[go: up one dir, main page]

EP0969189A1 - Totaler Kühlungszusammenbau für Kraftfahrzeuge, die mit Brennkraftmaschinen angetrieben werden - Google Patents

Totaler Kühlungszusammenbau für Kraftfahrzeuge, die mit Brennkraftmaschinen angetrieben werden Download PDF

Info

Publication number
EP0969189A1
EP0969189A1 EP98112126A EP98112126A EP0969189A1 EP 0969189 A1 EP0969189 A1 EP 0969189A1 EP 98112126 A EP98112126 A EP 98112126A EP 98112126 A EP98112126 A EP 98112126A EP 0969189 A1 EP0969189 A1 EP 0969189A1
Authority
EP
European Patent Office
Prior art keywords
pump
motor
engine
heat exchanger
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98112126A
Other languages
English (en)
French (fr)
Other versions
EP0969189B1 (de
Inventor
Ron Bokkers
Bjorn Rossing
Alexander Joseph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Tire Canada Inc
Original Assignee
Siemens Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Canada Ltd filed Critical Siemens Canada Ltd
Priority to DE69823015T priority Critical patent/DE69823015T2/de
Priority to EP98112126A priority patent/EP0969189B1/de
Publication of EP0969189A1 publication Critical patent/EP0969189A1/de
Application granted granted Critical
Publication of EP0969189B1 publication Critical patent/EP0969189B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/143Controlling of coolant flow the coolant being liquid using restrictions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/32Deblocking of damaged thermostat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/34Limping home
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/36Failure of coolant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/14Condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives

Definitions

  • This invention relates to a cooling assembly and more particularly to a total cooling system that includes various pump and valve configurations to provide efficient fluid circulation and heat rejection in a engine compartment of an internal combustion engine of a vehicle.
  • An internal combustion engine requires heat rejection generally either by air or liquid.
  • liquid cooled engines are most common.
  • Liquid engine cooling is accomplished by a engine-driven coolant pump (commonly referred to as a water pump) mounted on the engine block and operated directly by the engine.
  • the pump forces coolant through passages in the engine, where the coolant absorbs engine heat, then the coolant passes through a radiator where heat is rejected, and finally coolant is returned to the pump inlet to complete the fluid circuit.
  • a fan driven either directly from the engine or by an electric motor, is used in may cases to draw ambient air across the radiator so that heat is rejected at the radiator by transferring heat from the coolant to the ambient air, thus cooling the engine.
  • a conventional thermostat controls the flow of pumped coolant through the radiator in relation to coolant temperature.
  • the thermostat controls flow through the radiator until the coolant reaches a sufficiently hot temperature to cause the thermostat to allow flow through the radiator such that the radiator may effectively limit engine temperature.
  • the thermostat performs a form of coolant temperature regulation that establishes a desired operating temperature for the engine once the engine has fully warmed up while inherently allowing the coolant to heat more rapidly when the engine is started from a cooler condition.
  • cooling system is effective in operation, to improve fuel economy, it is preferable to operate the cooling fan and water pump motor based on cooling requirements, rather than on the r.p.m. of the engine.
  • An object of the invention is to fulfill the need referred to above.
  • this objective is obtained by providing a total cooling assembly adapted for installation in an engine compartment of an automotive vehicle and defining an air flow path.
  • the vehicle has in internal combustion engine.
  • the assembly includes a heat exchanger module constructed and arranged to transfer heat from fluid coolant to air entering the air flow path and having front and rear faces such that air can pass in heat exchange relation across the heat exchanger module to absorb heat from fluid coolant flowing through the heat exchanger module.
  • the heat exchanger module includes an inlet and an outlet.
  • a cooling fan module carries the heat exchanger module and includes a fan and an electric fan motor for drawing air across the heat exchanger module from the front face to the rear face of the heat exchanger module.
  • Pump structure is carried by the cooling fan module to circulate fluid coolant.
  • the pump structure has at least one pump and an electric motor driving the pump.
  • a cooling circuit is provided in which fluid coolant is circulated by the action of the pump structure.
  • the cooling circuit permits the fluid coolant to move from the pump structure to the engine.
  • An outlet of the engine is constructed and arranged to communicate fluid coolant with the inlet to the heat exchanger module.
  • the outlet of the heat exchanger module is fluidly connected with an inlet to the pump structure to return the fluid coolant to the pump structure.
  • the cooling circuit includes bypass structure constructed and arranged to fluidly connect an outlet of the engine with an inlet to the pump structure.
  • Valve structure is provided in the cooling circuit to regulate flow therethrough.
  • a controller controls operation of the at least one electric motor of the pump structure, the electric fan motor, and the valve structure.
  • the bypass structure permits fluid coolant to flow from the outlet of the engine to the inlet of the pump structure while substantially preventing fluid coolant to flow through the heat exchanger module.
  • a total engine cooling assembly for an internal combustion engine is shown, provided in accordance with the principles of the present invention.
  • the internal combustion engine is schematically illustrated and designated by the letter E.
  • the cooling assembly 10 comprises a cooling fan module, generally indicated at 12, an electric coolant pump structure, generally indicated at 14, an electronic systems control module 16, and a heat exchanger module, generally indicated at 18.
  • the pump structure 14 and the electronic systems control module 16 are carried by the cooling fan module 12.
  • the heat exchanger module 18 is joined with the cooling fan module 12 by suitable joining means, such as fasteners, to form the total cooling assembly 10.
  • the heat exchanger module 18 comprises a radiator 20 and, when air conditioning is provided, an air conditioning condenser 22 is disposed adjacent to the radiator 20.
  • Radiator 20 is conventional, comprising right and left side inlet header tabs 24R and 24L, and a core 25 disposed between the two header tab 24R, 24L.
  • the right side header tank 24R is an inlet tank and includes an inlet tube 26 at an upper end thereof.
  • the inlet tube 26 is fluidly coupled with a T-type connector 28 of the pump structure 14, the function of which will become apparent below.
  • the left side header tank 24L is an outlet tank and includes an outlet tube 30 near lower end thereof which is fluidly connected to an inlet (not shown) of the pump structure 14.
  • the pump structure 14 comprises first and second pump-motors P1 and P2, respectively, each having a pump being driven by an associated electric motor.
  • Pump-motor P2 has an inlet 29 (FIG. 2) fluidly connected to the outlet tube 30 of the heat exchanger module 18.
  • the pump-motor P2 is fluidly connected to pump-motor P1 and pump-motor P1 includes an outlet 40 fluidly coupled with the internal combustion engine E at inlet 62, and fluidly connected to a heater core 44.
  • bypass structure generally indicated at 43, is provided which includes a hose 45 coupled to a return inlet 47 of the pump-motor P1, and the T-type connector 28.
  • Valve structure 74 is provided in the bypass structure for controlling flow therethrough.
  • inlet 26 of the radiator 20 is fluidly connected to one end of the T-type connector 28.
  • the other end of the T-type connector 28 is fluidly coupled to the engine E, the function of which will be explained below.
  • the cooling fan module 12 comprises a panel structure 32 having a size corresponding generally to the size of the heat exchanger module 18.
  • the pump structure 14 and the electronic systems control module 16 are coupled to the panel structure 32.
  • an axial flow fan structure is provided and comprises a fan 46 and an electric motor 48 coupled to the fan 46 to operate the fan 46.
  • Fan 46 is disposed concentrically with a surrounding circular-walled through opening 50 in the panel structure 32.
  • An expansion tank 52 is mounted on the cooling fan module 12 to receive, from connector 33 of the right header tank and via tube 35, coolant during certain operating conditions.
  • Radiator 20 and condenser 22 each define a heat exchanger serving to reject heat to ambient air.
  • Engine coolant in the case of the engine cooling system, and refrigerant, in the case of the air conditioning system, flow through passageways and their respective heat exchangers while ambient air flows across the passageways from the front face to the rear face of the heat exchanger module 18, in a direction of arrows A in FIG. 1.
  • the air passes successively through the condenser 22 and the radiator 20.
  • Each heat exchanger typically is constructed with fins, corrugations, or other means to increase the effective heat transfer surface area of the passageways for increasing heat transfer efficiency.
  • the flow of ambient air across the heat exchanger module 18 forms a effluent stream, with such flow being caused either by the operation of the fan 46 by motor 48 to draw air across the heat exchanger module 18 or by a ram air effect when the vehicle is in forward motion, or a combination of both.
  • the electronic systems control module 16 receives electric power from the vehicle electrical system and also various signals from various sources.
  • Module 16 comprises electronic control circuitry that acts upon the signals to control the operation of electric motors of the pump-motors P1 and P2, fan motor 48 and to control the operation of the valve structure 74 and heater valve 68. Since control module 16 operates the fan 46 and pump structure 14 at speeds based on cooling requirements rather than engine r.p.m., engine power is used more efficiently and thus, fuel economy is improved.
  • Examples of other signal sources controlled by the control module 16 include temperature and/or pressure sensors located at predetermined locations in the respective cooling and air conditioning systems, and/or data from an engine management computer, and/or data from an electronic data bus of the vehicle's electrical system.
  • the control module 16 includes a controller or microprocessor which processes signals and/or data from the various sources to operate the pump-motors and fan such that the temperature of coolant, in the case of the engine cooling system, and the pressure of refrigerant, in the case of the air conditioning system, are regulated to the desired temperature and pressures, respectively.
  • FIG. 2 is a schematic illustration of the total cooling system 10 of FIG. 1.
  • the pump structure 14 comprises the two pump-motors, P1 and P2.
  • An outlet 40 of the pump of the pump-motor P1 fluidly communicates with an inlet 62 of the engine E.
  • a outlet 40 of the pump of pump-motor P1 communicates with an inlet 64 of the heater core 44.
  • An outlet 66 of heater core 44 is in communication with a heater valve 68 which communicates via connecting line 70 with fluid exiting the engine via flow path 72.
  • Connecting line 70 is in fluid communication with the bypass structure 43.
  • the T-type connector 28 permits coolant to flow through to the radiator inlet 26 and also to valve 74 disposed in the bypass structure 43 and return to the pump-motor P1.
  • Valve 74 is preferably a two-way variable flow control valve movable between open and closed positions at any point in between so as to open or close the bypass structure 43.
  • the outlet 30 of the radiator 20 is directed to the second pump-motor P2 and the second pump-motor P2 is in fluid communication with the pump of pump-motor P1.
  • the pump-motors P1 and P2 are conventional and are provided so that a single high power pump-motor generally of higher cost need not be provided. Further, flow of coolant can be controlled easier with two smaller pump-motors than with one large pump-motor.
  • the total cooling assembly may include a built-in "limp-home" fail safe feature.
  • the two pump-motor design if one pump-motor fails, the other pump-motor will ensure that fluid may pass around the failed pump-motor via a pump bypass circuit having a pressure relief valve.
  • the pressure relief valve will ensure that the coolant passes to the engine to protect the engine.
  • the controller of the control module 16 will have logic built-in to control this feature and to alert the driver of the vehicle to bring the vehicle to a service center.
  • valve associated with the bypass structure fails, a default , closed valve condition is established such that all coolant passes through the radiator circuit.
  • pump-motors P1 and P2 each has a two-speed brush motor.
  • Pump-motor P1 preferably operates at 300 W and 120W while pump-motor P2 preferably operates at 450 W and 150 W.
  • the pump-motors P1 and P2 each has a brushless motor, with pump-motor P1 operating at 300 W, while pump-motor P2 operates at 450 W.
  • pump-motor P1 has a two-speed brush motor operating at 300 W and 120 W while pump-motor P2 has a brushless motor operating at 450 W.
  • TABLE 1 shows flow rates through the radiator 20, heater core 44 and bypass structure 46 at operating conditions for option 1, wherein pump-motors P1 and P2 each have a two speed brush motor.
  • valve 74 in the bypass structure 43 is open and generally no flow is permitted through the radiator 20 since flow is restricted at pump-motor P2 which is not in operation.
  • both pump-motors P1 and P2 are in operation.
  • the current draw is shown in the table for each operating condition. It is noted that only 0.3 l/s is required through the radiator 20 at idle and at 70 Kph for heat balance, but the low speed of the pump motors forces 2.0 l/s.
  • TABLE 2 shows flow rates through the radiator 20, heater core 44 and bypass structure 46 at operating conditions for option 2, wherein pump-motors P1 and P2 each have a brushless motor.
  • pump-motors P1 and P2 each have a brushless motor.
  • valve 74 in the bypass structure 43 is open and generally no flow is permitted through the radiator 20 since flow is restricted at pump-motor P2 which is not in operation.
  • both pump-motors P1 and P2 are in operation. The current draw is shown in the table for each operating condition.
  • TABLE 3 shows flow rates through the radiator 20, heater core 44 and bypass structure 46 at operating conditions for option 3, wherein pump-motor P1 has a two-speed brush motor and pump-motor P2 has a brushless motor.
  • pump-motor P1 has a two-speed brush motor
  • pump-motor P2 has a brushless motor.
  • valve 74 in the bypass structure 43 is open and generally no flow is permitted through the radiator 20 since flow is restricted at pump-motor P2 which is not in operation.
  • both pump-motors P1 and P2 are in operation.
  • FIG. 3 is a schematic illustration of another embodiment of the total cooling system 10'of the invention.
  • pump outlet 40 fluidly communicates with an inlet to the engine E and outlet 78 of the engine E communicates via a line 80 with the inlet 26 of the radiator 20.
  • Outlet 78 also communicates with the bypass structure 43. Coolant flow through the bypass structure 43 is controlled by a three-way variable flow control valve 82.
  • An outlet 30 of the radiator 20 communicates with the three-way valve 82 which in turn communicates with the inlet of the pump-motor P1.
  • a heater core 44 communicates with an inlet 84 of the pump-motor P1 via line 86 and a heater valve 68 is disposed between the heater core and the engine E.
  • the pump-motor P1 preferably has a brushless motor which operates generally at 760 W.
  • FIG. 3 represents a 36 volt system.
  • TABLE 4 shows flow rates through the radiator 20, heater core 44 and bypass structure 46 at operating conditions for the embodiment of FIG. 3, wherein the pump-motor P1 has a brushless motor and a three-way valve 82 is employed in the fluid circuit. As shown, at warm-up, the three- way valve 82 permits flow from the bypass to the pump-motor P1, but prevents flow through the radiator 20. Note that the current draw is much less than the two pump-motor embodiments in TABLES 1-3 since only one motor is need.
  • FIG. 4 is a schematic illustration of another embodiment of a total cooling system 10''of the invention.
  • an outlet 40 of pump-motor P1 is in fluid communication with an inlet to engine E.
  • an outlet of the pump of the pump-motor P1 is in fluid communication with the inlet 26 of radiator 20.
  • a two-way variable flow control valve 88 is disposed between the pump-motor P1 and the radiator 20.
  • An outlet of the engine E is fluidly connected to the bypass structure 43 via line 90, which is also connected to the outlet 30 of the radiator 20.
  • the bypass structure 43 communicates with the pump-motor P1.
  • an outlet of the pump-motor P1 is in fluid communication with an inlet to the heater core 44.
  • a heater valve 68 is disposed downstream of the heater core 44 and the outlet of the heater core 44 communicates with the pump-motor P1.
  • Pump-motor P1 preferably has a brushless motor which operates at 640 W.
  • FIG. 4 represents a 36 volt system.
  • TABLE 5 shows flow rates through the radiator 20, heater core 44 and bypass structure 46 at operating conditions for the embodiment of FIG. 4, wherein the pump-motor P1 has a brushless motor and a two-way valve 88 is provided in the fluid circuit. Again, at warm-up, valve 88 is closed such that no flow is permitted though the radiator.
  • Operating Condition Q Kw
  • Circuit Flow l/s
  • Radiator Bypass Heater Warm Up 0 Kph 0.0 0.5 0.0 Idle 0 Kph 8.0 0.3 0.5 0.0 70 Kph 25.0 1.0 0.5 0.0 Trailer + grade 90 Kph 35.0 2.0 0.5 0.0 A.
  • Motors of the pump-motors P1 and P2, and the motor 48 to operate the fan 46 are typically DC motors compatible with the typical DC vehicle electrical system.
  • the electrical current flowing to each motor is controlled by respective switches, solid-state or electromechanical, which are operated by control module 16, and may be internal to that module.
  • FIG. 1 shows electric wiring 51 leading from control module 16 to the respective electric motors.
  • the total cooling system 10 is installed in vehicle by "dropping" it into the vehicle engine compartment and securing it in place. Various connections are then made such as connecting the fluid hoses and connecting the module 16 with the vehicle electrical system and with various signal sources mentioned above.
  • the total cooling system of the invention provides cooling based on cooling requirements and not based on engine r.p.m. Cooling is optimized based on the current draw of the coolant pump-motor selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)
EP98112126A 1998-07-01 1998-07-01 Totaler Kühlungszusammenbau für Kraftfahrzeuge, die mit Brennkraftmaschinen angetrieben werden Expired - Lifetime EP0969189B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69823015T DE69823015T2 (de) 1998-07-01 1998-07-01 Totaler Kühlungszusammenbau für Kraftfahrzeuge, die mit Brennkraftmaschinen angetrieben werden
EP98112126A EP0969189B1 (de) 1998-07-01 1998-07-01 Totaler Kühlungszusammenbau für Kraftfahrzeuge, die mit Brennkraftmaschinen angetrieben werden

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98112126A EP0969189B1 (de) 1998-07-01 1998-07-01 Totaler Kühlungszusammenbau für Kraftfahrzeuge, die mit Brennkraftmaschinen angetrieben werden

Publications (2)

Publication Number Publication Date
EP0969189A1 true EP0969189A1 (de) 2000-01-05
EP0969189B1 EP0969189B1 (de) 2004-04-07

Family

ID=8232199

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98112126A Expired - Lifetime EP0969189B1 (de) 1998-07-01 1998-07-01 Totaler Kühlungszusammenbau für Kraftfahrzeuge, die mit Brennkraftmaschinen angetrieben werden

Country Status (2)

Country Link
EP (1) EP0969189B1 (de)
DE (1) DE69823015T2 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1201889A1 (de) * 2000-10-27 2002-05-02 Mark IV Systemes Moteurs (Société Anonyme) Kühlungseinheit für Kraftfahrzeuge
WO2002077426A1 (de) * 2001-03-21 2002-10-03 Robert Bosch Gmbh Wärmetauscher
WO2005111391A1 (de) * 2004-05-11 2005-11-24 Behr Gmbh & Co. Kg Kühlmittelpumpenanordnung für ein kraftfahrzeug
FR2965297A1 (fr) * 2010-09-28 2012-03-30 Valeo Systemes Thermiques Ensemble d'une buse pour vehicule automobile et d'une pompe
FR3002280A1 (fr) * 2013-02-20 2014-08-22 Cyclam Dispositif de refroidissement pour vehicule.
JP2014206115A (ja) * 2013-04-15 2014-10-30 スズキ株式会社 電動ウォータポンプの取付構造
KR20150071174A (ko) * 2013-12-18 2015-06-26 한라비스테온공조 주식회사 프론트 엔드 모듈
US20180022209A1 (en) * 2016-07-22 2018-01-25 Nimer Ibrahim Shiheiber Radiator System
CN109532467A (zh) * 2018-12-20 2019-03-29 天津市庆浦散热器科技有限公司 一种新能源电动汽车散热器
CN113217169A (zh) * 2020-02-04 2021-08-06 大众汽车股份公司 带有热交换器、控制阀和调节装置的冷却系统的组件
GB2593919A (en) * 2020-04-09 2021-10-13 Caterpillar Motoren Gmbh & Co Two-way valve for controlling a temperature of a coolant for an internal combustion engine
EP3936709A1 (de) * 2020-07-07 2022-01-12 Ningbo Geely Automobile Research & Development Co. Ltd. Bauteilgehäuseeinheit und fahrzeugwärmemanagementsystem mit einer bauteilgehäuseeinheit
US11320215B2 (en) 2019-06-24 2022-05-03 Denso International America, Inc. Radiator including thermal stress countermeasure
WO2023104900A1 (de) * 2021-12-10 2023-06-15 Woco Industrietechnik Gmbh Kühlmitteltank, kühlmittelkreislauf und kraftfahrzeug
WO2023139119A1 (de) * 2022-01-18 2023-07-27 Robert Bosch Gmbh Kühlträgervorrichtung, kühlträgersystem und fahrzeug

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020130554B3 (de) 2020-11-19 2022-04-28 Nidec Gpm Gmbh Adaptergehäuse
SE546943C2 (en) * 2022-12-08 2025-03-11 Volvo Penta Corp Modular cooling system comprising a buffer tank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455174A2 (fr) * 1979-04-23 1980-11-21 Sev Marchal Dispositif de regulation de la temperature du liquide de refroidissement pour moteur a combustion interne
US5215044A (en) * 1991-02-11 1993-06-01 Behr Gmbh & Co. Cooling system for a vehicle having an internal-combustion engine
EP0584850A1 (de) * 1992-07-30 1994-03-02 Dsm N.V. Integriertes Kühlsystem
JPH07180554A (ja) * 1993-12-21 1995-07-18 Aisin Seiki Co Ltd エンジン冷却装置
US5660149A (en) * 1995-12-21 1997-08-26 Siemens Electric Limited Total cooling assembly for I.C. engine-powered vehicles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162716A (ja) * 1982-03-20 1983-09-27 Mitsubishi Motors Corp 水冷式エンジンの冷却装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455174A2 (fr) * 1979-04-23 1980-11-21 Sev Marchal Dispositif de regulation de la temperature du liquide de refroidissement pour moteur a combustion interne
US5215044A (en) * 1991-02-11 1993-06-01 Behr Gmbh & Co. Cooling system for a vehicle having an internal-combustion engine
EP0584850A1 (de) * 1992-07-30 1994-03-02 Dsm N.V. Integriertes Kühlsystem
JPH07180554A (ja) * 1993-12-21 1995-07-18 Aisin Seiki Co Ltd エンジン冷却装置
US5660149A (en) * 1995-12-21 1997-08-26 Siemens Electric Limited Total cooling assembly for I.C. engine-powered vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 095, no. 010 30 November 1995 (1995-11-30) *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1201889A1 (de) * 2000-10-27 2002-05-02 Mark IV Systemes Moteurs (Société Anonyme) Kühlungseinheit für Kraftfahrzeuge
FR2816004A1 (fr) * 2000-10-27 2002-05-03 Mark Iv Systemes Moteurs Sa Ensemble de refroidissement pour vehicules a moteur
US6634323B2 (en) 2000-10-27 2003-10-21 Mark IV Systemes Moteurs (Société Anonyme) Cooling units for motor vehicles
WO2002077426A1 (de) * 2001-03-21 2002-10-03 Robert Bosch Gmbh Wärmetauscher
WO2005111391A1 (de) * 2004-05-11 2005-11-24 Behr Gmbh & Co. Kg Kühlmittelpumpenanordnung für ein kraftfahrzeug
FR2965297A1 (fr) * 2010-09-28 2012-03-30 Valeo Systemes Thermiques Ensemble d'une buse pour vehicule automobile et d'une pompe
FR3002280A1 (fr) * 2013-02-20 2014-08-22 Cyclam Dispositif de refroidissement pour vehicule.
JP2014206115A (ja) * 2013-04-15 2014-10-30 スズキ株式会社 電動ウォータポンプの取付構造
KR20150071174A (ko) * 2013-12-18 2015-06-26 한라비스테온공조 주식회사 프론트 엔드 모듈
KR101925537B1 (ko) 2013-12-18 2018-12-05 한온시스템 주식회사 프론트 엔드 모듈
US20180022209A1 (en) * 2016-07-22 2018-01-25 Nimer Ibrahim Shiheiber Radiator System
US10661650B2 (en) * 2016-07-22 2020-05-26 Nimer Ibrahim Shiheiber Radiator system
US10906388B2 (en) 2016-07-22 2021-02-02 Nimer Ibrahim Shiheiber Radiator system
US20210252968A1 (en) * 2016-07-22 2021-08-19 Nimer Ibrahim Shiheiber Radiator System
US20240300317A1 (en) * 2016-07-22 2024-09-12 Nimer Ibrahim Shiheiber Radiator System
US11964550B2 (en) 2016-07-22 2024-04-23 Nimer Ibrahim Shiheiber Radiator system
CN109532467A (zh) * 2018-12-20 2019-03-29 天津市庆浦散热器科技有限公司 一种新能源电动汽车散热器
CN109532467B (zh) * 2018-12-20 2024-01-12 天津巴泰克汽车装备有限公司 一种新能源电动汽车散热器
US11320215B2 (en) 2019-06-24 2022-05-03 Denso International America, Inc. Radiator including thermal stress countermeasure
CN113217169A (zh) * 2020-02-04 2021-08-06 大众汽车股份公司 带有热交换器、控制阀和调节装置的冷却系统的组件
CN113217169B (zh) * 2020-02-04 2023-07-04 大众汽车股份公司 带有热交换器、控制阀和调节装置的冷却系统的组件
GB2593919B (en) * 2020-04-09 2023-03-29 Caterpillar Motoren Gmbh & Co Two-way valve for controlling a temperature of a coolant for an internal combustion engine
GB2593919A (en) * 2020-04-09 2021-10-13 Caterpillar Motoren Gmbh & Co Two-way valve for controlling a temperature of a coolant for an internal combustion engine
CN116194661A (zh) * 2020-07-07 2023-05-30 宁波吉利汽车研究开发有限公司 部件壳体单元和包括部件壳体单元的车辆热管理系统
EP3936709A1 (de) * 2020-07-07 2022-01-12 Ningbo Geely Automobile Research & Development Co. Ltd. Bauteilgehäuseeinheit und fahrzeugwärmemanagementsystem mit einer bauteilgehäuseeinheit
US12366196B2 (en) 2020-07-07 2025-07-22 Ningbo Geely Automobile Research & Dev. Co., Ltd. Component housing unit and a vehicle thermal management system comprising a component housing unit
WO2023104900A1 (de) * 2021-12-10 2023-06-15 Woco Industrietechnik Gmbh Kühlmitteltank, kühlmittelkreislauf und kraftfahrzeug
WO2023139119A1 (de) * 2022-01-18 2023-07-27 Robert Bosch Gmbh Kühlträgervorrichtung, kühlträgersystem und fahrzeug

Also Published As

Publication number Publication date
DE69823015D1 (de) 2004-05-13
EP0969189B1 (de) 2004-04-07
DE69823015T2 (de) 2005-03-31

Similar Documents

Publication Publication Date Title
US6016774A (en) Total cooling assembly for a vehicle having an internal combustion engine
US5660149A (en) Total cooling assembly for I.C. engine-powered vehicles
EP4086563B1 (de) Integrierte wärmeverwaltungseinheit, integriertes wärmemanagementsystem und fahrzeug
EP0969189B1 (de) Totaler Kühlungszusammenbau für Kraftfahrzeuge, die mit Brennkraftmaschinen angetrieben werden
US6616059B2 (en) Hybrid vehicle powertrain thermal management system and method for cabin heating and engine warm up
US6196168B1 (en) Device and method for cooling and preheating
US6745726B2 (en) Engine thermal management for internal combustion engine
CN212979863U (zh) 车辆用冷却水综合热管理装置
US11541725B2 (en) Thermal management system and integrated thermal management module for vehicle
US6668766B1 (en) Vehicle engine cooling system with variable speed water pump
CN115698477B (zh) 包括混合管线的多回路热管理系统及车辆
US20040103947A1 (en) Automotive coolant control valve
US20110073285A1 (en) Multi-Zone Heat Exchanger for Use in a Vehicle Cooling System
US7669416B2 (en) Circuit for cooling charge air, and method for operating such a circuit
JP5835505B2 (ja) デュアルラジエータエンジン冷却モジュール−シングル冷却液ループ
JP6886960B2 (ja) 温度調整回路及びその制御方法
CN102132020A (zh) 由燃烧发动机驱动的车辆的冷却系统
CN119974876A (zh) 车辆热管理系统
US20040187505A1 (en) Integrated cooling system
EP0993975A1 (de) Vorrichtung und Verfahren zur Regulierung des Kühlmittelzuflusses zu einem Wärmetauscher
CN112874257B (zh) 一种车辆热管理系统和车辆
CN119261526A (zh) 热管理系统的前端换热模块、热管理系统及车辆
EP1445444A1 (de) Eine elektrisch angetriebene Kühlmittelpumpe
CN120963353A (zh) 热管理系统和车辆
JP2002138836A (ja) 内燃機関の冷却装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000626

AKX Designation fees paid

Free format text: DE FR GB IT SE

17Q First examination report despatched

Effective date: 20030120

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS VDO AUTOMOTIVE INC.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69823015

Country of ref document: DE

Date of ref document: 20040513

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040708

Year of fee payment: 7

Ref country code: GB

Payment date: 20040708

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040716

Year of fee payment: 7

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050922

Year of fee payment: 8

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111021