EP1096002A2 - Method of and apparatus for processing heavy hydrocarbon feeds - Google Patents
Method of and apparatus for processing heavy hydrocarbon feeds Download PDFInfo
- Publication number
- EP1096002A2 EP1096002A2 EP00123713A EP00123713A EP1096002A2 EP 1096002 A2 EP1096002 A2 EP 1096002A2 EP 00123713 A EP00123713 A EP 00123713A EP 00123713 A EP00123713 A EP 00123713A EP 1096002 A2 EP1096002 A2 EP 1096002A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- atmospheric
- producing
- fractions
- vacuum
- heated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
- C10G55/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
- C10G55/04—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G51/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
- C10G51/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
Definitions
- This invention relates to processing heavy hydrocarbon feeds containing sulfur, metals and asphaltenes which may be used in refineries and/or producing power, and more particularly, to a method of and apparatus for upgrading heavy crude oils or fractions thereof.
- a conventional approach to removing sulfur compounds in distillable fractions of crude oil, or its derivatives, is catalytic hydrogenation in the presence of molecular hydrogen at moderate pressure and temperature. While this approach is cost effective in removing sulfur from distillable oils, problems arise when the feed includes metallic containing asphaltenes. Specifically, the presence of metallic containing asphaltenes results in catalyst deactivation by reason of the coking tendency of the asphaltenes, and the accumulation of metals on the catalyst, especially nickel and vanadium compounds commonly found in the asphaltenes.
- heavy oil is continuously converted into asphaltenes and metal-free oil by hydrotreating the heavy oil to crack asphaltenes selectively and remove heavy metals such as nickel and vanadium simultaneously.
- the liquid products are separated into a light fraction of an asphaltene-free and metal-free oil and a heavy fraction of an asphaltene and heavy metal-containing oil.
- the light fraction is recovered as a product and the heavy fraction is recycled to the hydrotreating step.
- a process for the treatment of residual oil comprising the steps of treating the residual oil so as to produce a first extract and a first raffinate using supercritical solvent extraction, and then treating the first raffinate so as to produce a second extract and a second raffinate again by second raffinate again by supercritical solvent extraction using a second supercritical solvent and then combining the first extract and the raffinate to a product fuel.
- the supercritical solvents are particularly selected to concentrate vandium in the second extract.
- FCC units typically are operated with a feedstock quality constraint of very low metals asphaltenes, and CCR (i.e., less than 10 wppm metals, less than 0.2 wt% asphaltenes, and less than 2 wt% CCR). Utilization of feedstocks with greater levels of asphaltenes of CCR results in increased coke production and a corresponding reduction in unit capacity. In addition, use of feedstocks with high levels of metals and asphaltenes results in more rapid deactivation of the catalyst, and thus increased catalyst rates and increased catalyst replacement costs.
- U.S. Patent No. 5,192,421 a process for the treatment of whole crude oil is disclosed, the process comprising the steps of deasphalting the crude by first mixing the crude with an aromatic solvent, and then mixing the crude-aromatic solvent mixture with an aliphatic solvent.
- the U.S. '421 patent (at page 9, lines 43-45) identifies that certain modifications must be made to prior art solvent deasphalting technologies, such as that described in U.S. Patent No. 2,940,920, 3,005,769, and 3,053,751 in order to accommodate the process described in the U.S.
- U.S. Patent No. 4,686,028 a process for the treatment of whole crude oil is disclosed, the process comprising the steps of deasphalting a high boiling range hydrocarbon in a two-stage deasphalting process to separate asphaltene, resin, and deasphalted fractions by hydrogenation or visbreaking.
- the U.S. '028 patent is burdened by the complexity and cost of a two-stage solvent deasphalting system used to separate the resin fraction from the deasphalting oil.
- the '028 process results in an upgraded product that still contains a non-distilled fraction - the DAO - that is contaminated with CCR and metals.
- Asphaltenes present in such oils are converted to high yields of coke and gas which burden an operator with high burning requirements.
- Another alternative available to a refiner or heavy crude user is to dispose of the non-distillable heavy oil fractions as fuel for industrial power generation or as bunker fuel for ships. Disposal of such fractions as fuel is not particularly profitable to a refiner because more valuable distillate oils must be added in order to reduce viscosity sufficiently (e.g. producing heavy fuel oil, etc.) to allow handling and shipping. Furthermore, the presence of high sulfur and metals contaminants lessens the value to the users. In addition, this does not solve the problem of the non-distillable heavy oil fractions in a global sense since environmental regulations restrict the use of high sulfur fuel oil. Refiners frequently use a thermal conversion process, e.g., visbreaking, for reducing the heavy fuel oil yield.
- a thermal conversion process e.g., visbreaking
- This process converts a limited amount of the heavy oil to lower viscosity light oil, but has the disadvantage of using some of the higher value distillate oils to reduce the viscosity of the heavy oil sufficiently to allow handling and shipping. Moreover, the asphaltene content of the heavy oil restricts severely the degree of visbreaking conversion possible due to the tendency of the asphaltenes to condense into heavier materiels, even coke, and cause instability in the resulting fuel oil. Furthermore, this process reduces the amount of heavy fuel oil that the refiner has to sell and is not useful in a refinery processing heavy crudes.
- an asphaltene-containing hydrocarbon feed is solvent deasphalted in a deasphalting zone to produce a deasphalted oil (DAO) fraction, and an asphaltene fraction which is catalytically hydrotreated in a hydrotreating zone to produce a reduced asphaltene stream that is fractionated to produce light distillate fractions and a first heavy distillate fraction.
- DAO deasphalted oil
- Both the first heavy distillate fraction and the DAO fraction are thermally cracked into a product stream that is then fractionated into light distillate fractions and a second distillate fraction which is routed to the hydrotreating zone.
- an asphaltene-containing hydrocarbon feed is solvent deasphalted in a deasphalting zone to produce a deasphalted oil (DAO) fraction, and an asphaltene fraction which is catalytically hydrotreated in a hydrotreating zone to produce a reduced asphaltene stream that is fractionated to produce light distillate fractions and a first heavy distillate fraction.
- the first heavy distillate fraction is routed to the deasphalting zone for deasphalting, and the DAO fraction is thermally cracked into a product stream that is then fractionated into light fractions and a second heavy distillate fraction which is routed to the hydrotreating zone.
- asphaltenes are routed to a hydrotreating zone wherein heavy metals present in the asphaltenes cause a number of problems.
- the presence of the heavy metals in the hydrotreater causes deactivation of the catalyst that increases the cost of the operation.
- such heavy metals also result in having to employ higher pressures in the hydrotreater which complicates its design and operation and hence its cost.
- Apparatus for processing a heavy hydrocarbon feed comprises firstly a heater for heating the heavy hydrocarbon feed.
- the heated heavy hydrocarbon feed produced is fed to an atmospheric fractionating tower for fractionating the heated heavy hydrocarbon feed fed to the inlet of the atmospheric fractionating tower producing light atmospheric fractions and atmospheric bottoms.
- the apparatus includes a vacuum fractionating tower for fractionating heated atmospheric bottoms, heated by a further heater, and producing lighter vacuum fractions and vacuum residue.
- the apparatus includes a solvent deasphalting (SDA) unit for producing deasphalted oil (DAO) and asphaltenes from the vacuum residue as well as a thermal cracker for thermally cracking the deasphalted oil and producing a thermally cracked product which is recycled to the inlet of the atmospheric fractioning tower.
- the apparatus can include a further thermal cracker for thermally cracking the lighter vacuum fractions for producing a further thermally cracked product which is recycled to the inlet of the atmospheric fractionating tower.
- the lighter vacuum fractions can be supplied to the thermal cracker in addition to the deasphalted oil. In such a case, the further thermal cracker previously mentioned is not used.
- the present invention includes a method for processing a heavy hydrocarbon feed comprising the steps of: heating a heavy hydrocarbon feed and fractionating the heated heavy hydrocarbon feed in an atmospheric fractionating tower for producing light atmospheric fractions and atmospheric bottoms. Heated atmospheric bottoms, heated by a further heater, are fractioned in a vacuum fractioning tower for producing lighter vacuum fractions and vacuum residue while the vacuum residue are solvent deasphalted in a solvent deasphalting (SDA) unit for producing deasphalted oil (DAO) and asphaltenes. The deasphalted oil is then thermally cracked in a thermal cracker for producing a thermally cracked product that is recycled to the inlet of the atmospheric fractionating tower.
- SDA solvent deasphalting
- the lighter vacuum fractions can be thermally cracked for producing a further thermally cracked product that is recycled to the inlet of the atmospheric fractionating tower.
- Thermal cracking of the lighter vacuum fractions can be carried out in a separate thermal cracker or in the same thermal cracker in which the deasphalted oil is thermally cracked. Similar apparatus and methods are disclosed in U.S. Patent Application Serial No. 08/910,102, the disclosure of which is hereby incorporated by reference.
- numeral 10 in Fig. 1 designates apparatus for processing heavy hydrocarbons in accordance with the present invention wherein heavy hydrocarbon feed is supplied to heater 11 and the heated heavy hydrocarbon feed is fed to atmospheric fractionating tower 12.
- Atmospheric fractionating tower 12 produces light atmospheric fractions in line 14 and atmospheric bottoms in line 15.
- the atmospheric bottoms in line 15 are then supplied to heater 16 and the heated atmospheric bottoms are supplied to vacuum fractionating tower 18 which produces light vacuum fractions in line 20 and vacuum residue in line 22.
- the vacuum residue in line 22 is then supplied to solvent deasphalting unit 24 which produces deasphalted oil in line 26 and asphaltenes in line 28.
- Deasphalted oil in line 26 is supplied to thermal cracker 30 that produces thermally cracked product in line 32 that is recycled to inlet 13 of atmospheric fractionating tower 12.
- the light vacuum fractions in line 20 are supplied to further thermal cracker 35 for thermally cracking the lighter vacuum fractions and a further thermally cracked product is produced in line 37 that is recycled to inlet 13 of atmospheric fractionating tower 12.
- the light vacuum fractions in line 20 can be thermally cracked in thermal cracker 30 together with the deasphalted oil supplied in line 26, see Fig. 1a.
- Numeral 10A in Fig. 2 designates another embodiment of apparatus for processing heavy hydrocarbons in accordance with the present invention wherein heavy hydrocarbon feed is supplied to heater 11A and the heated heavy hydrocarbon feed is fed to atmospheric fractionating tower 12A.
- Atmospheric fractionating tower 12A produces light atmospheric fractions in lines 14A and atmospheric bottoms in line 16A.
- the atmospheric bottoms in line 16A are then supplied to heater 17A and heated atmospheric bottoms are supplied vacuum frationating tower 18A which produces light vacuum fractions in lines 20A, heavier vacuum fractions in line 21 and vacuum residue in line 22A.
- the vacuum residue in line 22A are then supplied to solvent deasphalting unit 24A which produces deasphalted oil in line 26A and asphaltenes in line 28A.
- Deasphalted oil in line 26A is supplied to thermal cracker 30A that produces thermally cracked product in line 32A that is recycled to inlet 13A of atmospheric fractionating tower 12A.
- the heavier vacuum fractions in line 21 are supplied to further thermal cracker 35A for thermally cracking the heavier vacuum fractions and a further thermally cracked product is produced in line 37A which is recycled to inlet 13A of atmospheric fractionating tower 12A.
- numeral 10B designates a further embodiment of apparatus for processing heavy hydrocarbons in accordance with the present invention.
- heavy hydrocarbon feed is supplied to heater 11B and the heated heavy hydrocarbon feed is fed to atmospheric fractionating tower 12B.
- Atmospheric fractionating tower 12B produces light atmospheric fractions in lines 14B and atmospheric bottoms in line 16B.
- the atmospheric bottoms in line 16B are then supplied to heater 17B and the heated, atmospheric bottoms are supplied to vacuum fractionating tower 18B which produces light vacuum fractions in line 20B, heavier vacuum fractions in line 21B as well as vacuum residue in line 22B.
- the vacuum residue in line 22B is then supplied to solvent deasphalting unit 24B which produces deasphalted oil in line 26B and asphaltenes in line 28B.
- Deasphalted oil in line 26B is supplied to thermal cracker 30B that produces thermally cracked product in line 32B that is recycled to inlet 13B of atmospheric fractionating tower 12B.
- the heavier vacuum fractions in line 21B are supplied to line 26B to form a combined product that is supplied to thermal cracker 30B.
- numeral 10C designates a still further embodiment of apparatus for processing heavy hydrocarbons in accordance with the present invention.
- heavy hydrocarbon feed is supplied to heater 11C and the heated heavy hydrocarbon feed is fed to atmospheric fractionating tower 12C.
- Atmospheric fractionating tower 12C produces lighter atmospheric fractions in line 14C, light atmospheric fractions in line 15C and atmospheric bottoms in line 16C.
- the atmospheric bottoms in line 16C are then supplied to heater 17C and the heated atmospheric bottoms are supplied to vacuum fractionating tower 18C which produces light vacuum fraction in lines 20C, heavier vacuum fractions in line 21C and vacuum residue in line 22C.
- the vacuum residue in line 22C are then supplied to solvent deasphalting unit 24C which produces deasphalted oil in line 26C and asphaltenes in line 28C.
- Deasphalted oil in line 26C is supplied to thermal cracker 30C that produces thermally cracked product in line 32C that is recycled to inlet 13C of atmospheric fractionating tower 12C.
- the heavier vacuum fractions in line 21C are supplied to further thermal cracker 35C for thermally cracking the heavier vacuum fractions and a further thermally cracked product is produced in line 37C which is recycled to inlet 13C of atmospheric fractionating tower 12C.
- this embodiment includes hydrogen donor apparatus 40C having hydrotreater 45C to which light fraction product in line 39C is supplied and which produces treated hydrocarbon feed in line 41C.
- Treated hydrocarbon feed in line 41C is supplied to heater 43C and the heated, treated hydrocarbon feed is then fed to further atmospheric fractionating tower 42C.
- Further atmospheric fractionating tower 42C produces further light atmospheric fractions in lines 44C and further atmospheric bottoms in line 46C.
- the further atmospheric bottoms in line 46C are then supplied to heater 47C and the heated, further atmospheric bottoms are supplied to further vacuum fractionating tower 48C that produces further light vacuum fractions in lines 50C, further heavier vacuum fractions in line 51C and further vacuum residue in line 52C.
- portion of further heavier vacuum fractions or hydrogen donor stream present in line 51C is fed via line 60 to line 26C for input into thermal cracker 30C.
- a further portion of the hydrogen donor stream is fed to line 21C using line 61 for input into thermal cracker 35C.
- the ratio of the deasphalted oil present in line 26C to the amount of hydrogen donor stream present in line feed 60 is 0.25 to 4.
- the ratio of the heavier vacuum fraction present in line 21C to the amount of hydrogen donor stream present in line 61 is also 0.25 to 4.
- numeral 10D designates an even further embodiment of apparatus for processing heavy hydrocarbons in accordance with the present invention.
- heavy hydrocarbon feed is supplied to heater 11D and the heated, heavy hydrocarbon feed is fed to atmospheric fractioning tower 12D.
- Atmospheric fractioning tower 12D produces lighter atmospheric fractions in line 14D, light fractions in line 15D and atmospheric bottoms in line 16D.
- the atmospheric bottoms in line 16D are then supplied to heater 17D and the heated atmospheric bottoms are supplied to vacuum fractioning tower 18D that produces light vacuum fractions in lines 20D, heavier vacuum fractions in line 21D and vacuum residue in line 22D.
- the vacuum residue in line 22D are then supplied to solvent deasphalting unit 24D that produces deasphalted oil in line 26D and asphaltenes in line 28D.
- Deasphalted oil in line 26D is supplied to thermal cracker 30D that produces thermally cracked product in line 32D that is recycled to inlet 13D of atmospheric fractioning tower 12D.
- the heavier vacuum fractions in line 21D are also supplied to line 26D for input into thermal cracker 30D.
- this embodiment includes hydrogen donor apparatus 40D including hydrotreater 45D to which light fraction product in line 39D is supplied and that produces treated hydrocarbon in line 41D. Treated hydrocarbon feed in line 41D is supplied to heater 43D and heated, treated hydrocarbon feed is fed to further atmospheric fractioning tower 42D.
- Further atmospheric fractioning tower 42D produces further light atmospheric fractions in lines 44D and further atmospheric bottoms in lines 46D.
- the further atmospheric bottoms in line 46D are then supplied to heater 47D and the heated, further atmospheric bottoms are supplied to further vacuum fractionating tower 48D that produces further light vacuum fractions in lines 50D, further heavier vacuum fractions in line 51D and further vacuum residue in line 52D.
- further heavier vacuum fractions or hydrogen donor stream present in line 51D are fed via line 60D to line 26D for input into thermal cracker 30D.
- the ratio of the hydrocarbon feed present in line 26D to the amount of hydrogen donor stream present in line feed 60D is 0.25 to 4.
- numeral 10E designates another embodiment of apparatus for processing heavy hydrocarbons in accordance with the present invention.
- heavy hydrocarbon feed is supplied to heater 11E and the heated, heavy hydrocarbon feed is fed to atmospheric fractionating tower 12E, Atmospheric fractionating tower 12E produces lighter atmospheric fractions in line 14E, light fractions in line 15E and atmospheric bottoms in line 16E.
- the lighter atmospheric fractions in line 14E and light fractions in line 15E are combined and the combined product is supplied to hydrotreater 19E that produces a hydrotreated product.
- the atmospheric bottoms in line 16E are then supplied to heater 17E and the heated, atmospheric bottoms are supplied to vacuum fractionating tower 18E which produces light vacuum fractions in lines 20E, heavier vacuum fractions in line 21E and vacuum residue in line 22E.
- the vacuum residue in line 22E is then supplied to deasphalting unit 24E which produces deasphalted oil in line 26E and asphaltenes in line 28E.
- Deasphalted oil in line 26E is supplied to thermal cracker 30E that produces thermally cracked product in line 32E that is recycled to inlet 13E of atmospheric fractionating tower 12E.
- the light vacuum fractions in lines 20E, and heavier vacuum fractions in line 21E are supplied to line 39E.
- Portion of these fractions is supplied to further thermal cracker 35E for thermally cracking these vacuum fractions and a further thermally cracked product is produced in line 37E that is recycled to inlet 13E of atmospheric fractionating tower 12E.
- this embodiment includes a further hydrotreater 40E to which a further portion of fractions present in line 39E is supplied and that produces treated hydrocarbon feed in line 41E.
- portion of treated hydrocarbon feed in line 41E is supplied via line 60E to line 26E for input into thermal cracker 30E.
- the ratio of the deasphalted oil present in line 26E to the amount of treated hydrocarbon feed present in line 60E is 0.25 to 4.
- a further portion of the treated hydrocarbon feed in 41E is supplied to line 42E via line 62 for input into thermal cracker 35E.
- the ratio of the vacuum fractions present in line 42E to the amount of treated hydrocarbon feed present in line feed 62 is also 0.25 to 4.
- numeral 10F designates a further embodiment of apparatus for processing heavy hydrocarbons in accordance with the present invention.
- heavy hydrocarbon feed is supplied to heater 11F and the heated heavy hydrocarbon feed is fed to atmospheric fractionating tower 12F.
- Atmospheric fractionating tower 12F produces lighter atmospheric fractions in line 14F, light fractions in line 15F and atmospheric bottoms in line 16F.
- the lighter atmospheric fractions in line 14F and light fractions in line 15F are combined and the combined product is supplied to hydrotreater 19F that produces a hydrotreated product.
- the atmospheric bottoms in line 16F are then supplied to heater 17F and the heated atmospheric bottoms are supplied to vacuum fractionating tower 18F which produces light vacuum fractions in lines 20F, heavier vacuum fractions in line 21F and vacuum residue in line 22F.
- the vacuum residue in line 22F is then supplied to deasphalting unit 24F which produces deasphalted oil in line 26F and asphaltenes in line 28F.
- Deasphalted oil in line 26F is supplied to thermal cracker 30F that produces thermally cracked product in line 32F that is recycled to inlet 13F of atmospheric fractionating tower 12F.
- the light vacuum fractions in lines 20F, and heavier vacuum fractions in line 21F are supplied to line 39F. Portion of these fractions is supplied to line 26F for input into thermal cracker 30F.
- this embodiment includes a further hydrotreater 40F to which a further portion of fractions present in line 39F is supplied and which produces treated hydrocarbon feed in line 60F. All of treated hydrocarbon feed in line 60F, in this embodiment, is supplied to line 26F for input into thermal cracker 30F.
- the ratio of the hydrocarbon feed present in line 26F to the amount of treated hydrocarbon feed present in line feed 60F is 0.25 to 4.
- Numeral 10G in Fig. 8 designated an additional embodiment of apparatus for processing heavy hydrocarbons in accordance with the present invention.
- heavy hydrocarbon feed is supplied to heater 11G and the heated heavy hydrocarbon feed is fed to atmospheric fractionating tower 12G.
- Atmospheric fractionating tower 12G produces lighter atmospheric fractions in line 14G, light fractions in line 15G and atmospheric bottoms in line 16G.
- the lighter atmospheric fractions in line 14G and light fractions in line 15G are combined and the product is supplied to hydrotreater 19G that produces a hydrotreated product.
- the atmospheric bottoms in line 16G are then supplied to heater 17G and the heated atmospheric bottoms are supplied to vacuum fractionating tower 18G that produces light vacuum fractions in lines 20G, heavier vacuum fractions in line 21G and vacuum residue in line 22G.
- the vacuum residue in line 22G is then supplied to solvent deasphalting unit 24G which produces deasphalted oil in line 26G and asphaltenes in line 28G.
- Deasphalted oil in line 26G is supplied to thermal cracker 30G that produces thermally cracked product in line 32G that is recycled to inlet 13G of atmospheric fractionating tower 12G.
- the light vacuum fractions in lines 20G are supplied to line 39G.
- Portion of these fractions is supplied to further thermal cracker 35G for thermally cracking these vacuum fractions and a further thermally cracked product is produced in line 37G which is recycled to inlet 13G of atmospheric fractionating tower 12G.
- heavier vacuum fractions in line 21G are supplied to this portion of fractions supplied to further thermal cracker 35G.
- this embodiment includes a further hydrotreater 40G to which a further portion of fractions present in line 39G is supplied and which produces treated hydrocarbon feed in line 41G.
- portion of treated hydrocarbon feed in line 41G is supplied via line 600 to line 26G for input into thermal cracker 30G.
- a further portion of the treated hydrocarbon feed in line 41G is supplied via line 62G to line 42G for input into further thermal cracker 35G.
- the ratio of the vacuum fractions present in line 42G to the amount of treated hydrocarbon feed present in line feed 62G is 0.25 to 4.
- portion for the hydrotreated product exiting hydrotreater 19G is supplied via line 64G to treated hydrocarbon feed in line 41G exiting further hydrotreater 40G. Consequently, portion of the hydrotreated product supplied to line 41G is supplied to line 26G for input into thermal cracker 30G while another portion of the hydrotreated product supplied to line 41G is supplied to further thermal cracker 35G.
- the ratio of the deasphalted oil present in line 26G to the amount of treated hydrocarbon feed present in line feed 60G is 0.25 to 4.
- numeral 10H designates a further embodiment of apparatus for processing heavy hydrocarbons in accordance with the present invention.
- heavy hydrocarbon feed is supplied to heater 11H and the heated heavy hydrocarbon feed is fed to atmospheric fractionating tower 12H.
- Atmospheric fractionating tower 12H produces lighter atmospheric fractions in line 14H, light fractions in line 15H and atmospheric bottoms in line 16H.
- the lighter atmospheric fractions in line 14H and light fractions in line 15H are combined and the combined product is supplied to hydrotreater 19H that produces a hydrotreated product.
- the atmospheric bottoms in line 16H are then supplied to heater 17H and the heated atmospheric bottoms are supplied to vacuum fractionating tower 18H which produces light vacuum fractions in lines 20H, heavier vacuum fractions in line 21H and vacuum residue in line 22H.
- the vacuum residue in line 22H is then supplied to solvent deasphalting unit 24H which produces deasphalted oil in line 26H and asphaltenes in line 28H.
- Deasphalted oil in line 26H is supplied to thermal cracker 30H that produces thermally cracked product in line 32H that is recycled to inlet 13H of atmospheric fractionating tower 12H.
- the light vacuum fractions in lines 20H are supplied to line 39H for input into further hydrotreater 40H which produces treated hydrocarbon feed in line 41H that is supplied via line 60H to line 26H for input into thermal cracker 30H. Heavier vacuum fractions in line 21H are also supplied to line 26H for input into thermal cracker 30H.
- portion for the hydrotreated product exiting hydrotreater 19H is supplied via line 64H to treated hydrocarbon feed in line 41H exiting further hydrotreater 40H. Consequently, the portion of the hydrotreated product supplied to line 41H is supplied to line 26H for input into thermal cracker 30H.
- the ratio of the hydrocarbon feed present in line 26H to the amount of treated hydrocarbon feed present in line feed 60H is 0.24 to 4.
- the present invention permits the efficient control of the final boiling point of the product stream. This has importance since the value of the upgraded product produced in accordance with the present invention changes for each specific refinery configuration. Refineries are sensitive to the final boiling point of this upgraded product and material that has high value for one may be valued at the value of vacuum residue by another. Thus, the value of the product or synthetic crude produced in accordance with the present invention and supplied to the refinery can be different for a different balance of the different fractions produced. Refineries are differentiated one from another by the products and fractions they are willing to accept. Consequently, sometimes, the value of a product in the boiling range between 650-1050°F is low even if its quality is high.
- refineries may prefer different divisions of boiling point ranges of the improved products in accordance with the processing units or apparatus downstream.
- a refinery is the client of the product or the user of the process, there is an advantage of flexibility of the final boiling point in general and in the actual balance between the vacuum gas oil and the atmospheric product fractions.
- a diluent needs to be added to the crude oil in order to meet the pipeline specifications for conveying the heavy oils.
- the present invention permits conversion of part of the crude oil into diluent that can be used in the transportation of more viscous oil.
- supply means or lines mentioned in this specification refer to suitable conduits, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Working-Up Tar And Pitch (AREA)
Abstract
Description
Claims (10)
- Apparatus of processing heavy hydrocarbon feed comprising:a) a heater for heating said heavy hydrocarbon feed;b) an atmospheric fractionating tower for fractionating the heated heavy hydrocarbon feed fed to the inlet of the atmospheric fractionating tower producing light atmospheric fractions and atmospheric bottoms;c) a further heater for heating said atmospheric bottoms and producing heated atmospheric bottoms;d) a vacuum fractionating tower for fractionating said heated atmospheric bottoms and producing light vacuum fractions and vacuum residue;e) a solvent deasphalting (SDA) unit for producing deasphalting oil (DAO) and asphaltenes from said vacuum residue;f) a thermal cracker for thermally cracking said deasphalted oil and producing a thermally cracked product which is recycled to the inlet of said atmospheric fractionating tower; andg) a further cracker for thermally cracking said light vacuum fractions for producing a further thermally cracked product which is recycled to the inlet of said atmospheric fractionating tower.
- Apparatus according to claim 1 including means for supplying only the heavy portion of said light vacuum fractions to said further thermal cracker.
- Apparatus according to claim 2 including a hydrogen donor system for processing the lighter portion of said light vacuum fractions and producing a hydrogen donor stream, said hydrogen donor system including;a) a hydrotreater for producing a treated hydrocarbon feed from said the lighter portion of said light vacuum fractions;b) a still further heater for producing a heated, treated hydrocarbon stream;c) a further atmospheric fractionating tower for fractionating said heated treated hydrocarbon stream for producing further light atmospheric fractions and further atmospheric bottoms;d) an additional heater for heating said further atmospheric bottoms and producing heated, further atmospheric bottoms; ande) a further vacuum fractionating tower for fractionating said heated, further atmospheric bottoms and producing further lighter vacuum fractions and further vacuum residue such that the heavier portion of said further lighter vacuum fractions or hydrogen donor stream is supplied to said thermal cracker.
- A method for processing heavy hydrocarbon comprising the steps of:a) heating said heavy hydrocarbon;b) fractionating the heated heavy hydrocarbon feed in an atmospheric fractionating tower for producing light atmospheric fractions and atmospheric bottoms;c) heating said atmospheric bottoms for producing heated atmospheric bottoms;d) fractionating said heated atmospheric bottoms in a vacuum fractionating tower for producing lighter vacuum fractions and vacuum residue;e) solvent deasphalting said vacuum residue in a solvent deasphalting (SDA) for producing deasphalted oil (DAO) and asphaltenes;f) thermally cracking said deasphalted oil in a thermal cracker for producing a thermally cracked product which is recycled to the inlet of said atmospheric fractionating tower; andg) thermally cracking said lighter vacuum fractions for producing a further thermally cracked product that is recycled to said atmospheric fractionating tower.
- A method according to claim 4 providing a further, separate thermal cracker for thermally cracking said lighter vacuum fractions.
- A method according to claim 5 including providing means for supplying only the heavy portion of said light vacuum fractions to said further thermal cracker.
- A method according to claim 4 wherein said lighter vacuum fractions are thermally cracked in the same thermal cracker in which said deasphalted oil is thermally cracked.
- A method according to claim 4 including:a) providing a hydrotreater for processing said light atmospheric and the lighter portion of said light vacuum fractions and producing a treated, hydrocarbon stream;b) heating said treated hydrocarbon stream for producing a heated, treated, hydrocarbon stream;c) fractionating said heated, treated, hydrocarbon stream using a further atmospheric fractionating tower for producing further light atmospheric fractions and further atmospheric bottoms;d) heating said further atmospheric bottoms for producing heated, further atmospheric bottoms;e) fractionating said heated, further atmospheric bottoms using a further vacuum fractionating tower for producing further lighter vacuum fractions and further vacuum residue; andf) thermally cracking the heavier portion of said further lighter vacuum fractions.
- A method according to claim 7 including:a) providing a hydrotreater for processing said light atmospheric and the lighter portion of said light vacuum fractions and producing a treated, hydrocarbon stream;b) heating said treated hydrocarbon stream for producing a heated, treated, hydrocarbon stream;c) fractionating said heated, treated, hydrocarbon stream using a further atmospheric fractionating tower for producing further light atmospheric fractions and further atmospheric bottoms;d) heating said further atmospheric bottoms producing heated, further atmospheric bottoms;e) fractionating said heated, further atmospheric bottoms using a further vacuum fractionating tower for producing further lighter vacuum fractions and further vacuum residue; andf) supplying the heavier portion or hydrogen donor stream of said further lighter vacuum fractions to said thermal cracker.
- Apparatus according to claim 1 including:a) a hydrotreater for processing the lighter portion of said light vacuum fractions and producing a treated, hydrocarbon stream;b) a further heater for heating said treated, hydrocarbon stream for producing a heated, treated, hydrocarbon stream;c) a further atmospheric fractionating column for producing from said heated, treated, hydrocarbon stream further light atmospheric fractions and further atmospheric bottoms;d) a still further heater for heating said further atmospheric bottoms producing heated, further atmospheric bottoms; ande) a further vacuum fractionating column for producing further lighter vacuum fractions and further vacuum residue such that the heavier portion of said further light vacuum fractions is supplied together with said deasphalted oil to said thermal cracker.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/431,159 US20030129109A1 (en) | 1999-11-01 | 1999-11-01 | Method of and apparatus for processing heavy hydrocarbon feeds description |
| US431159 | 1999-11-01 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP1096002A2 true EP1096002A2 (en) | 2001-05-02 |
| EP1096002A3 EP1096002A3 (en) | 2002-05-29 |
| EP1096002B1 EP1096002B1 (en) | 2004-07-07 |
Family
ID=23710737
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP00123713A Expired - Lifetime EP1096002B1 (en) | 1999-11-01 | 2000-10-31 | Method of and apparatus for processing heavy hydrocarbon feeds |
Country Status (18)
| Country | Link |
|---|---|
| US (2) | US20030129109A1 (en) |
| EP (1) | EP1096002B1 (en) |
| CN (1) | CN1399671A (en) |
| AR (1) | AR026308A1 (en) |
| AT (1) | ATE270703T1 (en) |
| AU (1) | AU1246601A (en) |
| BR (1) | BR0005211A (en) |
| CA (1) | CA2324557C (en) |
| CO (1) | CO5200801A1 (en) |
| DE (1) | DE60011978D1 (en) |
| EA (1) | EA002795B1 (en) |
| EG (1) | EG22312A (en) |
| GT (1) | GT200000189A (en) |
| ID (1) | ID27905A (en) |
| IL (1) | IL149410A0 (en) |
| MX (1) | MXPA02004289A (en) |
| TR (1) | TR200003193A2 (en) |
| WO (1) | WO2001032807A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2906812A1 (en) * | 2006-10-06 | 2008-04-11 | Inst Francais Du Petrole | Heavy oil feedstock e.g. atmospheric residue, converting method for producing e.g. petrol, involves distilling effluent to separate residue, and recycling part of residue during de-asphalting of feedstock by mixing part with feedstock |
| WO2008131330A3 (en) * | 2007-04-19 | 2009-01-29 | Exxonmobil Chem Patents Inc | Process for steam cracking of hydrocarbon feedstocks containing asphaltenes |
Families Citing this family (51)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1333050C (en) * | 2004-05-14 | 2007-08-22 | 中国石油化工股份有限公司 | Catalysis method for upgrading hydrocarbon oil |
| US7972499B2 (en) | 2004-09-10 | 2011-07-05 | Chevron U.S.A. Inc. | Process for recycling an active slurry catalyst composition in heavy oil upgrading |
| US7678732B2 (en) | 2004-09-10 | 2010-03-16 | Chevron Usa Inc. | Highly active slurry catalyst composition |
| CN100378195C (en) * | 2004-11-30 | 2008-04-02 | 中国石油化工股份有限公司 | Separation method of catalytic cracking reaction product of hydrocarbon oil |
| CN1325605C (en) * | 2005-12-07 | 2007-07-11 | 中国海洋石油总公司 | Oil sand asphalt treating method |
| US7431822B2 (en) | 2005-12-16 | 2008-10-07 | Chevron U.S.A. Inc. | Process for upgrading heavy oil using a reactor with a novel reactor separation system |
| US8435400B2 (en) | 2005-12-16 | 2013-05-07 | Chevron U.S.A. | Systems and methods for producing a crude product |
| US8048292B2 (en) * | 2005-12-16 | 2011-11-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
| US7938954B2 (en) | 2005-12-16 | 2011-05-10 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
| US7943036B2 (en) * | 2009-07-21 | 2011-05-17 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
| US8372266B2 (en) | 2005-12-16 | 2013-02-12 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
| US7931796B2 (en) | 2008-09-18 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
| US7618530B2 (en) * | 2006-01-12 | 2009-11-17 | The Boc Group, Inc. | Heavy oil hydroconversion process |
| AU2007323859A1 (en) * | 2006-11-19 | 2008-05-29 | Rmax, Llc | Internet-based computer for mobile and thin client users |
| US7931797B2 (en) * | 2009-07-21 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
| US8236169B2 (en) | 2009-07-21 | 2012-08-07 | Chevron U.S.A. Inc | Systems and methods for producing a crude product |
| US7897035B2 (en) | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
| US7897036B2 (en) | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
| US20110017637A1 (en) * | 2009-07-21 | 2011-01-27 | Bruce Reynolds | Systems and Methods for Producing a Crude Product |
| US7935243B2 (en) | 2008-09-18 | 2011-05-03 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
| US8759242B2 (en) | 2009-07-21 | 2014-06-24 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
| US8927448B2 (en) | 2009-07-21 | 2015-01-06 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
| US9068132B2 (en) | 2009-07-21 | 2015-06-30 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
| US20110094937A1 (en) * | 2009-10-27 | 2011-04-28 | Kellogg Brown & Root Llc | Residuum Oil Supercritical Extraction Process |
| CA2732919C (en) * | 2010-03-02 | 2018-12-04 | Meg Energy Corp. | Optimal asphaltene conversion and removal for heavy hydrocarbons |
| US8728300B2 (en) | 2010-10-15 | 2014-05-20 | Kellogg Brown & Root Llc | Flash processing a solvent deasphalting feed |
| US8778828B2 (en) | 2010-12-30 | 2014-07-15 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
| US9150794B2 (en) | 2011-09-30 | 2015-10-06 | Meg Energy Corp. | Solvent de-asphalting with cyclonic separation |
| US9200211B2 (en) | 2012-01-17 | 2015-12-01 | Meg Energy Corp. | Low complexity, high yield conversion of heavy hydrocarbons |
| CN103450938B (en) * | 2012-06-01 | 2016-03-09 | 中国石油天然气股份有限公司 | Combined processing method for inferior heavy oil capable of reducing carbon dioxide emission |
| US9321037B2 (en) | 2012-12-14 | 2016-04-26 | Chevron U.S.A., Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
| US9687823B2 (en) | 2012-12-14 | 2017-06-27 | Chevron U.S.A. Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
| RU2661875C2 (en) * | 2013-02-25 | 2018-07-20 | ФОСТЕР ВИЛЕР ЮЭсЭй КОРПОРЕЙШН | Increased production of fuels by integration of vacuum distillation with solvent deasphalting |
| JP6609478B2 (en) | 2013-02-25 | 2019-11-20 | エムイージー エナジー コーポレイション | Improved separation of solid asphaltenes from heavy liquid hydrocarbons using a novel apparatus and method ("IAS") |
| CN104762103B (en) * | 2015-03-25 | 2016-08-17 | 徐晓山 | A kind of method of the dregs of fat removing Colophonium that reduces pressure |
| US10233394B2 (en) | 2016-04-26 | 2019-03-19 | Saudi Arabian Oil Company | Integrated multi-stage solvent deasphalting and delayed coking process to produce high quality coke |
| US10125318B2 (en) | 2016-04-26 | 2018-11-13 | Saudi Arabian Oil Company | Process for producing high quality coke in delayed coker utilizing mixed solvent deasphalting |
| CA2963436C (en) | 2017-04-06 | 2022-09-20 | Iftikhar Huq | Partial upgrading of bitumen |
| US11193072B2 (en) | 2019-12-03 | 2021-12-07 | Saudi Arabian Oil Company | Processing facility to form hydrogen and petrochemicals |
| US11680521B2 (en) | 2019-12-03 | 2023-06-20 | Saudi Arabian Oil Company | Integrated production of hydrogen, petrochemicals, and power |
| US11572517B2 (en) | 2019-12-03 | 2023-02-07 | Saudi Arabian Oil Company | Processing facility to produce hydrogen and petrochemicals |
| US11492255B2 (en) | 2020-04-03 | 2022-11-08 | Saudi Arabian Oil Company | Steam methane reforming with steam regeneration |
| US11492254B2 (en) | 2020-06-18 | 2022-11-08 | Saudi Arabian Oil Company | Hydrogen production with membrane reformer |
| US11583824B2 (en) | 2020-06-18 | 2023-02-21 | Saudi Arabian Oil Company | Hydrogen production with membrane reformer |
| US11999619B2 (en) | 2020-06-18 | 2024-06-04 | Saudi Arabian Oil Company | Hydrogen production with membrane reactor |
| CN111808626A (en) * | 2020-07-14 | 2020-10-23 | 山东京博石油化工有限公司 | Method for improving liquid yield of delayed coking device |
| US11787759B2 (en) | 2021-08-12 | 2023-10-17 | Saudi Arabian Oil Company | Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel |
| US12258272B2 (en) | 2021-08-12 | 2025-03-25 | Saudi Arabian Oil Company | Dry reforming of methane using a nickel-based bi-metallic catalyst |
| US11578016B1 (en) | 2021-08-12 | 2023-02-14 | Saudi Arabian Oil Company | Olefin production via dry reforming and olefin synthesis in a vessel |
| US11718575B2 (en) | 2021-08-12 | 2023-08-08 | Saudi Arabian Oil Company | Methanol production via dry reforming and methanol synthesis in a vessel |
| US11617981B1 (en) | 2022-01-03 | 2023-04-04 | Saudi Arabian Oil Company | Method for capturing CO2 with assisted vapor compression |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL299467A (en) * | 1963-07-02 | |||
| US3836344A (en) * | 1972-08-17 | 1974-09-17 | L Krawitz | Process and system for the production of substitute pipeline gas |
| NL7507484A (en) * | 1975-06-23 | 1976-12-27 | Shell Int Research | PROCESS FOR CONVERTING HYDROCARBONS. |
| US4087354A (en) * | 1976-11-18 | 1978-05-02 | Uop Inc. | Integrated heat exchange on crude oil and vacuum columns |
| NL190815C (en) * | 1978-07-07 | 1994-09-01 | Shell Int Research | Process for the preparation of gas oil. |
| NL8105660A (en) * | 1981-12-16 | 1983-07-18 | Shell Int Research | PROCESS FOR PREPARING HYDROCARBON OIL DISTILLATES |
| US4686028A (en) * | 1985-04-05 | 1987-08-11 | Driesen Roger P Van | Upgrading of high boiling hydrocarbons |
| CA1222471A (en) * | 1985-06-28 | 1987-06-02 | H. John Woods | Process for improving the yield of distillables in hydrogen donor diluent cracking |
| EP0673989A3 (en) * | 1994-03-22 | 1996-02-14 | Shell Int Research | Process for the conversion of residual hydrocarbon oil. |
| US5976361A (en) * | 1997-08-13 | 1999-11-02 | Ormat Industries Ltd. | Method of and means for upgrading hydrocarbons containing metals and asphaltenes |
| CA2281058C (en) * | 1998-09-03 | 2008-08-05 | Ormat Industries Ltd. | Process and apparatus for upgrading hydrocarbon feeds containing sulfur, metals, and asphaltenes |
-
1999
- 1999-11-01 US US09/431,159 patent/US20030129109A1/en not_active Abandoned
-
2000
- 2000-10-26 CA CA2324557A patent/CA2324557C/en not_active Expired - Lifetime
- 2000-10-28 EG EG20001364A patent/EG22312A/en active
- 2000-10-30 AR ARP000105733A patent/AR026308A1/en not_active Application Discontinuation
- 2000-10-31 EP EP00123713A patent/EP1096002B1/en not_active Expired - Lifetime
- 2000-10-31 DE DE60011978T patent/DE60011978D1/en not_active Expired - Lifetime
- 2000-10-31 MX MXPA02004289A patent/MXPA02004289A/en unknown
- 2000-10-31 CN CN00816300.6A patent/CN1399671A/en active Pending
- 2000-10-31 IL IL14941000A patent/IL149410A0/en unknown
- 2000-10-31 WO PCT/US2000/029923 patent/WO2001032807A1/en active Application Filing
- 2000-10-31 AT AT00123713T patent/ATE270703T1/en not_active IP Right Cessation
- 2000-10-31 TR TR2000/03193A patent/TR200003193A2/en unknown
- 2000-10-31 AU AU12466/01A patent/AU1246601A/en not_active Abandoned
- 2000-10-31 GT GT200000189A patent/GT200000189A/en unknown
- 2000-10-31 EA EA200001012A patent/EA002795B1/en not_active IP Right Cessation
- 2000-10-31 ID IDP20000938A patent/ID27905A/en unknown
- 2000-11-01 BR BR0005211-6A patent/BR0005211A/en not_active IP Right Cessation
- 2000-11-01 CO CO00083187A patent/CO5200801A1/en not_active Application Discontinuation
-
2004
- 2004-10-25 US US10/972,270 patent/US7297250B2/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2906812A1 (en) * | 2006-10-06 | 2008-04-11 | Inst Francais Du Petrole | Heavy oil feedstock e.g. atmospheric residue, converting method for producing e.g. petrol, involves distilling effluent to separate residue, and recycling part of residue during de-asphalting of feedstock by mixing part with feedstock |
| WO2008131330A3 (en) * | 2007-04-19 | 2009-01-29 | Exxonmobil Chem Patents Inc | Process for steam cracking of hydrocarbon feedstocks containing asphaltenes |
Also Published As
| Publication number | Publication date |
|---|---|
| ID27905A (en) | 2001-05-03 |
| GT200000189A (en) | 2002-04-24 |
| TR200003193A3 (en) | 2001-06-21 |
| ATE270703T1 (en) | 2004-07-15 |
| AU1246601A (en) | 2001-05-14 |
| EP1096002B1 (en) | 2004-07-07 |
| DE60011978D1 (en) | 2004-08-12 |
| US20030129109A1 (en) | 2003-07-10 |
| EG22312A (en) | 2002-12-31 |
| US20060032789A1 (en) | 2006-02-16 |
| EA002795B1 (en) | 2002-10-31 |
| CO5200801A1 (en) | 2002-09-27 |
| EA200001012A3 (en) | 2001-12-24 |
| BR0005211A (en) | 2001-06-19 |
| US7297250B2 (en) | 2007-11-20 |
| CA2324557A1 (en) | 2001-05-01 |
| MXPA02004289A (en) | 2003-01-28 |
| TR200003193A2 (en) | 2001-06-21 |
| AR026308A1 (en) | 2003-02-05 |
| EA200001012A2 (en) | 2001-08-27 |
| CN1399671A (en) | 2003-02-26 |
| CA2324557C (en) | 2010-08-17 |
| EP1096002A3 (en) | 2002-05-29 |
| WO2001032807A1 (en) | 2001-05-10 |
| IL149410A0 (en) | 2002-11-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2324557C (en) | Method of and apparatus for processing heavy hydrocarbon feeds | |
| US6274003B1 (en) | Apparatus for upgrading hydrocarbon feeds containing sulfur, metals, and asphaltenes | |
| US7381320B2 (en) | Heavy oil and bitumen upgrading | |
| RU2661875C2 (en) | Increased production of fuels by integration of vacuum distillation with solvent deasphalting | |
| US8110090B2 (en) | Deasphalting of gas oil from slurry hydrocracking | |
| US5192421A (en) | Integrated process for whole crude deasphalting and asphaltene upgrading | |
| CN107109250B (en) | Integrated hydroprocessing and slurry hydrocracking process | |
| RU2634721C2 (en) | Combining deaspaltization stages and hydraulic processing of resin and slow coking in one process | |
| US20100122934A1 (en) | Integrated Solvent Deasphalting and Slurry Hydrocracking Process | |
| US20080149534A1 (en) | Method of conversion of residues comprising 2 deasphaltings in series | |
| US20190078029A1 (en) | Reactor staging for slurry hydroconversion of polycyclic aromatic hydrocarbon feeds | |
| EP0984054B1 (en) | Process and apparatus for upgrading hydrocarbon feeds containing sulfur, metals, and asphaltenes | |
| US20080083653A1 (en) | Diluent from heavy oil upgrading | |
| WO2014205169A1 (en) | Sequential slurry hydroconversion of heavy oils | |
| CN110023461A (en) | The flexible hydrotreating of slurry hydrocracking product |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7C 10G 55/00 A, 7C 10G 55/04 B, 7C 10G 51/02 B, 7C 10G 69/00 B, 7C 10G 51/06 B |
|
| 17P | Request for examination filed |
Effective date: 20020920 |
|
| 17Q | First examination report despatched |
Effective date: 20021126 |
|
| AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AXX | Extension fees paid |
Extension state: SI Payment date: 20020920 Extension state: MK Payment date: 20020920 Extension state: RO Payment date: 20020920 Extension state: LT Payment date: 20020920 Extension state: AL Payment date: 20020920 Extension state: LV Payment date: 20020920 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20040707 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040707 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REF | Corresponds to: |
Ref document number: 60011978 Country of ref document: DE Date of ref document: 20040812 Kind code of ref document: P |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041007 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041007 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041007 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041008 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041018 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041101 |
|
| LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040707 |
|
| NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20050408 |
|
| EN | Fr: translation not filed | ||
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041207 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20101027 Year of fee payment: 11 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20121031 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 |