EP1144910A1 - Generateur de vapeur chauffe avec un combustible fossile - Google Patents
Generateur de vapeur chauffe avec un combustible fossileInfo
- Publication number
- EP1144910A1 EP1144910A1 EP00902545A EP00902545A EP1144910A1 EP 1144910 A1 EP1144910 A1 EP 1144910A1 EP 00902545 A EP00902545 A EP 00902545A EP 00902545 A EP00902545 A EP 00902545A EP 1144910 A1 EP1144910 A1 EP 1144910A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- steam generator
- gas
- evaporator
- tubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002803 fossil fuel Substances 0.000 title claims abstract description 14
- 238000002485 combustion reaction Methods 0.000 claims abstract description 149
- 238000010438 heat treatment Methods 0.000 claims abstract description 65
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 11
- 239000000446 fuel Substances 0.000 claims description 18
- 238000010276 construction Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 abstract 3
- 239000002737 fuel gas Substances 0.000 abstract 1
- 230000002349 favourable effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- 239000002817 coal dust Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010795 Steam Flooding Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
- F22B21/34—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/40—Arrangements of partition walls in flues of steam boilers, e.g. built-up from baffles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
- F22B21/34—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
- F22B21/346—Horizontal radiation boilers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B31/00—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements or dispositions of combustion apparatus
- F22B31/04—Heat supply by installation of two or more combustion apparatus, e.g. of separate combustion apparatus for the boiler and the superheater respectively
Definitions
- the invention relates to a steam generator with a first and a second combustion chamber, each having a number of burners for fossil fuel.
- the energy content of a fuel is used to evaporate a flow medium in the steam generator.
- the steam generator has evaporator tubes, the heating of which leads to evaporation of the flow medium carried therein.
- the steam provided by the steam generator can in turn be provided, for example, for a connected external process or else for driving a steam turbine. If the steam drives a steam turbine, a generator or a working machine is usually operated via the turbine shaft of the steam turbine.
- the current generated by the generator can be provided for feeding into a network and / or island network.
- the steam generator can be designed as a continuous steam generator.
- a continuous steam generator is known from the article "Evaporator Concepts for Benson Steam Generators” by J. Franke, W. Köhler and E. Wittchow, published in VGB Kraftwerkstechnik 73 (1993), No. 4, pp. 352-360 the heating of steam generator pipes provided as evaporator pipes to evaporate the flow medium in the steam generator pipes in a single pass.
- Pass-through steam generators are usually designed with a combustion chamber in a vertical design. This means that the combustion chamber is designed for a flow through the heating medium or heating gas in an approximately vertical direction is. On the heating gas side, a horizontal gas flue can be connected downstream of the combustion chamber, the heating gas flow being deflected into an approximately horizontal flow direction when the combustion chamber changes into the horizontal gas flue.
- the combustion chamber generally requires a framework on which the combustion chamber is suspended due to the temperature-related changes in length of the combustion chamber. This requires a considerable technical effort in the manufacture and assembly of the once-through steam generator, which is the greater the greater the overall height of the once-through steam generator
- Fossil-heated steam generators are usually designed for a certain type and quality of fuel and for a certain output range. This means that the combustion chamber of the steam generator is adapted in its main dimensions, ie length, width, height, to the combustion and ash properties of the specified fuel and to the specified output range. Therefore, each steam generator with its associated fuel and power range has an individual construction of the combustion chamber with respect to the main dimensions.
- the invention is therefore based on the object of specifying a steam generator of the type mentioned above, the concept for the combustion chamber of which allows a particularly simple design for a specific type and quality of fuel and for a predetermined power range and which requires particularly low production and assembly costs .
- a combustion chamber designed to flow through the heating gas in an approximately vertical direction requires a scaffold to be constructed with great technical effort. This had to be adapted accordingly at great expense when retrofitting the steam generator.
- a scaffold that can be constructed with comparatively little technical effort can go hand in hand with a particularly low overall height of the steam generator.
- a particularly simple concept for a modular steam generator is therefore provided by a horizontal combustion chamber with a first and a second combustion chamber.
- s nd de Burner arranged both in the first and in the second combustion chamber at the height of the horizontal gas flue m of the combustion chamber wall.
- the length L of the first and second combustion chambers defined by the distance from the end wall to the inlet area of the horizontal gas flue is advantageously at least at least equal to the burnout length of the fuel when the steam generator is operating at full load.
- This horizontal length L of the first combustion chamber and the second combustion chamber will generally be greater than the height of the first and the second combustion chamber, respectively, measured from the top edge of the funnel to the top of the combustion chamber.
- the length L (specified in m) of the first or second combustion chamber is for a particularly favorable utilization of the heat of combustion of the fossil fuel in an advantageous embodiment as a function of the BMCR value W (specified in kg / s) of the steam generator, the number N the combustion chambers, the burnout time t A (specified in s) of the fuel and the outlet temperature T BRK (specified in ° C.) of the heating gas from the combustion chambers.
- BMCR stands for Boiler maximum contmuous rating and is the internationally used term for the highest continuous output of a steam generator. This also corresponds to the design power, i.e. the power at full load operation of the steam generator. The following applies to. Given the BMCR value W and the given number of combustion chambers N for the length L of the first and the second combustion chamber, approximately the larger value of the two functions (1) and (2):
- Ci 8 m / s
- the end wall of the first combustion chamber and the end wall of the second combustion chamber, as well as the side walls of the first and the second combustion chamber, the horizontal gas flue and / or the vertical gas flue are advantageously made of gas-tight other welded, vertically arranged evaporator or steam generator tubes, wherein a number of the evaporator or steam generator tubes can be acted upon in parallel with the flow medium.
- a number of the evaporator tubes advantageously has a multi-thread rib on their inside.
- a pitch angle ⁇ between a plane perpendicular to the tube axis and the flanks of the ribs arranged on the inside of the tube is advantageously less than 60 °, preferably less than 55 °.
- a number of the evaporator tubes of the combustion chamber advantageously have means for reducing the flow of the flow medium. It proves to be particularly advantageous if the means are designed as throttle devices. Throttling devices can, for example, be built-in components in the evaporator tubes, which reduce the inner tube diameter at a point in the interior of the respective evaporator tube.
- Means for reducing the flow in a line system comprising a plurality of parallel lines also prove to be advantageous, through which flow medium can be supplied to the evaporator tubes of the combustion chamber.
- Throttle fittings can be provided in one line or in several lines of the line system.
- Adjacent evaporator or steam generator tubes are advantageously gas-tightly welded to one another via metal strips, so-called fins.
- the fin width influences the heat output in the steam generator tubes.
- the fin width is therefore preferably adapted to a heating profile which can be predetermined on the gas side, depending on the position of the respective evaporator or steam generator tubes in the steam generator.
- a typical heating profile determined from empirical values or a rough estimate, such as, for example, a step-shaped heating profile, can be specified as the heating profile. Due to the suitably chosen fin widths, even with very different heating of different evaporator or steam generator tubes, heat can be achieved in all evaporator or steam generator tubes in such a way that
- the inner tube diameter of a number of the evaporator tubes of the first or second combustion chamber is selected as a function of the respective position of the evaporator tubes in the first or second combustion chamber.
- a number of evaporator tubes connected in parallel which are assigned to the first or the second combustion chamber, are connected upstream of a common inlet header system and a common outlet header system is connected downstream.
- a steam generator designed in this configuration enables reliable pressure equalization between the evaporator tubes connected in parallel and thus a particularly favorable distribution of the flow medium when flowing through the evaporator tubes.
- a pipe system provided with throttle fittings can be connected upstream of the respective inlet collector system. As a result, the throughput of the flow medium through the inlet header system and the evaporator tubes connected in parallel can be adjusted in a particularly simple manner.
- the vertical throttle cable advantageously has an economizer.
- FIG. 1 schematically shows a fossil-heated steam generator in a two-pass design of the length according to the side view
- FIG. 2 schematically shows a longitudinal section through a single evaporator or steam generator tube
- the steam generator 2 according to FIG. 1 is assigned to a power plant, not shown, which also includes a steam turbine system.
- the steam generated in the steam generator is used to drive the steam turbine, which in turn drives a generator to generate electricity.
- the current generated by the generator is provided for feeding into a network or an island network.
- a branch of a subset of the steam can also be provided for feeding into an external process connected to the steam turbine system, which can be a heating process.
- the fossil-heated steam generator 2 according to FIG. 1 is advantageously designed as a once-through steam generator. It comprises a first horizontal combustion chamber 4 and a second horizontal combustion chamber 5, of which only one can be seen due to the side view of the steam generator 2 shown in FIG. 1.
- the combustion chambers 4 and 5 of the steam generator 2 are followed by a common horizontal gas flue 6 on the hot gas side, which flows into a vertical gas flue 8.
- Forehead- Wall 9 and the side walls 10 of the first combustion chamber 4 and the second combustion chamber 5 are each formed from vertically arranged evaporator tubes 11 welded to one another in a gastight manner, wherein a number of the evaporator tubes 11 can be acted upon in parallel with flow medium S.
- the evaporator tubes 11 have fins 40 on their inner side, which form a kind of multi-start thread and have a fin height R.
- the pitch angle ⁇ between a plane 41 perpendicular to the pipe axis and the flanks 42 of the ribs 40 arranged on the inside of the pipe is less than 55 °.
- Adjacent evaporator or steam generator tubes 11, 14, 15 are welded together in a gas-tight manner via fins in a manner not shown.
- the heating of the evaporator or steam generator tubes 11, 14, 15 can be influenced by a suitable choice of the fin width.
- the respective fin width is therefore dependent on the position of the respective evaporator or steam generator tubes 11, 14, 15 in
- throttling devices As a means for reducing the flow of the Stromungsme ⁇ _- us S, part of the evaporator tubes 11 are equipped with throttling devices, which are not shown in the drawing.
- the throttling devices are designed as perforated diaphragms that reduce the Ronr inside diameter D and, when the steam generator 2 is operating, bring about a reduction in the throughput of the flow medium S in less heated Evaporator tubes 11, whereby the throughput of the flow medium S is adapted to the heating.
- throttle devices in particular throttle fittings.
- the horizontal gas flue 6 has a number of superheater heating surfaces 22 in the form of bulkhead heating flats, which are arranged in a hanging construction approximately perpendicular to the main flow direction 24 of the heating gas G and the pipes of which are connected in parallel for flow through the flow medium S.
- the superheater heating surfaces 22 are predominantly convectively heated and are connected downstream of the evaporator tubes 11 of the combustion chamber 4 or 5 on the flow medium side.
- the vertical gas flue 8 has a number of convection heating surfaces 26 which can be heated predominantly by convection and which are formed from tubes arranged approximately perpendicular to the main flow direction 24 of the heating gas G. These tubes are each connected in parallel for flow through the flow medium S.
- 8 economizers 28 are arranged in the vertical throttle cable.
- the vertical throttle cable 8 merges into another heat exchanger, e.g. m an air preheater and from there via a dust filter m a comb.
- the components downstream of the vertical throttle cable 8 are not shown in more detail in FIG. 1.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Combustion Of Fluid Fuel (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Spray-Type Burners (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19901621A DE19901621A1 (de) | 1999-01-18 | 1999-01-18 | Fossilbeheizter Dampferzeuger |
| DE19901621 | 1999-01-18 | ||
| PCT/DE2000/000055 WO2000042352A1 (fr) | 1999-01-18 | 2000-01-10 | Generateur de vapeur chauffe avec un combustible fossile |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1144910A1 true EP1144910A1 (fr) | 2001-10-17 |
| EP1144910B1 EP1144910B1 (fr) | 2008-07-02 |
Family
ID=7894522
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP00902545A Expired - Lifetime EP1144910B1 (fr) | 1999-01-18 | 2000-01-10 | Generateur de vapeur chauffe avec un combustible fossile |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US6446584B1 (fr) |
| EP (1) | EP1144910B1 (fr) |
| JP (1) | JP4953506B2 (fr) |
| KR (1) | KR100776423B1 (fr) |
| CN (2) | CN1192187C (fr) |
| CA (1) | CA2359936C (fr) |
| DE (2) | DE19901621A1 (fr) |
| DK (1) | DK1144910T3 (fr) |
| ES (1) | ES2307493T3 (fr) |
| RU (1) | RU2221195C2 (fr) |
| WO (1) | WO2000042352A1 (fr) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7533632B2 (en) * | 2006-05-18 | 2009-05-19 | Babcock & Wilcox Canada, Ltd. | Natural circulation industrial boiler for steam assisted gravity drainage (SAGD) process |
| US8511258B2 (en) * | 2007-05-09 | 2013-08-20 | Hitachi, Ltd. | Coal boiler and coal boiler combustion method |
| US8096268B2 (en) * | 2007-10-01 | 2012-01-17 | Riley Power Inc. | Municipal solid waste fuel steam generator with waterwall furnace platens |
| EP2194320A1 (fr) * | 2008-06-12 | 2010-06-09 | Siemens Aktiengesellschaft | Procédé de fonctionnement d'un générateur de vapeur à passage unique et générateur de vapeur à passage unique |
| EP2180251A1 (fr) * | 2008-09-09 | 2010-04-28 | Siemens Aktiengesellschaft | Générateur de vapeur en continu |
| EP2182278A1 (fr) * | 2008-09-09 | 2010-05-05 | Siemens Aktiengesellschaft | Générateur de vapeur en continu |
| EP2180250A1 (fr) * | 2008-09-09 | 2010-04-28 | Siemens Aktiengesellschaft | Générateur de vapeur en continu |
| DE102010038883C5 (de) * | 2010-08-04 | 2021-05-20 | Siemens Energy Global GmbH & Co. KG | Zwangdurchlaufdampferzeuger |
| WO2012078269A2 (fr) * | 2010-12-07 | 2012-06-14 | Praxair Technology, Inc. | Chaudière à oxygaz et à chauffe directe comportant des cloisons |
| CN107525058B (zh) * | 2017-09-26 | 2020-02-21 | 杭州和利时自动化有限公司 | 一种锅炉燃料需求量确定方法、调节方法及系统 |
| RU2664605C2 (ru) * | 2018-01-09 | 2018-08-21 | Юрий Юрьевич Кувшинов | Котел водогрейный |
| CN116428576A (zh) * | 2023-04-26 | 2023-07-14 | 江苏德克沃热力设备有限公司 | 一种倒置式直流蒸汽发生装置 |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE938643C (de) | 1943-07-03 | 1956-02-02 | Luigi Cristiani | Einrichtung zur Aufnahme und Wiedergabe stereoskopischer Mehrfarbenbilder |
| US3043279A (en) * | 1954-06-18 | 1962-07-10 | Svenska Maskinverken Ab | Steam boiler plant |
| US3527261A (en) * | 1968-11-12 | 1970-09-08 | Babcock & Wilcox Co | Tube guide apparatus |
| DE1938643A1 (de) * | 1968-12-14 | 1970-06-18 | Picatoste Jose Lledo | Unterdecke |
| DE2504414C2 (de) * | 1975-02-03 | 1985-08-08 | Deutsche Babcock Ag, 4200 Oberhausen | Einrichtung zum Vermindern des NO↓x↓-Gehaltes |
| CA1092910A (fr) * | 1976-07-27 | 1981-01-06 | Ko'hei Hamabe | Chaudiere avec dispositif de denitrification |
| DE3133298A1 (de) * | 1981-08-22 | 1983-03-03 | Deutsche Babcock Ag, 4200 Oberhausen | Dampferzeuger mit einem hauptkessel und einer wirbelschichtfeuerung |
| JPS6021627Y2 (ja) * | 1982-11-01 | 1985-06-27 | 三井造船株式会社 | ボイラの二次空気吹込み装置 |
| JPS606907U (ja) * | 1983-06-21 | 1985-01-18 | 三井造船株式会社 | ボイラ過熱器の温度調節構造 |
| DE3525676A1 (de) * | 1985-07-18 | 1987-01-22 | Kraftwerk Union Ag | Dampferzeuger |
| JP2583966B2 (ja) * | 1988-05-24 | 1997-02-19 | バブコツク日立株式会社 | 変圧運転ボイラ |
| JPH02272207A (ja) * | 1988-09-10 | 1990-11-07 | Kansai Electric Power Co Inc:The | 水管式ボイラとその燃焼方法 |
| US5199384A (en) * | 1988-12-22 | 1993-04-06 | Miura Co., Ltd. | Quadrangular type multi-tube once-through boiler |
| JPH0346890U (fr) * | 1989-09-13 | 1991-04-30 | ||
| JPH04116302A (ja) * | 1990-09-07 | 1992-04-16 | Babcock Hitachi Kk | 石炭焚きボイラ火炉構造物 |
| DE59105729D1 (de) * | 1991-03-13 | 1995-07-20 | Siemens Ag | Rohr mit auf seiner Innenseite ein mehrgängiges Gewinde bildenden Rippen sowie Dampferzeuger zu seiner Verwendung. |
| US5353749A (en) * | 1993-10-04 | 1994-10-11 | Zurn Industries, Inc. | Boiler design |
| DE4431185A1 (de) * | 1994-09-01 | 1996-03-07 | Siemens Ag | Durchlaufdampferzeuger |
| JPH08128602A (ja) * | 1994-10-31 | 1996-05-21 | Babcock Hitachi Kk | 貫流ボイラ |
| JPH09222202A (ja) * | 1996-02-16 | 1997-08-26 | Mitsubishi Heavy Ind Ltd | 異常診断装置 |
| JPH09222214A (ja) * | 1996-02-16 | 1997-08-26 | Daishin Kogyo Kk | 焼却炉 |
| JPH09229306A (ja) * | 1996-02-22 | 1997-09-05 | Mitsubishi Heavy Ind Ltd | 吊下型ボイラ組立方法 |
| JPH1061920A (ja) * | 1996-08-22 | 1998-03-06 | Seiki Iwayama | 焼却炉 |
| DK1086339T3 (da) * | 1998-06-10 | 2002-04-15 | Siemens Ag | Fossilt fyret gennemløbsdampgenerator |
-
1999
- 1999-01-18 DE DE19901621A patent/DE19901621A1/de not_active Ceased
-
2000
- 2000-01-10 WO PCT/DE2000/000055 patent/WO2000042352A1/fr not_active Ceased
- 2000-01-10 CN CNB008028737A patent/CN1192187C/zh not_active Expired - Fee Related
- 2000-01-10 JP JP2000593890A patent/JP4953506B2/ja not_active Expired - Fee Related
- 2000-01-10 DK DK00902545T patent/DK1144910T3/da active
- 2000-01-10 RU RU2001123225/06A patent/RU2221195C2/ru not_active IP Right Cessation
- 2000-01-10 ES ES00902545T patent/ES2307493T3/es not_active Expired - Lifetime
- 2000-01-10 KR KR1020017009009A patent/KR100776423B1/ko not_active Expired - Fee Related
- 2000-01-10 CN CNB2004100495867A patent/CN1287111C/zh not_active Expired - Fee Related
- 2000-01-10 CA CA002359936A patent/CA2359936C/fr not_active Expired - Fee Related
- 2000-01-10 EP EP00902545A patent/EP1144910B1/fr not_active Expired - Lifetime
- 2000-01-10 DE DE50015236T patent/DE50015236D1/de not_active Expired - Lifetime
-
2001
- 2001-07-18 US US09/907,760 patent/US6446584B1/en not_active Expired - Lifetime
Non-Patent Citations (1)
| Title |
|---|
| See references of WO0042352A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1144910B1 (fr) | 2008-07-02 |
| JP4953506B2 (ja) | 2012-06-13 |
| US6446584B1 (en) | 2002-09-10 |
| DE50015236D1 (de) | 2008-08-14 |
| CA2359936A1 (fr) | 2000-07-20 |
| CN1550710A (zh) | 2004-12-01 |
| KR20010112243A (ko) | 2001-12-20 |
| CA2359936C (fr) | 2007-11-20 |
| WO2000042352A1 (fr) | 2000-07-20 |
| JP2002535587A (ja) | 2002-10-22 |
| CN1192187C (zh) | 2005-03-09 |
| DE19901621A1 (de) | 2000-07-27 |
| KR100776423B1 (ko) | 2007-11-16 |
| US20020026905A1 (en) | 2002-03-07 |
| CN1336997A (zh) | 2002-02-20 |
| ES2307493T3 (es) | 2008-12-01 |
| RU2221195C2 (ru) | 2004-01-10 |
| DK1144910T3 (da) | 2008-11-03 |
| CN1287111C (zh) | 2006-11-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0944801B1 (fr) | Chaudiere a vapeur | |
| EP0617778B1 (fr) | Generateur de vapeur en continu alimente par matiere fossile | |
| EP1188021B1 (fr) | Generateur de vapeur chauffe par combustible fossile et pourvu d'un dispositif de deazotage pour le gaz de chauffage | |
| EP1086339B1 (fr) | Generateur de vapeur chauffe par des combustibles fossiles | |
| EP1144910A1 (fr) | Generateur de vapeur chauffe avec un combustible fossile | |
| DE19914761C1 (de) | Fossilbeheizter Durchlaufdampferzeuger | |
| EP1141625B1 (fr) | Generateur de vapeur continu chauffe par combustible fossile | |
| EP1166015B1 (fr) | Generateur de vapeur en continu a chauffage par matiere fossile | |
| WO2010102865A2 (fr) | Évaporateur continu | |
| EP1144911B1 (fr) | Generateur de vapeur chauffe avec un combustible fossile | |
| EP2440847A2 (fr) | Évaporateur continu | |
| WO1998020280A1 (fr) | Procede applicable avec un generateur de vapeur en continu, et le generateur de vapeur necessaire a l'application de ce procede | |
| EP1537358B1 (fr) | Generateur de vapeur construit horizontalement | |
| EP1794495B1 (fr) | Generateur de vapeur en continu chauffe a l'aide d'un combustible fossile | |
| EP3014177B1 (fr) | Générateur de vapeur en continu en construction de type chaudière à deux passages | |
| EP1554522B1 (fr) | Procede pour exploiter un generateur de vapeur de conception horizontale | |
| EP2409078B1 (fr) | Procédé de conception d'un évaporateur continu | |
| WO2005050089A1 (fr) | Generateur de vapeur en continu | |
| DE19851809A1 (de) | Fossilbeheizter Dampferzeuger | |
| DE19825800A1 (de) | Fossilbeheizter Dampferzeuger |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20010509 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): DE DK ES FR GB |
|
| 17Q | First examination report despatched |
Effective date: 20070809 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE DK ES FR GB |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REF | Corresponds to: |
Ref document number: 50015236 Country of ref document: DE Date of ref document: 20080814 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2307493 Country of ref document: ES Kind code of ref document: T3 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20090403 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120126 Year of fee payment: 13 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160321 Year of fee payment: 17 Ref country code: ES Payment date: 20160223 Year of fee payment: 17 Ref country code: DK Payment date: 20160120 Year of fee payment: 17 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160111 Year of fee payment: 17 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50015236 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20170131 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170110 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170801 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170110 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170111 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181113 |