EP0837879A1 - CLONES D'ADN COMPLEMENTAIRE CODANT DES SOUS-UNITES $g(g) DE LA PROTEINE G HUMAINE - Google Patents
CLONES D'ADN COMPLEMENTAIRE CODANT DES SOUS-UNITES $g(g) DE LA PROTEINE G HUMAINEInfo
- Publication number
- EP0837879A1 EP0837879A1 EP95920580A EP95920580A EP0837879A1 EP 0837879 A1 EP0837879 A1 EP 0837879A1 EP 95920580 A EP95920580 A EP 95920580A EP 95920580 A EP95920580 A EP 95920580A EP 0837879 A1 EP0837879 A1 EP 0837879A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- subunit
- subunits
- human
- seq
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002299 complementary DNA Substances 0.000 title description 55
- 101000887490 Homo sapiens Guanine nucleotide-binding protein G(z) subunit alpha Proteins 0.000 title description 4
- 102000052301 human GNAZ Human genes 0.000 title description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 53
- 229920001184 polypeptide Polymers 0.000 claims abstract description 51
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 42
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 24
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 22
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 22
- 239000003446 ligand Substances 0.000 claims abstract description 13
- 239000005557 antagonist Substances 0.000 claims abstract description 11
- 230000003993 interaction Effects 0.000 claims abstract description 10
- 239000000556 agonist Substances 0.000 claims abstract description 6
- 210000004027 cell Anatomy 0.000 claims description 48
- 108090000623 proteins and genes Proteins 0.000 claims description 48
- 108020004414 DNA Proteins 0.000 claims description 34
- 102000004169 proteins and genes Human genes 0.000 claims description 17
- 230000035772 mutation Effects 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 210000004962 mammalian cell Anatomy 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 5
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 4
- 238000012217 deletion Methods 0.000 claims description 4
- 230000037430 deletion Effects 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 108020004491 Antisense DNA Proteins 0.000 claims description 3
- 239000003816 antisense DNA Substances 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 239000013598 vector Substances 0.000 description 32
- 150000001413 amino acids Chemical class 0.000 description 23
- 230000000692 anti-sense effect Effects 0.000 description 22
- 239000012634 fragment Substances 0.000 description 21
- 102000005962 receptors Human genes 0.000 description 20
- 108020003175 receptors Proteins 0.000 description 20
- 239000013615 primer Substances 0.000 description 16
- 102000034286 G proteins Human genes 0.000 description 13
- 108091006027 G proteins Proteins 0.000 description 13
- 210000000349 chromosome Anatomy 0.000 description 13
- 108091000058 GTP-Binding Proteins 0.000 description 12
- 239000013612 plasmid Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 238000013518 transcription Methods 0.000 description 11
- 230000035897 transcription Effects 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 238000003556 assay Methods 0.000 description 10
- 239000013604 expression vector Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000001580 bacterial effect Effects 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000013519 translation Methods 0.000 description 9
- 230000014616 translation Effects 0.000 description 9
- 230000027455 binding Effects 0.000 description 8
- 230000002759 chromosomal effect Effects 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 108020004635 Complementary DNA Proteins 0.000 description 7
- 239000012636 effector Substances 0.000 description 7
- 108091033319 polynucleotide Proteins 0.000 description 7
- 102000040430 polynucleotide Human genes 0.000 description 7
- 239000002157 polynucleotide Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 239000003623 enhancer Substances 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 108091060211 Expressed sequence tag Proteins 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 108010025592 aminoadipoyl-cysteinyl-allylglycine Proteins 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 239000000539 dimer Substances 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 108020005345 3' Untranslated Regions Proteins 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000010188 recombinant method Methods 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000036755 cellular response Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000003917 human chromosome Anatomy 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 210000001995 reticulocyte Anatomy 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000014621 translational initiation Effects 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- BYXHQQCXAJARLQ-ZLUOBGJFSA-N Ala-Ala-Ala Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O BYXHQQCXAJARLQ-ZLUOBGJFSA-N 0.000 description 2
- LWUWMHIOBPTZBA-DCAQKATOSA-N Ala-Arg-Lys Chemical compound NC(=N)NCCC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@@H](CCCCN)C(O)=O LWUWMHIOBPTZBA-DCAQKATOSA-N 0.000 description 2
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 101150074155 DHFR gene Proteins 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 239000003155 DNA primer Substances 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- JVSBYEDSSRZQGV-GUBZILKMSA-N Glu-Asp-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCC(O)=O JVSBYEDSSRZQGV-GUBZILKMSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- WZDCVAWMBUNDDY-KBIXCLLPSA-N Ile-Glu-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](C)C(=O)O)N WZDCVAWMBUNDDY-KBIXCLLPSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- AIMGJYMCTAABEN-GVXVVHGQSA-N Leu-Val-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O AIMGJYMCTAABEN-GVXVVHGQSA-N 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 101100068676 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) gln-1 gene Proteins 0.000 description 2
- 101100342977 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) leu-1 gene Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 102100026918 Phospholipase A2 Human genes 0.000 description 2
- 108010058864 Phospholipases A2 Proteins 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 108091036407 Polyadenylation Proteins 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 101710179016 Protein gamma Proteins 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- 102000014384 Type C Phospholipases Human genes 0.000 description 2
- 108010079194 Type C Phospholipases Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 102000030621 adenylate cyclase Human genes 0.000 description 2
- 108060000200 adenylate cyclase Proteins 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 239000002975 chemoattractant Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 108010057083 glutamyl-aspartyl-leucine Proteins 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 210000004754 hybrid cell Anatomy 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 108010009298 lysylglutamic acid Proteins 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000013823 prenylation Effects 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 150000003212 purines Chemical group 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 230000002207 retinal effect Effects 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- OINNEUNVOZHBOX-QIRCYJPOSA-K 2-trans,6-trans,10-trans-geranylgeranyl diphosphate(3-) Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O OINNEUNVOZHBOX-QIRCYJPOSA-K 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- DKJPOZOEBONHFS-ZLUOBGJFSA-N Ala-Ala-Asp Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(O)=O DKJPOZOEBONHFS-ZLUOBGJFSA-N 0.000 description 1
- LGFCAXJBAZESCF-ACZMJKKPSA-N Ala-Gln-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(O)=O LGFCAXJBAZESCF-ACZMJKKPSA-N 0.000 description 1
- JDIQCVUDDFENPU-ZKWXMUAHSA-N Ala-His-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CNC=N1 JDIQCVUDDFENPU-ZKWXMUAHSA-N 0.000 description 1
- DCVYRWFAMZFSDA-ZLUOBGJFSA-N Ala-Ser-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O DCVYRWFAMZFSDA-ZLUOBGJFSA-N 0.000 description 1
- DYXOFPBJBAHWFY-JBDRJPRFSA-N Ala-Ser-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](C)N DYXOFPBJBAHWFY-JBDRJPRFSA-N 0.000 description 1
- 101100238293 Arabidopsis thaliana MOR1 gene Proteins 0.000 description 1
- LKDHUGLXOHYINY-XUXIUFHCSA-N Arg-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N LKDHUGLXOHYINY-XUXIUFHCSA-N 0.000 description 1
- CLICCYPMVFGUOF-IHRRRGAJSA-N Arg-Lys-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O CLICCYPMVFGUOF-IHRRRGAJSA-N 0.000 description 1
- KXFCBAHYSLJCCY-ZLUOBGJFSA-N Asn-Asn-Ser Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O KXFCBAHYSLJCCY-ZLUOBGJFSA-N 0.000 description 1
- VKCOHFFSTKCXEQ-OLHMAJIHSA-N Asn-Asn-Thr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O VKCOHFFSTKCXEQ-OLHMAJIHSA-N 0.000 description 1
- GKWFMNNNYZHJHV-SRVKXCTJSA-N Asp-Lys-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC(O)=O GKWFMNNNYZHJHV-SRVKXCTJSA-N 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- NGOIQDYZMIKCOK-NAKRPEOUSA-N Cys-Val-Ile Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O NGOIQDYZMIKCOK-NAKRPEOUSA-N 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- OINNEUNVOZHBOX-XBQSVVNOSA-N Geranylgeranyl diphosphate Natural products [P@](=O)(OP(=O)(O)O)(OC/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)O OINNEUNVOZHBOX-XBQSVVNOSA-N 0.000 description 1
- HWEINOMSWQSJDC-SRVKXCTJSA-N Gln-Leu-Arg Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O HWEINOMSWQSJDC-SRVKXCTJSA-N 0.000 description 1
- IULKWYSYZSURJK-AVGNSLFASA-N Gln-Leu-Lys Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O IULKWYSYZSURJK-AVGNSLFASA-N 0.000 description 1
- OCJRHJZKGGSPRW-IUCAKERBSA-N Glu-Lys-Gly Chemical compound NCCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O OCJRHJZKGGSPRW-IUCAKERBSA-N 0.000 description 1
- ILWHFUZZCFYSKT-AVGNSLFASA-N Glu-Lys-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O ILWHFUZZCFYSKT-AVGNSLFASA-N 0.000 description 1
- LJPIRKICOISLKN-WHFBIAKZSA-N Gly-Ala-Ser Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O LJPIRKICOISLKN-WHFBIAKZSA-N 0.000 description 1
- HKSNHPVETYYJBK-LAEOZQHASA-N Gly-Ile-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)CN HKSNHPVETYYJBK-LAEOZQHASA-N 0.000 description 1
- OMOZPGCHVWOXHN-BQBZGAKWSA-N Gly-Met-Ser Chemical compound CSCC[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)CN OMOZPGCHVWOXHN-BQBZGAKWSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- YKRYHWJRQUSTKG-KBIXCLLPSA-N Ile-Ala-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N YKRYHWJRQUSTKG-KBIXCLLPSA-N 0.000 description 1
- YPQDTQJBOFOTJQ-SXTJYALSSA-N Ile-Asn-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)O)N YPQDTQJBOFOTJQ-SXTJYALSSA-N 0.000 description 1
- XMYURPUVJSKTMC-KBIXCLLPSA-N Ile-Ser-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N XMYURPUVJSKTMC-KBIXCLLPSA-N 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- SITWEMZOJNKJCH-UHFFFAOYSA-N L-alanine-L-arginine Natural products CC(N)C(=O)NC(C(O)=O)CCCNC(N)=N SITWEMZOJNKJCH-UHFFFAOYSA-N 0.000 description 1
- RCFDOSNHHZGBOY-UHFFFAOYSA-N L-isoleucyl-L-alanine Natural products CCC(C)C(N)C(=O)NC(C)C(O)=O RCFDOSNHHZGBOY-UHFFFAOYSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 239000012741 Laemmli sample buffer Substances 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- VPKIQULSKFVCSM-SRVKXCTJSA-N Leu-Gln-Arg Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O VPKIQULSKFVCSM-SRVKXCTJSA-N 0.000 description 1
- XQXGNBFMAXWIGI-MXAVVETBSA-N Leu-His-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)CC1=CN=CN1 XQXGNBFMAXWIGI-MXAVVETBSA-N 0.000 description 1
- CPONGMJGVIAWEH-DCAQKATOSA-N Leu-Met-Ala Chemical compound CSCC[C@H](NC(=O)[C@@H](N)CC(C)C)C(=O)N[C@@H](C)C(O)=O CPONGMJGVIAWEH-DCAQKATOSA-N 0.000 description 1
- WXHHTBVYQOSYSL-FXQIFTODSA-N Met-Ala-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O WXHHTBVYQOSYSL-FXQIFTODSA-N 0.000 description 1
- WPTHAGXMYDRPFD-SRVKXCTJSA-N Met-Lys-Glu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O WPTHAGXMYDRPFD-SRVKXCTJSA-N 0.000 description 1
- HAQLBBVZAGMESV-IHRRRGAJSA-N Met-Lys-Lys Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O HAQLBBVZAGMESV-IHRRRGAJSA-N 0.000 description 1
- VQILILSLEFDECU-GUBZILKMSA-N Met-Pro-Ala Chemical compound [H]N[C@@H](CCSC)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O VQILILSLEFDECU-GUBZILKMSA-N 0.000 description 1
- BJPQKNHZHUCQNQ-SRVKXCTJSA-N Met-Pro-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CCSC)N BJPQKNHZHUCQNQ-SRVKXCTJSA-N 0.000 description 1
- CIDICGYKRUTYLE-FXQIFTODSA-N Met-Ser-Ala Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O CIDICGYKRUTYLE-FXQIFTODSA-N 0.000 description 1
- LXCSZPUQKMTXNW-BQBZGAKWSA-N Met-Ser-Gly Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O LXCSZPUQKMTXNW-BQBZGAKWSA-N 0.000 description 1
- MIXPUVSPPOWTCR-FXQIFTODSA-N Met-Ser-Ser Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O MIXPUVSPPOWTCR-FXQIFTODSA-N 0.000 description 1
- FSTWDRPCQQUJIT-NHCYSSNCSA-N Met-Val-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](CCSC)N FSTWDRPCQQUJIT-NHCYSSNCSA-N 0.000 description 1
- 108700005084 Multigene Family Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- WYBVBIHNJWOLCJ-UHFFFAOYSA-N N-L-arginyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCCN=C(N)N WYBVBIHNJWOLCJ-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- ZJPGOXWRFNKIQL-JYJNAYRXSA-N Phe-Pro-Pro Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(O)=O)C1=CC=CC=C1 ZJPGOXWRFNKIQL-JYJNAYRXSA-N 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- VOZIBWWZSBIXQN-SRVKXCTJSA-N Pro-Glu-Lys Chemical compound NCCCC[C@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CCCN1)C(O)=O VOZIBWWZSBIXQN-SRVKXCTJSA-N 0.000 description 1
- SWRNSCMUXRLHCR-ULQDDVLXSA-N Pro-Phe-Lys Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@H]1NCCC1)C1=CC=CC=C1 SWRNSCMUXRLHCR-ULQDDVLXSA-N 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 108091005682 Receptor kinases Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- IAORETPTUDBBGV-CIUDSAMLSA-N Ser-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CO)N IAORETPTUDBBGV-CIUDSAMLSA-N 0.000 description 1
- GZSZPKSBVAOGIE-CIUDSAMLSA-N Ser-Lys-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O GZSZPKSBVAOGIE-CIUDSAMLSA-N 0.000 description 1
- XQJCEKXQUJQNNK-ZLUOBGJFSA-N Ser-Ser-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O XQJCEKXQUJQNNK-ZLUOBGJFSA-N 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 101150006914 TRP1 gene Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- VIBXMCZWVUOZLA-OLHMAJIHSA-N Thr-Asn-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)N)C(=O)O)N)O VIBXMCZWVUOZLA-OLHMAJIHSA-N 0.000 description 1
- HJOSVGCWOTYJFG-WDCWCFNPSA-N Thr-Glu-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N)O HJOSVGCWOTYJFG-WDCWCFNPSA-N 0.000 description 1
- ZMYCLHFLHRVOEA-HEIBUPTGSA-N Thr-Thr-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O ZMYCLHFLHRVOEA-HEIBUPTGSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- MOCXXGZHHSPNEJ-AVGNSLFASA-N Tyr-Cys-Glu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(O)=O MOCXXGZHHSPNEJ-AVGNSLFASA-N 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- IJBTVYLICXHDRI-FXQIFTODSA-N Val-Ala-Ala Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O IJBTVYLICXHDRI-FXQIFTODSA-N 0.000 description 1
- IJBTVYLICXHDRI-UHFFFAOYSA-N Val-Ala-Ala Natural products CC(C)C(N)C(=O)NC(C)C(=O)NC(C)C(O)=O IJBTVYLICXHDRI-UHFFFAOYSA-N 0.000 description 1
- QTPQHINADBYBNA-DCAQKATOSA-N Val-Ser-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCCN QTPQHINADBYBNA-DCAQKATOSA-N 0.000 description 1
- VVIZITNVZUAEMI-DLOVCJGASA-N Val-Val-Gln Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCC(N)=O VVIZITNVZUAEMI-DLOVCJGASA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 108010070783 alanyltyrosine Proteins 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000011243 crosslinked material Substances 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000001400 expression cloning Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 125000004030 farnesyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 101150056310 gem1 gene Proteins 0.000 description 1
- 125000002686 geranylgeranyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])/C([H])=C(C([H])([H])[H])/C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 108010049041 glutamylalanine Proteins 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 238000010249 in-situ analysis Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 238000012177 large-scale sequencing Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 108010003700 lysyl aspartic acid Proteins 0.000 description 1
- 108010025153 lysyl-alanyl-alanine Proteins 0.000 description 1
- 108010017391 lysylvaline Proteins 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 108010016686 methionyl-alanyl-serine Proteins 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000030788 protein refolding Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 208000009305 pseudorabies Diseases 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000009834 selective interaction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- G proteins guanine nucleotide-binding proteins
- G protein-coupled receptors transduce a wide variety of signals ranging from hormones, neurotransmitters and chemoattractants to sensory stimuli such as light, odor and taste.
- the G proteins are heterotrimers, composed of ⁇ , ⁇ and subunits.
- the receptor stimulates the exchange of bound GDP for GTP on the ⁇ subunit, resulting in the dissociation of the ⁇ subunit from the ⁇ and ⁇ subunits.
- the GTP-bound ⁇ subunit has been shown to directly regulate the activity of downstream effectors. Gilman, A.G. Ann. Rev. Biochem. (1987) 56:615-649; Simon et al. Science (1991) 252:802-808; Birnbaumer, L. Cell (1992) 71:1069-1072. Gilman demonstrated that after dissociating from the GTP-bound ⁇ subunit, the ⁇ subunit exists as a tightly- associated complex in vivo.
- the ⁇ subunits can directly bind to a receptor (Phillips, WJ. and Cerione, R.A. J. Biol. Chem. (1992) 24:17032- 17039) and can increase agonist-dependent phosphorylation and desensitization by directly interacting and recruiting the ⁇ -adrenergic ( ⁇ -ARK) kinases to the membrane.
- ⁇ -ARK ⁇ -adrenergic
- the ⁇ subunits are important in both the regulation of these effectors and receptor recognition.
- Both the G protein ⁇ and ⁇ subunits belong to large multigene families.
- the ⁇ subunits are much more divergent. Thus, it is believed that the ⁇ subunit determines the functional specificity of the ⁇ subunit complex.
- Complete cDNAs representing five different ⁇ subunits have been reported with the isolation of the ⁇ : subunit from bovine retina (Hurley et al. Proc. Nat'l Acad. Sci USA (1984) 81:6948-6952), the ⁇ 2 , ⁇ 3 , and ⁇ 7 subunits from bovine brain (Robishaw et al. J. Biol. Chem. (1989) 264:15758-15761; Gautam et al. Science (1989) 244:971-974; Gautam et al. Proc.
- the cDNA clones encoding human ⁇ 2 , ⁇ 3 , ⁇ , ⁇ s , ⁇ 7 , ⁇ 10 and ⁇ n subunits have been isolated and characterized.
- nucleic acid molecules encoding human ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ ⁇ resort and ⁇ ⁇ subunits including mRNAs, DNAs, cDNAs, genomic DNAs as well as analogs and biologically active and diagnostically or therapeutically useful fragments thereof.
- polypeptides which are ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ ⁇ 0 and ⁇ n subunits, as well as biologically active and diagnostically or therapeutically useful fragments, analogs and derivatives thereof.
- the polypeptides of the present invention are of human origin.
- a process for producing such polypeptides by recombinant techniques comprising culturing recombinant prokaryotic and/or eukaryotic host cells, containing a human nucleic acid sequence for either ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ n subunits, under conditions promoting expression of said polypeptides and subsequent recovery of said polypeptides.
- nucleic acid probes comprising nucleic acid molecules of sufficient length to specifically hybridize to human ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 and ⁇ n subunit sequences.
- seven human cDNA clones encoding ⁇ subunits have been identified. Based upon identity at the amino acid level, it has been determined that four of the seven cDNA clones represent the human ⁇ 2 , ⁇ 3 , ⁇ 5 , and ⁇ 7 subunits.
- the nucleotide sequences for the ⁇ 2 , ⁇ 3 , ⁇ 5 , and ⁇ 7 subunit clones have been determined and are provided as SEQ ID NOs. 20, 21, 22 and 23, respectively.
- the remaining three cDNA clones do not appear to be related to any known ⁇ subunits. The amino acid differences of these three were distributed throughout the proteins, indicating they did not arise by alternative splicing of known ⁇ subunits.
- the predicted amino acid sequence of one of the three cDNA clones showed marked identity (97%) to the PCR fragment of a putative mouse ⁇ 4 subunit (Gautam et al. Proc. Nat'l Acad. Sci. USA (1990) 87:7973-7977). Accordingly, this subunit has been designated the ⁇ 4 subunit.
- the other two cDNA clones were designated ⁇ 10 and ⁇ n subunits.
- the complete nucleotide sequences for the ⁇ 4 , ⁇ ⁇ 0 and ⁇ n subunit clones have been determined and are provided as SEQ ID NOs. 9, 10 and 11, respectively.
- the cDNA clones of the ⁇ 4 , ⁇ , 0 and ⁇ ⁇ subunits were deposited as ATCC Deposit No. 97140, 97138, and 97139, respectively, on May 4, 1995.
- a mixture of cDNA clones of the ⁇ 2 , ⁇ 3 , ⁇ 5 and ⁇ 7 subunits was deposited as ATCC Deposit No. 97137 on May 4, 1995.
- the coding region of each of these cDNAs in the mixture can be obtained by PCR amplification using the following primer pairs.
- the sense primer is S'-CTATCCAGCACTCCGATGGC-S' (SEQ ID NO: 12) and the antisense primer is 5'-AGACTTAAAGGATGGCACAG-3' (SEQ ID NO: 13); for the ⁇ 3 subunit the sense primer is 5 , -TGTGGCTTCAGGATGAAAGG-3 , (SEQ ID NO: 14) and the antisense primer is 5'-GAGCTCAGAGGAGAGCACAG- 3' (SEQ ID NO: 15); for the ⁇ 5 subunit the sense primer is 5'- GTGCACCATGTCTGGCTCCT-3' (SEQ ID NO: 16) and the antisense primer is 5'- CACTGGATCATAAGGAGTGG-3' (SEQ ID NO: 17); and, for the ⁇ 7 subunit the sense primer is 5'-GATGGCAGACAATGTCAGCC-3' (SEQ ID NO: 18) and the antisense primer is S'-AGTTATAAAATAATACAAGG-S'
- the cDNA for the ⁇ 4 subunit is 689 bp in length, including 98 and 365 bp of 5'- and 3'- untranslated (UTR) sequences, respectively (SEQ ID NO: 9).
- the first ATG codon at position 99 has the characteristics of a translation initiator codon with the expected purines at positions -3 and +4.
- a second ATG codon at position 111 lacks the expected purines, making it less likely to be the initiator codon.
- a polyadenine sequence was observed near the 3'-end of the cDNA.
- the cDNA for the ⁇ 10 subunit is 1213 bp in length, including 23 and 986 bp of 5'- and 3'-UTR sequences, respectively (SEQ ID NO: 10).
- the long 3'-UTR possesses a poly(A) tail, a polyadenylation signal towards the 3'-end, and several A(T) n A motifs implicated in mRNA stability.
- the cDNA for the ⁇ ⁇ subunit is 654 bp in length, including 106 and 326 bp of 5'- and 3'-UTR sequences, respectively (SEQ ID NO: 11).
- the 3'-UTR contains a polyadenylation signal and a poly(A) tail towards the 3'-end.
- the present invention further relates to polypeptides having the deduced amino acid sequences SEQ ID NOs: 2, 3, 4, 5, 6, 7, and 8 or those encoded by the cDNA clones of the human ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ ⁇ subunits as well as fragments, analogs and derivatives of such polypeptides.
- the deduced amino acid sequence of the cDNA clone for the ⁇ 2 subunit is SEQ ID NO: 2; the deduced amino acid sequence of the cDNA clone for the ⁇ 3 subunit is SEQ ID NO: 3; the deduced amino acid sequence of the cDNA clone for the ⁇ 4 subunit is SEQ ID NO: 4; the deduced amino acid sequence of the cDNA clone for the ⁇ 5 subunit is SEQ ID NO: 5; the deduced amino acid sequence of the cDNA clone for the ⁇ 7 subunit is SEQ ID NO: 6; the deduced amino acid sequence of the cDNA clone for the ⁇ 10 subunit is SEQ ID NO: 7; and the deduced amino acid sequence of the cDNA clone for the ⁇ household subunit is SEQ ID NO: 8.
- the homology ranged from a low of 38% for the ⁇ j subunit to a high of 77% for the ⁇ 2 subunit.
- the homology ranged from a low of 35% for the ⁇ 4 subunit to a high of 53% for the ⁇ 2 , ⁇ 5 and ⁇ 7 subunits.
- the ⁇ 10 subunit may represent a new subclass that is only distantly related to the other ⁇ subunits.
- the homology ranged from a low of 33 to 44% for the ⁇ 2> ⁇ 3 » 7s and ⁇ 7 subunits to a high of 76% for the x subunit.
- Analysis of the amino acid sequence conservation suggests that the ⁇ subunit family can be divided into four distinct subclasses, one containing ⁇ j and ⁇ n subunits, a second containing the ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 7 subunits, a third containing the ⁇ 5 subunit, and a fourth containing the ⁇ 10 subunit.
- subclasses are based not only on homology, but also on functional similarities.
- members display similar post-translational modifications and similar abilities to interact with the ⁇ and ⁇ subunits of the G proteins.
- the x and ⁇ ⁇ subunits which comprise one subclass, are modified by a farnesyl group, do not interact with the ⁇ 2 subunit, and do not interact with the OQ subunit.
- the ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 7 subunits which comprise another subclass, are modified by a geranylgeranyl group, interact with the ⁇ 2 subunit, and interact at least to some extent, with the Oo subunit.
- fragment when referring to the polypeptides provided in the sequence listing, or those encoded by the deposited cDNA, means a polypeptide which retains essentially the same biological function or activity as such polypeptide.
- an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.
- the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.
- the fragment, derivative or analog of the polypeptides provided in the sequence listing or those encoded by the deposited cDNA may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non- conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code; (ii) one in which one or more of the amino acid residues includes a substituent group; (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol); or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the mature
- polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.
- isolated means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring).
- a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated.
- Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.
- the present invention also relates to vectors which include the cDNA clones of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
- Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector.
- the vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc.
- the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the ⁇ subunit genes.
- the culture conditions such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
- the cDNA clones of the present invention may be employed for producing polypeptides by recombinant techniques.
- the cDNA clone may be included in any one of a variety of expression vectors for expressing a polypeptide.
- Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies.
- any other vector may be used as long as it is replicable and viable in the host.
- the appropriate clone may be inserted into the vector by a variety of procedures.
- the cDNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.
- the cDNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis.
- promoters there may be mentioned: LTR or SV40 promoter, the E. coli, lac or trp, the phage lambda P L promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses.
- the expression vector also contains a ribosome binding site for translation initiation and a transcription terminator.
- the vector may also include appropriate sequences for amplifying expression.
- the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.
- the vector containing the appropriate cDNA clone as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.
- appropriate hosts there may be mentioned: bacterial cells, such as E. coli, Streptomyces, Salmonella typhimurium; fungal cells, such as yeast; insect cells such as Drosophila S2 and Spodoptera Sf9; animal cells such as CHO, COS or Bowes melanoma; adenoviruses; plant cells, etc.
- bacterial cells such as E. coli, Streptomyces, Salmonella typhimurium
- fungal cells such as yeast
- insect cells such as Drosophila S2 and Spodoptera Sf9
- animal cells such as CHO, COS or Bowes melanoma
- adenoviruses plant cells, etc.
- the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above.
- the constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation.
- the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence.
- a promoter operably linked to the sequence.
- Bacterial pQE70, pQE60, pQE-9 (Qiagen), pBS, pDIO, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNHl ⁇ a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRTT5 (Pharmacia); Eukaryotic: pWLNEO, pSV2CAT, pOG44, pXTl, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).
- any other plasmid or vector may be used as long as they are replicable and viable in the host.
- a complete mammalian transcription unit and a selectable marker can be inserted into a prokaryotic plasmid.
- the resulting vector is then amplified in bacteria before being transfected into cultured mammalian cells.
- vectors of this type include pTK2, pHyg and pRSVneo.
- Promoter regions can be selected from any desired gene using CAT (chloramphenicol acetyl transferase) vectors or other vectors with selectable markers.
- Two appropriate vectors are pKK232-8 and pCM7.
- Particular named bacterial promoters include lad, lacZ, T3, T7, gpt, lambda P R , P L and trp.
- Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
- the present invention relates to host cells containing the above-described constructs.
- the host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
- Introduction of the construct into the host cell can be performed by calcium phosphate transfection, DEAE-dextran mediated transfection, Polybrene, protoplast fusion, liposomes, direct microinjection into the nuclei, scrape loading or electroporation.
- constructs in host cells can be used in a conventional manner to produce the gene product encoded by the cDNA clone.
- polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.
- Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention both in vitro and in vivo. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook et al., "Molecular Cloning: A Laboratory Manual", Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.
- Transcription of DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector.
- Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples including the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
- recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence.
- promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), ⁇ -factor, acid phosphatase, or heat shock proteins, among others.
- the heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the piroplasmic space or extracellular medium.
- the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.
- Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter.
- the vector will comprise one or more phenotypic selectable and nonselectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host.
- Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.
- a complete mammalian transcription unit and a selectable marker can be inserted into a prokaryotic plasmid. The resulting vector is then amplified in bacteria before being transfected into cultured mammalian cells.
- useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017).
- cloning vector pBR322 ATCC 37017
- Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.
- the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.
- Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.
- mammalian cell culture systems can also be employed to express recombinant protein.
- mammalian expression systems include COS and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.
- Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
- the gene is attached to a segment of DNA that carries a selectable marker and transfected into the cells, or are cotransfected into the cells. Sublines are then selected in which the number of copies of the gene are greatly amplified.
- selectable markers available in the art. For example, the dhfr gene is extensively used for coamplification. After several months of growth in progressively increasing concentrations of methotrexate, cell lines can be obtained that carry up to 1000 copies of the dhfr gene.
- the polypeptide can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.
- HPLC high performance liquid chromatography
- polypeptides of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue. There are marked differences in the tissue distribution of members of the ⁇ subunit family.
- Some members such as the x , ⁇ 2 , ⁇ 3 and ⁇ 4 subunits, are restricted to only a few tissues, whereas others, such as the ⁇ 5 , ⁇ 7 , ⁇ 10 and ⁇ ⁇ subunits, are expressed in a wide variety of tissues. Cali et al. J. Biol. Chem. (1992) 267:24023- 24027. Furthermore, in most cell types within a tissue, only a certain subset of ⁇ subunits is present. Peng et al. Proc. Nat'l Acad. Sci. USA (1992) 89:10882-10886; Hansen et al. J. Mol. Cell Cardiol. (1995) 27:471-484.
- the ⁇ 4 and ⁇ , 0 subunits are able to interact with the ⁇ j and ⁇ 2 subunits but not the ⁇ 3 subunit.
- the ⁇ n subunit is more similar to the ⁇ , subunit (Schmidt et al. J. Biol. Chem. (1992) 267:13807- 13810; Pronin, A.N. and Gautam, N. Proc. Nat'l Acad. Sci. USA (1992) 89:6220- 6224) in that they both interact with the ⁇ , subunit but not with the ⁇ 2 and ⁇ 3 subunits.
- G-proteins and their coupled receptors have been implicated in a wide variety of cellular signals ranging from hormones, neurotransmitters and chemoattractants to sensory stimuli such as light odor and taste.
- mutations in the ⁇ subunit may result in abnormal cellular signals thus causing an abnormal cellular response.
- “Subunits” include mRNAs, DNAs, cDNAs, and genomic DNAs. Accordingly, the cDNAs of the present invention may be used as a diagnostic in the detection of mutated forms of human ⁇ subunits. Such detection will allow a diagnosis of an abnormal cellular response resulting from the mutated ⁇ subunit disease.
- Nucleic acids for diagnosis may be obtained from a patient's cells, such as from blood, urine, saliva, tissue biopsy and autopsy material.
- the genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki et al. Nature, 324:163-166 (1986)) prior to analysis.
- RNA or cDNA may also be used for the same purpose.
- PCR primers complementary to the nucleic acid encoding either the ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ s , ⁇ 7 , ⁇ 10 or ⁇ ⁇ subunit can be used to identify and analyze mutations in these subunits. For example, deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype.
- Point mutations can be identified by hybridizing amplified DNA to radiolabeled ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ ⁇ subunit RNA or alternatively, radiolabeled ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ n subunit antisense DNA sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.
- Sequence differences between the reference gene and genes having mutations may be revealed by the direct DNA sequencing method.
- cloned DNA segments may be employed as probes to detect specific DNA segments.
- the sensitivity of this method is greatly enhanced when combined with PCR.
- a sequencing primer is used with double-stranded PCR product or a single-stranded template molecule generated by a modified PCR.
- the sequence determination is performed by conventional procedures with radiolabeled nucleotide or by automatic sequencing procedures with fluorescent-tags. Genetic testing based on DNA sequence differences may be achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis.
- DNA fragments of different sequences may be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al. Science, 230:1242 (1985)).
- Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and SI protection or the chemical cleavage method (e.g., Cotton et al. PNAS, USA, 85:4397-4401 (1985)).
- nuclease protection assays such as RNase and SI protection or the chemical cleavage method (e.g., Cotton et al. PNAS, USA, 85:4397-4401 (1985)).
- the detection of a specific DNA sequence may be achieved by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes, (e.g., Restriction Fragment Length Polymorphisms (RFLP)) and Southern blotting of genomic DNA.
- restriction enzymes e.g., Restriction Fragment Length Polymorphisms (RFLP)
- mutations can also be detected by in situ analysis.
- the present invention also relates to a diagnostic assay for detecting altered levels of ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ s , ⁇ 7 , ⁇ 10 or ⁇ n subunits in various tissues since an over- expression of these subunits compared to normal control tissue samples can result in abnormal cellular signals.
- Assays used to detect levels of these subunits in a sample derived from a host are well-known to those of skill in the art and include radioimmunoassays, competitive-binding assays, Western Blot analysis and preferably an ELISA assay.
- An ELISA assay initially comprises preparing an antibody specific to the ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ u subunit, preferably a monoclonal antibody.
- a reporter antibody is prepared against the monoclonal antibody.
- a detectable reagent such as radioactivity, fluorescence or in this example, a horseradish peroxidase enzyme.
- a sample is now removed from a host and incubated on a solid support, e.g., a polystyrene dish, that binds the proteins in the sample. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein like BSA.
- the monoclonal antibody is incubated in the dish during which time the monoclonal antibodies attach to either ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ ]0 or ⁇ n subunit attached to the polystyrene dish, depending upon the specificity of the antibody. All unbound monoclonal antibody is washed out with buffer.
- the reporter antibody linked to horseradish peroxidase is now placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to either ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ ⁇ 0 or ⁇ n subunit. Unattached reporter antibody is then washed out.
- Peroxidase substrates are then added to the dish and the amount of color developed in a given time period is a measurement of the amount of ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ j 0 or ⁇ ⁇ subunit present in a given volume of patient sample when compared against a standard curve.
- a competition assay may be employed wherein antibodies specific to either the ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ n subunit is attached to a solid support and labeled ⁇ 2 , ⁇ 3 , ⁇ , 7s, 7 7 , 7 ⁇ o or 7 ⁇ subunit and a sample derived from the host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to a quantity of ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ j 0 or ⁇ ⁇ subunit in the sample.
- sequences of the present invention are also valuable for chromosome identification.
- the sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome.
- Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location.
- the mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.
- sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region of the gene is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment.
- PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome.
- sublocalization can be achieved with panels of fragments from specific chromosomes or pools of large genomic clones in an analogous manner.
- Other mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific- cDNA libraries.
- Fluorescence in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step.
- This technique can be used with cDNA as short as 500 or 600 bases; however, clones larger than 2,000 bp have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection.
- FISH requires use of the clones from which the expressed sequence tag (EST) was derived, and the longer the better. For example, 2,000 bp is good, 4,000 is better, and more than 4,000 is probably not necessary to get good results a reasonable percentage of the time.
- a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This assumes 1 megabase mapping resolution and one gene per 20 kb).
- Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that cDNA sequence. Ultimately, complete sequencing of genes from several individuals is required to confirm the presence of a mutation and to distinguish mutations from polymorphisms.
- the polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can be used as an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodies.
- the present invention also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.
- Antibodies generated against the polypeptides corresponding to a sequence of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.
- any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al. Immunology Today (1983) 4:72), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., 1985, in "Monoclonal Antibodies and Cancer Therapy", Alan R. Liss, Inc., pp. 77-96). Techniques described for the production of single chain antibodies (U.S.
- Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention.
- transgenic mice may be used to express humanized antibodies to immunogenic polypeptide products of this invention.
- Fragments of the cDNA encoding either the ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ ⁇ 0 or ⁇ n subunit may also be used as a hybridization probe for a cDNA library to isolate the full length ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ n subunit gene and to isolate other genes which have a high sequence similarity to these genes or similar biological activity. Probes of this type generally have at least 20 bases.
- the probes have at least 30 bases and generally do not exceed 50 bases, although they may have a greater number of bases.
- the probe may also be used to identify a cDNA clone corresponding to a full length transcript and a genomic clone or clones that contain the complete ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ n subunit gene including regulatory and promoter regions, exons, and introns.
- An example of a screen comprises isolating the coding region of the ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ ⁇ subunit gene by using the known DNA sequence to synthesize an oligonucleotide probe.
- Labeled oligonucleotides having a sequence complementary to that of the gene of the present invention are used to screen a library of human cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
- the cDNA clones and polypeptides of the present invention may also be employed as research reagents and materials for discovery of treatments and diagnostics to human disease.
- This invention provides a method for identification of the receptor for the selected ⁇ ligand.
- the gene encoding the receptor can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting (Coligan et al., "Current Protocols in Immun.”, 1(2), Chapter 5, (1991)).
- expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the selected ⁇ ligand, and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the selected ⁇ ligand. Transfected cells which are grown on glass slides are exposed to labeled ⁇ ligand.
- the selected ⁇ ligand can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub- pools are prepared and retransfected using an iterative sub-pooling and rescreening process, eventually yielding a single clone that encodes the putative receptor.
- labeled ligand can be photoaffinity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE and exposed to X-ray film.
- the labeled complex containing the ligand-receptor can be excised, resolved into peptide fragments, and subjected to protein microsequencing.
- the amino acid sequence obtained from microsequencing is used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor.
- the present invention also provides a method of screening potential drugs to identify those which enhance (agonists) or block (antagonists) interaction of ligand to receptor.
- An agonist is a compound which increase the natural biologic function of particular ligands, while antagonists are compounds which eliminate these functions.
- a mammalian cell or membrane preparation expressing a receptor for a particular ⁇ subunit is incubated with labeled ligand in the presence of a test compound. The ability of this test compound to act as an agonist enhancing the interaction or as an antagonist blocking the interaction can be measured.
- Potential antagonists may also be identified by competitive inhibition assays wherein a potential antagonist and a particular ⁇ subunit are combined with membrane bound ⁇ subunit receptor or recombinant ⁇ subunit receptor under appropriate assay conditions. Such appropriate assay conditions can be routinely determined by those of skill in the art.
- the ⁇ subunit is labeled, preferably radiolabeled, so that the number of ⁇ subunits bound to the receptor can determine the effectiveness of the potential antagonist.
- Potential antagonists include, but are not limited to, an antibody, or in some cases, an oligopeptide which binds to the ⁇ subunit.
- a potential antagonist may be a closely related protein which binds to the receptor site but is inactive thus preventing the action of the ⁇ subunit by occupying the receptor site.
- Another potential antagonist is an antisense construct prepared using antisense technology. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA.
- the 5' coding region of the polynucleotide sequence which encodes for the mature polypeptide of the present invention is used to design an antisense RNA oligonucleotide from about 10 to about 40 base pairs in length.
- a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al. Nucl. Acids Res. (1979) 3:173; Cooney et al. Science (1988) 241:456 and Dervan et al.
- RNA oligonucleotide hybridizes to the mRNA and blocks translation of the mRNA molecule in the ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ 10 or ⁇ u subunit.
- These oligonucleotides can also be delivered to cells in vivo to inhibit production of ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 7 , ⁇ j 0 or ⁇ ⁇ subunits.
- Example 1 Isolation and Analysis of cDNA clones encoding G protein ⁇ subunits Several cDNA libraries from specific human tissues or cell lines were made by isolating poly(A) + RNA from tissues and cell lines using routine procedures. Partial nucleotide sequences of cDNA clones were obtained by using either T7 or T3 primers of pBluescript vector (Stratagene, La Jolla, CA). As a result of this large scale sequencing, several expressed sequence tags (ESTs) were generated. By matching the sequences of ESTs to genes of known sequences, the human G protein ⁇ subunit family was systematically classified and categorized.
- ESTs expressed sequence tags
- a Northern blot containing 2 ⁇ g of poly(A) + mRNA prepared from several human tissues (Clontech, Palo Alto, CA) was hybridized at 42°C in 50% formamide, 5x SSPE (20X SSPE 3M NaCl, 0.2 M Sodium phosphate, 0.02 M EDTA, pH 7.4), 0.1% polyvinylpyrrolidone, 0.1% bovine albumin serum and 2% sodium dodecyl sulfate, and 100 ⁇ g/ml sheared salmon sperm DNA. Fragments of the 7 4» 7 ⁇ o and ⁇ n cDNAs were isolated by double digestion of the corresponding cDNA clones in pBluescript vector with EcoRI and Xhol restriction enzymes.
- Probes were generated from the purified fragments by random priming witii the Klenow fragment of DNA polymerase-I in the presence of [32P]-dCTP (3,000 Ci/mmole, Amersham Corp., Arlington Heights, DL). After hybridization, high stringency washes were performed at 65°C in 0.1 x SSC (1 x SSC is 0.15 M sodium chloride, 0.015 M sodium citrate), 0.1% SDS. Blots were exposed for the indicated times at -80°C with an intensifying screen.
- the coding sequences of the human ⁇ j, ⁇ 2 , ⁇ 4 , ⁇ ⁇ 0 , and ⁇ n were subcloned into either pGEM (Promega, Madison, WI) or pBluescript vectors by PCR amplification of the corresponding cDNA clones using the appropriate oligonucleotide primers. The coding sequences were then completely sequences to confirm that no errors were introduced as the result of PCR amplification.
- a 1050 bp fragment of the human ⁇ 3 cDNA clone (Levine et al. Proc. Nat'l Acad. Sci. USA (1990) 87:2389-2393) was excised with Apa ⁇ and subcloned into the Apal site of the Bluescript KS vector.
- Plasmid DNA (1 ⁇ g) was linearized and transcribed with T7 for the ⁇ 2 , ⁇ 10 and ⁇ n subunits or T3 for the ⁇ 4 subunit RNA polymerase. Transcription was performed in accordance with the protocol provided with the RNA capping kit (Stratagene, La Jolla, CA). To assess translation, 4 ⁇ g of the resulting RNA was translated in a 50 ⁇ l reaction in the TNT-coupled rabbit reticulocyte lysate system (Promega, Madison, WI), using 20 ⁇ CI of [ 35 S] methionine (Amersham Corp., Arlington Heights, IL).
- Example 5 In vitro translation and tryptic proteolysis ⁇ interaction was assessed by a tryptic proteolysis assay. Plasmid DNA (1 ⁇ g) for each of the ⁇ and ⁇ subunits were co-transcribed and co-translated in the TNT-coupled rabbit reticulocyte lysate system (Promega, Madison, WI). The plasmid DNA for each of the ⁇ subunits was linearized to limit the generation of translated products of higher molecular weight. Whereas both the ⁇ 2 and ⁇ 4 subunits were translated efficiently in this system, the ⁇ 10 and ⁇ ⁇ subunits were translated at significantly lower levels.
- RNA 2 ⁇ g were added to the co-transcribed ⁇ - ⁇ mix.
- ⁇ 10 and ⁇ ⁇ subunits that had been translated separately were added to the co-translated ⁇ - ⁇ mix.
- tryptic digestion 5 or 10 ⁇ l aliquots of the co-translated ⁇ - ⁇ mix were digested by addition of 1 ⁇ l trypsin (1 ⁇ g) in a final volume of 20 ⁇ l (with 50 mM Na- HEPES, pH 8.0). After incubation for 1 hour at 30°C, the digestions were stopped by addition of Laemmli sample buffer and boiling for 3 minutes.
- GCTCA ACATG ACCCT CTGCT GACTG GAGTA TCTTC AAGTA CAAAT CCCTT 250 CAGAC CCCAG AAAGT CTGTT CCTTT TTGTA GTAAA ATGAA TCTTT CAAAG 300
- GGTTT CGGGA TCTCG GTGCT GCAGA CGGCG AGACC TCCTG CACAG GGTGT 100
- GGCCC AGAGC TGATG GCAGA CAATG TCAGC CACTA ACAAC ATAGC CCAGG 200 CCCGG AAGCT GGTGG AACAG CTACG CATAG AAGCC GGGAT TGAGC GCATC 250
- AAGGT CTCCA AAGCG GCGTC TGACC TCATG AGCTA CTGTG AGCAA CATGC 300
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
L'invention porte sur des molécules d'acide nucléique codant des sous-unités humaines η2, η3, η4, η5, η7, η10 et η11 ainsi que sur des polypeptides de sous-unités. Elle concerne, de surcroît, des procédés permettant de déceler des formes mutées de la sous-unité η humaine ainsi que des niveaux modifiés de la sous-unité η humaine. L'invention concerne également des procédés permettant d'identifier des antagonistes et des agonistes de l'interaction d'un ligand βη avec son récepteur.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US1995/006406 WO1996037513A1 (fr) | 1995-05-22 | 1995-05-22 | CLONES D'ADN COMPLEMENTAIRE CODANT DES SOUS-UNITES η DE LA PROTEINE G HUMAINE |
| CA002221783A CA2221783A1 (fr) | 1995-05-22 | 1995-05-22 | Clones d'adn complementaire codant des sous-unites .gamma. de la proteine g humaine |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0837879A1 true EP0837879A1 (fr) | 1998-04-29 |
Family
ID=25679849
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP95920580A Withdrawn EP0837879A1 (fr) | 1995-05-22 | 1995-05-22 | CLONES D'ADN COMPLEMENTAIRE CODANT DES SOUS-UNITES $g(g) DE LA PROTEINE G HUMAINE |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP0837879A1 (fr) |
| AU (1) | AU2598795A (fr) |
| CA (1) | CA2221783A1 (fr) |
| WO (1) | WO1996037513A1 (fr) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5935812A (en) * | 1996-09-18 | 1999-08-10 | Incyte Pharmaceuticals, Inc. | Human GTP binding protein gamma-3 |
| WO1999021884A1 (fr) * | 1997-10-29 | 1999-05-06 | Shanghai Second Medical University | Cblaeh07: sous-unite gamma 5 de proteine a g |
| US20020127568A1 (en) * | 2000-09-01 | 2002-09-12 | Rachel Meyers | 47324, a novel human G-protein and uses therefor |
-
1995
- 1995-05-22 EP EP95920580A patent/EP0837879A1/fr not_active Withdrawn
- 1995-05-22 CA CA002221783A patent/CA2221783A1/fr not_active Abandoned
- 1995-05-22 WO PCT/US1995/006406 patent/WO1996037513A1/fr not_active Ceased
- 1995-05-22 AU AU25987/95A patent/AU2598795A/en not_active Abandoned
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9637513A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2221783A1 (fr) | 1996-11-28 |
| WO1996037513A1 (fr) | 1996-11-28 |
| AU2598795A (en) | 1996-12-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1287133B1 (fr) | Regulation de recepteur couple aux proteines g de type dopamine humain | |
| US20160282350A1 (en) | Methods of diagnosing cancer | |
| EP0837879A1 (fr) | CLONES D'ADN COMPLEMENTAIRE CODANT DES SOUS-UNITES $g(g) DE LA PROTEINE G HUMAINE | |
| WO2001077320A2 (fr) | Regulation du recepteur couple aux proteines g humain du type hm74 | |
| US20020106678A1 (en) | cDNA clones encoding human G protein gamma subunits | |
| EP0894855A2 (fr) | Facteur de transcription I kappa B-beta humain | |
| WO2001068839A2 (fr) | Regulation de la proteine de type du recepteur de la lipoxine a4 humaine | |
| JP2001503621A (ja) | ヒトP▲下2x▼プリン受容体 | |
| US20030109673A1 (en) | Regulation of human hm74-like g protein coupled receptor | |
| US20030049787A1 (en) | Regulation of human mas oncogene-related g protein-coupled receptor | |
| JP2000517170A (ja) | 新規なヒトマクロファージ抗原 | |
| US20030165989A1 (en) | GPCR diagnostic for brain cancer | |
| US20040091863A1 (en) | Regulation of human leukotriene b4-like g protein-coupled receptor | |
| US20060068464A1 (en) | Regulation of human g protein coupled receptor | |
| EP1276867B1 (fr) | Utilisation du récepteur humain couplé à la protéine G semblable à la latrophiline dans des procédures de criblage | |
| US20020068342A1 (en) | Novel nucleic acid and amino acid sequences and novel variants of alternative splicing | |
| JP2003527818A (ja) | 新規なeskカリウムチャンネルのポリペプチドおよびポリヌクレオチドの組成物 | |
| EP1160321A1 (fr) | Kidney Injury Novel Gene-1: Isolation et applications thérapeutiques | |
| US20030175787A1 (en) | Vesicle membrane proteins | |
| EP0879886A2 (fr) | HLDAT86, Protéine de la transduction de signaux et homoloque humaine de Wnt-4 | |
| US20030148451A1 (en) | Endothelial differntiation gene 6-like g protein coupled receptor | |
| US20020025555A1 (en) | GPCR diagnostic for brain cancer | |
| JP2006500056A (ja) | ヒトp2y15gタンパク質共役型受容体の調節 | |
| WO2001070954A9 (fr) | Regulation du recepteur couple a la proteine g liee au facteur de croissance neuronale humain | |
| US20040005581A1 (en) | Human vanilloid receptor protein and polynucleotide sequence encoding same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19971222 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE DK ES FR GB IT LI NL |
|
| RTI1 | Title (correction) |
Free format text: CDNA CLONES ENCODING HUMAN G PROTEIN GAMMA SUBUNITS |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: WEIS CENTER FOR RESEARCH Owner name: HUMAN GENOME SCIENCES, INC. |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20040802 |