By "melting point" is meant the temperature at which the material when heated slowly in, for example, a capillary tube becomes a clear liquid.
Preferably, the coating material which has a melting point of at least 40°C is an acid. Acid having a melting temperature of at least 40°C are for example dicarboxylic acids. Particularly suitable dicarboxylic acids are selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic
acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid and mixtures thereof. Most preferred is adipic acid.
More preferably, the coating comprises a crystallised structure. By crystallised, it should be understood that the coating comprises a material which is solid at ambient temperature (25°C) and has a structure exhibiting some order. This can be detected typically by usual crystallography techniques e.g. X-ray analysis, on the material itself. In a more preferred embodiment, the material forming the crystallised structure does not co-crystallised or only partially with the optional component which is liquid at 25°C mentioned above. Indeed, it is preferred that the optional component remains in the liquid state at 25°C in the coating crystalline structure in order to provide flexibility to the structure and resistance to mechanical stress. Most preferably, the above mentioned acid having a melting temperature of at least 40°C comprises a crystallised structure.
Clearly substantially insoluble materials having a melting point below 40 °C are not sufficiently solid at ambient temperatures and it has been found that materials having a melting point above about 200 °C are not practicable to use. Preferably, an acid having a melting point of more than 90°C such as azelaic, sebacic acid, dodecanedioic acid. However, for the purpose of the present invention, the use of sebacic acid is less preferred as it provides a detrimental odour to the resulting product. According to the invention, it was found that an acid having a melting point of more than 145°C such as adipic was found particularly suitable.
The coating can be applied in a number of ways. Two preferred coating methods are a) coating with a molten material and b) coating with a solution of the material. In a), the coating material is applied at a temperature above its melting point, and solidifies on the tablet. In b), the coating is applied as a solution, the solvent being dried to leave a coherent coating. The substantially insoluble material can
be applied to the tablet by, for example, spraying or dipping. Normally when the molten material is sprayed on to the tablet, it will rapidly solidify to form a coherent coating. When tablets are dipped into the molten material and then removed, the rapid cooling again causes rapid solidification of the coating material. During the solidification phase, the coating undergoes some internal stress (e.g. shrinkage upon cooling) and external stress (e.g. tablet relaxation). This will likely cause some cracks in the structure such as edge splitting if the coating material is too brittle to withstand these mechanical stress, which is the case when a coating is solely made from components solid at 25°C. Thus, it is preferred that the coating comprises a component which is liquid at 25°C. Hence, it is believed that this liquid component will allow the coating to better withstand and absorb mechanical stress by rendering the coating structure more flexible. The component which is liquid at 25°C is preferably added to the coating materials in proportions of less than 10% by weight of the coating, more preferably less than 5% by weight, and most preferably of less than 3% by weight. The component which is liquid at 25°C is preferably added to the coating materials in proportions of more than 0.1 % by weight of the coating, more preferably more than 0.3% by weight, and most preferably of more than 0.5% by weight.
Examples of optional components which are liquid at 25°C includes polyethylene glycols, thermal oil, silicon oil, esters of dicarboxylic acids, mono carboxylic acids, parafin, triacetin, perfumes or alkaline solutions. For example, particularly good results were obtained by use of NaOH solution as alkaline solution.
It is preferred that the structure of the components which is liquid at 25°C is close to the material forming the crystallised structure, so that the structure is not excessively disrupted.
In another embodiment, the optional component which is liquid at 25°C may advantageously have a functionality in the washing of laundry, for example silicone oil which provides suds suppression benefits or perfume oil. When
present, the perfume oil may be the perfume composition as per described herein, or a different perfume composition to that already contained by the tablet, provided it contains less than 0.6% by weight of Schiff-Base.
The coating may also comprise materials other than the optional component which is liquid at 25°C. Hence, further preferred, is the addition of reinforcing fibres to the coating in order to further reinforce the structure.
In a most preferred embodiment, the crystallised structure is made of adipic acid, the component which is liquid at 25°C being available under the name Coasol™ from Chemoxy International, being a blend of the di-isobutyl esters of the glutaric, succinic and adipic acid. The advantage of the use of this component being the good dispersion in the adipic acid to provide flexibility. It should be noted that disintegration of the adipic acid is further improved by the adipate content of Coasol™.
According to a preferred embodiment of the invention, the coating comprises an acid having a melting temperature of at least 145°C, such as adipic acid for example, as well as a clay, such as a bentonite clay for example, whereby the clay is used as a disintegrant and also to render the structure of adipic acid more favourable for water penetration, thus improving the dispersion of the adipic acid in a aqueous medium. Preferred are clays present in the coating and having a particle size of less than 75 μm, more preferably of less than 53 μm, in order to obtain the desired effect on the structure of the acid. Preferred clays are bentonite clays. Indeed the acid has a melting point such that traditional cellulosic disintegrants undergo a thermal degradation during the coating process, whereas such clays are found to be more heat stable. Further, traditional cellulosic disintegrant such as Nymcel™ for example are found to turn brown at these temperatures.
In another preferred embodiment, the coating further comprises reinforcing fibres. Such fibres have been found to improve further the resistance of the
coating to mechanical stress and minimise the splitting defect occurence. Such fibres are preferably having a length of at least 100 μm, more preferably of at least 200 μm and most preferably of at least 250 μm to allow structure reinforcement. Such fibres are preferably having a length of at less than 500 μm, more preferably of less than 400 μm and most preferably of less than 350 μm in order not to impact onto dispersion of the coating in an aqueous medium. Materials which may be used for these fibres include viscose rayon, natural nylon, synthetic nylon (polyamides types 6 and 6,6), acrylic, polyester, cotton and derivatives of cellulose such as CMCs. Most preferred is a cellulosic material available under the trade mark Solka-Floc™ from Fibers Sales & Development. It should be noted that such fibres do not normally need pre-compression for reinforcing the coating structure. Such fibres are preferably added at a level of less than 5% by weight of the coating, more preferably less than 3% by weight. Such fibres are preferably added at a level of more than 0.5% by weight of the coating, more preferably more than 1 % by weight.
A coating of any desired thickness can be applied according to the present invention. For most purposes, the coating forms from 1 % to 10%, preferably from 1.5% to 5%, of the tablet weight.
Tablet coatings are very hard and provide extra strength to the tablet.
Process
A preferred process for making a tablet according to the invention comprises the steps of:
(a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
(b) applying a coating material to the core, the coating material being in the form of a melt; (c) allowing the molten coating material to solidify; characterised in that the coating comprises a clay.
Another preferred process for making a tablet according to the invention comprises the steps of :
(a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
(b) applying a coating material to the core, the coating material being dissolved in a solvent or water;
(c) allowing the solvent or water to evaporate; characterised in that the coating comprises a clay.
The compounds disclosed above for a product are advantageously packed in a packaging system.
A packaging system may be formed from a sheet of flexible material. Materials suitable for use as a flexible sheet include mono-layer, co-extruded or laminated films. Such films may comprise various components, such as poly-ethylene, polypropylene, poly-styrene, poly-ethylene-terephtalate. Preferably, the packaging system is composed of a poly-ethylene and bi-oriented-poly-propylene co- extruded film with an MVTR of less than 5 g/day/m2. The MVTR of the packaging system is preferably of less than 10 g/day/m2, more preferably of less than 5 g/day/m2. The film (2) may have various thicknesses. The thickness should typically be between 10 and 150 μm, preferably between 15 and 120 μm, more preferably between 20 and 100 μm, even more preferably between 25 and 80 μm and most preferably between 30 and 40 μm.
A packaging material preferably comprises a barrier layer typically found with packaging materials having a low oxygen transmission rate, typically of less than 300 cm3/m2/day, preferably of less than 150 cm3/m2/day, more preferably of less than 100 cm3/m2/day, even more preferably of less than 50 cm3/m2/day and most preferably of less than 10 cm3/m2/day. Typical materials having such barrier properties include bi oriented polypropylene, poly ethylene terephthalate, Nylon, poly(ethylene vinyl alcohol) , or laminated materials comprising one of these, as
well as SiOx (Silicium oxydes), or metallic foils such as aluminium foils for example. Such packaging material may have a beneficial influence on the stability of the product during storage for example. Among the packing method used are typically the wrapping methods disclosed in WO92/20593, including flow wrapping or over wrapping. When using such processes, a longitudinal seal is provided, which may be a fin seal or an overlapping seal, after which a first end of the packaging system is closed with a first end seal, followed by closure of the second end with a second end seal. The packaging system may comprise re-closing means as described in WO92/20593. In particular, using a twist, a cold seal or an adhesive is particularly suited. Indeed, a band of cold seal or a band of adhesive may be applied to the surface of the packaging system at a position adjacent to the second end of the packaging system, so that this band may provide both the initial seal and re- closure of the packaging system. In such a case the adhesive or cold seal band may correspond to a region having a cohesive surface, i.e. a surface which will adhere only to another cohesive surface. Such re-closing means may also comprise spacers which will prevent unwanted adhesion. Such spacers are described in WO 95/13225, published on the 18th of May 1995. There may also be a plurality of spacers and a plurality of strips of adhesive material. The main requirement is that the communication between the exterior and the interior of the package should be minimal, even after first opening of the packaging system. A cold seal may be used, and in particular a grid of cold seal, whereby the cold seal is adapted so as to facilitate opening of the packaging system.
Examples
The following is a non-limiting example of a suitable perfume composition A which is used in the following non-limiting detergent tablet examples 1 and 2 according to the present invention:
Abbreviations used in the following detergent Examples 1-6
In the detergent compositions, the abbreviated component identifications have the following meanings:
Anionic agglomerates 1 comprise of 40% anionic surfactant, 27% zeolite and
33% carbonate Anionic agglomerates 2 comprise of 40% anionic surfactant, 28% zeolite and
32% carbonate
Nonionic agglomerate comprise 26% nonionic surfactant, 6% Lutensit K-HD 96,
40% Sodium acetate anhydrous, 20% carbonate and 8% zeolite.
Cationic agglomerates comprise of 20% cationic surfactant, 56% zeolite and 24% sulphate
Layered silicate comprises of 95% SKS 6 and 5% silicate
Bleach activator agglomerates comprise of 81 % TAED, 17% acrylic/maleic copolymer (acid form) and 2% water.
Ethylene diamine N,N-disuccinic acid sodium salt/Sulphate particle comprise of 58% of Ethylene diamine N,N-disuccinic acid sodium salt, 23% of sulphate and
19% water.
Suds suppressor comprises of 11.5% silicone oil (ex Dow Corning); 59% of zeolite and 29.5% of water.
Binder spray-on system comprises 16% by weight of polymer of the following kind:
68 % by weight of: PEG4000 and 16% by weight of: DIBS (Sodium di isoalkylbenzene sulphonate or Sodium toluene sulphonate).
Abbreviations used in the following detergent Examples 7
In the detergent compositions, the abbreviated component identifications have the following meanings:
LAS Sodium linear C-| i_ι 3 alkyl benzene sulfonate
TAS Sodium tallow alkyl sulfate CxyAS Sodium C-|x - C-|v alkyl sulfate
C46SAS Sodium C-|4 - C-|6 secondary (2,3) alkyl sulfate
CxyEzS Sodium C-|x-C-|y alkyl sulfate condensed with z moles of ethylene oxide
CxyEz C-|x-C-|y predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide
QAS R2.N+(CH3)2(C2H4OH) with R2 = C 2 - C14
QAS 1 R2.N+(CH3)2(C2H4θH) with R2 = C8 - C<| 1 SADS Sodium C-ι4-C22 alkyl disulfate of formula 2-(R).C4
H7.-1 ,4-(S04-)2 where R = C10-JC18
SADE2S Sodium Cu-C22 alkyl disulfate of formula 2-(R).C4
H7.-1 ,4-(S0 -)2 where R = C-io-C-iβ, condensed with z moles of ethylene oxide
MES x-sulpho methylester of C-ι8 fatty acid APA Cδ - C10 amido propyl dimethyl amine
Soap Sodium linear alkyl carboxylate derived from an
80/20 mixture of tallow and coconut fatty acids
STS Sodium toluene sulphonate CFAA C12-C14 (coco) alkyl N-methyl glucamide
TFAA C16-C18 alkyl N-methyl glucamide
TPKFA CJ6-C-J8 topped whole cut fatty acids
STPP Anhydrous sodium tripolyphosphate TSPP Tetrasodium pyrophosphate Zeolite A Hydrated sodium aluminosilicate of formula
Nai2(A1 θ2Siθ2)i2-27H2θ having a primary particle
size in the range from 0J to 10 micrometers (weight expressed on an anhydrous basis)
NaSKS-6 Crystalline layered silicate of formula δ- Na2Si2θ5
Citric acid Anhydrous citric acid
Borate Sodium borate
Carbonate Anydrous sodium carbonate with a particle size between 200μm and 900μm
Bicarbonate Anhydrous sodium bicarbonate with a particle size distribution between 400μm and 1200μm
Silicate Amorphous sodium silicate (Siθ2:Na2θ = 2.0:1 )
Sulfate Anhydrous sodium sulfate Mg sulfate Anhydrous magnesium sulfate Citrate Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425μm and 850μm MA/AA Copolymer of 1 :4 maleic/acrylic acid, average molecular weight about 70,000
MA/AA (1 ) Copolymer of 4:6 maleic/acrylic acid, average molecular weight about 10,000
AA Sodium polyacrylate polymer of average molecular weight 4,500
CMC Sodium carboxymethyl cellulose Cellulose ether Methyl cellulose ether with a degree of polymerization of 650 available from Shin Etsu
Chemicals Protease Proteolytic enzyme, having 3.3% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Savinase
Protease I Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591 , sold by
Genencor Int. Inc.
Alcalase Proteolytic enzyme, having 5.3% by weight of active enzyme, sold by NOVO Industries A/S Cellulase Cellulytic enzyme, having 0.23% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Carezyme
Amylase : Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Termamyl 120T
Amylase II : Amylolytic enzyme, as disclosed in PCT/ US9703635 Lipase Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase
Lipase II : Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra
Endolase : Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries A/S PB4 Sodium perborate tetrahydrate of nominal formula
NaBθ2.3H2O.H2θ2
PB1 Anhydrous sodium perborate bleach of nominal formula NaBθ2-H2θ2
Percarbonate Sodium percarbonate of nominal formula
2Na2C03.3H2θ2
DOBS Decanoyl oxybenzene sulfonate in the form of the sodium salt
DPDA Diperoxydodecanedioc acid NOBS Nonanoyloxybenzene sulfonate in the form of the sodium salt
NACA-OBS : (6-nonamidocaproyl) oxybenzene sulfonate LOBS Dodecanoyloxybenzene sulfonate in the form of the sodium salt
DOBS Decanoyloxybenzene sulfonate in the form of the sodium salt
DOBA Decanoyl oxybenzoic acid TAED Tetraacetylethylenediamine DTPA Diethylene triamine pentaacetic acid DTPMP Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Tradename
Dequest 2060
EDDS Ethylenediamine-N.N'-disuccinic acid, (S,S) isomer in the form of its sodium salt.
Photoactivated Sulfonated zinc phthlocyanine encapsulated in bleach (1 ) dextrin soluble polymer
Photoactivated Sulfonated alumino phthlocyanine encapsulated in bleach (2) dextrin soluble polymer
Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5- triazin-2-yl)amino) stilbene-2:2'-disulfonate
HEDP 1 ,1-hydroxyethane diphosphonic acid PEGx Polyethylene glycoi, with a molecular weight of x
(typically 4,000)
PEO Polyethylene oxide, with an average molecular weight of 50,000
TEPAE Tetraethylenepentaamine ethoxylate PVI Polyvinyl imidasole, with an average molecular weight of 20,000
PVP Polyvinylpyrolidone polymer, with an average molecular weight of 60,000
PVNO Polyvinylpyridine N-oxide polymer, with an average molecular weight of 50,000 PVPVI Copolymer of polyvinylpyrolidone and vinylimidazole, with an average molecular weight of 20,000
QEA bis((C2H5θ)(C2H4θ)n)(CH3) -N+-C6H12-N+-(CH3) bis((C2H5θ)-(C2H4θ))n, wherein n = from 20 to 30
PEI Polyethyleneimine with an average molecular weight of 1800 and an average ethoxylation degree of 7 ethyleneoxy residues per nitrogen
Clay I Bentonite clay Clay II Smectite clay Flocculating agent polyethylene oxide of average molecular weight of between 200,000 and 400,000 Flocculating agent II polyethylene oxide of average molecular weight of between 400,000 and 1 ,000,000
Flocculating agent III : polymer of acrylamide and/ or acrylic acid of average molecular weight of 200,000 and 400,000
SRP I : Anionically end-capped polyester soil release polymer
SRP II Polysaccheride soil release polymer SRP 1 Nonionically end capped poly esters SRP 2 Diethoxylated poly (1 , 2 propylene terephtalate) short block polymer Silicone antifoam Polydimethylsiloxane foam controller with siloxane- oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1
Opacifier Water based monostyrene latex mixture, sold by BASF Aktiengesellschaft under the tradename Lytron 621
Wax Paraffin wax Speckle Coloured carbonate salt or organic carboxylic acid / salt
Example 1 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing drum or spray drum to form a homogenous particulate mixture, apart from the binder spray-on system, the fluorescer or brightener, and the photobleach
Zinc Phthalocyanine sulphonate. The particulate mixture was thereafter divided in two equal parts, one part for making a white layer, another part for making a green layer. The white layer material is obtained by spraying the brightener or fluorescer together with half of the binder. The green layer material is obtained by spraying the photobleach Zinc Phthalocyanine sulphonate together with the rest of the binder. The layer where then processed independently in a Loedige KM 600®. ii) Using a Bonals® rotary press both matrices were filled in two independent force feeding flasks. Both layers are compressed together in the pre- compression and compression stations to form a dual layer tablet. iii) In this particular example, the tablets have a square cross section of 45 mm side, a height of 24 mm and a weight of 45 gr. The height of the green bottom layer corresponded to 50% of the total height of the tablet. The tensile strength of the uncoated tablets was 13 kpa. iv) The tablet was thereafter coated with 2.5 g of coating formed from 89% by weight of adipic acid and 10% by weight of Bentonite clay from CSM, and 1 % by weight of ethane 1-hydroxy diphosphonate.
Example 2 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing
drum or spray drum to form a homogenous particulate mixture, apart from the binder spray-on system, the fluorescer or brightener, and the photobleach Zinc Phthalocyanine sulphonate. The particulate mixture was thereafter divided in two equal parts, one part for making a white layer, another part for making a green layer. The white layer material is obtained by spraying the brightener or fluorescer together with half of the binder. The green layer material is obtained by spraying the photobleach Zinc Phthalocyanine sulphonate together with the rest of the binder. The layer where then processed independently in a Loedige KM 600®. ii) Using a Bonals® rotary press both matrices were filled in two independent force feeding flasks. Both layers are compressed together in the pre- compression and compression stations to form a dual layer tablet. iii) In this particular example, the tablets have a square cross section of 45 mm side, a height of 24 mm and a weight of 45 gr. The height of the green bottom layer corresponded to 50% of the total height of the tablet. The tensile strength of the uncoated tablets was 13 kpa. iv) The tablet was thereafter coated with 2.5 g of coating formed from 89% by weight of adipic acid and 10% by weight of Bentonite clay from CSM, and
0.5% by weight of ethane 1-hydroxy diphosphonate and 0.5% by weight of diethylene triamine penta (methylene phosphonate).
Example 3 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing drum or spray drum to form a homogenous particulate mixture, apart from the binder spray-on system, the fluorescer or brightener, and the photobleach Zinc Phthalocyanine sulphonate. The particulate mixture was thereafter divided in two equal parts, one part for making a white layer, another part for making a green layer. The white layer material is obtained by spraying the brightener or fluorescer together with half of the binder. The green layer material is obtained by spraying the photobleach Zinc Phthalocyanine
sulphonate together with the rest of the binder. The layer where then processed independently in a Loedige KM 600®. ii) Using a Bonals® rotary press both matrices were filled in two independent force feeding flasks. Both layers are compressed together in the pre- compression and compression stations to form a dual layer tablet. iii) In this particular example, the tablets have a square cross section of 45 mm side, a height of 24 mm and a weight of 45 gr. The height of the green bottom layer corresponded to 50% of the total height of the tablet. The tensile strength of the uncoated tablets was 13 kpa. iv) The tablet was thereafter coated with 2.5 g of coating formed from 89% by weight of adipic acid and 10% by weight of Bentonite clay from CSM, and
0.5% by weight of ethane 1-hydroxy diphosphonate and 0.5% by weight of diethylene triamine penta (methylene phosphonate).
Example 4 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition was mixed together in a mixing drum or spray drum to form a homogenous particulate mixture. The binder system was then sprayed on. The powder where then processed in a Loedige KM 600®. ϋ) Using a Instron® Laboratory bench press, detergent powder was filled in the die. The powder had been compressed with a force so that the tensile strength of the tablet was 10kpa. iii) In this particular example, the tablets have a diameter of 54 mm side, a height of 24 mm and a weight of 45 gr. iv) The tablet was thereafter coated with 2.5 g of coating formed from 90% by weight of Adipic acid and 10% by weight of bentonite clay from CSM. The tablet was thereafter coated with 2.5 g of coating formed from 77% by weight of Adipic acid, 18.5% by weight of bentonite clay from and 1 % by weight of Coasol™ and 2.5 % by weight of NaOH (1 M), and 1% by weight of ethane 1- hydroxy diphosphonate.
Example 5 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing drum or spray drum to form a homogenous particulate mixture. The binder system was then sprayed on. The powder where then processed in a Loedige
KM 600®. ϋ) Using a Instron® Laboratory bench press, detergent powder was filled in the die. The powder had been compressed with a force so that the tensile strength of the tablet was 10kpa. iϋ) In this particular example, the tablets have a diameter of 54 mm side, a height of 24 mm and a weight of 45 gr. The tablet was thereafter coated with 2.5 g of coating formed from 88% by weight of Adipic acid, 10% by weight of bentonite clay from and 1 % of Coasol™, and 1 % by weight of ethane 1 -hydroxy diphosphonate.
Example 6 i) A detergent base powder of composition A was prepared as follows: all the particulate material of base composition were mixed together in a mixing drum or spray drum to form a homogenous particulate mixture. The binder system was then sprayed on. The powder where then processed in a Loedige
KM 600®. ii) Using a Instron® Laboratory bench press, detergent powder was filled in the die. The powder had been compressed with a force so that the tensile strength of the tablet was 10kpa. iii) In this particular example, the tablets have a diameter of 54 mm side, a height of 24 mm and a weight of 45 gr. iv) The tablet was thereafter coated with 2.5 g of coating formed from 86% by weight of Adipic acid, 10% by weight of bentonite clay from and 1% by weight of Coasol™ and.2 % by weight of Solka-Floc™ 1016, and 0.5% by weight of
ethane 1-hydroxy diphosphonate and 0.5% by weight of diethylene triamine penta (methylene phosphonate).
Example 7 The following are detergent compositions according to the invention which may be used as is or in place of Composition A, above described, in any one of Examples 1-6.
In the following examples all levels are quoted as % by weight of the composition:
The following are compositions suitable for use herein
The following are detergent compositions suitable for use herein
The following are detergent compositions suitable for use herein
Claims
1. A perfumed detergent tablet, the tablet comprising a clay mineral compound and a heavy metal ion sequestrant.
2. A perfumed detergent tablet according to Claim 1 , wherein said tablet further comprises a coating.
3. A tablet according to either one of Claim 1 or 2, wherein the clay mineral compound is present in the coating in particles having a size below 75μm diameter.
4. A tablet according to any one of Claims 1-3, wherein the tablet is a softening tablet.
5. A tablet according to any one of Claim 2-4, wherein the coating comprises the heavy metal ion sequestrant, and more preferably a heavy metal ion sequestrant selected from organic phosphonates, preferably selected from alkali metal ethane 1-hydroxy diphosphonates, diethylene triamine penta (methylene phosphonate), and mixtures thereof.
6. A tablet according to any one of Claims 1-5, wherein the perfume composition is essentially free of schiff bases.
7. A tablet according to any one of Claims 1-6, wherein the perfume composition is free of perfume ingredients selected from Methyl Anthranilate and Hydroxycitronellal; Methyl Anthranilate and Methyl Nonyl Acetaldehyde; Methyl Anthranilate and PT Bucinal; Methyl anthranilate and Lyral; Methyl Anthranilate and Ligustral; and mixtures thereof.
8. A tablet according to any one of Claims 2-7, wherein the coating further comprises an acid having a melting temperature of at least 40°C, preferably of at least 145°C.
9. A tablet according to claim 8, wherein the acid having a melting temperature of at least 40°C has a crystallised structure.
10. A tablet according to Claim 9, wherein the acid forming the crystallised structure is a dicarboxylic acid, preferably adipic acid.
11. A tablet according to any one of Claims 2-10, wherein the coating consists essentially of adipic acid.
12. A tablet according to any one of Claims 2-11 , wherein the coating further comprises a component which is liquid at 25°C.
13. A tablet according to any one of Claims 2-12, wherein the coating further comprises reinforcing fibres.
14. A tablet according to any one of Claims 1-13, wherein the detergent composition further comprises a flocculating agent.
15. A process for making a tablet according to any one of Claims 2-14 comprising the steps of :
(a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
(b) applying a coating material to the core, the coating material being in the form of a melt;
(c) allowing the molten coating material to solidify; characterised in that the coating comprises a clay.
16. A process for making a tablet according to any of claims 2 to 14 comprising the steps of :
(a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
(b) applying a coating material to the core, the coating material being dissolved in a solvent or water;
(c) allowing the solvent or water to evaporate; characterised in that the coating comprises a clay.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP00917788A EP1159398A2 (en) | 1999-03-12 | 2000-03-08 | Perfumed detergent tablet |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP99870043 | 1999-03-12 | ||
| EP99870043 | 1999-03-12 | ||
| EP99870082A EP1035199B1 (en) | 1999-03-12 | 1999-04-30 | Perfumed detergent tablet |
| EP99870082 | 1999-04-30 | ||
| PCT/US2000/005985 WO2000055294A2 (en) | 1999-03-12 | 2000-03-08 | Perfumed detergent tablet |
| EP00917788A EP1159398A2 (en) | 1999-03-12 | 2000-03-08 | Perfumed detergent tablet |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1159398A2 true EP1159398A2 (en) | 2001-12-05 |
Family
ID=26153843
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP99870082A Expired - Lifetime EP1035199B1 (en) | 1999-03-12 | 1999-04-30 | Perfumed detergent tablet |
| EP00917788A Withdrawn EP1159398A2 (en) | 1999-03-12 | 2000-03-08 | Perfumed detergent tablet |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP99870082A Expired - Lifetime EP1035199B1 (en) | 1999-03-12 | 1999-04-30 | Perfumed detergent tablet |
Country Status (10)
| Country | Link |
|---|---|
| EP (2) | EP1035199B1 (en) |
| CN (1) | CN1359419A (en) |
| AR (1) | AR022893A1 (en) |
| AT (1) | ATE387486T1 (en) |
| AU (1) | AU3870600A (en) |
| BR (1) | BR0009469A (en) |
| CA (1) | CA2361344A1 (en) |
| DE (1) | DE69938228T2 (en) |
| ES (1) | ES2300138T3 (en) |
| WO (1) | WO2000055294A2 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9802390D0 (en) | 1998-02-04 | 1998-04-01 | Unilever Plc | Detergent compositions |
| GB9918020D0 (en) * | 1999-07-30 | 1999-09-29 | Unilever Plc | Detergent compositions |
| GB0130498D0 (en) * | 2001-12-20 | 2002-02-06 | Unilever Plc | Process for production of detergent tablets |
| EP1398368B1 (en) * | 2002-09-16 | 2005-11-23 | Unilever N.V. | Cleaning compositions |
| US20050228103A1 (en) * | 2004-04-13 | 2005-10-13 | Eastman Kodak Company | Composition comprising intercalated metal-ion sequestrants |
| DE102004040330A1 (en) * | 2004-08-20 | 2006-03-02 | Henkel Kgaa | Coated washing or cleaning agent shaped body |
| EP4073215B1 (en) * | 2019-12-11 | 2023-08-09 | Unilever IP Holdings B.V. | Detergent composition |
| CN114635241A (en) * | 2022-03-24 | 2022-06-17 | 薛强 | A kind of textile long yarn rinsing process |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU702040B2 (en) * | 1994-01-25 | 1999-02-11 | Unilever Plc | Co-granules and detergent tablets formed therefrom |
| GB2303635A (en) * | 1995-07-25 | 1997-02-26 | Procter & Gamble | Detergent compositions in compacted solid form |
| EP0846756B1 (en) * | 1996-12-06 | 2007-04-18 | The Procter & Gamble Company | Coated detergent tablet and the process for producing the same |
| EP0846754A1 (en) * | 1996-12-06 | 1998-06-10 | The Procter & Gamble Company | Coated detergent tablet |
| EP0846755B1 (en) * | 1996-12-06 | 2007-12-05 | The Procter & Gamble Company | Coated detergent tablet |
| GB2327947A (en) * | 1997-08-02 | 1999-02-10 | Procter & Gamble | Detergent tablet |
| ES2237856T3 (en) * | 1997-11-26 | 2005-08-01 | THE PROCTER & GAMBLE COMPANY | DETERGENT PAD. |
| GB2332442A (en) * | 1997-12-17 | 1999-06-23 | Procter & Gamble | Detergent tablet |
| GB9802390D0 (en) * | 1998-02-04 | 1998-04-01 | Unilever Plc | Detergent compositions |
| EP1026229A1 (en) * | 1999-02-03 | 2000-08-09 | The Procter & Gamble Company | Coated detergent tablet |
| EP1026228B1 (en) * | 1999-02-03 | 2004-01-14 | The Procter & Gamble Company | Coated detergent tablet |
| EP1026227A1 (en) * | 1999-02-03 | 2000-08-09 | The Procter & Gamble Company | Coated detergent tablet |
-
1999
- 1999-04-30 AT AT99870082T patent/ATE387486T1/en not_active IP Right Cessation
- 1999-04-30 DE DE69938228T patent/DE69938228T2/en not_active Expired - Fee Related
- 1999-04-30 ES ES99870082T patent/ES2300138T3/en not_active Expired - Lifetime
- 1999-04-30 EP EP99870082A patent/EP1035199B1/en not_active Expired - Lifetime
-
2000
- 2000-03-08 BR BR0009469-2A patent/BR0009469A/en not_active Application Discontinuation
- 2000-03-08 AU AU38706/00A patent/AU3870600A/en not_active Abandoned
- 2000-03-08 WO PCT/US2000/005985 patent/WO2000055294A2/en not_active Ceased
- 2000-03-08 EP EP00917788A patent/EP1159398A2/en not_active Withdrawn
- 2000-03-08 CN CN00807434.8A patent/CN1359419A/en active Pending
- 2000-03-08 CA CA002361344A patent/CA2361344A1/en not_active Abandoned
- 2000-03-10 AR ARP000101063A patent/AR022893A1/en unknown
Non-Patent Citations (1)
| Title |
|---|
| See references of WO0055294A3 * |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1035199B1 (en) | 2008-02-27 |
| AR022893A1 (en) | 2002-09-04 |
| AU3870600A (en) | 2000-10-04 |
| CA2361344A1 (en) | 2000-09-21 |
| EP1035199A3 (en) | 2000-12-20 |
| WO2000055294A3 (en) | 2001-01-18 |
| CN1359419A (en) | 2002-07-17 |
| BR0009469A (en) | 2001-11-27 |
| ES2300138T3 (en) | 2008-06-01 |
| EP1035199A2 (en) | 2000-09-13 |
| WO2000055294A2 (en) | 2000-09-21 |
| DE69938228D1 (en) | 2008-04-10 |
| DE69938228T2 (en) | 2009-02-19 |
| ATE387486T1 (en) | 2008-03-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO1998024873A1 (en) | Coated detergent tablet | |
| EP1035198B1 (en) | Perfumed detergent tablet | |
| US6630438B1 (en) | Perfumed detergent tablet | |
| EP1035199B1 (en) | Perfumed detergent tablet | |
| AU740611B2 (en) | Detergent tablet | |
| US7084102B1 (en) | Perfumed detergent tablet | |
| EP1119610A1 (en) | Detergent compositions | |
| EP0971028A1 (en) | Detergent tablet with high dissolution and mechanical characteristics | |
| EP1026228B1 (en) | Coated detergent tablet | |
| EP1149153A1 (en) | Coated detergent tablet | |
| CA2336623C (en) | Detergent tablet with high mechanical and dissolution characteristics | |
| US6846794B1 (en) | Production process for detergent tablet | |
| EP1149154A1 (en) | Coated detergent tablet | |
| EP1198552A1 (en) | Coated detergent tablet | |
| WO1999050381A1 (en) | Shape and strength of detergent tablets | |
| MXPA01009257A (en) | Perfumed detergent tablet | |
| EP1035197B1 (en) | Production process for detergent tablet | |
| WO2001025391A1 (en) | Detergent tablet with high dissolution and mechanical characteristics |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 17P | Request for examination filed |
Effective date: 20010917 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| 18W | Application withdrawn |
Withdrawal date: 20011109 |