EP0948241A2 - Method and apparatus for supplying power to light emitting diodes - Google Patents
Method and apparatus for supplying power to light emitting diodes Download PDFInfo
- Publication number
- EP0948241A2 EP0948241A2 EP99660053A EP99660053A EP0948241A2 EP 0948241 A2 EP0948241 A2 EP 0948241A2 EP 99660053 A EP99660053 A EP 99660053A EP 99660053 A EP99660053 A EP 99660053A EP 0948241 A2 EP0948241 A2 EP 0948241A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- light emitting
- main circuit
- circuit
- switching element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000011159 matrix material Substances 0.000 claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims description 16
- 238000004804 winding Methods 0.000 claims description 16
- 230000001939 inductive effect Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 3
- WLJWJOQWLPAHIE-YLXLXVFQSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s,3s)-2-amino-3-methylpentanoyl]amino]propanoyl]amino]-3-methylbutanoyl]amino]pentanedioic acid Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O WLJWJOQWLPAHIE-YLXLXVFQSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/382—Switched mode power supply [SMPS] with galvanic isolation between input and output
Definitions
- the invention relates to a method for supplying power to light emitting diodes connected to a light emitting diode matrix comprising one or more parallel connected individual light emitting diodes or a series connection thereof.
- Light eniitting diodes are generally used in lighting fixtures, such as outdoor signs, commercial signs and the like. Connecting devices provided with a series resistor are conventionally used for operating light emitting diodes, whereby the arrangement causes unnecessary power loss. Particularly in battery-driven systems the series resistor significantly reduces the operating life as the battery capacity is limited. An example of such a battery-driven lighting system is the emergency exit lighting fixture, which should operate also when the mains voltage dies out.
- Another conventional drawback with light emitting diodes using a series resistor is the dependence on a particular voltage level.
- the function of a series resistor is to arrange each voltage level to suit the use of light emitting diodes, in which case the fluctuation in voltage level causes problems for the light emitting diodes regarding their durability. An incorrect voltage level may provide such a high current that despite a bias resistor the light emitting diode may be broken. A too low supply voltage, in turn, is not adequate for a light emitting diode.
- the voltage level has a commanding effect in conventional solutions provided with a series resistor.
- the object is achieved with a method of the invention, characterized by comprising the steps of
- the method of the invention is based on the idea that an inductive component is connected in series with the light emitting diodes.
- the current of the light emitting diodes is monitored, and when the current exceeds a particular suitable predetermined limit the main circuit is opened, whereby the increase of light emitting diode current stops and the current starts flowing in a current loop forced by the inductive component. Then, as the energy stored in the inductive component decreases, the current of the light emitting diodes also decreases. When the current is reduced to a predetermined value, the main circuit can be closed again.
- the power supply method of the light emitting diodes of the invention has extremely low losses, since the use thereof does not require a series resistor for the light emitting diodes. During the use, the method can also be applied to varying voltage levels, and the method is therefore applicable to be used in demanding conditions and environments.
- the invention also relates to a power supply apparatus of light emitting diodes comprising a light emitting diode matrix formed of one or more parallel connected individual light emitting diodes or a series connection thereof, characterized in that the power supply apparatus also comprises an inductance and a switching element, whereby a series connection of the light emitting diode matrix, the inductance and the switching element forms a main circuit of the power supply apparatus connected to a working voltage, a current monitoring block of the main circuit also arranged to control the switching element, a second current monitoring block arranged to convey a control signal to the block arranged to control the switching element, and a zero diode connected in parallel with the series connection of the inductance and the light emitting diode matrix in anti-parallel relation to the light emitting diodes of the light emitting diode matrix.
- Figure 1 shows a circuit implementing the method of the invention comprising a light emitting diode matrix MN including N light emitting diodes connected in series and M parallel connections thereof.
- One end of the light emitting diode matrix is connected to a positive supply voltage U in and the other end is connected to an inductive component N1.
- the inductive component N1 is a primary winding of a transformer T1.
- One electrode of the inductive component is further connected to a controllable switching element K1.
- This series circuit formed of the light emitting diode matrix MN, the inductive component N1 and the switching element K1 forms a main circuit of the power supply apparatus of the invention, to which the supply voltage U in is connected.
- the main circuit also comprises a series resistor R2.
- Figure 1 also shows a zero diode D1 of the circuit connected in the opposite direction in parallel with the series connection of the inductive component and the light emitting diode matrix.
- FIG. 1 also shows capacitors C1 and C2, the function of which is to operate as elements filtering and storing energy.
- the capacitor C2 in particular stores and filters the working voltage V c of the auxiliary circuits needed in the apparatus.
- a resistance R1 of the circuit functions as a loading resistor, through which the working voltage needed by the auxiliary circuits is at first fed.
- the current i L x decreases linearly, whereby the amount of current in the zero diode circuit is monitored in accordance with the invention and the main circuit is closed using the switching element K1 when said current has reached a predetermined limit.
- the predetermined limit can be defined, for example, so as to control the switch K1 when the current of the zero diode circuit dies out completely.
- the current may increase again in the main circuit, and said method phases are repeated in order to constantly operate the light emitting diodes.
- the current of the light emitting diode matrix forms the saw-tooth wave, shown in Figure 2, whose rising edge is the current i L and falling edge is the i L x .
- the current of the light emitting diodes thus stays constant despite the variations in the working voltage.
- the amount of working voltage affects only the operating frequency of the switch K1, since the current i L increases more rapidly into its peak value as the voltage U in increases, but then again the amount of working voltage does not affect the amount or fall time of the current i L x .
- the light power produced by the light emitting diode matrix remains substantially constant irrespective of the level of the supply voltage.
- This is particularly important when the apparatus implementing the method is battery-driven, because as the capacity of the battery decreases its terminal voltage declines.
- a battery-driven apparatus may be, for example, an emergency exit lighting fixture, which is normally supplied by an electrical network, in which case the supply voltage of the apparatus can vary significantly.
- a notable advantage of the method of the invention is the independence of the available light power of the supply voltage level variations.
- the current of the main circuit is monitored from the voltage that is over a series resistor R2 connected to the current circuit.
- Figure 1 shows how a current monitoring block A measures the voltage that is over the resistor R2.
- the current of the main circuit reaches its peak value, then the voltage that is over the resistance R2 reaches the limit that is proportioned to the peak value of the current, and block A controls the switch K1 to open the main circuit.
- Current information about the zero diode circuit needed to close the main circuit is obtained in accordance with the preferred embodiment presented in Figure 1 through a secondary winding N2 of a transformer T1, when a primary winding N1 of the transformer is an inductive component connected to the main circuit.
- the winding N2 is connected to a current defining element C informing an element A arranged to control the switch K1 about the amount of current in the zero diode circuit in order to control the switch to a conducting state.
- the switch K2 can bypass the zero diode D1, in which case the zero diode circuit and at the same time the entire dissipation power of the switch can be minimized.
- the current starts flowing in the zero diode circuit, whereafter the switching element K2 arranged in parallel with the zero diode D1 is switched to a conducting state.
- the amount of current is monitored as the current flows in the zero diode circuit, and as the current reaches a particular predetermined limit the switch K2 is switched from the conducting state.
- the apparatus implementing the method comprises as an inductive component N1 a transformer T1 whose secondary winding N3 provides current informa-tion for block B controlling the switch K2, on the basis of which the switch K2 is controlled.
- Block B changes the current information obtained from the winding to timing information, for example, using internal logic or trigger circuits.
- the circuit according to Figure 1 also comprises a diode D2 connected to the secondary winding N2 of the transformer T1.
- the diode aims to supply current through the winding N2 of the transformer to the capacitor C2 maintaining the working voltage V c of the auxiliary circuits of the circuit. Power is thus saved, as the supply voltage U in does not need to be used directly through a resistor R1 in order to form the working voltage.
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Led Devices (AREA)
Abstract
Description
Claims (10)
- A method for supplying power to light emitting diodes connected to a light emitting diode matrix (MN) comprising one or more parallel connected individual light emitting diodes or a series connection thereof, characterized by comprising the steps ofmonitoring the amount of current in a main circuit formed of the series connection of the light emitting diode matrix (MN), a switching element (K1) and an inductance (N1),opening the main circuit by a switching element (K1) when the main circuit current reaches a predetermined value, whereby the current starts flowing through a zero diode circuit formed of a zero diode (D1) arranged on a circuit,monitoring the amount of current in the zero diode circuit, and closing the main circuit by the switching element (K1) when the current of the zero diode circuit reaches a predetermined value.
- A method as claimed in claim 1, characterized by comprising the steps ofdetecting the movement of the current to the zero diode circuit,switching the switch (K1) arranged in parallel with the zero diode (D1) to a conducting state,monitoring the amount of current in the zero diode circuit, andswitching the switch (K2) arranged in parallel with the zero diode (D1) from the conducting state when the current of the zero diode circuit reaches a predetermined value.
- A method as claimed in claim 2, characterized in that monitoring the current of the zero diode circuit comprises the step of
monitoring the current of the zero diode circuit by using a winding (N3) of a transformer (T1) connected to the main circuit, the primary winding of the transformer (T1) being an inductance (N1) arranged to the main circuit. - A method as claimed in claims 1, 2 or 3, characterized in that monitoring the current of the main circuit comprises the step of
monitoring the voltage over a resistor (R2) connected to the main circuit. - A method as claimed in any one of the preceding claims 1 - 4, characterized in that monitoring the current of the main circuit comprises the step of
monitoring the current of the zero diode circuit by using a winding (N2) of the transformer (T1) connected to the main circuit, the primary winding of the transformer (T1) being the inductance (N1) arranged to the main circuit. - A power supply apparatus of light emitting diodes comprising a light emitting diode matrix (MN) formed of one or more parallel connected individual light emitting diodes or a series connection thereof, characterized in that the power supply apparatus also comprises an inductance (N1) and a switching element (K1), whereby a series connection of the light emitting diode matrix (MN), the inductance (N1) and the switching element (K1) forms a main circuit of the power supply apparatus connected to a working voltage (Uin), a current monitoring block (A) of the main circuit also arranged to control the switching element (K1), a second current monitoring block (C) arranged to convey a control signal to the block (A) arranged to control the switching element (K1), and a zero diode (D1) connected in parallel with the series connection of the inductance (N1) and the light emitting diode matrix in anti-parallel relation to the light emitting diodes of the light emitting diode matrix.
- A power supply apparatus as claimed in claim 6, characterized by further comprising a switching element (K2) and a control block (B) connected thereto arranged to control the switching element (K2) arranged in parallel with the zero diode (D1 ).
- A power supply apparatus as claimed in claim 6 or 7, characterized by also comprising a transformer (T1) whereby the inductance (N1) connected to the main circuit is the primary winding of the transformer (T1) and the current defining block (C) is connected to a secondary winding (N2) of the transformer.
- A power supply apparatus as claimed in claim 6, 7 and 8, characterized in that the inductance (N1) connected to the main circuit is the primary winding of the transformer (T1) and a control block (B) is con-nected to a secondary winding (N3) of the transformer.
- A power supply apparatus as claimed in any one of the preceding claims 6 - 9, characterized in that the main circuit of the power supply apparatus also comprises a series resistor (R2).
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FI980717 | 1998-03-30 | ||
| FI980717A FI104034B (en) | 1998-03-30 | 1998-03-30 | Method and device for supplying power to light emitting diodes |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0948241A2 true EP0948241A2 (en) | 1999-10-06 |
| EP0948241A3 EP0948241A3 (en) | 2000-12-27 |
Family
ID=8551412
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP99660053A Withdrawn EP0948241A3 (en) | 1998-03-30 | 1999-03-25 | Method and apparatus for supplying power to light emitting diodes |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP0948241A3 (en) |
| FI (1) | FI104034B (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004006629A3 (en) * | 2002-07-04 | 2004-03-25 | Tridonic Optoelectronics Gmbh | Power supply unit for light-emitting diodes |
| EP1033903A3 (en) * | 1999-01-22 | 2004-05-06 | Nokia Corporation | Illuminating electronic device and illumination method |
| WO2004057921A1 (en) * | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Supply assembly for a led lighting module |
| WO2007121798A1 (en) * | 2006-04-21 | 2007-11-01 | Tridonicatco Gmbh & Co. Kg | Led driver circuit |
| DE102008039351B3 (en) * | 2008-08-22 | 2010-01-28 | Osram Gesellschaft mit beschränkter Haftung | Circuit arrangement for operating at least one semiconductor light source |
| WO2010046065A1 (en) * | 2008-10-20 | 2010-04-29 | Tridonicatco Schweiz Ag | Operating circuit for leds |
| WO2010045666A1 (en) | 2008-10-20 | 2010-04-29 | Tridonicatco Gmbh & Co Kg | Operating connection for light emitting diodes |
| US7708447B2 (en) | 2002-07-04 | 2010-05-04 | Tridonic Optoelectronics Gmbh | Current supply for luminescent diodes |
| WO2010049074A1 (en) * | 2008-10-20 | 2010-05-06 | Tridonicatco Schweiz Ag | Operating circuit for light-emitting diodes |
| WO2010124313A2 (en) | 2009-04-30 | 2010-11-04 | Tridonic Gmbh & Co Kg | Operating circuit for light-emitting diodes |
| DE102009042419A1 (en) * | 2009-09-21 | 2011-03-31 | Osram Gesellschaft mit beschränkter Haftung | Circuit arrangement for operating at least one LED |
| WO2011113958A1 (en) * | 2010-03-19 | 2011-09-22 | Tridonic Ag | Low-voltage power supply for an led lighting system |
| DE102013207562A1 (en) * | 2013-04-25 | 2014-10-30 | Tridonic Gmbh & Co Kg | Operating circuit for LEDs with voltage measurement |
| DE10262387B3 (en) * | 2002-07-04 | 2016-01-21 | Tridonic Ag | Power supply for light-emitting diodes |
| DE102006034371B4 (en) | 2006-04-21 | 2019-01-31 | Tridonic Ag | Operating circuit and operating method for light-emitting diodes |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5072171A (en) * | 1990-01-23 | 1991-12-10 | Hughes Aircraft Company | High efficiency power converter employing a synchronized switching system |
| DE4022498A1 (en) * | 1990-07-14 | 1992-01-16 | Stahl R Schaltgeraete Gmbh | Explosion protected warning light - has light element in series circuit, contg. inductance, electronic switch and current |
| FR2751805B1 (en) * | 1996-07-24 | 1998-09-11 | Schneider Electric Sa | SELF-OSCILLATING FULL DEMAGNETIZATION LOWER CONVERTER |
-
1998
- 1998-03-30 FI FI980717A patent/FI104034B/en not_active IP Right Cessation
-
1999
- 1999-03-25 EP EP99660053A patent/EP0948241A3/en not_active Withdrawn
Cited By (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1033903A3 (en) * | 1999-01-22 | 2004-05-06 | Nokia Corporation | Illuminating electronic device and illumination method |
| US7071762B2 (en) | 2001-01-31 | 2006-07-04 | Koninklijke Philips Electronics N.V. | Supply assembly for a led lighting module |
| EP2001269A1 (en) * | 2002-07-04 | 2008-12-10 | Ledon Lighting Jennersdorf GmbH | Electricity supply for luminescence diodes |
| US8207689B2 (en) | 2002-07-04 | 2012-06-26 | Tridonic Ag | Current supply for luminescent diodes |
| US8063575B2 (en) | 2002-07-04 | 2011-11-22 | Tridonic Jennersdorf Gmbh | Current supply for luminescent diodes |
| DE10230103B4 (en) * | 2002-07-04 | 2012-10-31 | Tridonic Ag | Power supply for light-emitting diodes |
| WO2004006629A3 (en) * | 2002-07-04 | 2004-03-25 | Tridonic Optoelectronics Gmbh | Power supply unit for light-emitting diodes |
| EP2262347A1 (en) * | 2002-07-04 | 2010-12-15 | Ledon Lighting Jennersdorf GmbH | Power supply for light emitting diodes |
| DE10262387B3 (en) * | 2002-07-04 | 2016-01-21 | Tridonic Ag | Power supply for light-emitting diodes |
| US7708447B2 (en) | 2002-07-04 | 2010-05-04 | Tridonic Optoelectronics Gmbh | Current supply for luminescent diodes |
| US8698415B2 (en) | 2002-07-04 | 2014-04-15 | Tridonic Jennersdorf Gmbh | Current supply for luminescent diodes |
| WO2004057921A1 (en) * | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Supply assembly for a led lighting module |
| CN1729722B (en) * | 2002-12-19 | 2010-06-09 | 皇家飞利浦电子股份有限公司 | Power supply assembly for LED light emitting module |
| KR100978019B1 (en) * | 2002-12-19 | 2010-08-25 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Power supply assembly for LED lighting module |
| WO2007121801A1 (en) * | 2006-04-21 | 2007-11-01 | Tridonicatco Gmbh & Co. Kg | Battery circuit in an emergency light device |
| DE102006034371B4 (en) | 2006-04-21 | 2019-01-31 | Tridonic Ag | Operating circuit and operating method for light-emitting diodes |
| EP2234240A1 (en) * | 2006-04-21 | 2010-09-29 | Tridonic GmbH & Co KG | LED driving circuit |
| US8680778B2 (en) | 2006-04-21 | 2014-03-25 | Tridonic Atco Gmbh & Co. Kg | LED driver circuit |
| WO2007121798A1 (en) * | 2006-04-21 | 2007-11-01 | Tridonicatco Gmbh & Co. Kg | Led driver circuit |
| EP2157834A2 (en) | 2008-08-22 | 2010-02-24 | Osram Gesellschaft mit Beschränkter Haftung | Switching assembly for operating at least one semiconductor light source |
| CN101657056A (en) * | 2008-08-22 | 2010-02-24 | 奥斯兰姆有限公司 | Circuit arrangement for operating at least one semiconductor light source |
| DE102008039351B3 (en) * | 2008-08-22 | 2010-01-28 | Osram Gesellschaft mit beschränkter Haftung | Circuit arrangement for operating at least one semiconductor light source |
| US8188678B2 (en) | 2008-08-22 | 2012-05-29 | Osram Ag | Circuit arrangement for operating at least one semiconductor light source |
| EP2523533A3 (en) * | 2008-10-20 | 2013-01-23 | Tridonic GmbH & Co KG | Operating circuit for light diodes |
| GB2476609B (en) * | 2008-10-20 | 2014-02-19 | Tridonic Ag | Operating circuit for light diodes |
| DE112009002500B4 (en) | 2008-10-20 | 2023-01-26 | Tridonic Ag | Driving circuit for LEDs and method for driving LEDs |
| DE112009002527B4 (en) | 2008-10-20 | 2022-09-29 | Tridonic Ag | Operating circuit for light-emitting diodes, method for operating light-emitting diodes and LED lighting system for light-emitting diodes |
| WO2010046065A1 (en) * | 2008-10-20 | 2010-04-29 | Tridonicatco Schweiz Ag | Operating circuit for leds |
| GB2476609A (en) * | 2008-10-20 | 2011-06-29 | Tridonic Ag | Operating circuit for LEDs |
| WO2010045666A1 (en) | 2008-10-20 | 2010-04-29 | Tridonicatco Gmbh & Co Kg | Operating connection for light emitting diodes |
| WO2010049074A1 (en) * | 2008-10-20 | 2010-05-06 | Tridonicatco Schweiz Ag | Operating circuit for light-emitting diodes |
| US8525442B2 (en) | 2008-10-20 | 2013-09-03 | Tridonic Ag | Operating circuit for LEDs |
| US8664873B2 (en) | 2009-04-30 | 2014-03-04 | Tridonic Gmbh & Co Kg | Operating circuit for light-emitting diodes |
| WO2010124313A2 (en) | 2009-04-30 | 2010-11-04 | Tridonic Gmbh & Co Kg | Operating circuit for light-emitting diodes |
| CN102415214B (en) * | 2009-04-30 | 2014-12-10 | 赤多尼科两合股份有限公司 | Operating circuit for light-emitting diodes |
| WO2010124313A3 (en) * | 2009-04-30 | 2011-05-26 | Tridonic Gmbh & Co Kg | Operating circuit for light-emitting diodes |
| CN102415214A (en) * | 2009-04-30 | 2012-04-11 | 赤多尼科两合股份有限公司 | LED driver circuit |
| AT508195B1 (en) * | 2009-04-30 | 2012-03-15 | Tridonic Gmbh & Co Kg | OPERATING CIRCUIT FOR LIGHT DIODES |
| DE102009042419B4 (en) * | 2009-09-21 | 2011-12-15 | Osram Gesellschaft mit beschränkter Haftung | Circuit arrangement for operating at least one LED |
| DE102009042419A1 (en) * | 2009-09-21 | 2011-03-31 | Osram Gesellschaft mit beschränkter Haftung | Circuit arrangement for operating at least one LED |
| WO2011113958A1 (en) * | 2010-03-19 | 2011-09-22 | Tridonic Ag | Low-voltage power supply for an led lighting system |
| DE102013207562A1 (en) * | 2013-04-25 | 2014-10-30 | Tridonic Gmbh & Co Kg | Operating circuit for LEDs with voltage measurement |
Also Published As
| Publication number | Publication date |
|---|---|
| FI980717A7 (en) | 1999-10-01 |
| FI980717A0 (en) | 1998-03-30 |
| EP0948241A3 (en) | 2000-12-27 |
| FI104034B1 (en) | 1999-10-29 |
| FI104034B (en) | 1999-10-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0948241A2 (en) | Method and apparatus for supplying power to light emitting diodes | |
| US4864482A (en) | Conversion circuit for limiting inrush current | |
| US6243277B1 (en) | Bi-directional dc to dc converter for energy storage applications | |
| EP2793276B1 (en) | Led lamp, lighting device including led lamp, and method for controlling electric current of led lamp | |
| US6304464B1 (en) | Flyback as LED driver | |
| US5508602A (en) | Voltage boosting circuit with load current sensing | |
| US7102899B2 (en) | Control circuit for switched mode power supply unit | |
| US6703793B2 (en) | Switching power unit | |
| US6333607B1 (en) | High voltage discharge lamp device | |
| US6747422B2 (en) | High-voltage discharge lamp device | |
| US6184630B1 (en) | Electronic lamp ballast with voltage source power feedback to AC-side | |
| US6295211B1 (en) | Switching power supply unit having delay circuit for reducing switching frequency | |
| US5581160A (en) | Method and apparatus for lighting an EL element | |
| CN110035582B (en) | LED lamp tube | |
| US7049793B2 (en) | Boost switching power supply | |
| EP1289347A2 (en) | Ballast with fast-responding lamp-out detection circuit | |
| CA2342905A1 (en) | Ballast circuit with lamp current regulating circuit | |
| US4899270A (en) | DC-to-DC power supply including an energy transferring snubber circuit | |
| CN208754025U (en) | A kind of switched charge circuit | |
| US5616992A (en) | Electronic starter circuit for fluorescent lamp | |
| US8304996B2 (en) | Photosensor circuits including a current amplifier | |
| EP0371930A1 (en) | A thyristor ignition system for an internal combustion engine | |
| US4330736A (en) | Compensated current feedback oscillator ballast for fluorescent lamps and the like | |
| US6624594B2 (en) | Discharge lamp lighting circuit | |
| EP0223293B1 (en) | Power-supply circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| 17P | Request for examination filed |
Effective date: 20010516 |
|
| 17Q | First examination report despatched |
Effective date: 20010626 |
|
| AKX | Designation fees paid |
Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20011107 |