EP0940261A1 - Formation d'images sur récepteurs ayant des particules commandées à champ - Google Patents
Formation d'images sur récepteurs ayant des particules commandées à champ Download PDFInfo
- Publication number
- EP0940261A1 EP0940261A1 EP99200500A EP99200500A EP0940261A1 EP 0940261 A1 EP0940261 A1 EP 0940261A1 EP 99200500 A EP99200500 A EP 99200500A EP 99200500 A EP99200500 A EP 99200500A EP 0940261 A1 EP0940261 A1 EP 0940261A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- receiver
- image
- array
- field
- forming position
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002245 particle Substances 0.000 title claims abstract description 36
- 230000005684 electric field Effects 0.000 claims abstract description 30
- 239000011159 matrix material Substances 0.000 claims abstract description 6
- 230000008859 change Effects 0.000 claims abstract description 3
- 230000004044 response Effects 0.000 claims abstract description 3
- 230000003287 optical effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 239000003094 microcapsule Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/385—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
Definitions
- This invention relates to an electronic printing apparatus for producing images on a receiver having electric field-driven particles.
- electrophoretic particle that is based on the principle of movement of charged particles in an electric field.
- electrophoretic receiver the charged particles containing different reflective optical densities can be moved by an electric field to or away from the viewing side of the receiver, which produces a contrast in the optical density.
- Another class of electric field-driven particles are particles carrying an electric dipole. Each pole of the particle is associated with a different optical densities (bi-chromatic). The electric dipole can be aligned by a pair of electrodes in two directions, which orient each of the two polar surfaces to the viewing direction. The different optical densities on the two halves of the particles thus produces a contrast in the optical densities.
- Another object of the present invention is to reduce the complexity of the receiver.
- an electronic printing apparatus comprising:
- An advantage of the present invention is that by using an externally applied electric field to eliminate the need of electrodes in the receiver.
- An additional advantage is that the display content on the receiver can be changed by electronic printing apparatus.
- Another feature of the invention is that the print head is compatible with a wide range of printing resolution.
- FIG. 1 shows the electronic printing apparatus 10 in accordance to the present invention.
- the electronic printing apparatus 10 includes a processing unit 20, a logic and control electronics unit 30, a print head 40, a receiver 50 that comprises electric field-driven particles in a matrix (see FIG. 3), a receiver transport 60, and a receptacle 70.
- the print head 40 includes an array of pairs of top electrode 80 and bottom electrode 90 corresponding to each pixel of the image forming position on the receiver 50.
- the array of electrodes is contained in an electrode structure 110.
- the electrode structure 110 is formed using polystyrene as an insulating material. It is known that other insulating materials including ceramics and plastics can be used.
- An electric voltage is applied by logic and control electronics unit 30 across the pair of electrodes at each pixel location to produce the desired optical density at that pixel.
- An electrically grounded shield 100 is provided to shield print head 40 from external electric fields. The electrically grounded shield 100 isolates the print heads and fields applied at the image forming position. A top view of the print head 40 is shown in FIG. 2.
- the receiver 50 is shown to be picked by a retard roller 120 from the receptacle 70.
- Other receiver feed mechanisms are also compatible with the present invention: for example, the receiver can be fed by single sheet or by a receiver roll equipped with cutter.
- the term "receptacle” will be understood to mean a device for receiving one or more receivers including a receiver tray, a receiver roll holder, a single sheet feed slot and so forth.
- the receiver 50 is supported by the platen 130 and guided by the guiding plate 140, and is transported by the receiver transport 60.
- FIG. 2 shows a top view of the structure around the print head 40.
- the receiver 50 is shown to be transported under the print head 40 by the receiver transport 60.
- the print head 40 is shown to include a plurality of top electrodes 80, each corresponding to one pixel.
- the top electrodes 80 are located within holes in the electrode structure 110.
- the bottom electrodes 90 of FIG. 1 are also disposed in an electrode structure 110.
- the electrodes are distributed in a linear fashion to form a linear array as shown in FIG. 2 to minimize electric field fringing effects between adjacent pixels printed on the receiver 50.
- Different printing resolutions are achievable across the receiver 50 by the different arrangements of the top electrodes 80, including different electrode spacings.
- the printing resolution down the receiver 50 can also be changed by controlling the receiver transport speed by the receiver transport 60 or the rate of printing by controlling the logic and control electronics unit 30.
- FIG. 3a and 3b show a cross sectional view of the receiver 50 of FIG. 1.
- the receiver 50 is shown to comprise a plurality of electric field-driven particles 200.
- the electric field-driven particles 200 are exemplified by bi-chromatic particles, that is, half of the particle is white and the other half is of a different color density such as black, yellow, magenta, cyan, red, green, blue, and so forth.
- the bi-chromatic particles are electrically bi-polar. Each of the color surfaces (for example white and black) is aligned with one pole of the dipole direction.
- the stable electric field-driven particles 200 are suspended in a fluid 210 such as oil which are together encapsulated in a microcapsule 220.
- the microcapsules 220 are immersed in matrix 230.
- FIG. 3a shows the electric field-driven particle 200 in the white state as a result of field previously imposed by a negative top electrode 80 of FIG. 1 and positive bottom electrode 90 of FIG. 1.
- FIG. 3b shows the electric field-driven particle 200 in the black state as a result of field previously imposed by a positive top electrode 80 of FIG. 1 and negative bottom electrode 90 of FIG. 1.
- the receiver 50 shown here is less complex than the prior art receiver structures comprising field-driven particles and addressing electrodes.
- the field-driven particles can include many different types, for example, the bi-chromatic dipolar particles and electrophoretic particles.
- the following disclosures are herein incorporated in the present invention. Details of the fabrication of the bi-chromatic dipolar particles and their addressing configuration are disclosed in US-A-4,143,103; US-A-5,344,594; and US-A-5,604,027, and in "A Newly Developed Electrical Twisting Ball Display” by Saitoh and others p249-253, Proceedings of the SID, Vol. 23/4, 1982, the disclosure of these references are incorporated herein by reference.
- Another type of field-driven particle is disclosed in PCT Patent Application WO 97/04398. It is understood that the present invention is compatible with many other types of field-driven particles that can display different color densities under the influence of an applied electrical field.
- an electronic printing apparatus 10 in accordance with the present invention is shown.
- a user sends a digital image to a processing unit 20.
- Processing unit 20 receives the digital image and stores it in an internal memory.
- digital image can include only a portion of the finally produced image in the receiver, for example, a line of the image. In such a situation, an input line buffer could be used in the processing unit 20.
- All processes are controlled by processing unit 20 via which works with logic and control electronics unit 30.
- the logic and control electronics unit 30 addresses electrodes to provide electric fields as will be subsequently described.
- a receiver 50 is picked from a receptacle 70 by a retard roller 120. The receiver 50 is advanced until the leading edge engages receiver transport 60.
- Retard roller 120 produces a retard tension against receiver transport 60 which controls receiver 50 motion.
- each pixel of the digital image produced by an electric field applied by the pair of the electrodes, top electrode 80 and bottom electrode 90.
- Each pair of electrodes are driven in a complementary fashion, bottom electrode 90 presents a voltage of opposite polarity to the voltage produced by top electrode 80, each voltage referred to ground.
- Each pixel location is driven according to the input digital image to produce the desired optical density as described in FIGS. 3a and 3b.
- the pixel is selected from the digital image to adjust for the relative location of each electrode pair and transport motion.
- the receiver transport 60 advances the receiver 50 a displacement which corresponds to a pixel pitch.
- the next set of pixels are written according to the current position.
- the process is repeated until the entire image is formed.
- the retard roller 120 disengages as the process continues and the receiver transport 60 continues to control receiver 50 motion.
- the receiver transport 60 moves the receiver 50 out of the electronic printing apparatus 10 to eject the print.
- the receiver transport 60 and the retard roller 120 are close to the image forming position under the electrodes 80 and 90, this improves control over the receiver motion and improves print quality.
Landscapes
- Dot-Matrix Printers And Others (AREA)
- Electrophotography Using Other Than Carlson'S Method (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US3560698A | 1998-03-05 | 1998-03-05 | |
| US35606 | 1998-03-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0940261A1 true EP0940261A1 (fr) | 1999-09-08 |
Family
ID=21883708
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP99200500A Withdrawn EP0940261A1 (fr) | 1998-03-05 | 1999-02-22 | Formation d'images sur récepteurs ayant des particules commandées à champ |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP0940261A1 (fr) |
| JP (1) | JPH11291552A (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1000741A3 (fr) * | 1998-10-22 | 2000-08-09 | Seiko Epson Corporation | Imprimante à papier électronique |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3612758A (en) | 1969-10-03 | 1971-10-12 | Xerox Corp | Color display device |
| US4143103A (en) | 1976-05-04 | 1979-03-06 | Xerox Corporation | Method of making a twisting ball panel display |
| US4977416A (en) * | 1989-09-21 | 1990-12-11 | Rastergraphics, Inc. | Integrated thick film electrostatic writing head |
| EP0427507A2 (fr) * | 1989-11-08 | 1991-05-15 | Xerox Corporation | Affichage d'un ordinateur semblable au papier et sa méthode de balayage |
| US5344594A (en) | 1991-10-29 | 1994-09-06 | Xerox Corporation | Method for the fabrication of multicolored balls for a twisting ball display |
| WO1997004398A2 (fr) | 1995-07-20 | 1997-02-06 | Jacobson Joseph M | Livre electronique a affichages de pages multiples |
| US5604027A (en) | 1995-01-03 | 1997-02-18 | Xerox Corporation | Some uses of microencapsulation for electric paper |
| US5659374A (en) * | 1992-10-23 | 1997-08-19 | Texas Instruments Incorporated | Method of repairing defective pixels |
| US5723204A (en) * | 1995-12-26 | 1998-03-03 | Xerox Corporation | Two-sided electrical paper |
-
1999
- 1999-02-22 EP EP99200500A patent/EP0940261A1/fr not_active Withdrawn
- 1999-03-02 JP JP11054679A patent/JPH11291552A/ja active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3612758A (en) | 1969-10-03 | 1971-10-12 | Xerox Corp | Color display device |
| US4143103A (en) | 1976-05-04 | 1979-03-06 | Xerox Corporation | Method of making a twisting ball panel display |
| US4977416A (en) * | 1989-09-21 | 1990-12-11 | Rastergraphics, Inc. | Integrated thick film electrostatic writing head |
| EP0427507A2 (fr) * | 1989-11-08 | 1991-05-15 | Xerox Corporation | Affichage d'un ordinateur semblable au papier et sa méthode de balayage |
| US5344594A (en) | 1991-10-29 | 1994-09-06 | Xerox Corporation | Method for the fabrication of multicolored balls for a twisting ball display |
| US5659374A (en) * | 1992-10-23 | 1997-08-19 | Texas Instruments Incorporated | Method of repairing defective pixels |
| US5604027A (en) | 1995-01-03 | 1997-02-18 | Xerox Corporation | Some uses of microencapsulation for electric paper |
| WO1997004398A2 (fr) | 1995-07-20 | 1997-02-06 | Jacobson Joseph M | Livre electronique a affichages de pages multiples |
| US5723204A (en) * | 1995-12-26 | 1998-03-03 | Xerox Corporation | Two-sided electrical paper |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1000741A3 (fr) * | 1998-10-22 | 2000-08-09 | Seiko Epson Corporation | Imprimante à papier électronique |
| US7114864B2 (en) | 1998-10-22 | 2006-10-03 | Seiko Epson Corporation | Electronic paper printer |
| US7381000B2 (en) | 1998-10-22 | 2008-06-03 | Seiko Epson Corporation | Electronic paper printer |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH11291552A (ja) | 1999-10-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6081285A (en) | Forming images on receivers having field-driven particles and conducting layer | |
| EP0660201B1 (fr) | Appareil de formation d'images | |
| EP0390847B1 (fr) | Procede de production d'une structure a charge latente et dispositif de realisation dudit procede | |
| EP0550880B1 (fr) | Dispositif de formation d'images | |
| US7114864B2 (en) | Electronic paper printer | |
| US5975680A (en) | Producing a non-emissive display having a plurality of pixels | |
| WO1994026527A1 (fr) | Procede d'impression sans impact utilisant une matrice multiplexee d'electrodes unitaires commandees et dispositif d'execution du procede | |
| CN1450417A (zh) | 成像装置 | |
| DE69212057T2 (de) | Verfahren und Gerät zum Drucken | |
| EP0940261A1 (fr) | Formation d'images sur récepteurs ayant des particules commandées à champ | |
| US6102526A (en) | Image forming method and device utilizing chemically produced toner particles | |
| JPH07125297A (ja) | 画像形成装置 | |
| JPH02160557A (ja) | インクジェットプリンタ | |
| JPH07304206A (ja) | 画像形成装置 | |
| EP0770486B1 (fr) | Imprimante électrostatique par jet d'encre | |
| EP0803358A2 (fr) | Appareil d'enregistrement ainsi qu'unité d'enregistrement et tête d'enregistrement à utiliser dans le même appareil | |
| US5912692A (en) | Printing device with M-tunnel write head | |
| US6128028A (en) | Heat assisted image formation in receivers having field-driven particles | |
| JP3302295B2 (ja) | 記録ユニット | |
| US6588881B2 (en) | Ink printer | |
| DE69913873T2 (de) | Bilderzeugungsgerät | |
| JPS5849267A (ja) | インクジエツトプリンタ | |
| JPH106547A (ja) | 直接静電印刷装置の画像予備処理装置 | |
| JPH04268591A (ja) | 画像形成装置 | |
| JPS5849274A (ja) | インクジエツトプリンタ |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| AKX | Designation fees paid | ||
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20000309 |