EP0998591B1 - Linepipe and structural steel produced by high speed continuous casting - Google Patents
Linepipe and structural steel produced by high speed continuous casting Download PDFInfo
- Publication number
- EP0998591B1 EP0998591B1 EP98921241A EP98921241A EP0998591B1 EP 0998591 B1 EP0998591 B1 EP 0998591B1 EP 98921241 A EP98921241 A EP 98921241A EP 98921241 A EP98921241 A EP 98921241A EP 0998591 B1 EP0998591 B1 EP 0998591B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- linepipe
- steels
- manganese
- cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000746 Structural steel Inorganic materials 0.000 title description 3
- 238000009749 continuous casting Methods 0.000 title 1
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 85
- 239000010959 steel Substances 0.000 claims abstract description 85
- 239000011572 manganese Substances 0.000 claims abstract description 37
- 238000005336 cracking Methods 0.000 claims abstract description 35
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 30
- 238000005266 casting Methods 0.000 claims abstract description 7
- 238000005204 segregation Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract 3
- 239000000203 mixture Substances 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 7
- 229910000859 α-Fe Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 230000015556 catabolic process Effects 0.000 claims description 5
- 238000006731 degradation reaction Methods 0.000 claims description 5
- 239000008186 active pharmaceutical agent Substances 0.000 claims 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 abstract description 17
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 229910000617 Mangalloy Inorganic materials 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 19
- 239000010955 niobium Substances 0.000 description 9
- 239000011575 calcium Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 6
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- QFGIVKNKFPCKAW-UHFFFAOYSA-N [Mn].[C] Chemical compound [Mn].[C] QFGIVKNKFPCKAW-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- RSSSMDWSXNHTKC-UHFFFAOYSA-N sulfinylcalcium Chemical compound O=S=[Ca] RSSSMDWSXNHTKC-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
Definitions
- the present invention is directed to a high-strength linepipe and structural steel that is resistant to hydrogen-induced cracking (HIC) in sour service.
- HIC hydrogen-induced cracking
- High strength linepipe for this sour service has heretofore been produced from low carbon-manganese steel, and strengthened by the addition of niobium and/or vanadium.
- Manganese levels for such steels have typically been in the range of 0.90 to 1.20 weight percent, when it is expected that the linepipe will be used in the most severe service conditions.
- manganese levels in the aforesaid range of 0.90-1.20 weight percent will be referred to as being "relatively high" manganese contents for low carbon-manganese steels.
- JP2267241 discloses a steel for line pipe applications having a high corrosion resistance.
- steels within the above ranges demonstrate excellent impact strengths (high energy impact valves) and Chapry V-notch transition temperatures.
- FIG. 1 is a graph depicting the results of a NACE TM0284-96 stepwise cracking test, plotting the weight percent of manganese against the yield strengths of the samples.
- a composition that yields a high-strength, high toughness steel, without relying on the use of a relatively high manganese content to provide the relatively high strength characteristics is provided.
- the manganese content in the steels according to the present invention can be very low, such as 0.15 weight percent or less, thereby virtually eliminating manganese segregation and the tendency of the steel to form manganese sulfide. Further, the low manganese-to-sulfur ratio present in the steels, which is preferably approximately 3,000:1 to 5,000:1, minimizes the tendency of any MnS that may be formed, to form into stringers.
- the steel of the present invention relies on the addition of niobium to provide the high strength characteristics, and, optionally, any one or more of vanadium, molybdenum, chromium, boron, copper and nickel, used in combination with the niobium. These elements combine to lower the austenite-to-ferrite ( ⁇ ) transformation temperature and to prevent the formation of coarse ferrite grains at the very low manganese and carbon levels employed in the steel. The benefits derived from these strengthening mechanisms are enhanced or maximized by water cooling the steel after the strip or plate rolling.
- the steel can be more consistently produced due to the reliance on niobium, and optionally also vanadium, precipitation hardening, and on control of the austenite to ferrite transformation temperature.
- the normally- experienced variations in mechanical properties in coiled product resulting from coiling temperature variations and head-to-tail (leading end to trailing end) temperature variations are minimized or eliminated by the strengthening elements (principally niobium) and mechanisms used in producing this steel.
- the steel of the present invention can be treated with calcium or rare earth metals for sulfide inclusion shape control, as in conventional practice.
- the use of titanium reduces manganese sulfide plasticity, especially at low manganese and nitrogen contents, and when the manganese-to-sulfur ratio is very low, which are both features of the steel of the present invention.
- the very-low carbon and manganese contents in the steel maximize delta (6) ferrite formation during solidification and facilitate solute redistribution. Tolerance for phosphorous impurity is increased and there is a virtual absence of pearlite banding.
- the steels can be rolled on plate mills or strip mills using either direct hot charging or conventional reheating practices.
- the manganse : sulphur ratio is between 3,000 : 1 and 5,000 : 1.
- Steels having compositions within the ranges set forth above can be cast at high castings speeds, in the range of 0.8 to 3.0 m/min, that are desired for production efficiency, by conventional (200 to 300 mm thick) or thin (50-90 mm thick) slab caster.
- the steels cast at such high speeds exhibit low segregation intensity, and, as noted previously, high strength, high toughness, and resistance to degradation or failure in sour service applications.
- the steels of the present invention have the notable advantage of providing excellent resistance to stepwise cracking and sulfide stress cracking even when calcium and/or copper are not employed in the steel. Further, the high strength properties can be obtained in the absence of molybdenum. When molybdenum is present within the stated range, the high strength and excellent resistance to stepwise cracking and sulfide stress corrosion cracking can be obtained in the absence of calcium.
- Table V presents the results of the Charpy v-notch impact tests conducted on triplicate samples prepared from steel heats A-D, with the Charpy test samples being 2/3 of the standard specimen size. As can be seen in the table, the fracture energies are very high, even at sub-zero (°F.) temperatures, with Steel Heat B demonstrating remarkable impact resistance down to -80°F.
- Table VI below presents data from drop weight tear testing, as well as the 50% and 85% values for brittle/ductile fracture transition temperatures as demonstrated in the Charpy V-notch impact tests and in the drop weight tear tests (DWTT). Again, the steels demonstrate excellent notch toughness characteristics with the pipe made from Heat B demonstrating truly out standing results.
- yield strengths and ultimate tensile strengths of tensile specimens from heats A-D, as well as from heats E-G are reported in Table VII below.
- the desired range for yield strength is about 248-552 MPa (36-80 ksi)
- the desired range of ultimate tensile strengths is 310-621 MPa (45-90 ksi). These would be considered as high-strength steels, as the term "high strength" is used herein.
- Resistance to sulfide stress cracking is normally assessed, in accordance with the level of skill in the art, by the test methods set forth in NACE Standard TM0177.
- tests were conducted on heats E-G in accordance with this NACE standard, modified to include a test period of 96 hours at 80% percent of the specified minimum yield strength (SMYS). No cracking was evidenced in these tests, indicating an acceptable level of resistance to sulfide stress cracking. It is notable that these heats tested for resistance to sulfide stress cracking had manganese contents toward the upper end of the range of manganese content desired for the present invention. It is expected that steels having lower manganese contents, in the more preferred range set forth in Table III above, will exhibit the same or even an improved level of resistance to sulfide stress cracking.
- the examples of the invention are those having a manganese content in the range of about 0.10-0.60 wt.% and having a yield strength in the range of about 379-483 MPa (55-70 ksi). Steels meeting those criteria fall within the shaded region of FIG. 1. Because steels having both 0.60 wt.% manganese and a yield strength of 483 MPa (70 ksi) would fall close to the crack/no crack boundary 100, a more conservative set of criteria would include a decreasing maxinun yield strength from 483 MPa (70 ksi) to 469 MPa (68 ksi) maximum as the manganese content increases from 0.50 wt.% to 0.60 wt.t.
- FIG. 1 results presented in FIG. 1 are based on tests conducted using the Solution A (pH 5.2) standard test solution defined in NACE TM 0284-96. Additional tests were conducted in accordance with the standard, but using the lower pH, more severely corrosive, Solution B defined in the standard. Samples from heats A-D, as well as four other samples falling within the steel composition of the present invention, were tested using Solution B in the NACE test, and all samples passed the test, demonstrating a complete absence of stepwise cracking, even under these more severely corrosive conditions.
- Solution A pH 5.2
- API American Petroleum Institute
- tubular products such as line pipe
- API Specification 5LX is directed to high-strength welded or seamless steel line pipe for oil or gas transmission, a use for which the steel of the present invention is especially well suited.
- API 5LX is hereby incorporated by reference in its entirety. Included in API 5LX are several material grades, such as X46, X52, X56, X60, X65 and X70. The numbers following the "X" in these designations are the minimum yield strengths in MPa (ksi) for materials of the respective grades. Each material grade further has certain conipositional requirements and tensile strength requirements.
- the API 5LX material grades are specified when alloy steel pipe is to be used in gas or sour gas service.
- Steels of the present invention having compositions falling within the ranges set forth in Table I meet all compositional limitations set forth in API 5LX, and, as can be seen by the yield strength results set forth in Table VII, steels can be produced to meet the requirements of all grades up through the X70 grade. Accordingly, the steels made in accordance with the present invention can be used as line pipe virtually across the entire spectrum of the API 5LX linepipe specification. Further, with the demonstrated increased resistance to hydrogen-induced cracking over steels currently supplied under the 5LX specification, the steels of the present invention will be especially well suited for use as 5LX linepipe (e.g. X52) in instances where, in addition to the material grade specification, requirements for resistance to hydrogen-induced cracking are specified or imposed.
- 5LX linepipe e.g. X52
- the low carbon/low manganese steels of the present invention possess the desirable properties for use in linepipe applications, especially in sour gas service. Because of its high strength and toughness, the steel is also well suited to being used as structural steel.
- the particular embodiments and compositions discussed above are for illustrative purposes, and the invention is not intended to be limited to specific examples. Accordingly, reference should be made to the appended claims to determine the scope of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
- The present invention is directed to a high-strength linepipe and structural steel that is resistant to hydrogen-induced cracking (HIC) in sour service.
- A continuing need exists to develop steels having high strength which can provide extended service life as linepipe in sour gas (H2S) service. High strength linepipe for this sour service has heretofore been produced from low carbon-manganese steel, and strengthened by the addition of niobium and/or vanadium. Manganese levels for such steels have typically been in the range of 0.90 to 1.20 weight percent, when it is expected that the linepipe will be used in the most severe service conditions. For the purposes of this disclosure, manganese levels in the aforesaid range of 0.90-1.20 weight percent will be referred to as being "relatively high" manganese contents for low carbon-manganese steels.
- While providing resistance to cracking due to exposure to sour gas, these steels are prone to manganese sulfide stringer formation, due to the relatively high level of manganese employed in the steel. This is the case even where the steel has very low sulfur levels (<0.003 wt. percent), because the Mn:S ratio is very high (>40,000:1). In order to combat this tendency to form manganese sulfide stringers, the inclusion of calcium, which causes preferential formation of globular or angular calcium oxysulfide inclusions, has become the standard practice. Rare earth metals have also shown the ability to reduce the tendency of the steel to form manganese sulfide stringers. However, both calcium and rare earth additions are expensive and can give rise to processing difficulties such as generation of excessive fumes, nozzle blocking or poor cleanliness ratings.
- In casting linepipe steel, from a processing standpoint, steels having manganese contents above 1.0 weight percent are also prone to centerline segregation when casting speeds are high. Further, centerline segregation can occur when proper superheats are not maintained and/or when machine maintenance and water cooling practices are poor.
- JP2267241 discloses a steel for line pipe applications having a high corrosion resistance.
- It is therefore a principal object of the present invention to provide a high strength steel which is suitable for extended use in wet, sour gas service.
- It is a further principal object of the present invention to provide a high strength steel having a very low manganese content, yet which is resistant to sour gas (H2S) degradation.
- It is an additional important object of the present invention to provide a high strength steel composition, suitable for sour gas service, which can be continuously cast at the high, normally desired, speeds employed in casting non-linepipe steel compositions.
- It is a further important object of the present invention to provide a high strength steel composition that avoids the need to treat the alloy with calcium or rare earth metals in order to reduce the formation of manganese sulfide stringers.
- It is an additional object of the present invention to provide a high strength, high toughness steel that is remarkably resistant to stepwise cracking and to sulfide stress cracking.
- It is a further object of the present invention to provide a high-strength steel that has a very low carbon and manganese content as compared to high strength steels currently used in sour gas service.
- The above and other important objects of the present invention are accomplished by providing a steel composition that produces a high strength, high toughness steel that is resistant to attack in even the most severe sour gas or wet sour gas service. Notably, it has been found that a steel that does not rely on a high manganese content to provide the high strength levels, but rather relies on niobium and, optionally, vanadium and/or other alloying elements to provide the necessary mechanisms to achieve high strength in the steel, will avoid may of the aforenoted problems in sour-gas service experienced with the previously used high strength steels having higher manganese contents.
- Steel compositions falling within the ranges set forth below have been demonstrated to provide high strength and toughness characteristics, and have demonstrated an ability to withstand stepwise cracking and sulfide stress cracking, such that they will be highly suitable for use in severe sour gas service, and particularly as linepipe used in sour gas service.
balance iron and impurities, the steel having a microstructure substantially free of coarse grained ferrite, a yield strength in the range 36 to 80 ksi and being resistant to H2S degradation.TABLE I Element Range (wt.-%) C 0.015-0.080 Mn 0.10-0.55 Nb 0.005-0.15 Ti 0.005-0.030 N 0.001-0.01 and optionally Cr ≤ 0.50 Ni ≤ 0.95 Mo ≤0.60 B ≤0.0025 S ≤0.008 Ca ≤0.005 P ≤0.210 Si ≤0.025 Cu ≤0.25 Al ≤0.063 V ≤0.007 - In addition, steels within the above ranges demonstrate excellent impact strengths (high energy impact valves) and Chapry V-notch transition temperatures.
- These and other features of the present invention and the attendant advantages will be readily apparent to those having ordinary skill in the art and the invention will be more easily understood from the following detailed description of the preferred embodiments taken in conjunction with the accompanying drawings.
- FIG. 1 is a graph depicting the results of a NACE TM0284-96 stepwise cracking test, plotting the weight percent of manganese against the yield strengths of the samples.
- In a preferred embodiment of the present invention, a composition that yields a high-strength, high toughness steel, without relying on the use of a relatively high manganese content to provide the relatively high strength characteristics, is provided. The manganese content in the steels according to the present invention can be very low, such as 0.15 weight percent or less, thereby virtually eliminating manganese segregation and the tendency of the steel to form manganese sulfide. Further, the low manganese-to-sulfur ratio present in the steels, which is preferably approximately 3,000:1 to 5,000:1, minimizes the tendency of any MnS that may be formed, to form into stringers.
- The steel of the present invention relies on the addition of niobium to provide the high strength characteristics, and, optionally, any one or more of vanadium, molybdenum, chromium, boron, copper and nickel, used in combination with the niobium. These elements combine to lower the austenite-to-ferrite (γ→α) transformation temperature and to prevent the formation of coarse ferrite grains at the very low manganese and carbon levels employed in the steel. The benefits derived from these strengthening mechanisms are enhanced or maximized by water cooling the steel after the strip or plate rolling.
- The steel can be more consistently produced due to the reliance on niobium, and optionally also vanadium, precipitation hardening, and on control of the austenite to ferrite transformation temperature. The normally- experienced variations in mechanical properties in coiled product resulting from coiling temperature variations and head-to-tail (leading end to trailing end) temperature variations are minimized or eliminated by the strengthening elements (principally niobium) and mechanisms used in producing this steel.
- The steel of the present invention can be treated with calcium or rare earth metals for sulfide inclusion shape control, as in conventional practice. However, the use of titanium reduces manganese sulfide plasticity, especially at low manganese and nitrogen contents, and when the manganese-to-sulfur ratio is very low, which are both features of the steel of the present invention.
- The very-low carbon and manganese contents in the steel maximize delta (6) ferrite formation during solidification and facilitate solute redistribution. Tolerance for phosphorous impurity is increased and there is a virtual absence of pearlite banding. The steels can be rolled on plate mills or strip mills using either direct hot charging or conventional reheating practices.
- Steels having the above characteristics can be obtained within the following preferred compositional ranges.
balance iron and impurities.TABLE II Element Range (wt. %) C 0.015-0.050 Mn 0.10-0.55 Nb (Cb) 0.03-0.09 Ti 0.015-0.025 N 0.001-0.045 Mo ≤0.10 B ≤0.00025 S ≤0.003 Ca ≤0.0025 P ≤0.008 - Preferably the manganse : sulphur ratio is between 3,000 : 1 and 5,000 : 1.
- Steels having compositions within the ranges set forth above can be cast at high castings speeds, in the range of 0.8 to 3.0 m/min, that are desired for production efficiency, by conventional (200 to 300 mm thick) or thin (50-90 mm thick) slab caster. The steels cast at such high speeds exhibit low segregation intensity, and, as noted previously, high strength, high toughness, and resistance to degradation or failure in sour service applications.
- In addition to the aforenoted advantages in processing, the steels of the present invention have the notable advantage of providing excellent resistance to stepwise cracking and sulfide stress cracking even when calcium and/or copper are not employed in the steel. Further, the high strength properties can be obtained in the absence of molybdenum. When molybdenum is present within the stated range, the high strength and excellent resistance to stepwise cracking and sulfide stress corrosion cracking can be obtained in the absence of calcium.
- In order to demonstrate the suitability of the steels of the present invention for use as linepipe in sour service, as well as to demonstrate the high strength and high toughness characteristics of the steels, several steels falling within the compositional ranges set forth in Table I above were subjected to tensile tests, impact tests, stepwise cracking (hydrogen-induced cracking or HIC) tests, and sulfide stress cracking tests. In particular, samples from four heats, denoted in Table IV below as A-D, were subjected to tensile testing, Charpy V-notch impact tests, drop weight tear tests and stepwise cracking tests. Samples from other heats, designated in Table IV below as E-G, were tested for resistance to sulfide stress cracking in accordance with the National Association of Corrosion Engineers (NACE) Standard TM0177. Samples from all of these heats, plus dozens of others having compositions falling within the compositional ranges of Tables II and III, were tested for resistance to hydrogen-induced cracking, or stepwise cracking, in accordance with NACE Standard TM0284-96. The results of those tests are discussed below, and with respect to FIG. 1.
- Table V presents the results of the Charpy v-notch impact tests conducted on triplicate samples prepared from steel heats A-D, with the Charpy test samples being 2/3 of the standard specimen size. As can be seen in the table, the fracture energies are very high, even at sub-zero (°F.) temperatures, with Steel Heat B demonstrating remarkable impact resistance down to -80°F.
TABLE V CHARPY V-notch Energy Size ½ Energy Average (ft-lbs) Shear Arts Average (%) 22.2°C (72°F) 0°C (32°F) -17.7°C (0°F) -28.8°C (-20°F) -40°C (-40°F) 51.1°C (-60°F) -62.2°C (-80°F) 22.2°C (72°F) 0°C (32°F) -17.7°C (0°F) -28.8°C (-20°F) -40°C (-40°F) -51.1°C (-60°F) -62.2°C (-80°F) Sted A 158 128 142 101 108 76 100 100 100 84 86 67 Steel B 182 181 184 184 181 177 100 100 -100 100 100 100 Steel C 161 144 130 118 92 9 - 100 100 100 100 76 8 Steel D 151 133 129 130 69 67 100 100 100 92 46 40 - Table VI below presents data from drop weight tear testing, as well as the 50% and 85% values for brittle/ductile fracture transition temperatures as demonstrated in the Charpy V-notch impact tests and in the drop weight tear tests (DWTT). Again, the steels demonstrate excellent notch toughness characteristics with the pipe made from Heat B demonstrating truly out standing results.
- The yield strengths and ultimate tensile strengths of tensile specimens from heats A-D, as well as from heats E-G, are reported in Table VII below. In general, for the linepipe applications to which this steel is directed, the desired range for yield strength is about 248-552 MPa (36-80 ksi), and the desired range of ultimate tensile strengths is 310-621 MPa (45-90 ksi). These would be considered as high-strength steels, as the term "high strength" is used herein. Since the higher strength steels can be more susceptible to hydrogen-induced cracking, a more preferred range of yield strength is about 248-483 MPa (36-70.ksi), and a more preferred range of ultimate tensile strengths is 310-517 . MPa (45-75 ksi). As can be seen, most of steel A-G fall within the preferred range.
TABLE-VII STEEL Yield Strength MPa(ksi) Ultimate_Tensile Strength MPa (ksi), A 455(66) 503 (73.0) B 455 (66) 493(71.5) C 469 (68) 500 (72.5) D 545 (79) 590 (85.5) E 452 (65.5) 490 (71.0) F 459 (66.5) 500 (72.5) G 445(64.5) 493(71.5) - Resistance to sulfide stress cracking is normally assessed, in accordance with the level of skill in the art, by the test methods set forth in NACE Standard TM0177. In the development of the present invention, tests were conducted on heats E-G in accordance with this NACE standard, modified to include a test period of 96 hours at 80% percent of the specified minimum yield strength (SMYS). No cracking was evidenced in these tests, indicating an acceptable level of resistance to sulfide stress cracking. It is notable that these heats tested for resistance to sulfide stress cracking had manganese contents toward the upper end of the range of manganese content desired for the present invention. It is expected that steels having lower manganese contents, in the more preferred range set forth in Table III above, will exhibit the same or even an improved level of resistance to sulfide stress cracking.
- Samples from the above heats, as well as numerous other samples both within and outside of the compositional ranges set forth in Table I above were tested for resistance to hydrogen-induced cracking, or stepwise cracking, in accordance with NACE Standard TM0284-96, "Standard Test Method--Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking". Figure 1 presents, in graphical form, a summary of the results of those tests, plotting the manganese content of the steels against their yield strength in MPa (ksi). It can be seen from that graph that steels having higher manganese contents and steels having yield strengths approaching and exceeding 483 MPa (70 ksi) are susceptible to stepwise cracking. This figure substantiates that the increased strength resulting from the use of higher levels of manganese comes at a price, namely, the increased susceptibility to stepwise cracking.
- Nearly all of the steel compositions tested under the NACE TM0284-96 standard had a sulfur content of <0.006 wt.%. Accordingly, it was possible to delineate a crack/no crack boundary 100 based on the test results, and specifically based upon the three failed samples having lower manganese contents and higher yield strengths and those having higher manganese contents with lower yield strengths.
- The examples of the invention are those having a manganese content in the range of about 0.10-0.60 wt.% and having a yield strength in the range of about 379-483 MPa (55-70 ksi). Steels meeting those criteria fall within the shaded region of FIG. 1. Because steels having both 0.60 wt.% manganese and a yield strength of 483 MPa (70 ksi) would fall close to the crack/no crack boundary 100, a more conservative set of criteria would include a decreasing maxinun yield strength from 483 MPa (70 ksi) to 469 MPa (68 ksi) maximum as the manganese content increases from 0.50 wt.% to 0.60 wt.t.
- It is to be noted that the results presented in FIG. 1 are based on tests conducted using the Solution A (pH 5.2) standard test solution defined in NACE TM 0284-96. Additional tests were conducted in accordance with the standard, but using the lower pH, more severely corrosive, Solution B defined in the standard. Samples from heats A-D, as well as four other samples falling within the steel composition of the present invention, were tested using Solution B in the NACE test, and all samples passed the test, demonstrating a complete absence of stepwise cracking, even under these more severely corrosive conditions.
- The American Petroleum Institute (API) has promulgated specifications for tubular products, such as line pipe, that are to be used for oil and gas transmission, and that are to be used in other oil and gas service. In particular, API Specification 5LX is directed to high-strength welded or seamless steel line pipe for oil or gas transmission, a use for which the steel of the present invention is especially well suited.
- API 5LX is hereby incorporated by reference in its entirety. Included in API 5LX are several material grades, such as X46, X52, X56, X60, X65 and X70. The numbers following the "X" in these designations are the minimum yield strengths in MPa (ksi) for materials of the respective grades. Each material grade further has certain conipositional requirements and tensile strength requirements.
- The API 5LX material grades are specified when alloy steel pipe is to be used in gas or sour gas service. Steels of the present invention having compositions falling within the ranges set forth in Table I meet all compositional limitations set forth in API 5LX, and, as can be seen by the yield strength results set forth in Table VII, steels can be produced to meet the requirements of all grades up through the X70 grade. Accordingly, the steels made in accordance with the present invention can be used as line pipe virtually across the entire spectrum of the API 5LX linepipe specification. Further, with the demonstrated increased resistance to hydrogen-induced cracking over steels currently supplied under the 5LX specification, the steels of the present invention will be especially well suited for use as 5LX linepipe (e.g. X52) in instances where, in addition to the material grade specification, requirements for resistance to hydrogen-induced cracking are specified or imposed.
- It can thus be seen that the low carbon/low manganese steels of the present invention possess the desirable properties for use in linepipe applications, especially in sour gas service. Because of its high strength and toughness, the steel is also well suited to being used as structural steel. However, the particular embodiments and compositions discussed above are for illustrative purposes, and the invention is not intended to be limited to specific examples. Accordingly, reference should be made to the appended claims to determine the scope of the invention.
Claims (6)
- A high strength steel comprising:
balance iron and impurities, the steel having a microstructure substantially free of coarse grained ferrite, a yield strength in the range 36 to 80 ksi and being resistant to H2S degradation.Element Range (wt.%) C 0.015-0.080 Mn 0.10-0.55 Nb 0.005-0.15 Ti 0.005-0.030 N 0.001-0.01 and optionally Cr ≤ 0.50 Ni ≤ 0.95 Mo ≤0.60 B ≤0.0025 s ≤0.008 Ca ≤0.005 Si ≤ 0.210 P ≤ 0.025 Cu ≤0.25 Al ≤ 0.063 V ≤0.007 - A high strength steel according to claim 1 and comprising:
balance iron and impurities, the steel having a microstructure substantially free of coarse grained ferrite, a yield strength in the range 36 to 80 ksi and being resistant to H2S degradation.Element Range (wt.%) C 0.015-0.050 Mn 0.10-0.55 Nb 0.03-0.09 Ti 0.015-0.025 N 0.001-0.005 Mo ≤0.10 B ≤0.0025 S ≤0.003 Ca ≤0.OO25 P ≤0.008 - A method for forming a steel, the method comprising continuously casting a steel having a composition according to any preceding claim at a casting rate between 0.8 and 3.0 m/min, whereby the steel exhibits low manganese segregation intensity and resistance to stepwise cracking in an H2S environment.
- A linepipe formed from a high strength steel comprising:
balance iron and impurities.Element Range (wt. %) C 0.015-0.080 Mn 0.10-1.0 Nb 0.005-0.15 Ti 0.005-0.030 N 0.001-0.01 and optionally Cr ≤0.50 Ni ≤0.95 Mo ≤0.60 B ≤0.0025 S ≤0.008 Ca ≤0.005 Si ≤0.210 P ≤0.025 Cu ≤0.25 Al ≤0.063 V ≤0.007 - A linepipe according to claim 4, in which the steel comprises:
balance iron and impurities.Element Ranee (wt. %) C 0.015-0.050 Mn 0.10-0.55 Nb 0.03-0.09 Ti 0.015-0.025 Mo ≤0.10 B ≤0.0009 S ≤0.003 N 0.001-0.005 Ca ≤0.0025 P ≤0.008 - A linepipe according to claim 4 or claim 5, in which the steel has a yield strength of 36 to 80ksi and the linepipe meets the criteria of API specification 5LX.
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US4694197P | 1997-05-19 | 1997-05-19 | |
| US46941P | 1997-05-19 | ||
| US4869497P | 1997-06-06 | 1997-06-06 | |
| US48694P | 1997-06-06 | ||
| US879331 | 1997-06-20 | ||
| US08/879,331 US5993570A (en) | 1997-06-20 | 1997-06-20 | Linepipe and structural steel produced by high speed continuous casting |
| PCT/US1998/010034 WO1998053110A1 (en) | 1997-05-19 | 1998-05-15 | Linepipe and structural steel produced by high speed continuous casting |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0998591A1 EP0998591A1 (en) | 2000-05-10 |
| EP0998591B1 true EP0998591B1 (en) | 2006-03-29 |
Family
ID=27367024
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP98921241A Expired - Lifetime EP0998591B1 (en) | 1997-05-19 | 1998-05-15 | Linepipe and structural steel produced by high speed continuous casting |
Country Status (8)
| Country | Link |
|---|---|
| EP (1) | EP0998591B1 (en) |
| JP (1) | JP2002515093A (en) |
| KR (1) | KR100540686B1 (en) |
| AT (1) | ATE321897T1 (en) |
| BR (1) | BR9809852A (en) |
| CA (1) | CA2289084C (en) |
| DE (1) | DE69834031T2 (en) |
| WO (1) | WO1998053110A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220299425A1 (en) * | 2021-03-19 | 2022-09-22 | Saudi Arabian Oil Company | Development of Control Samples to Enhance the Accuracy of HIC Testing |
| US11788951B2 (en) | 2021-03-19 | 2023-10-17 | Saudi Arabian Oil Company | Testing method to evaluate cold forming effects on carbon steel susceptibility to hydrogen induced cracking (HIC) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100584748B1 (en) * | 2001-12-22 | 2006-05-30 | 주식회사 포스코 | Cast steel for line pipes with excellent hydrogen organic crack resistance |
| JP4613579B2 (en) * | 2004-10-25 | 2011-01-19 | Jfeスチール株式会社 | Steel casting method |
| WO2006086853A1 (en) | 2005-02-21 | 2006-08-24 | Bluescope Steel Limited | Linepipe steel |
| AU2006214807B2 (en) * | 2005-02-21 | 2011-11-03 | Bluescope Steel Limited | Linepipe steel |
| US20080226396A1 (en) * | 2007-03-15 | 2008-09-18 | Tubos De Acero De Mexico S.A. | Seamless steel tube for use as a steel catenary riser in the touch down zone |
| KR101174970B1 (en) | 2010-02-26 | 2012-08-23 | 현대제철 주식회사 | High strength linepipe steel and method of manufacturing the steel |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5980752A (en) * | 1982-10-28 | 1984-05-10 | Nippon Kokan Kk <Nkk> | Steel with excellent resistance to hydrogen cracking and sulfide stress corrosion cracking in welded areas in a hydrogen sulfide environment |
| JP2655911B2 (en) * | 1989-04-07 | 1997-09-24 | 川崎製鉄株式会社 | Linepipe steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance |
| JP2870830B2 (en) * | 1989-07-31 | 1999-03-17 | 日本鋼管株式会社 | Method for producing high tensile strength and high toughness steel sheet excellent in HIC resistance |
| JPH0681034A (en) * | 1992-08-31 | 1994-03-22 | Sumitomo Metal Ind Ltd | Method for producing hot rolled steel strip for steel pipes having excellent HIC resistance |
| JPH06220577A (en) * | 1993-01-26 | 1994-08-09 | Kawasaki Steel Corp | High tensile steel excellent in HIC resistance and method for producing the same |
| JP2770718B2 (en) * | 1993-09-03 | 1998-07-02 | 住友金属工業株式会社 | High strength hot rolled steel strip excellent in HIC resistance and method for producing the same |
-
1998
- 1998-05-15 BR BR9809852-7A patent/BR9809852A/en not_active IP Right Cessation
- 1998-05-15 CA CA002289084A patent/CA2289084C/en not_active Expired - Fee Related
- 1998-05-15 WO PCT/US1998/010034 patent/WO1998053110A1/en not_active Ceased
- 1998-05-15 EP EP98921241A patent/EP0998591B1/en not_active Expired - Lifetime
- 1998-05-15 AT AT98921241T patent/ATE321897T1/en active
- 1998-05-15 KR KR1019997010184A patent/KR100540686B1/en not_active Expired - Fee Related
- 1998-05-15 DE DE69834031T patent/DE69834031T2/en not_active Expired - Lifetime
- 1998-05-15 JP JP55047298A patent/JP2002515093A/en active Pending
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220299425A1 (en) * | 2021-03-19 | 2022-09-22 | Saudi Arabian Oil Company | Development of Control Samples to Enhance the Accuracy of HIC Testing |
| US11656169B2 (en) * | 2021-03-19 | 2023-05-23 | Saudi Arabian Oil Company | Development of control samples to enhance the accuracy of HIC testing |
| US20230251181A1 (en) * | 2021-03-19 | 2023-08-10 | Saudi Arabian Oil Company | Development of Control Samples to Enhance the Accuracy of HIC Testing |
| US11788951B2 (en) | 2021-03-19 | 2023-10-17 | Saudi Arabian Oil Company | Testing method to evaluate cold forming effects on carbon steel susceptibility to hydrogen induced cracking (HIC) |
| US12072278B2 (en) * | 2021-03-19 | 2024-08-27 | Saudi Arabian Oil Company | Development of control samples to enhance the accuracy of HIC testing |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2289084C (en) | 2007-03-13 |
| CA2289084A1 (en) | 1998-11-26 |
| WO1998053110A1 (en) | 1998-11-26 |
| DE69834031T2 (en) | 2007-01-11 |
| DE69834031D1 (en) | 2006-05-18 |
| KR100540686B1 (en) | 2006-01-10 |
| KR20010012235A (en) | 2001-02-15 |
| ATE321897T1 (en) | 2006-04-15 |
| JP2002515093A (en) | 2002-05-21 |
| EP0998591A1 (en) | 2000-05-10 |
| BR9809852A (en) | 2000-06-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5993570A (en) | Linepipe and structural steel produced by high speed continuous casting | |
| CA2280923C (en) | High-tensile-strength steel and method of manufacturing the same | |
| US11628512B2 (en) | Clad steel plate and method of producing the same | |
| JP6198937B2 (en) | HT550 steel sheet with ultra-high toughness and excellent weldability and method for producing the same | |
| EP1435399B1 (en) | A welding method for improving resistance to cold cracking | |
| EP3235921B1 (en) | Good fatigue- and crack growth-resistant steel plate and manufacturing method therefor | |
| WO2014038200A1 (en) | Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof | |
| KR20140117547A (en) | Base metal for high-toughness clad steel plate giving weld with excellent toughness, and process for producing said clad steel plate | |
| JPH10503809A (en) | Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability | |
| CN117646147A (en) | CO-resistant with high crack-arrest toughness 2 Corrosion pipeline steel plate and production method thereof | |
| CA3094517C (en) | A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof | |
| EP0998591B1 (en) | Linepipe and structural steel produced by high speed continuous casting | |
| JP4276574B2 (en) | Thick steel plate with excellent toughness of heat affected zone | |
| JP2647302B2 (en) | Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking | |
| CN112760567B (en) | A kind of steel plate for high-speed train bogies with excellent toughness and manufacturing method thereof | |
| JP3620319B2 (en) | Martensitic stainless steel with excellent corrosion resistance and weldability | |
| US3574002A (en) | Stainless steel having improved corrosion and fatigue resistance | |
| JP3579307B2 (en) | 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging | |
| JPH09272956A (en) | Precipitation strengthened high alloy steel for seawater resistance and method for producing the same | |
| JPH09194990A (en) | High-strength steel with excellent toughness | |
| JP2002018593A (en) | Welding material and metal for low alloy heat resistant steel | |
| JP2705946B2 (en) | Manufacturing method of high strength steel sheet with excellent SSC resistance | |
| JP3823628B2 (en) | Method for producing high-strength steel of 60 kg with excellent weldability and toughness after strain aging | |
| JPH08269566A (en) | Method for producing high-strength, high-toughness UOE steel pipe with excellent SR characteristics | |
| JP3975674B2 (en) | Low alloy steel manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19991217 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| 17Q | First examination report despatched |
Effective date: 20010419 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060329 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060329 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060515 |
|
| REF | Corresponds to: |
Ref document number: 69834031 Country of ref document: DE Date of ref document: 20060518 Kind code of ref document: P |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060629 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060629 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060629 |
|
| RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: MICROALLOYING INTERNATIONAL LP |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060710 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060829 |
|
| NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: MICROALLOYING INTERNATIONAL LP Effective date: 20060705 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| ET | Fr: translation filed | ||
| NLS | Nl: assignments of ep-patents |
Owner name: MICROALLOYING INTERNATIONAL LP Effective date: 20061101 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060629 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20070102 |
|
| BECA | Be: change of holder's address |
Owner name: *MICROALLOYING INTERNATIONAL LP10175 HARWIN, SUITE Effective date: 20060329 |
|
| BECH | Be: change of holder |
Owner name: *MICROALLOYING INTERNATIONAL LP Effective date: 20060329 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060630 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060329 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060329 |
|
| BECA | Be: change of holder's address |
Owner name: CBMM TECHNOLOGY SUISSE S.A. Effective date: 20121129 Owner name: RUE DE HESSE 16, CH-1204 GENEVE Effective date: 20121129 |
|
| BECH | Be: change of holder |
Owner name: CBMM TECHNOLOGY SUISSE S.A. Effective date: 20121129 |
|
| BECN | Be: change of holder's name |
Owner name: CBMM TECHNOLOGY SUISSE S.A. Effective date: 20121129 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: TD Effective date: 20130401 Ref country code: NL Ref legal event code: SD Effective date: 20130401 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69834031 Country of ref document: DE Representative=s name: PATENTANWAELTE LIPPERT, STACHOW & PARTNER, DE |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 321897 Country of ref document: AT Kind code of ref document: T Owner name: CBMM TECHNOLOGY SUISSE SA, CH Effective date: 20130118 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69834031 Country of ref document: DE Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE Effective date: 20130201 Ref country code: DE Ref legal event code: R082 Ref document number: 69834031 Country of ref document: DE Representative=s name: WUESTHOFF & WUESTHOFF PATENT- UND RECHTSANWAEL, DE Effective date: 20130201 Ref country code: DE Ref legal event code: R082 Ref document number: 69834031 Country of ref document: DE Representative=s name: PATENTANWAELTE LIPPERT, STACHOW & PARTNER, DE Effective date: 20130201 Ref country code: DE Ref legal event code: R081 Ref document number: 69834031 Country of ref document: DE Owner name: CBMM TECHNOLOGY SUISSE SA, CH Free format text: FORMER OWNER: MICROALLOYING INTERNATIONAL LP, HOUSTON, TEX., US Effective date: 20130201 Ref country code: DE Ref legal event code: R081 Ref document number: 69834031 Country of ref document: DE Owner name: CBMM TECHNOLOGY SUISSE SA, CH Free format text: FORMER OWNER: MICROALLOYING INTERNATIONAL LP, HOUSTON, US Effective date: 20130201 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: CBMM TECHNOLOGY SUISSE SA, CH Effective date: 20130724 Ref country code: FR Ref legal event code: RM Effective date: 20130724 Ref country code: FR Ref legal event code: CJ Effective date: 20130724 Ref country code: FR Ref legal event code: CD Owner name: CBMM TECHNOLOGY SUISSE SA, CH Effective date: 20130724 Ref country code: FR Ref legal event code: CA Effective date: 20130724 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69834031 Country of ref document: DE Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 69834031 Country of ref document: DE Representative=s name: WUESTHOFF & WUESTHOFF PATENT- UND RECHTSANWAEL, DE |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20160523 Year of fee payment: 19 Ref country code: LU Payment date: 20160524 Year of fee payment: 19 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160527 Year of fee payment: 19 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160530 Year of fee payment: 19 Ref country code: BE Payment date: 20160523 Year of fee payment: 19 Ref country code: AT Payment date: 20160518 Year of fee payment: 19 Ref country code: IT Payment date: 20160524 Year of fee payment: 19 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69834031 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20170601 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 321897 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170515 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180131 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170601 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170515 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170531 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171201 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170515 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |