EP0991759A1 - Ntn-2 member of tnf ligand family - Google Patents
Ntn-2 member of tnf ligand familyInfo
- Publication number
- EP0991759A1 EP0991759A1 EP98923907A EP98923907A EP0991759A1 EP 0991759 A1 EP0991759 A1 EP 0991759A1 EP 98923907 A EP98923907 A EP 98923907A EP 98923907 A EP98923907 A EP 98923907A EP 0991759 A1 EP0991759 A1 EP 0991759A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- human ntn
- human
- ntn
- polypeptide
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003446 ligand Substances 0.000 title description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 73
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 72
- 229920001184 polypeptide Polymers 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 35
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 34
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 30
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 30
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 210000004027 cell Anatomy 0.000 claims description 29
- 230000014509 gene expression Effects 0.000 claims description 20
- 125000003729 nucleotide group Chemical group 0.000 claims description 17
- 239000002773 nucleotide Substances 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 12
- 241001465754 Metazoa Species 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 108091026890 Coding region Proteins 0.000 claims description 4
- 238000003745 diagnosis Methods 0.000 claims description 4
- 230000002068 genetic effect Effects 0.000 claims description 2
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 claims 2
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 claims 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 2
- 230000004071 biological effect Effects 0.000 claims 2
- 239000003937 drug carrier Substances 0.000 claims 2
- 239000008194 pharmaceutical composition Substances 0.000 claims 2
- 241000202252 Cerberus Species 0.000 claims 1
- 241000238631 Hexapoda Species 0.000 claims 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims 1
- 230000001580 bacterial effect Effects 0.000 claims 1
- 210000004962 mammalian cell Anatomy 0.000 claims 1
- 239000013612 plasmid Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 17
- 239000011230 binding agent Substances 0.000 abstract description 7
- 230000009870 specific binding Effects 0.000 abstract description 5
- 230000027455 binding Effects 0.000 description 35
- 238000009739 binding Methods 0.000 description 35
- 239000003795 chemical substances by application Substances 0.000 description 15
- 239000012634 fragment Substances 0.000 description 15
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 14
- 239000000523 sample Substances 0.000 description 13
- 238000003556 assay Methods 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- 102000003390 tumor necrosis factor Human genes 0.000 description 10
- 108020003175 receptors Proteins 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 239000002299 complementary DNA Substances 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- 150000001413 amino acids Chemical group 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 230000035479 physiological effects, processes and functions Effects 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 108700028369 Alleles Proteins 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 230000000692 anti-sense effect Effects 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 239000013615 primer Substances 0.000 description 5
- 238000000159 protein binding assay Methods 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 4
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PDECQIHABNQRHN-GUBZILKMSA-N Asp-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC(O)=O PDECQIHABNQRHN-GUBZILKMSA-N 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 101710187830 Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 3
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 210000000496 pancreas Anatomy 0.000 description 3
- 239000002831 pharmacologic agent Substances 0.000 description 3
- 210000002826 placenta Anatomy 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- PMQXMXAASGFUDX-SRVKXCTJSA-N Ala-Lys-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)CCCCN PMQXMXAASGFUDX-SRVKXCTJSA-N 0.000 description 2
- WCRQQIPFSXFIRN-LPEHRKFASA-N Asn-Met-Pro Chemical compound CSCC[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)N)N WCRQQIPFSXFIRN-LPEHRKFASA-N 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- SJPMNHCEWPTRBR-BQBZGAKWSA-N Glu-Glu-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O SJPMNHCEWPTRBR-BQBZGAKWSA-N 0.000 description 2
- YQAQQKPWFOBSMU-WDCWCFNPSA-N Glu-Thr-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O YQAQQKPWFOBSMU-WDCWCFNPSA-N 0.000 description 2
- TZOVVRJYUDETQG-RCOVLWMOSA-N Gly-Asp-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CN TZOVVRJYUDETQG-RCOVLWMOSA-N 0.000 description 2
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 2
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 2
- WWAQEUOYCYMGHB-FXQIFTODSA-N Pro-Asn-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H]1CCCN1 WWAQEUOYCYMGHB-FXQIFTODSA-N 0.000 description 2
- BTKUIVBNGBFTTP-WHFBIAKZSA-N Ser-Ala-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)NCC(O)=O BTKUIVBNGBFTTP-WHFBIAKZSA-N 0.000 description 2
- WKLJLEXEENIYQE-SRVKXCTJSA-N Ser-Cys-Tyr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O WKLJLEXEENIYQE-SRVKXCTJSA-N 0.000 description 2
- NLOAIFSWUUFQFR-CIUDSAMLSA-N Ser-Leu-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O NLOAIFSWUUFQFR-CIUDSAMLSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- VEIKMWOMUYMMMK-FCLVOEFKSA-N Thr-Phe-Phe Chemical compound C([C@H](NC(=O)[C@@H](N)[C@H](O)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 VEIKMWOMUYMMMK-FCLVOEFKSA-N 0.000 description 2
- HPYDSVWYXXKHRD-VIFPVBQESA-N Tyr-Gly Chemical compound [O-]C(=O)CNC(=O)[C@@H]([NH3+])CC1=CC=C(O)C=C1 HPYDSVWYXXKHRD-VIFPVBQESA-N 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108010013835 arginine glutamate Proteins 0.000 description 2
- 108010047857 aspartylglycine Proteins 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 238000000423 cell based assay Methods 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000013537 high throughput screening Methods 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 150000002611 lead compounds Chemical class 0.000 description 2
- 108010034529 leucyl-lysine Proteins 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 108010084525 phenylalanyl-phenylalanyl-glycine Proteins 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 108010070643 prolylglutamic acid Proteins 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- JBVSSSZFNTXJDX-YTLHQDLWSA-N Ala-Ala-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C)N JBVSSSZFNTXJDX-YTLHQDLWSA-N 0.000 description 1
- BUDNAJYVCUHLSV-ZLUOBGJFSA-N Ala-Asp-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O BUDNAJYVCUHLSV-ZLUOBGJFSA-N 0.000 description 1
- HXNNRBHASOSVPG-GUBZILKMSA-N Ala-Glu-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O HXNNRBHASOSVPG-GUBZILKMSA-N 0.000 description 1
- HMRWQTHUDVXMGH-GUBZILKMSA-N Ala-Glu-Lys Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN HMRWQTHUDVXMGH-GUBZILKMSA-N 0.000 description 1
- ZVFVBBGVOILKPO-WHFBIAKZSA-N Ala-Gly-Ala Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(O)=O ZVFVBBGVOILKPO-WHFBIAKZSA-N 0.000 description 1
- PCIFXPRIFWKWLK-YUMQZZPRSA-N Ala-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N PCIFXPRIFWKWLK-YUMQZZPRSA-N 0.000 description 1
- ZKEHTYWGPMMGBC-XUXIUFHCSA-N Ala-Leu-Leu-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O ZKEHTYWGPMMGBC-XUXIUFHCSA-N 0.000 description 1
- AWZKCUCQJNTBAD-SRVKXCTJSA-N Ala-Leu-Lys Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCCN AWZKCUCQJNTBAD-SRVKXCTJSA-N 0.000 description 1
- OMDNCNKNEGFOMM-BQBZGAKWSA-N Ala-Met-Gly Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)NCC(O)=O OMDNCNKNEGFOMM-BQBZGAKWSA-N 0.000 description 1
- HOVPGJUNRLMIOZ-CIUDSAMLSA-N Ala-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](C)N HOVPGJUNRLMIOZ-CIUDSAMLSA-N 0.000 description 1
- OMSKGWFGWCQFBD-KZVJFYERSA-N Ala-Val-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O OMSKGWFGWCQFBD-KZVJFYERSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- BTJVOUQWFXABOI-IHRRRGAJSA-N Arg-Lys-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCNC(N)=N BTJVOUQWFXABOI-IHRRRGAJSA-N 0.000 description 1
- ALHMNHZJBYBYHS-DCAQKATOSA-N Asn-Lys-Arg Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O ALHMNHZJBYBYHS-DCAQKATOSA-N 0.000 description 1
- OOXUBGLNDRGOKT-FXQIFTODSA-N Asn-Ser-Arg Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O OOXUBGLNDRGOKT-FXQIFTODSA-N 0.000 description 1
- SNYCNNPOFYBCEK-ZLUOBGJFSA-N Asn-Ser-Ser Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O SNYCNNPOFYBCEK-ZLUOBGJFSA-N 0.000 description 1
- FTNVLGCFIJEMQT-CIUDSAMLSA-N Asp-Cys-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(=O)O)N FTNVLGCFIJEMQT-CIUDSAMLSA-N 0.000 description 1
- PZXPWHFYZXTFBI-YUMQZZPRSA-N Asp-Gly-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC(O)=O PZXPWHFYZXTFBI-YUMQZZPRSA-N 0.000 description 1
- DONWIPDSZZJHHK-HJGDQZAQSA-N Asp-Lys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(=O)O)N)O DONWIPDSZZJHHK-HJGDQZAQSA-N 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- LPBUBIHAVKXUOT-FXQIFTODSA-N Cys-Val-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CS)N LPBUBIHAVKXUOT-FXQIFTODSA-N 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 108010000126 Gabolysat PC60 Proteins 0.000 description 1
- IRDASPPCLZIERZ-XHNCKOQMSA-N Glu-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCC(=O)O)N IRDASPPCLZIERZ-XHNCKOQMSA-N 0.000 description 1
- AKJRHDMTEJXTPV-ACZMJKKPSA-N Glu-Asn-Ala Chemical compound C[C@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CCC(O)=O)C(O)=O AKJRHDMTEJXTPV-ACZMJKKPSA-N 0.000 description 1
- SOEPMWQCTJITPZ-SRVKXCTJSA-N Glu-Met-Lys Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)O)N SOEPMWQCTJITPZ-SRVKXCTJSA-N 0.000 description 1
- GPSHCSTUYOQPAI-JHEQGTHGSA-N Glu-Thr-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O GPSHCSTUYOQPAI-JHEQGTHGSA-N 0.000 description 1
- UMZHHILWZBFPGL-LOKLDPHHSA-N Glu-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCC(=O)O)N)O UMZHHILWZBFPGL-LOKLDPHHSA-N 0.000 description 1
- VSVZIEVNUYDAFR-YUMQZZPRSA-N Gly-Ala-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)CN VSVZIEVNUYDAFR-YUMQZZPRSA-N 0.000 description 1
- QSTLUOIOYLYLLF-WDSKDSINSA-N Gly-Asp-Glu Chemical compound [H]NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O QSTLUOIOYLYLLF-WDSKDSINSA-N 0.000 description 1
- FZQLXNIMCPJVJE-YUMQZZPRSA-N Gly-Asp-Leu Chemical compound [H]NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O FZQLXNIMCPJVJE-YUMQZZPRSA-N 0.000 description 1
- XTQFHTHIAKKCTM-YFKPBYRVSA-N Gly-Glu-Gly Chemical compound NCC(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O XTQFHTHIAKKCTM-YFKPBYRVSA-N 0.000 description 1
- CQIIXEHDSZUSAG-QWRGUYRKSA-N Gly-His-His Chemical compound C([C@H](NC(=O)CN)C(=O)N[C@@H](CC=1NC=NC=1)C(O)=O)C1=CN=CN1 CQIIXEHDSZUSAG-QWRGUYRKSA-N 0.000 description 1
- FSPVILZGHUJOHS-QWRGUYRKSA-N Gly-His-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CNC=N1 FSPVILZGHUJOHS-QWRGUYRKSA-N 0.000 description 1
- ULZCYBYDTUMHNF-IUCAKERBSA-N Gly-Leu-Glu Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O ULZCYBYDTUMHNF-IUCAKERBSA-N 0.000 description 1
- JJGBXTYGTKWGAT-YUMQZZPRSA-N Gly-Pro-Glu Chemical compound NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O JJGBXTYGTKWGAT-YUMQZZPRSA-N 0.000 description 1
- FKYQEVBRZSFAMJ-QWRGUYRKSA-N Gly-Ser-Tyr Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 FKYQEVBRZSFAMJ-QWRGUYRKSA-N 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 1
- HSQGMTRYSIHDAC-BQBZGAKWSA-N Leu-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(O)=O HSQGMTRYSIHDAC-BQBZGAKWSA-N 0.000 description 1
- HVHRPWQEQHIQJF-AVGNSLFASA-N Leu-Lys-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O HVHRPWQEQHIQJF-AVGNSLFASA-N 0.000 description 1
- KPYAOIVPJKPIOU-KKUMJFAQSA-N Leu-Lys-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O KPYAOIVPJKPIOU-KKUMJFAQSA-N 0.000 description 1
- WMIOEVKKYIMVKI-DCAQKATOSA-N Leu-Pro-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O WMIOEVKKYIMVKI-DCAQKATOSA-N 0.000 description 1
- QMKFDEUJGYNFMC-AVGNSLFASA-N Leu-Pro-Arg Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCN=C(N)N)C(O)=O QMKFDEUJGYNFMC-AVGNSLFASA-N 0.000 description 1
- XOWMDXHFSBCAKQ-SRVKXCTJSA-N Leu-Ser-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(C)C XOWMDXHFSBCAKQ-SRVKXCTJSA-N 0.000 description 1
- IWMJFLJQHIDZQW-KKUMJFAQSA-N Leu-Ser-Phe Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 IWMJFLJQHIDZQW-KKUMJFAQSA-N 0.000 description 1
- AIQWYVFNBNNOLU-RHYQMDGZSA-N Leu-Thr-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O AIQWYVFNBNNOLU-RHYQMDGZSA-N 0.000 description 1
- BGGTYDNTOYRTTR-MEYUZBJRSA-N Leu-Tyr-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CC(C)C)N)O BGGTYDNTOYRTTR-MEYUZBJRSA-N 0.000 description 1
- YQFZRHYZLARWDY-IHRRRGAJSA-N Leu-Val-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCCN YQFZRHYZLARWDY-IHRRRGAJSA-N 0.000 description 1
- GAOJCVKPIGHTGO-UWVGGRQHSA-N Lys-Arg-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O GAOJCVKPIGHTGO-UWVGGRQHSA-N 0.000 description 1
- ZXEUFAVXODIPHC-GUBZILKMSA-N Lys-Glu-Asn Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O ZXEUFAVXODIPHC-GUBZILKMSA-N 0.000 description 1
- VEGLGAOVLFODGC-GUBZILKMSA-N Lys-Glu-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O VEGLGAOVLFODGC-GUBZILKMSA-N 0.000 description 1
- YFQSSOAGMZGXFT-MEYUZBJRSA-N Lys-Thr-Tyr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O YFQSSOAGMZGXFT-MEYUZBJRSA-N 0.000 description 1
- BWECSLVQIWEMSC-IHRRRGAJSA-N Lys-Val-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CCCCN)N BWECSLVQIWEMSC-IHRRRGAJSA-N 0.000 description 1
- TUSOIZOVPJCMFC-FXQIFTODSA-N Met-Asp-Asp Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O TUSOIZOVPJCMFC-FXQIFTODSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 1
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241000237988 Patellidae Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- YMORXCKTSSGYIG-IHRRRGAJSA-N Phe-Arg-Cys Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O)N YMORXCKTSSGYIG-IHRRRGAJSA-N 0.000 description 1
- CSDMCMITJLKBAH-SOUVJXGZSA-N Phe-Glu-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC2=CC=CC=C2)N)C(=O)O CSDMCMITJLKBAH-SOUVJXGZSA-N 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- CGBYDGAJHSOGFQ-LPEHRKFASA-N Pro-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@@H]2CCCN2 CGBYDGAJHSOGFQ-LPEHRKFASA-N 0.000 description 1
- IHCXPSYCHXFXKT-DCAQKATOSA-N Pro-Arg-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(O)=O IHCXPSYCHXFXKT-DCAQKATOSA-N 0.000 description 1
- OFGUOWQVEGTVNU-DCAQKATOSA-N Pro-Lys-Ala Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O OFGUOWQVEGTVNU-DCAQKATOSA-N 0.000 description 1
- PRKWBYCXBBSLSK-GUBZILKMSA-N Pro-Ser-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O PRKWBYCXBBSLSK-GUBZILKMSA-N 0.000 description 1
- YIPFBJGBRCJJJD-FHWLQOOXSA-N Pro-Trp-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@@H]3CCCN3 YIPFBJGBRCJJJD-FHWLQOOXSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- HRNQLKCLPVKZNE-CIUDSAMLSA-N Ser-Ala-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O HRNQLKCLPVKZNE-CIUDSAMLSA-N 0.000 description 1
- WDXYVIIVDIDOSX-DCAQKATOSA-N Ser-Arg-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)CCCN=C(N)N WDXYVIIVDIDOSX-DCAQKATOSA-N 0.000 description 1
- IXZHZUGGKLRHJD-DCAQKATOSA-N Ser-Leu-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O IXZHZUGGKLRHJD-DCAQKATOSA-N 0.000 description 1
- OZPDGESCTGGNAD-CIUDSAMLSA-N Ser-Ser-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CO OZPDGESCTGGNAD-CIUDSAMLSA-N 0.000 description 1
- KKKVOZNCLALMPV-XKBZYTNZSA-N Ser-Thr-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O KKKVOZNCLALMPV-XKBZYTNZSA-N 0.000 description 1
- 102000011971 Sphingomyelin Phosphodiesterase Human genes 0.000 description 1
- 108010061312 Sphingomyelin Phosphodiesterase Proteins 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108010092262 T-Cell Antigen Receptors Proteins 0.000 description 1
- JQAWYCUUFIMTHE-WLTAIBSBSA-N Thr-Gly-Tyr Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O JQAWYCUUFIMTHE-WLTAIBSBSA-N 0.000 description 1
- PRNGXSILMXSWQQ-OEAJRASXSA-N Thr-Leu-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O PRNGXSILMXSWQQ-OEAJRASXSA-N 0.000 description 1
- NWECYMJLJGCBOD-UNQGMJICSA-N Thr-Phe-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(O)=O NWECYMJLJGCBOD-UNQGMJICSA-N 0.000 description 1
- NBIIPOKZPUGATB-BWBBJGPYSA-N Thr-Ser-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O)N)O NBIIPOKZPUGATB-BWBBJGPYSA-N 0.000 description 1
- KZTLZZQTJMCGIP-ZJDVBMNYSA-N Thr-Val-Thr Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O KZTLZZQTJMCGIP-ZJDVBMNYSA-N 0.000 description 1
- CDRYEAWHKJSGAF-BPNCWPANSA-N Tyr-Ala-Met Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(O)=O CDRYEAWHKJSGAF-BPNCWPANSA-N 0.000 description 1
- JXGUUJMPCRXMSO-HJOGWXRNSA-N Tyr-Phe-Phe Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=C(O)C=C1 JXGUUJMPCRXMSO-HJOGWXRNSA-N 0.000 description 1
- UUBKSZNKJUJQEJ-JRQIVUDYSA-N Tyr-Thr-Asp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N)O UUBKSZNKJUJQEJ-JRQIVUDYSA-N 0.000 description 1
- XBRMBDFYOFARST-AVGNSLFASA-N Val-His-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](C(C)C)C(=O)O)N XBRMBDFYOFARST-AVGNSLFASA-N 0.000 description 1
- CKTMJBPRVQWPHU-JSGCOSHPSA-N Val-Phe-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)O)N CKTMJBPRVQWPHU-JSGCOSHPSA-N 0.000 description 1
- QZKVWWIUSQGWMY-IHRRRGAJSA-N Val-Ser-Phe Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 QZKVWWIUSQGWMY-IHRRRGAJSA-N 0.000 description 1
- LCHZBEUVGAVMKS-RHYQMDGZSA-N Val-Thr-Leu Chemical compound CC(C)C[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)[C@@H](C)O)C(O)=O LCHZBEUVGAVMKS-RHYQMDGZSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 108010087924 alanylproline Proteins 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 108010069926 arginyl-glycyl-serine Proteins 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 238000002869 basic local alignment search tool Methods 0.000 description 1
- 238000002799 binding type assay Methods 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 108010004073 cysteinylcysteine Proteins 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- FSXRLASFHBWESK-UHFFFAOYSA-N dipeptide phenylalanyl-tyrosine Natural products C=1C=C(O)C=CC=1CC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FSXRLASFHBWESK-UHFFFAOYSA-N 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- -1 e.g. Proteins 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- XBGGUPMXALFZOT-UHFFFAOYSA-N glycyl-L-tyrosine hemihydrate Natural products NCC(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-UHFFFAOYSA-N 0.000 description 1
- 108010079413 glycyl-prolyl-glutamic acid Proteins 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 108060003552 hemocyanin Proteins 0.000 description 1
- 108010040030 histidinoalanine Proteins 0.000 description 1
- 108010025306 histidylleucine Proteins 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 239000006101 laboratory sample Substances 0.000 description 1
- 108010071185 leucyl-alanine Proteins 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 108010017391 lysylvaline Proteins 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 238000010397 one-hybrid screening Methods 0.000 description 1
- 210000004923 pancreatic tissue Anatomy 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000011170 pharmaceutical development Methods 0.000 description 1
- 108010018625 phenylalanylarginine Proteins 0.000 description 1
- 108010073025 phenylalanylphenylalanine Proteins 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000034190 positive regulation of NF-kappaB transcription factor activity Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 108010093296 prolyl-prolyl-alanine Proteins 0.000 description 1
- 108010004914 prolylarginine Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 108010069117 seryl-lysyl-aspartic acid Proteins 0.000 description 1
- 108010026333 seryl-proline Proteins 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 108010005652 splenotritin Proteins 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000010399 three-hybrid screening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/525—Tumour necrosis factor [TNF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
Definitions
- the field of this invention is polypeptide molecules which regulate cell function, nucleic acid sequences encoding the polypeptides, and methods of using the nucleic acid sequences and the polypeptides.
- Tumor necrosis factor-alpha is a cytokine primarily produced by activated macrophages. TNF-alpha stimulates T-cell and B-cell proliferation and induces expression of adhesion molecules on endothelial cells. This cytokine also plays an important role in host defense to infection.
- TNF-alpha activities are mediated through two distinct receptors, TNFR-p55 and TNFR-p75. These two receptors also mediate activities triggered by soluble lymphotoxin-alpha (LT-alpha) secreted mainly by activated lymphocytes.
- LT-alpha soluble lymphotoxin-alpha
- Specific stimulation of TNFR-p55 induces TNF activities such as in vitro tumor cell cytotoxicity, expression of adhesion molecules on endothelial cells and keratinocytes, activation of sphingomyelinase with concomitant increases of ceramide, activation of NF-kappaB and induction of manganese superoxide dismutase mRNA.
- Specific stimulation of TNFR- p75 results in proliferative response of mouse and human thymocytes and cytoxic T cells, fibroblasts and natural killer cells and in GM-CSF secretion in PC60 cells.
- TNF especially in combination with gamma. -interferon (IFN-. gamma.)
- IFN-. gamma. has the ability to selectively kill or inhibit malignant cell lines that is unmatched by any other combination of cytokines.
- Clinical trials in cancer patients with TNF-. alpha, antitumor therapy have been disappointing, however, because the toxic side effects of TNF have prevented obtaining effective dose levels in man.
- These toxic side effects have been attributed to TNF binding to the TNFR-p75 receptor while the cytotoxic activity on malignant cells has been attributed to binding of TNF to the TNFR-p55 receptor.
- the subject invention is a molecule that is homologous to tumor necrosis factor (TNF).
- TNF tumor necrosis factor
- the invention provides methods and compositions relating to the molecule, HUMAN NTN-2 polypeptide, and related nucleic acids. Included are polypeptides comprising a HUMAN NTN-2-specific domain and having HUMAN NTN-2 -specific activity. The polypeptides may be produced recombinantly from transformed host cells with the subject nucleic acids.
- the invention provides binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis (e.g., genetic hybridization screens for HUMAN NTN-2 transcripts), therapy (e.g., gene therapy to modulate HUMAN NTN-2 gene expression) and in the biopharmaceutical industry (e.g., reagents for screening chemical libraries for lead pharmacological agents).
- diagnosis e.g., genetic hybridization screens for HUMAN NTN-2 transcripts
- therapy e.g., gene therapy to modulate HUMAN NTN-2 gene expression
- biopharmaceutical industry e.g., reagents for screening chemical libraries for lead pharmacological agents.
- Preferred uses for the subject HUMAN NTN-2 polypeptides include modifying the physiology of a cell comprising an extracellular surface by contacting the cell or medium surrounding the cell with an exogenous HUMAN NTN-2 polypeptide under conditions whereby the added polypeptide specifically interacts with a component of the medium and/or the extracellular surface to
- Also preferred are methods for screening for biologically active agents which methods involve incubating a HUMAN NTN-2 polypeptide in the presence of an extracellular HUMAN NTN-2 polypeptide-specific binding target and a candidate agent, under conditions whereby, but for the presence of the agent, the polypeptide specifically binds the binding target at a reference affinity; detecting the binding affinity of the polypeptide to the binding target to determine an agent-biased affinity, wherein a difference between the agent-biased affinity and the reference affinity indicates that the agent modulates the binding of the polypeptide to the binding target.
- HUMAN NTN-2 Based upon its homology to TNF, it is expected that HUMAN NTN-2 will be a mediator of immune regulation and inflammatory response, closely linked to the development of disease. It may be useful for regulating development, proliferation and death of cells of the lymphoid, hematopoitic and other lineages. Also, HUMAN NTN-2 may be of use in the prevention of septic shock, autoimmune disorders and graft-host disease. Furthermore, HUMAN NTN-2 polypeptide may be used to identify its receptor.
- FIGURE 1 Northern analysis of various human tissue specific RNAs using a 608 nucleotide fragment of the HUMAN NTN-2 sequence as a probe. Lanes 1 - 8 in order as follows: Heart, Brain, Placenta, Lung, Liver, Skeletal Muscle, Kidney and Pancreas. DETAILED DESCRIPTION OF THE INVENTION
- the invention provides HUMAN NTN-2 polypeptide which includes natural HUMAN NTN-2 polypeptide and recombinant polypeptides comprising a HUMAN NTN-2 amino acid sequence, or a functional
- HUMAN NTN-2 polypeptide domain thereof having an assay-discernable HUMAN NTN-2-specific activity. Accordingly, the polypeptides may be deletion mutants of the disclosed natural HUMAN NTN-2 polypeptides and may be provided as fusion products, e.g., with non- HUMAN NTN-2 polypeptides.
- the subject HUMAN NTN-2 polypeptide domains have
- HUMAN NTN-2 A number of applications for HUMAN NTN-2 are suggested from its properties. HUMAN NTN-2, may be useful in the study and treatment of conditions similar to those which are treated using TNF. Furthermore, the
- HUMAN NTN-2 cDNA may be useful as a diagnostic tool, such as through use of antibodies in assays for polypeptides in cell lines or use of oligonucleotides as primers in a PCR test to amplify those with sequence similarities to the oligonucleotide primer, and to see how much HUMAN NTN-2 is present.
- the isolation of HUMAN NTN-2 also provides the key to isolate its putative receptor, other HUMAN NTN-2 binding polypeptides, and/or study its antagonistic properties.
- HUMAN NTN-2-specific activity or function may be determined by convenient in vitro, cellbased, or in vivo assays - e.g., in vitro binding assays, cell culture assays, in animals (e.g., immune response, gene therapy, transgenics, etc.), etc. Binding assays encompass any assay where the specific molecular interaction of a HUMAN NTN-2 polypeptide with a binding target is evaluated.
- the binding target may be a natural binding target, or a non-natural binding target such as a specific immune polypeptide such as an antibody, or a HUMAN NTN-2 specific agent such as those identified in assays described below.
- the claimed polypeptides may be isolated or pure - an "isolated" polypeptide is one that is no longer accompanied by some of the material with which it is associated in its natural state, and that preferably constitutes at least about 0.5%, and more preferably at least about 5% by weight of the total polypeptide in a given sample; a "pure" polypeptide constitutes at least about 90%, and preferably at least about 99% by weight of the total polypeptide in a given sample.
- the subject polypeptides and polypeptide domains may be synthesized, produced by recombinant technology, or purified from cells.
- the subject polypeptides find a wide variety of uses including use as immunogens, targets in screening assays, bioactive reagents for modulating cell growth, differentiation and /or function, etc.
- the invention provides methods for modifying the physiology of a cell comprising an extracellular surface by contacting the cell or medium surrounding the cell with an exogenous HUMAN NTN-2 polypeptide under conditions whereby the added polypeptide specifically interacts with a component of the medium and /or the extracellular surface to effect a change in the physiology of the cell.
- the extracellular surface includes plasma membrane-associated receptors;
- the exogenous HUMAN NTN-2 refers to a polypeptide not made by the cell or, if so, expressed at non-natural levels, times or physiologic locales; and suitable media include in vitro culture media and physiological fluids such as blood, synovial fluid, etc.
- the polypeptides may be may be introduced, expressed, or repressed in specific populations of cells by any convenient way such as microinjection, promoter-specific expression of recombinant enzyme, targeted delivery of lipid vesicles, etc.
- the invention provides natural and non-natural HUMAN NTN-2-specific binding agents, methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development.
- HUMAN NTN-2-specific binding agents include HUMAN NTN-2-specific receptors, such as somatically recombined protein receptors like specific antibodies or
- T-cell antigen receptors See, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory) and also includes other natural binding agents identified with assays such as one-, two- and three- hybrid screens, and non-natural binding agents identified in screens of chemical libraries such as described below. Agents of particular interest modulate HUMAN NTN-2 function.
- the invention provides HUMAN NTN-2 nucleic acids, which find a wide variety of applications including use as translatable transcripts, hybridization probes, PCR primers, diagnostic nucleic acids, etc., as well as use in detecting the presence of HUMAN NTN-2 genes and gene transcripts and in detecting or amplifying nucleic acids encoding additional HUMAN NTN-2 homologs and structural analogs.
- the subject nucleic acids are of synthetic /non-natural sequences and /or are isolated, i.e., no longer accompanied by some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of total nucleic acid present in a given fraction, and usually recombinant, meaning they comprise a non- natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome.
- Nucleic acids comprising the nucleotide sequence disclosed herein and fragments thereof contain such sequence or fragment at a terminus, immediately flanked by a sequence other than that to which it is joined on a natural chromosome, or flanked by a native flanking region fewer than 10 kb, preferably fewer than 2 kb, which is immediately flanked by a sequence other than that to which it is joined on a natural chromosome. While the nucleic acids are usually RNA or DNA, it is often advantageous to use nucleic acids comprising other bases or nucleotide analogs to provide modified stability, etc.
- the amino acid sequences of the disclosed HUMAN NTN-2 polypeptide is used to back translate HUMAN NTN-2 polypeptide-encoding nucleic acids optimized for selected expression systems (Holler, et al. (1993) Gene 136: 323- 328; Martin, et al. (1995) Gene 154: 150-166) or used to generate degenerate oligonucleotide primers and probes for use in the isolation of natural HUMAN NTN-2 encoding nucleic acid sequences ("GCG” software, Genetics Computer Group, Inc., Madison, WI).
- HUMAN NTN-2 encoding nucleic acids may be part of expression vectors and may be incorporated into recombinant host cells, e.g., for expression and screening, for transgenic animals, for functional studies such as the efficacy of candidate drugs for disease associated with HUMAN NTN-2 mediated signal transduction, etc.
- Expression systems are selected and /or tailored to effect HUMAN NTN-2 polypeptide structural and functional variants through alternative post- translational processing.
- the invention also provides for nucleic acid hybridization probes and replication /amplification primers having a HUMAN NTN-2 cDNA specific sequence and sufficient to effect specific hybridization with SEQ. I.D. NO. 1.
- Demonstrating specific hybridization generally requires stringent conditions, for example, hybridizing in a buffer comprising 30% formamide in 5 x SSPE (0.18 M NaCl, 0.01 M NaP0 4 , pH7.7, 0.001 M EDTA) buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE; preferably hybridizing in a buffer comprising 50% formamide in 5 x SSPE buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2x SSPE buffer at 42°C.
- HUMAN NTN-2 cDNA homologs can also be distinguished from other polypeptides using alignment algorithms, such as BLASTX (Altschul, et al. (1990) Basic
- HUMAN NTN-2 hybridization probes find use in identifying wild-type and mutant alleles in clinical and laboratory samples. Mutant alleles are used to generate allele-specific oligonucleotide (ASO) probes for high-throughput clinical diagnoses. HUMAN NTN-2 nucleic acids are also used to modulate cellular expression or intracellular concentration or availability of active
- HUMAN NTN-2 inhibitory nucleic acids are typically antisense - single stranded sequences comprising complements of the disclosed natural HUMAN NTN-2 coding sequences.
- Antisense modulation of the expression of a given HUMAN NTN-2 polypeptide may employ antisense nucleic acids operably linked to gene regulatory sequences.
- Cells are transfected with a vector comprising a HUMAN NTN-2 sequence with a promoter sequence oriented such that transcription of the gene yields an antisense transcript capable of binding to endogenous HUMAN NTN-2 encoding mRNA.
- Transcription of the antisense nucleic acid may be constitutive or inducible and the vector may provide for stable extrachromosomal maintenance or integration.
- single- stranded antisense nucleic acids that bind to genomic DNA or mRNA encoding a given HUMAN NTN-2 polypeptide may be administered to the target cell, in or temporarily isolated from a host, at a concentration that results in a substantial reduction in expression of the targeted polypeptide.
- An enhancement in HUMAN NTN-2 expression is effected by introducing into the targeted cell type HUMAN NTN-2 nucleic acids which increase the functional expression of the corresponding gene products.
- nucleic acids may be HUMAN NTN-2 expression vectors, vectors which upregulate the functional expression of an endogenous allele, or replacement vectors for targeted correction of mutant alleles.
- Techniques for introducing the nucleic acids into viable cells are known in the art and include retroviral- based transfection, viral coat protein-liposome mediated transfection, etc.
- the invention provides efficient methods of identifying agents, compounds or lead compounds for agents active at the level of HUMAN NTN-2 modulatable cellular function.
- these screening methods involve assaying for compounds which modulate HUMAN NTN-2 interaction with a natural HUMAN NTN-2 binding target.
- assays for binding agents are provided including protein-protein binding assays, immunoassays, cell based assays, etc.
- Preferred methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds.
- In vitro binding assays employ a mixture of components including a HUMAN NTN-2 polypeptide, which may be part of a fusion product with another peptide or polypeptide, e.g., a tag for detection or anchoring, etc.
- the assay mixtures comprise a natural HUMAN NTN-2 binding target. While native binding targets may be used, it is frequently preferred to use portions thereof as long as the portion provides binding affinity and avidity to the subject HUMAN NTN-2 conveniently measurable in the assay.
- the assay mixture also comprises a candidate pharmacological agent.
- Candidate agents encompass numerous chemical classes, though typically they are organic compounds, preferably small organic compounds, and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents such as salts, buffers, neutral proteins, e.g., albumin, detergents, protease inhibitors, nuclease inhibitors, antimicrobial agents, etc., may also be included.
- the mixture components can be added in any order that provides for the requisite bindings and incubations may be performed at any temperature which facilitates optimal binding.
- the mixture is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the HUMAN NTN-2 specifically binds the cellular binding target, portion or analog with a reference binding affinity. Incubation periods are chosen for optimal binding but are also minimized to facilitate rapid, high throughput screening.
- the agent-biased binding between the HUMAN NTN-2 and one or more binding targets is detected by any convenient way.
- a separation step is often used to separate bound from unbound components. Separation may be effected by precipitation, immobilization, etc., followed by washing by, e.g., membrane filtration or gel chromatography.
- one of the components usually comprises or is coupled to a label.
- the label may provide for direct detection as radioactivity, luminescence, optical or electron density, etc., or indirect detection such as an epitope tag, an enzyme, etc.
- a variety of methods may be used to detect the label depending on the nature of the label and other assay components, e.g., through optical or electron density, radiative emissions, nonradiative energy transfers, or indirectly detected with antibody conjugates, etc.
- a difference in the binding affinity of the HUMAN NTN-2 polypeptide to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the binding of the HUMAN NTN-2 polypeptide to the corresponding binding target.
- a difference is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.
- the invention provides for a method for modifying the physiology of a cell comprising an extracellular surface in contact with a medium, said method comprising the step of contacting said medium with an exogenous HUMAN NTN-2 polypeptide under conditions whereby said polypeptide specifically interacts with at least one of a component of said medium and said extracellular surface to effect a change in the physiology of said cell.
- the invention further provides for a method for screening for biologically active agents, said method comprising the steps of a) incubating a HUMAN NTN-2 polypeptide in the presence of an extracellular HUMAN NTN-2 polypeptide specific binding target and a candidate agent, under conditions whereby, but for the presence of said agent, said polypeptide specifically binds said binding target at a reference affinity; b) detecting the binding affinity of said polypeptide to said binding target to determine an agent- biased affinity, wherein a difference between the agent-biased affinity and the reference affinity indicates that said agent modulates the binding of said polypeptide to said binding target.
- One embodiment of the invention is an isolated HUMAN NTN-2 polypeptide comprising the amino acid sequence as set forth herein or a fragment thereof having HUMAN NTN-2-specific activity.
- Another embodiment of the invention is a recombinant nucleic acid encoding HUMAN NTN-2 polypeptide comprising the amino acid sequence as set forth herein or a fragment thereof having HUMAN NTN-2- specific activity.
- the present invention also provides for antibodies to the HUMAN NTN-2 polypeptide described herein which are useful for detection of the polypeptide in, for example, diagnostic applications.
- antibodies to the HUMAN NTN-2 polypeptide described herein which are useful for detection of the polypeptide in, for example, diagnostic applications.
- any technique which provides for the production of antibody molecules by continuous cell lines in culture may be used.
- the monoclonal antibodies for diagnostic or therapeutic use may be human monoclonal antibodies or chimeric human-mouse (or other species) monoclonal antibodies.
- Human monoclonal antibodies may be made by any of numerous techniques known in the art (e.g., Teng et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:7308-7312; Kozbor et al., 1983, Immunology Today 4:72-79; Olsson et al., 1982, Meth. Enzymol. 92:3-16).
- Chimeric antibody molecules may be prepared containing a mouse antigen-binding domain with human constant regions (Morrison et al., 1984, Proc. Natl. Acad. Sci. U.S.A. 81:6851, Takeda et al, 1985, Nature 314:452).
- HUMAN NTN-2 polypeptide described herein.
- various host animals can be immunized by injection with the HUMAN NTN-2 polypeptide, or a fragment or derivative thereof, including but not limited to rabbits, mice and rats.
- adjuvants may be used to increase the immunological response, depending on the host species, and including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille Calmette-Guerin) and Corvnebacterium parvum.
- BCG Bacille Calmette-Guerin
- a molecular clone of an antibody to a selected HUMAN NTN-2 polypeptide epitope can be prepared by known techniques. Recombinant DNA methodology (see e.g., Maniatis et al., 1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York) may be used to construct nucleic acid sequences which encode a monoclonal antibody molecule, or antigen binding region thereof. The present invention provides for antibody molecules as well as fragments of such antibody molecules. Antibody fragments which contain the idiotype of the molecule can be generated by known techniques.
- such fragments include but are not limited to: the F(ab') 2 fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments which can be generated by reducing the disulfide bridges of the F(ab') fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent.
- Antibody molecules may be purified by known techniques, e.g., immunoabsorption or immunoaffinity chromatography, chromatographic methods such as HPLC
- SEQ. I.D. NO. 1 Using the nucleotide sequence of SEQ. I.D. NO. 1 as a query, additional database searches were performed to identify overlapping ESTs. Two additional clones from the I.M.A.G.E. consortium were discerned to contain homologous sequence. These clones, GeneBank Accession Nos. AA166695 and T87299 were obtained from Research Genetics, Inc. (Huntsville, AL) and sequenced using the ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA). Alignment of the two additional clones with SEQ. I.D. NO. 1 indicated a total length of 680 nucleotides.
- Oligonucleotides were designed based on the partial human sequence and used as primers for the reverse transcriptase reaction and for PCR. A 608 nucleotide long sequence was obtained and used as a probe to isolate the full length sequence as described below.
- EXAMPLE 2 ISOLATION AND SEQUENCING OF FULL LENGTH cDNA CLONE ENCODING HUMAN NTN-2
- a human placenta cDNA library in lambda gt-10 was obtained from
- a fragment corresponding to nucleotides 216 to 824 of the hNTN-2 sequence shown in SEQ. I.D. NO. 3 was radiolabeled and utilized in Northern analysis of various human tissue specific RNAs.
- the Northern blot containing polyA+ RNA from several human tissues was obtained from Clontech Laboratories, Inc. (Palo Alto, CA) and was hybridized at 65°C to the radiolabeled hNTN-2 probe in the presence of 0.5M NaP04 (pH 7), 1% bovine serum albumin (Fraction V, Sigma), 7% SDS, 1 mM EDTA and 100 ng/ml sonicated, denatured salmon sperm DNA. The filter was washed at
- the hNTN-2 probe hybridized strongly to a 2.7 kb transcript in human heart, placenta, pancreas and lung tissue (Figure 1) and hybridized weakly to
- RNA from brain and liver could also be found in skeletal muscle and kidney.
- High expression of hNTN-2 in heart tissue may suggest that the present invention may be utilized to treat heart disease.
- Expression of hNTN-2 in lung and pancreas tissue may suggest that the present invention may be utilized to treat lung and /or pancreas related disorders.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
HUMAN NTN-2 polypeptides and related nucleic acids are provided. Included are HUMAN NTN-2 polypeptides comprising a HUMAN NTN-2 domain having specific HUMAN NTN-2 activity. The polypeptides may be produced recombinantly from transformed host cells with the subject nucleic acids. Also provided are specific binding agents and methods of making and using the subject compositions.
Description
NTN-2 MEMBER OF TNF LIGAND FAMILY
All publications, patents and patent applications cited in this specification are hereby incorporated by reference as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
INTRODUCTION
Field of the Invention
The field of this invention is polypeptide molecules which regulate cell function, nucleic acid sequences encoding the polypeptides, and methods of using the nucleic acid sequences and the polypeptides.
Background
Tumor necrosis factor-alpha (TNF-alpha) is a cytokine primarily produced by activated macrophages. TNF-alpha stimulates T-cell and B-cell proliferation and induces expression of adhesion molecules on endothelial cells. This cytokine also plays an important role in host defense to infection.
TNF-alpha activities are mediated through two distinct receptors, TNFR-p55 and TNFR-p75. These two receptors also mediate activities triggered by soluble lymphotoxin-alpha (LT-alpha) secreted mainly by activated lymphocytes. Specific stimulation of TNFR-p55 induces TNF activities such as in vitro tumor cell cytotoxicity, expression of adhesion molecules on endothelial cells and keratinocytes, activation of sphingomyelinase with concomitant increases of ceramide, activation of NF-kappaB and induction of manganese superoxide dismutase mRNA. Specific stimulation of TNFR-
p75 results in proliferative response of mouse and human thymocytes and cytoxic T cells, fibroblasts and natural killer cells and in GM-CSF secretion in PC60 cells.
TNF, especially in combination with gamma. -interferon (IFN-. gamma.), has the ability to selectively kill or inhibit malignant cell lines that is unmatched by any other combination of cytokines. Clinical trials in cancer patients with TNF-. alpha, antitumor therapy have been disappointing, however, because the toxic side effects of TNF have prevented obtaining effective dose levels in man. These toxic side effects have been attributed to TNF binding to the TNFR-p75 receptor while the cytotoxic activity on malignant cells has been attributed to binding of TNF to the TNFR-p55 receptor.
SUMMARY OF THE INVENTION
The subject invention is a molecule that is homologous to tumor necrosis factor (TNF). The invention provides methods and compositions relating to the molecule, HUMAN NTN-2 polypeptide, and related nucleic acids. Included are polypeptides comprising a HUMAN NTN-2-specific domain and having HUMAN NTN-2 -specific activity. The polypeptides may be produced recombinantly from transformed host cells with the subject nucleic acids. The invention provides binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis (e.g., genetic hybridization screens for HUMAN NTN-2 transcripts), therapy (e.g., gene therapy to modulate HUMAN NTN-2 gene expression) and in the biopharmaceutical industry (e.g., reagents for screening chemical libraries for lead pharmacological agents).
Preferred uses for the subject HUMAN NTN-2 polypeptides include modifying the physiology of a cell comprising an extracellular surface by contacting the cell or medium surrounding the cell with an exogenous HUMAN NTN-2 polypeptide under conditions whereby the added polypeptide specifically interacts with a component of the medium and/or the extracellular surface to effect a change in the physiology of the cell. Also preferred are methods for screening for biologically active agents, which methods involve incubating a HUMAN NTN-2 polypeptide in the presence of an extracellular HUMAN NTN-2 polypeptide-specific binding target and a candidate agent, under conditions whereby, but for the presence of the agent, the polypeptide specifically binds the binding target at a reference affinity; detecting the binding affinity of the polypeptide to the binding target to determine an agent-biased affinity, wherein a difference between the agent-biased affinity and the reference affinity indicates that the agent modulates the binding of the polypeptide to the binding target.
Based upon its homology to TNF, it is expected that HUMAN NTN-2 will be a mediator of immune regulation and inflammatory response, closely linked to the development of disease. It may be useful for regulating development, proliferation and death of cells of the lymphoid, hematopoitic and other lineages. Also, HUMAN NTN-2 may be of use in the prevention of septic shock, autoimmune disorders and graft-host disease. Furthermore, HUMAN NTN-2 polypeptide may be used to identify its receptor.
BRIEF DESCRIPTION OF THE FIGURE
FIGURE 1 - Northern analysis of various human tissue specific RNAs using a 608 nucleotide fragment of the HUMAN NTN-2 sequence as a probe. Lanes 1 - 8 in order as follows: Heart, Brain, Placenta, Lung, Liver, Skeletal Muscle, Kidney and Pancreas.
DETAILED DESCRIPTION OF THE INVENTION
The invention provides HUMAN NTN-2 polypeptide which includes natural HUMAN NTN-2 polypeptide and recombinant polypeptides comprising a HUMAN NTN-2 amino acid sequence, or a functional
HUMAN NTN-2 polypeptide domain thereof having an assay-discernable HUMAN NTN-2-specific activity. Accordingly, the polypeptides may be deletion mutants of the disclosed natural HUMAN NTN-2 polypeptides and may be provided as fusion products, e.g., with non- HUMAN NTN-2 polypeptides. The subject HUMAN NTN-2 polypeptide domains have
HUMAN NTN-2-specific activity or function.
A number of applications for HUMAN NTN-2 are suggested from its properties. HUMAN NTN-2, may be useful in the study and treatment of conditions similar to those which are treated using TNF. Furthermore, the
HUMAN NTN-2 cDNA may be useful as a diagnostic tool, such as through use of antibodies in assays for polypeptides in cell lines or use of oligonucleotides as primers in a PCR test to amplify those with sequence similarities to the oligonucleotide primer, and to see how much HUMAN NTN-2 is present. The isolation of HUMAN NTN-2, of course, also provides the key to isolate its putative receptor, other HUMAN NTN-2 binding polypeptides, and/or study its antagonistic properties.
HUMAN NTN-2-specific activity or function may be determined by convenient in vitro, cellbased, or in vivo assays - e.g., in vitro binding assays, cell culture assays, in animals (e.g., immune response, gene therapy, transgenics, etc.), etc. Binding assays encompass any assay where the specific molecular interaction of a HUMAN NTN-2 polypeptide with a binding target is evaluated. The binding target may be a natural binding target, or a non-natural binding target such as a specific immune polypeptide such as an antibody, or a HUMAN NTN-2 specific agent such as those identified in assays described below.
The claimed polypeptides may be isolated or pure - an "isolated" polypeptide is one that is no longer accompanied by some of the material with which it is associated in its natural state, and that preferably constitutes at least about 0.5%, and more preferably at least about 5% by weight of the total polypeptide in a given sample; a "pure" polypeptide constitutes at least about 90%, and preferably at least about 99% by weight of the total polypeptide in a given sample. The subject polypeptides and polypeptide domains may be synthesized, produced by recombinant technology, or purified from cells. A wide variety of molecular and biochemical methods are available for biochemical synthesis, molecular expression and purification of the subject compositions, see e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc, Wiley-Interscience, NY).
The subject polypeptides find a wide variety of uses including use as immunogens, targets in screening assays, bioactive reagents for modulating cell growth, differentiation and /or function, etc. For example, the invention provides methods for modifying the physiology of a cell comprising an extracellular surface by contacting the cell or medium surrounding the cell with an exogenous HUMAN NTN-2 polypeptide under conditions whereby the added polypeptide specifically interacts with a component of the medium and /or the extracellular surface to effect a change in the physiology of the cell. According to these methods, the extracellular surface includes plasma membrane-associated receptors; the exogenous HUMAN NTN-2 refers to a polypeptide not made by the cell or, if so, expressed at non-natural levels, times or physiologic locales; and suitable media include in vitro culture media and physiological fluids such as blood, synovial fluid, etc. The polypeptides may be may be introduced, expressed, or repressed in specific populations of cells by any convenient way such as microinjection, promoter-specific expression of recombinant enzyme, targeted delivery of lipid vesicles, etc.
The invention provides natural and non-natural HUMAN NTN-2-specific binding agents, methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. HUMAN NTN-2-specific binding agents include HUMAN NTN-2-specific receptors, such as somatically recombined protein receptors like specific antibodies or
T-cell antigen receptors (See, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory) and also includes other natural binding agents identified with assays such as one-, two- and three- hybrid screens, and non-natural binding agents identified in screens of chemical libraries such as described below. Agents of particular interest modulate HUMAN NTN-2 function.
The invention provides HUMAN NTN-2 nucleic acids, which find a wide variety of applications including use as translatable transcripts, hybridization probes, PCR primers, diagnostic nucleic acids, etc., as well as use in detecting the presence of HUMAN NTN-2 genes and gene transcripts and in detecting or amplifying nucleic acids encoding additional HUMAN NTN-2 homologs and structural analogs.
The subject nucleic acids are of synthetic /non-natural sequences and /or are isolated, i.e., no longer accompanied by some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of total nucleic acid present in a given fraction, and usually recombinant, meaning they comprise a non- natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome. Nucleic acids comprising the nucleotide sequence disclosed herein and fragments thereof, contain such sequence or fragment at a terminus, immediately flanked by a sequence other than that to which it is joined on a natural chromosome, or flanked by a native flanking region fewer than 10 kb, preferably fewer than 2 kb, which is immediately flanked by a sequence other than that to which it is joined on a natural chromosome. While the nucleic acids are usually RNA
or DNA, it is often advantageous to use nucleic acids comprising other bases or nucleotide analogs to provide modified stability, etc.
The amino acid sequences of the disclosed HUMAN NTN-2 polypeptide is used to back translate HUMAN NTN-2 polypeptide-encoding nucleic acids optimized for selected expression systems (Holler, et al. (1993) Gene 136: 323- 328; Martin, et al. (1995) Gene 154: 150-166) or used to generate degenerate oligonucleotide primers and probes for use in the isolation of natural HUMAN NTN-2 encoding nucleic acid sequences ("GCG" software, Genetics Computer Group, Inc., Madison, WI). HUMAN NTN-2 encoding nucleic acids may be part of expression vectors and may be incorporated into recombinant host cells, e.g., for expression and screening, for transgenic animals, for functional studies such as the efficacy of candidate drugs for disease associated with HUMAN NTN-2 mediated signal transduction, etc. Expression systems are selected and /or tailored to effect HUMAN NTN-2 polypeptide structural and functional variants through alternative post- translational processing.
The invention also provides for nucleic acid hybridization probes and replication /amplification primers having a HUMAN NTN-2 cDNA specific sequence and sufficient to effect specific hybridization with SEQ. I.D. NO. 1. Demonstrating specific hybridization generally requires stringent conditions, for example, hybridizing in a buffer comprising 30% formamide in 5 x SSPE (0.18 M NaCl, 0.01 M NaP04, pH7.7, 0.001 M EDTA) buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE; preferably hybridizing in a buffer comprising 50% formamide in 5 x SSPE buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2x SSPE buffer at 42°C. HUMAN NTN-2 cDNA homologs can also be distinguished from other polypeptides using alignment algorithms, such as BLASTX (Altschul, et al. (1990) Basic
Local Alignment Search Tool, J. Mol. Biol. 215: 403-410).
HUMAN NTN-2 hybridization probes find use in identifying wild-type and mutant alleles in clinical and laboratory samples. Mutant alleles are used to generate allele-specific oligonucleotide (ASO) probes for high-throughput clinical diagnoses. HUMAN NTN-2 nucleic acids are also used to modulate cellular expression or intracellular concentration or availability of active
HUMAN NTN-2. HUMAN NTN-2 inhibitory nucleic acids are typically antisense - single stranded sequences comprising complements of the disclosed natural HUMAN NTN-2 coding sequences. Antisense modulation of the expression of a given HUMAN NTN-2 polypeptide may employ antisense nucleic acids operably linked to gene regulatory sequences.
Cells are transfected with a vector comprising a HUMAN NTN-2 sequence with a promoter sequence oriented such that transcription of the gene yields an antisense transcript capable of binding to endogenous HUMAN NTN-2 encoding mRNA. Transcription of the antisense nucleic acid may be constitutive or inducible and the vector may provide for stable extrachromosomal maintenance or integration. Alternatively, single- stranded antisense nucleic acids that bind to genomic DNA or mRNA encoding a given HUMAN NTN-2 polypeptide may be administered to the target cell, in or temporarily isolated from a host, at a concentration that results in a substantial reduction in expression of the targeted polypeptide.
An enhancement in HUMAN NTN-2 expression is effected by introducing into the targeted cell type HUMAN NTN-2 nucleic acids which increase the functional expression of the corresponding gene products. Such nucleic acids may be HUMAN NTN-2 expression vectors, vectors which upregulate the functional expression of an endogenous allele, or replacement vectors for targeted correction of mutant alleles. Techniques for introducing the nucleic acids into viable cells are known in the art and include retroviral- based transfection, viral coat protein-liposome mediated transfection, etc.
The invention provides efficient methods of identifying agents, compounds or lead compounds for agents active at the level of HUMAN NTN-2 modulatable cellular function. Generally, these screening methods involve
assaying for compounds which modulate HUMAN NTN-2 interaction with a natural HUMAN NTN-2 binding target. A wide variety of assays for binding agents are provided including protein-protein binding assays, immunoassays, cell based assays, etc. Preferred methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds.
In vitro binding assays employ a mixture of components including a HUMAN NTN-2 polypeptide, which may be part of a fusion product with another peptide or polypeptide, e.g., a tag for detection or anchoring, etc.
The assay mixtures comprise a natural HUMAN NTN-2 binding target. While native binding targets may be used, it is frequently preferred to use portions thereof as long as the portion provides binding affinity and avidity to the subject HUMAN NTN-2 conveniently measurable in the assay. The assay mixture also comprises a candidate pharmacological agent. Candidate agents encompass numerous chemical classes, though typically they are organic compounds, preferably small organic compounds, and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents such as salts, buffers, neutral proteins, e.g., albumin, detergents, protease inhibitors, nuclease inhibitors, antimicrobial agents, etc., may also be included. The mixture components can be added in any order that provides for the requisite bindings and incubations may be performed at any temperature which facilitates optimal binding. The mixture is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the HUMAN NTN-2 specifically binds the cellular binding target, portion or analog with a reference binding affinity. Incubation periods are chosen for optimal binding but are also minimized to facilitate rapid, high throughput screening.
After incubation, the agent-biased binding between the HUMAN NTN-2 and one or more binding targets is detected by any convenient way. For cell-
free binding type assays, a separation step is often used to separate bound from unbound components. Separation may be effected by precipitation, immobilization, etc., followed by washing by, e.g., membrane filtration or gel chromatography. For cell-free binding assays, one of the components usually comprises or is coupled to a label. The label may provide for direct detection as radioactivity, luminescence, optical or electron density, etc., or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods may be used to detect the label depending on the nature of the label and other assay components, e.g., through optical or electron density, radiative emissions, nonradiative energy transfers, or indirectly detected with antibody conjugates, etc. A difference in the binding affinity of the HUMAN NTN-2 polypeptide to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the binding of the HUMAN NTN-2 polypeptide to the corresponding binding target. A difference, as used herein, is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.
The invention provides for a method for modifying the physiology of a cell comprising an extracellular surface in contact with a medium, said method comprising the step of contacting said medium with an exogenous HUMAN NTN-2 polypeptide under conditions whereby said polypeptide specifically interacts with at least one of a component of said medium and said extracellular surface to effect a change in the physiology of said cell.
The invention further provides for a method for screening for biologically active agents, said method comprising the steps of a) incubating a HUMAN NTN-2 polypeptide in the presence of an extracellular HUMAN NTN-2 polypeptide specific binding target and a candidate agent, under conditions whereby, but for the presence of said agent, said polypeptide specifically binds said binding target at a reference affinity; b) detecting the binding affinity of said polypeptide to said binding target to determine an agent-
biased affinity, wherein a difference between the agent-biased affinity and the reference affinity indicates that said agent modulates the binding of said polypeptide to said binding target.
One embodiment of the invention is an isolated HUMAN NTN-2 polypeptide comprising the amino acid sequence as set forth herein or a fragment thereof having HUMAN NTN-2-specific activity.
Another embodiment of the invention is a recombinant nucleic acid encoding HUMAN NTN-2 polypeptide comprising the amino acid sequence as set forth herein or a fragment thereof having HUMAN NTN-2- specific activity.
Still another embodiment is an isolated nucleic acid comprising a nucleotide sequence as set forth herein or a fragment thereof having at least
18 consecutive bases and sufficient to specifically hybridize with a nucleic acid having the sequence of set forth herein in the presence of natural HUMAN NTN-2 cDNA.
The present invention also provides for antibodies to the HUMAN NTN-2 polypeptide described herein which are useful for detection of the polypeptide in, for example, diagnostic applications. For preparation of monoclonal antibodies directed toward this HUMAN NTN-2 polypeptide, any technique which provides for the production of antibody molecules by continuous cell lines in culture may be used. For example, the hybridoma technique originally developed by Kohler and Milstein (1975, Nature 256:495-497). as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., 1983, Immunology Today 4:72), and the EBV- hybridoma technique to produce human monoclonal antibodies (Cole et al., 1985, in "Monoclonal Antibodies and Cancer Therapy," Alan R. Liss, Inc. pp.
77-96) and the like are within the scope of the present invention.
The monoclonal antibodies for diagnostic or therapeutic use may be human monoclonal antibodies or chimeric human-mouse (or other species) monoclonal antibodies. Human monoclonal antibodies may be made by any of numerous techniques known in the art (e.g., Teng et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:7308-7312; Kozbor et al., 1983, Immunology Today 4:72-79; Olsson et al., 1982, Meth. Enzymol. 92:3-16). Chimeric antibody molecules may be prepared containing a mouse antigen-binding domain with human constant regions (Morrison et al., 1984, Proc. Natl. Acad. Sci. U.S.A. 81:6851, Takeda et al, 1985, Nature 314:452).
Various procedures known in the art may be used for the production of polyclonal antibodies to epitopes of the HUMAN NTN-2 polypeptide described herein. For the production of antibody, various host animals can be immunized by injection with the HUMAN NTN-2 polypeptide, or a fragment or derivative thereof, including but not limited to rabbits, mice and rats. Various adjuvants may be used to increase the immunological response, depending on the host species, and including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille Calmette-Guerin) and Corvnebacterium parvum.
A molecular clone of an antibody to a selected HUMAN NTN-2 polypeptide epitope can be prepared by known techniques. Recombinant DNA methodology (see e.g., Maniatis et al., 1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York) may be used to construct nucleic acid sequences which encode a monoclonal antibody molecule, or antigen binding region thereof.
The present invention provides for antibody molecules as well as fragments of such antibody molecules. Antibody fragments which contain the idiotype of the molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')2 fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments which can be generated by reducing the disulfide bridges of the F(ab') fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent. Antibody molecules may be purified by known techniques, e.g., immunoabsorption or immunoaffinity chromatography, chromatographic methods such as HPLC
(high performance liquid chromatography), or a combination thereof.
The following examples are offered by way of illustration and not by way of limitation.
EXAMPLE 1 - Cloning and Sequencing of Partial HUMAN NTN-2 Coding Sequence
Amino acid sequences of all the known human and mouse members of the TNF family were used as tblastn queries to search the NIH EST database of random fragments of mRNA sequences (Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol. 215:403-10). Each query generated a list of hits, i.e. EST sequences with a substantial sequence similarity to the query sequence. Typically, the hits on top of the list corresponded to mRNA copies of the query protein, followed by ESTs derived from other members of the family and random-chance similarities.
A parser program was used to combine and sort all the hits from searches with all the members of the family. This allowed rapid subtraction of all the hits corresponding to known proteins. The remaining hits were analyzed for conservation of sequence motifs characteristic for the family. Additional
database searches were performed to identify overlapping ESTs. The partial nucleotide and deduced amino acid sequence of Human NTN-2 was determined as follows:
10 20 30 40 50
Seq ID#1 ACT GGT TAC TTT TTT ATA TAT GGT CAG GTT TTA TAT ACT GAT AAG ACC TAC GCC ATG Seq ID#2 Thr Gly Tyr Phe Phe He Tyr Gly Gin Val Leu Tyr Thr Asp Lys Thr Tyr Ala Met>
60 70 80 90 100 no
GGA CAT CTA ATT CAG AGG NAG AAG GTC CAT GTC TTT GGG GAT GAA TTG AGT CTG GTG Gly His Leu He Gin Arg Xxx Lys Val His Val Phe Gly Asp Glu Leu Ser Leu Val>
120 130 140 150 160 170
ACT TTG TTT CGA TGT ATT CAA AAT ATG CCT GAA ACA CTA CCC AAT AAT TCC TGC TAT Thr Leu Phe Arg Cys He Gin Asn Met Pro Glu Thr Leu .Pro Asn Asn Ser Cys Tyr>
180 190 200 210 220
TCA GCT GGC ATT GCA AAA CTG GAA GAA GGA GAT GAA CTC CAA CTT GCA ATA CCA AGA Ser Ala Gly He Ala Lys Leu Glu Glu Gly Asp Glu Leu Gin Leu Ala He Pro Arg>
230 240 250 260 270 280
GAA AAT GCA CAA ATA TCA CTG GAT GGA GAT GTC ACA TTT TTT GGT GCA TTG AAA CTG Glu Asn Ala Gin He Ser Leu Asp Gly Asp Val Thr Phe Phe Gly Ala Leu Lys Leu>
290 CTG TGA
Leu ***>
Using the nucleotide sequence of SEQ. I.D. NO. 1 as a query, additional database searches were performed to identify overlapping ESTs. Two additional clones from the I.M.A.G.E. consortium were discerned to contain homologous sequence. These clones, GeneBank Accession Nos. AA166695 and T87299 were obtained from Research Genetics, Inc. (Huntsville, AL) and sequenced using the ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA). Alignment of the two additional clones with SEQ. I.D. NO. 1 indicated a total length of 680 nucleotides. Oligonucleotides were designed based on the partial human sequence and used as primers for the reverse transcriptase reaction and for PCR. A 608 nucleotide long sequence was obtained and used as a probe to isolate the full length sequence as described below.
EXAMPLE 2 - ISOLATION AND SEQUENCING OF FULL LENGTH cDNA CLONE ENCODING HUMAN NTN-2
A human placenta cDNA library in lambda gt-10 was obtained from
Clontech Laboratories, Inc. (Palo Alto, CA). Plaques were plated at a density of 1.25 x 106/20x20 cm plate, and replica filters taken following standard procedures (Sambrook, et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., page 8.46, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York). Filters were screened at normal stringency (2 x SSC, 65°C) with a probe corresponding to nucleotides 216 to 824 of the hNTN-2 sequence shown in SEQ. I.D. NO. 3. The probe was hybridized at 65°C in hybridization solution containing 0.5 mg/ml salmon sperm DNA to decrease non-specific binding of the probe to the filter. Filters were washed in 2 x SSC at 65° C and exposed overnight to X-ray film. Five positive clones were picked that showed strong hybridization signals and also produced fragments when PCR-amplified using oligos from the cDNA vector.
Sequencing of h.NTN-2 The coding region from each of the five clones was sequenced using the ABI
373A DNA sequencer and Taq Dyedeoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA). The nucleotide and deduced amino acid sequence of the full length hNTN-2 coding sequence obtained from one of the clones is set forth as follows:
10 20 30 40 50 60
SEQ ID #3 ATG GAT GAC TCC ACA GAA AGG GAG CAG TCA CGC CTT ACT TCT TGC CTT AAG AAA AGA GAA SEO ID #<ι Met Asp Asp Ser Thr Glu Arg Glu Gin Ser Arg Leu Thr Ser Cys Leu Lys Lys Arg Glu>
70 80 90 100 110 120
* * * * _ _
GAA ATG AAA CTG AAG GAG TGT GTT TCC ATC CTC CCA CGG AAG GAA AGC CCC TCT GTC CGA Glu Met Lys Leu Lys Glu Cys Val Ser He Leu Pro Arg Lys Glu Ser Pro Ser Val Arg>
130 140 150 160 170 180
* * * * * Λ
TCC TCC AAA GAC GGA AAG CTG CTG GCT GCA ACC TTG CTG CTG GCA CTG CTG TCT TGC TGC Ser Ser Lys Asp Gly Lys Leu Leu Ala Ala Thr Leu Leu Leu Ala Leu Leu Ser Cys Cys>
190 200 210 220 230 240
» . * • _ »
CTC ACG GTG GTG TCT TTC TAC CAG GTG GCC GCC CTG CAA GGG GAC CTG GCC AGC CTC CGG Leu Thr Val Val Ser Phe Tyr Gin Val Ala Ala Leu Gin Gly Asp Leu Ala Ser Leu Arg>
250 260 270 280 290 300
* * * * * *
GCA GAG CTG CAG GGC CAC CAC GCG GAG AAG CTG CCA GCA GGA GCA GGA GCC CCC AAG GCC Ala Glu Leu Gin Gly His His Ala Glu Lys Leu Pro Ala Gly Ala Gly Ala Pro Lys Ala>
310 20 330 340 350 360
* * * * * * GGC CTG GAG GAA GCT CCA GCT GTC ACC GCG GGA CTG AAA ATC TTT GAA CCA CCA GCT CCA Gly Leu Glu Glu Ala Pro Ala Val Thr Ala Gly Leu Lys He Phe Glu Pro Pro Ala Pro>
370 380 390 400 410 420
* * * * * _ GGA GAA GGC AAC TCC AGT CAG AAC AGC AGA AAT AAG CGT GCC GTT CAG GGT CCA GAA GAA
Gly Glu Gly Asn Ser Ser Gin Asn Ser Arg Asn Lys Arg Ala Val Gin Gly Pro Glu Glu>
430 440 450 460 470 480
* * * * * *
ACA GTC ACT CAA GAC TGC TTG CAA CTG ATT GCA GAC AGT GAA ACA CCA ACT ATA CAA AAA Thr Val Thr Gin Asp Cys Leu Gin Leu He Ala Asp Ser Glu Thr Pro Thr He Gin Lys>
490 500 510 520 530 540
GGA TCT TAC ACA TTT GTT CCA TGG CTT CTC AGC TTT AAA AGG GGA AGT GCC CTA GAA GAA Gly Ser Tyr Thr Phe Val Pro Trp Leu Leu Ser Phe Lys Arg Gly Ser Ala Leu Glu Glu>
550 560 570 580 590 600
« . » . . .
AAA GAG AAT AAA ATA TTG GTC AAA GAA ACT GGT TAC TTT TTT ATA TAT GGT CAG GTT TT*. Lys Glu Asn Lys lie Leu Val Lys Glu Thr Gly Tyr Phe Phe He Tyr Gly Gin Val Leu>
610 620 630 640 650 660
. • « * * *
TAT ACT GAT AAG ACC TAC GCC ATG GGA CAT CTA ATT CAG AGG AAG AM3 GTC CAT GTC TTT Tyr Thr Asp Lys Thr Tyr Ala Met Gly His Leu He Gin Arg Lys Lys Val His Val Phe> 670 6B0 690 700 710 720
GGG GAT GAA TTG AGT CTG GTG ACT TTG TTT CGA TGT ATT CAA AAT ATG CCT GAA ACA CTA Gly Asp Glu Leu Ser Leu Val Thr Leu Phe Arg Cys He Gin Asn Met Pro Glu Thr Leu>
730 740 750 760 770 780
CCC AAT AAT TCC TGC TAT TCA GCT GGC ATT GCA AAA CTG GAA GAA GGA GAT GAA CTC CAA Pro Asn Asn Ser Cys Tyr Ser Ala Gly He Ala Lys Leu Glu Glu Gly Asp Glu Leu Gln>
790 800 810 820 830 840
CTT GCA ATA CCA AGA GAA AAT GCA CAA ATA TCA CTG GAT GGA GAT GTC ACA TIT TTT GGT Leu Ala He Pro Arg Glu Asn Ala Gin He Ser Leu Asp Gly Asp Val Thr Phe Phe Gly>
850
*
GCA TTG AAA CTG CTG TGA Ala Leu Lys Leu Leu ***>
EXAMPLE 3 - TISSUE SPECIFIC EXPRESSION OF hNTN-2
A fragment corresponding to nucleotides 216 to 824 of the hNTN-2 sequence shown in SEQ. I.D. NO. 3 was radiolabeled and utilized in Northern analysis of various human tissue specific RNAs. The Northern blot containing polyA+ RNA from several human tissues was obtained from Clontech Laboratories, Inc. (Palo Alto, CA) and was hybridized at 65°C to the radiolabeled hNTN-2 probe in the presence of 0.5M NaP04 (pH 7), 1% bovine serum albumin (Fraction V, Sigma), 7% SDS, 1 mM EDTA and 100 ng/ml sonicated, denatured salmon sperm DNA. The filter was washed at
65°C with 2X SSC, 0.1% SDS and subjected to autoradiography for 16 hours with one intensifying screen and X-ray film at -70°C.
The hNTN-2 probe hybridized strongly to a 2.7 kb transcript in human heart, placenta, pancreas and lung tissue (Figure 1) and hybridized weakly to
RNA from brain and liver. Weaker levels of expression could also be found in skeletal muscle and kidney. High expression of hNTN-2 in heart tissue may suggest that the present invention may be utilized to treat heart disease. Expression of hNTN-2 in lung and pancreas tissue may suggest that the present invention may be utilized to treat lung and /or pancreas related disorders.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Claims
1. An isolated nucleic acid molecule encoding HUMAN NTN-2.
2. An isolated nucleic acid molecule according to claim 1, having a sequence selected from the group consisting of:
(a) the nucleotide sequence comprising the coding region of the HUMAN NTN-2 as set forth in SEQ. I.D. NO. 3;
(b) a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of (a) and which encodes a molecule having the biological activity of the HUMAN NTN-2; or
(c) a nucleotide sequence which, but for the degeneracy of the genetic code would hybridize to a nucleotide sequence of (a) or (b), and which encodes a molecule having the biological activity of the HUMAN NTN-2.
3. A vector which comprises a nucleic acid molecule of claim 1 or 2.
4. A vector according to claim 3, wherein the nucleic acid molecule is operatively linked to an expression control sequence capable of directing its expression in a host cell.
5. A vector according to claim 3 or 4, which is a plasmid.
6. Isolated HUMAN NTN-2 polypeptide encoded by the nucleic acid molecule of claim 1 or 2.
7. Isolated HUMAN NTN-2 polypeptide, having the amino acid sequence as set forth in SEQ. I.D. NO. 4.
8. A host-vector system for the production of HUMAN NTN-2 which comprises a vector of claim 3 or 4, in a host cell.
9. A host-vector system according to claim 8, wherein the host cell is a bacterial, yeast, insect or mammalian cell.
10. A method of producing HUMAN NTN-2 which comprises growing cells of a host-vector system of claim 8 or 9, under conditions permitting production of the cerberus, and recovering the HUMAN NTN-2 so produced.
11. An antibody which specifically binds the HUMAN NTN-2 of claim 6 or 7.
12. An antibody according to claim 11, which is a monoclonal antibody.
13. A pharmaceutical composition comprising HUMAN NTN-2 according to claim 6 or 7, and a pharmaceutically acceptable carrier.
14. A pharmaceutical composition comprising an antibody according to claim 11 or 12, and a pharmaceutically acceptable carrier.
15. HUMAN NTN-2 according to claim 6 or 7, an antibody according to claim 11 or 12, or a composition according to claim 13 or 14, for use in a method of treatment of the or animal body, or in a method of diagnosis.
16. A polypeptide produced by the method of claim 10.
17. A ligandbody which comprises HUMAN NTN-2 fused to an immunoglobulin constant region.
18. The ligandbody of claim 17, wherein the immunoglobulin constant region is the Fc portion of human IgGl.
19. A ligandbody according to claim 17 or 18, for use in a method of treatment of the human or animal body, or in a method of diagnosis.
20. A polypeptide comprising the amino acid sequence as set forth in SEQ. I.D. NO. 4.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US4877697P | 1997-06-06 | 1997-06-06 | |
| US48776P | 1997-06-06 | ||
| US6638797P | 1997-11-21 | 1997-11-21 | |
| US66387P | 1997-11-21 | ||
| PCT/US1998/011294 WO1998055621A1 (en) | 1997-06-06 | 1998-06-03 | Ntn-2 member of tnf ligand family |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0991759A1 true EP0991759A1 (en) | 2000-04-12 |
Family
ID=26726521
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP98923907A Withdrawn EP0991759A1 (en) | 1997-06-06 | 1998-06-03 | Ntn-2 member of tnf ligand family |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP0991759A1 (en) |
| JP (1) | JP2002517977A (en) |
| AU (1) | AU7608898A (en) |
| CA (2) | CA2292899A1 (en) |
| IL (1) | IL133316A0 (en) |
| WO (1) | WO1998055621A1 (en) |
Families Citing this family (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6812327B1 (en) | 1996-10-25 | 2004-11-02 | Human Genome Sciences, Inc. | Neutrokine-alpha polypeptides |
| US6689579B1 (en) | 1996-10-25 | 2004-02-10 | Human Genome Sciences, Inc. | Polynucleotides encoding neutrokine-α |
| AU9376498A (en) * | 1997-09-05 | 1999-03-22 | University Of Washington | Tumor necrosis factor family receptors and ligands, encoding nucleic acids and related binding agents |
| WO1999026463A2 (en) * | 1997-11-26 | 1999-06-03 | Eli Lilly And Company | Tnf ligand family gene |
| US6297367B1 (en) * | 1997-12-30 | 2001-10-02 | Chiron Corporation | Polynucleotide encoding TNFL1 |
| AU2093499A (en) * | 1997-12-30 | 1999-07-19 | Chiron Corporation | Members of tnf and tnfr families |
| US7488590B2 (en) | 1998-10-23 | 2009-02-10 | Amgen Inc. | Modified peptides as therapeutic agents |
| AU1467000A (en) * | 1998-11-04 | 2000-05-22 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | A novel tumor necrosis factor family member, drl, and related compositions and methods |
| GB9828628D0 (en) | 1998-12-23 | 1999-02-17 | Glaxo Group Ltd | Novel ligand |
| DE60005135T3 (en) * | 1999-01-07 | 2015-04-09 | Zymogenetics, Inc. | SOLUBLE RECEPTORS BR43X2 AND METHOD FOR THEIR THERAPEUTIC USE |
| US7833529B1 (en) | 1999-01-07 | 2010-11-16 | Zymogenetics, Inc. | Methods for inhibiting B lymphocyte proliferation with soluble ztnf4 receptor |
| US20030095967A1 (en) | 1999-01-25 | 2003-05-22 | Mackay Fabienne | BAFF, inhibitors thereof and their use in the modulation of B-cell response and treatment of autoimmune disorders |
| CA2360062A1 (en) | 1999-01-25 | 2000-07-27 | Biogen, Inc. | Baff, inhibitors thereof and their use in the modulation of b-cell response |
| US6475986B1 (en) * | 1999-02-02 | 2002-11-05 | Research Development Foundation | Uses of THANK, a TNF homologue that activates apoptosis |
| WO2000047740A2 (en) * | 1999-02-12 | 2000-08-17 | Amgen Inc. | Tnf-related proteins |
| US20030022233A1 (en) | 1999-04-30 | 2003-01-30 | Raymond G. Goodwin | Methods of use of the taci/taci-l interaction |
| EP1210425B2 (en) | 1999-08-17 | 2015-06-17 | Biogen MA Inc. | Baff receptor (bcma), an immunoregulatory agent |
| UA74798C2 (en) | 1999-10-06 | 2006-02-15 | Байоджен Айдек Ма Інк. | Method for treating cancer in mammals using polypeptide interfering with interaction between april and its receptors |
| CA2408617A1 (en) | 2000-05-12 | 2001-11-22 | Amgen Inc. | Methods and compositions of matter concerning april/g70, bcma, blys/agp-3, and taci |
| EP2275449B1 (en) | 2000-06-16 | 2016-09-28 | Human Genome Sciences, Inc. | Antibodies that immunospecifically bind to BLyS |
| US7220840B2 (en) | 2000-06-16 | 2007-05-22 | Human Genome Sciences, Inc. | Antibodies that immunospecifically bind to B lymphocyte stimulator protein |
| US20030091565A1 (en) | 2000-08-18 | 2003-05-15 | Beltzer James P. | Binding polypeptides and methods based thereon |
| UA83458C2 (en) | 2000-09-18 | 2008-07-25 | Байоджен Айдек Ма Інк. | The isolated polypeptide baff-r (the receptor of the factor of activation of b-cells of the family tnf) |
| ES2387546T3 (en) | 2001-05-11 | 2012-09-25 | Amgen Inc. | Peptides and related molecules that bind to TALL-1 |
| DK1436003T3 (en) | 2001-05-24 | 2010-03-15 | Zymogenetics Inc | TACI-immunoglobulin fusion proteins |
| AU2004233164B2 (en) | 2003-03-28 | 2009-10-08 | Biogen Ma Inc. | Truncated BAFF receptors |
| US20050255560A1 (en) * | 2003-11-21 | 2005-11-17 | Zeren Gao | Ztnf11, a tumor necrosis factor |
| WO2006044582A2 (en) * | 2004-10-13 | 2006-04-27 | The Washington University | Use of baff to treat sepsis |
| ZA200801354B (en) | 2005-08-09 | 2009-08-26 | Ares Trading Sa | Methods for treating B-cell malignancies using TACI-lg fusion molecule |
| AU2006278227B2 (en) | 2005-08-09 | 2011-10-20 | Ares Trading S.A. | Methods for the treatment and prevention of abnormal cell proliferation using TACI-fusion molecules |
| US9168286B2 (en) | 2005-10-13 | 2015-10-27 | Human Genome Sciences, Inc. | Methods and compositions for use in treatment of patients with autoantibody positive disease |
| CA2629306A1 (en) | 2005-11-23 | 2007-05-31 | Genentech, Inc. | Methods and compositions related to b cell assays |
| US8211649B2 (en) | 2006-03-31 | 2012-07-03 | Human Genome Sciences, Inc. | Methods of diagnosing and prognosing hodgkin's lymphoma |
| EA015342B1 (en) | 2006-05-15 | 2011-06-30 | Арес Трейдинг С.А. | Methods for treating autoimmune diseases using a taci-ig fusion molecule |
| US9458246B2 (en) | 2013-03-13 | 2016-10-04 | Amgen Inc. | Proteins specific for BAFF and B7RP1 |
| PH12022550138A1 (en) | 2013-03-13 | 2023-03-06 | Amgen Inc | Proteins specific for baff and b7rp1 and uses thereof |
| CN106367714A (en) | 2015-07-24 | 2017-02-01 | 先健科技(深圳)有限公司 | Iron-based absorbent implanting medical instrument, prefabricated tube, and production methods of medical instrument and prefabricated tube |
| JP2020502218A (en) | 2016-12-21 | 2020-01-23 | メレオ バイオファーマ 3 リミテッド | Use of anti-sclerostin antibodies in the treatment of osteogenesis imperfecta |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BR9612752A (en) * | 1996-10-25 | 2000-01-18 | Human Genome Sciences Inc | Neutrocin |
| WO1998027114A2 (en) * | 1996-12-17 | 1998-06-25 | Schering Corporation | Mammalian cell surface antigens; related reagents |
-
1998
- 1998-06-03 WO PCT/US1998/011294 patent/WO1998055621A1/en not_active Ceased
- 1998-06-03 CA CA002292899A patent/CA2292899A1/en not_active Abandoned
- 1998-06-03 AU AU76088/98A patent/AU7608898A/en not_active Abandoned
- 1998-06-03 CA CA002292835A patent/CA2292835A1/en not_active Abandoned
- 1998-06-03 IL IL13331698A patent/IL133316A0/en unknown
- 1998-06-03 EP EP98923907A patent/EP0991759A1/en not_active Withdrawn
- 1998-06-03 JP JP50275099A patent/JP2002517977A/en active Pending
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9855621A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| IL133316A0 (en) | 2001-04-30 |
| CA2292899A1 (en) | 1998-12-10 |
| WO1998055621A1 (en) | 1998-12-10 |
| CA2292835A1 (en) | 1998-12-10 |
| JP2002517977A (en) | 2002-06-18 |
| AU7608898A (en) | 1998-12-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU743490B2 (en) | NTN-2 member of TNF ligand family | |
| EP0991759A1 (en) | Ntn-2 member of tnf ligand family | |
| US6475987B1 (en) | Tall-1 receptor homologues | |
| BG65519B1 (en) | Interleukin-18-binding proteins, methods for their preparation and administration | |
| EP1019502A2 (en) | Human orphan receptor ntr-1 | |
| AU9230398A (en) | Cysteine rich receptors-train | |
| JPH11225774A (en) | Member of immunoglobulin gene superfamily, pigr-1 | |
| US20020160451A1 (en) | Novel orphan receptors | |
| AU748167B2 (en) | Novel nucleic acid and polypeptide | |
| CA2339968A1 (en) | Dcr5, a bmp-binding protein, and applications thereof | |
| WO1997042321A9 (en) | Osteoclast transporter protein | |
| WO1997042321A1 (en) | Osteoclast transporter protein | |
| AU2675197A (en) | Novel protein - traf6 | |
| WO2000018800A1 (en) | Novel secreted immunomodulatory proteins and uses thereof | |
| WO1999026980A1 (en) | Methods and reagents for the utilization of sap family member proteins, novel signal transduction regulators | |
| AU753400C (en) | Orphan receptors | |
| US6207413B1 (en) | Nucleic acids encoding novel orphan cytokine receptors | |
| JPH11215989A (en) | Member of immunoglobulin gene super family, pigr-2 | |
| JP2002518061A (en) | Novel molecules of the T110-related protein family and uses thereof | |
| JPH1072495A (en) | Immunity-related factor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19991207 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| 17Q | First examination report despatched |
Effective date: 20011127 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20020608 |