EP0832398A1 - Chambre de combustion catalytique pour turbine a gaz - Google Patents
Chambre de combustion catalytique pour turbine a gazInfo
- Publication number
- EP0832398A1 EP0832398A1 EP96915991A EP96915991A EP0832398A1 EP 0832398 A1 EP0832398 A1 EP 0832398A1 EP 96915991 A EP96915991 A EP 96915991A EP 96915991 A EP96915991 A EP 96915991A EP 0832398 A1 EP0832398 A1 EP 0832398A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- combustion chamber
- burner
- burner according
- gas turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007084 catalytic combustion reaction Methods 0.000 title claims abstract description 25
- 239000000446 fuel Substances 0.000 claims abstract description 51
- 238000002485 combustion reaction Methods 0.000 claims abstract description 34
- 239000011248 coating agent Substances 0.000 claims abstract description 24
- 238000000576 coating method Methods 0.000 claims abstract description 24
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- 229910000510 noble metal Inorganic materials 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 239000010948 rhodium Substances 0.000 claims description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 51
- 239000007789 gas Substances 0.000 abstract description 27
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000002737 fuel gas Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 239000003345 natural gas Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/40—Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
Definitions
- the invention relates to a burner, in particular for a gas turbine, with a catalytic combustion chamber.
- a hydrocarbon and / or hydrogen-containing energy carrier is provided as a fuel both in liquid and in gaseous form.
- a fuel is, for example, natural gas, petroleum or methane.
- Such a burner can preferably be used in a gas turbine.
- a gas turbine usually consists of a compressor part, a burner part and a turbine part.
- the compressor part and the turbine part are usually located on a common shaft which at the same time drives a generator for generating electricity.
- preheated fresh air is burned with a fuel of the type mentioned.
- the hot burner exhaust gas is fed to the turbine section and expanded there.
- Siemens AG May 1994, Order No. A 96001-U 124-V 1-7600, provides detailed information on the construction and use of a gas turbine.
- nitrogen oxides NO x also arise as particularly undesirable combustion products.
- these nitrogen oxides are the main cause of the environmental problem of acid rain. It is therefore - also due to strict legal limit values for NO x emissions - willing to keep the NO x emissions from a gas turbine particularly low and at the same time largely unaffected by the performance of the gas turbine.
- reducing the flame temperature in the burner reduces nitrogen oxide.
- water vapor is added to the fuel or the compressed and preheated fresh air or water is injected into the combustion chamber. Measures that reduce nitrogen oxide emissions per se are referred to as primary measures for nitrogen oxide reduction.
- GB 2 268 694 A provides a catalytic combustion chamber, the ignition temperature of a fuel being lowered by a partial catalytic oxidation.
- the catalysts provided for this purpose are installed transversely to the flow direction of the fuel and extend over the entire flow cross section. This gives a high flow resistance.
- any nitrogen oxide reduction, primary or secondary, provided there results in a loss of performance or a loss in the overall efficiency of the gas turbine system.
- the invention is therefore based on the object of specifying a burner, in particular for a gas turbine, which is distinguished by particularly low nitrogen oxide emissions and, at the same time, a particularly high efficiency.
- This object is achieved according to the invention with a burner in which a catalytic combustion chamber is provided, the combustion chamber having an essentially cylindrical expansion in the direction of flow of a fuel and the wall facing the fuel having a catalytically active coating for oxidizing the fuel.
- a particularly low nitrogen oxide content of the burner exhaust gas is achieved by the catalytically induced combustion of the fuel.
- the coating of the wall of the combustion chamber does not increase the flow resistance, so that particularly high efficiencies can be achieved in a gas turbine with such a catalytic combustion chamber.
- the essentially cylindrical shape of the catalytic combustion chamber and the catalytically active coating of the wall contribute to the fuel igniting starting from the wall and a spreading of the flame front from the catalytically active surface of the wall into the free Flow of the fuel gas is possible.
- the cylindrical shape in particular contributes to an essentially concentric and thus homogeneous distribution of the flame front, which results in complete and uniform combustion of the fuel.
- the process of forming a largely rotationally symmetrical flame front in the combustion chamber is further supported if the ring or rings are arranged exclusively in the outer region of the essentially circular cross section of the combustion chamber.
- a fuel comprising a main fuel stream, a preformed partial fuel stream and air can be fed to the combustion chamber.
- the main fuel flow consists mostly of natural gas and / or coal gas and / or hydrogen.
- the preformed partial fuel stream is a partial stream which is separated from the main fuel stream and passed through a preforming stage.
- natural gas ignites catalytically easier than natural gas, such as e.g. Alcohols, aldehydes and hydrogen.
- a fuel gas mixed with such a preformed partial fuel flow therefore has excellent catalytic ignitability.
- the ignitability of the fuel introduced into the catalytic combustion chamber can provide that a preformed partial fuel stream, optionally premixed with air, enters the combustion chamber through bores in the wall.
- a preformed partial fuel stream optionally premixed with air
- the wall can be cooled.
- the wall can be cooled, for example, with air, at the same time preheating the air. This preheated air can, for example, be subsequently compressed in the compressor part to the combustion chamber inlet pressure.
- the catalytic effect of the catalytically active coating occurs particularly advantageously when the catalytically active coating titanium dioxide, which is preferably flame and plasma sprayed, and a noble metal component selected from platinum, rhodium, palladium, iridium, rhenium and / or a metal oxide component , consisting of one or more transition metal oxides.
- Suitable transition metal oxides are those oxides which have a strongly oxidizing catalytic effect, e.g. Copper oxide, chromium oxide, iron oxide, molybdenum oxide, tungsten oxide, vanadium oxide, manganese oxide, cerium oxide and other oxides of lanthanides.
- FIG. 1 shows a schematic representation of the burner of a gas turbine with a catalytic combustion chamber
- FIG. 2 shows a schematic representation of the burner of a gas turbine according to FIG. 1 with a slight difference
- Figure 1 modified catalytic combustion chamber
- FIG. 3 shows a catalytic combustion chamber in cross section.
- FIGS. 1 to 3 the same parts have the same reference numbers.
- 1 shows a gas turbine 2 which comprises a compressor part 4, a burner part 6 and a turbine part 7.
- the burner part 6 comprises a catalytic combustion chamber 8, the wall 10 of which has a catalytically active coating 12.
- the catalytic combustion chamber 8 has a circular cross section.
- a fuel gas flows into the catalytic combustion chamber 8 as fuel 14, which in the exemplary embodiment consists of air 16 compressed in the compressor part 4, a main fuel stream 18 and a preformed partial fuel stream 20.
- This preformed partial fuel stream 20 is separated from an original fuel stream 22 and passed through a preforming stage 24.
- the fuel stream 22 consists of natural gas, from which in the preforming stage 24 substances which ignite catalytically more easily than natural gas, such as e.g. Alko ⁇ hole, aldehydes and hydrogen are formed.
- the preforming stage 24 comprises a ceramic honeycomb catalyst based on titanium dioxide, which is not shown any further and which additionally comprises a noble metal component consisting of platinum and palladium applied superficially to the honeycomb catalyst.
- the catalytically active coating 12 on the wall 10 of the catalytic combustion chamber 8 consists of a flame-sprayed titanium dioxide layer with a thickness of approximately 500 ⁇ m, on which are additionally deposited noble metal particles of platinum, rhodium and palladium as well as particles of transition metal oxides, such as cerium oxide. Vanadium oxide and chromium oxide are applied.
- a flame-sprayed titanium dioxide a plasma-sprayed titanium dioxide layer can also be provided. Both layers are distinguished by their great strength on the wall 10 of the catalytic combustion chamber 8, which is usually made of an austenitic steel.
- the upstream flame front 26 formed in this way is largely rotationally symmetrical, so that the temperature distribution in the catalytic combustion chamber 8 along the main flow direction has approximately circular isotherms with respect to the cross section. This is advantageous for a uniform and low-pollutant combustion of the fuel 14.
- the fuel 14 catalytically burned in this way enters the turbine part 7 of the gas turbine 2 at a temperature of approximately 1100 ° C. and is expanded there.
- the thermal energy transmitted in the turbine part is used to drive a generator for generating electricity, which is not shown here.
- This generator is arranged on the same shaft (not shown further here) as the gas turbine 2.
- the burner exhaust gas 30 leaving the turbine part 7 is particularly low in nitrogen oxide due to the catalytic combustion of the fuel gas 14 and has a nitrogen oxide content of approximately 70 ppm.
- the burner exhaust gas 30 can be used in a waste heat steam generator (not shown here) for steam generation.
- FIG. 2 shows a schematic representation of a gas turbine 2 'slightly modified compared to FIG. 1. The modifications are limited to the design of the catalytic combustion chamber 8.
- the catalytic combustion chamber 8 'shown in FIG. 2 differs from FIG. 1 in that 10 bores 32 are provided in the wall through which the preformed fuel - partial flow 20 and air 16 enter the combustion chamber 8 '.
- the first advantage is that the fuel mixture with the lowest catalytic ignition temperature temperature enters the combustion chamber 8 'directly at the catalytically active coating 12 and therefore ignites comparatively spontaneously. This measure therefore contributes particularly to the stabilization of the upstream flame front 26.
- the second advantage is that the walls 10 are cooled by the flowing mixture of preformed partial fuel flow 20 and air 16. This cooling also reduces the thermal load on the catalytically active coating 12, which has a favorable effect on the durability of this coating 12. Cooling of the wall 10 can alternatively also be achieved in a manner not shown here by means of a flow of air 16 which enters the compressor part 4.
- FIG. 3 shows a schematic representation of the cross section of a catalytic combustion chamber 34 modified compared to FIGS. 1 and 2.
- the wall 10 and the catalytically active coating 12 for the oxidation of the fuel 14 can again be seen.
- the oxidation of the fuel is understood to mean, of course, that the fuel 14, 22 is oxidized and the oxygen which is brought in via the air 16 and is required for combustion is reduced.
- the catalytically active coating 12 for the oxidation of the fuel gas 14 therefore means the coating which induces the entire combustion process with oxidized and reduced combustion products.
- the combustion chamber 34 has three rings 36 arranged concentrically. These concentric rings 36 are thin strips of sheet metal, consisting of the material of the wall 10.
- the rings 36 have the same catalytically active coating 12 with which the wall 10 of the combustion chamber 34 is also coated. For the sake of clarity of the illustration, the catalytically active coating 12 is only shown in a selected quadrant.
- the webs 38 holding the rings 36 also have this catalytically active coating 12.
- the rings 36 are exclusively in the outer Region of the substantially circular cross-section of the combustion chamber 34 is arranged to restrict the initial ignition of the fuel 14 to the outer region of the cross-section of the combustion chamber 34. The flame front then extends automatically into the free flow of the fuel gas 14.
- the rings 36 with the catalytically active coating 12 thus contribute to stabilizing the flame front and ensuring complete and therefore particularly low-emission combustion.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Catalysts (AREA)
Abstract
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19521356 | 1995-06-12 | ||
| DE1995121356 DE19521356C2 (de) | 1995-06-12 | 1995-06-12 | Gasturbine, umfassend einen Verdichterteil, einen Brennerteil und einen Turbinenteil |
| PCT/DE1996/001020 WO1996041992A1 (fr) | 1995-06-12 | 1996-06-11 | Chambre de combustion catalytique pour turbine a gaz |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0832398A1 true EP0832398A1 (fr) | 1998-04-01 |
| EP0832398B1 EP0832398B1 (fr) | 2000-01-12 |
Family
ID=7764194
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP96915991A Expired - Lifetime EP0832398B1 (fr) | 1995-06-12 | 1996-06-11 | Chambre de combustion catalytique pour turbine a gaz |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP0832398B1 (fr) |
| JP (1) | JPH11507433A (fr) |
| DE (2) | DE19521356C2 (fr) |
| ES (1) | ES2142587T3 (fr) |
| RU (1) | RU2143643C1 (fr) |
| WO (1) | WO1996041992A1 (fr) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19654022A1 (de) * | 1996-12-21 | 1998-06-25 | Abb Research Ltd | Verfahren zum Betrieb einer Gasturbogruppe |
| DE10061526A1 (de) * | 2000-12-11 | 2002-06-20 | Alstom Switzerland Ltd | Vormischbrenneranordnung zum Betrieb einer Brennkammer |
| DE10061527A1 (de) | 2000-12-11 | 2002-06-13 | Alstom Switzerland Ltd | Vormischbrenneranordnung mit katalytischer Verbrennung sowie Verfahren zum Betrieb hierzu |
| RU2232349C1 (ru) * | 2002-12-23 | 2004-07-10 | Государственное унитарное предприятие Тушинское машиностроительное конструкторское бюро "Союз" - дочернее предприятие Федерального государственного унитарного предприятия "Российская самолето-строительная корпорация "МиГ" | Каталитический воспламенитель |
| US7007487B2 (en) * | 2003-07-31 | 2006-03-07 | Mes International, Inc. | Recuperated gas turbine engine system and method employing catalytic combustion |
| RU2260156C2 (ru) * | 2003-08-25 | 2005-09-10 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" | Жаровая труба камеры сгорания |
| RU2250414C1 (ru) * | 2003-09-10 | 2005-04-20 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" | Камера сгорания |
| RU2342601C1 (ru) * | 2007-06-14 | 2008-12-27 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" | Газотурбинная установка регенеративного цикла с каталитической камерой сгорания |
| JP4538077B2 (ja) * | 2008-06-13 | 2010-09-08 | 川崎重工業株式会社 | 希薄燃料吸入ガスタービン |
| DE102008056741A1 (de) * | 2008-11-11 | 2010-05-12 | Mtu Aero Engines Gmbh | Verschleissschutzschicht für Tial |
| JP5380488B2 (ja) | 2011-05-20 | 2014-01-08 | 株式会社日立製作所 | 燃焼器 |
| WO2016056941A1 (fr) * | 2014-10-09 | 2016-04-14 | Дмитрий Александрович ЛЕБЕДЕВ | Piston d'un moteur à combustion interne |
| CN113357628B (zh) * | 2021-05-25 | 2024-03-19 | 江苏大学 | 一种折流式自动点火微型催化燃烧器 |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2941361A (en) * | 1952-10-15 | 1960-06-21 | Nat Res Dev | Combustion apparatus having a flame stabilizing baffle |
| US3032991A (en) * | 1959-10-01 | 1962-05-08 | Gen Electric | Combustion sustaining means for continuous flow combustion systems |
| US4185456A (en) * | 1976-07-02 | 1980-01-29 | Cummings Donald Ray | Providing energy from the combustion of methanol |
| US4603547A (en) * | 1980-10-10 | 1986-08-05 | Williams Research Corporation | Catalytic relight coating for gas turbine combustion chamber and method of application |
| US4432207A (en) * | 1981-08-06 | 1984-02-21 | General Electric Company | Modular catalytic combustion bed support system |
| JPS6153425A (ja) * | 1984-08-24 | 1986-03-17 | Hitachi Ltd | ガスタ−ビン用の燃焼器並びにその燃焼方法 |
| JPS61178402A (ja) * | 1985-02-04 | 1986-08-11 | Tsutomu Kagitani | オゾンの分解処理法 |
| US5048284A (en) * | 1986-05-27 | 1991-09-17 | Imperial Chemical Industries Plc | Method of operating gas turbines with reformed fuel |
| US4811556A (en) * | 1986-10-14 | 1989-03-14 | General Electric Company | Multiple-propellant air vehicle and propulsion system |
| US4857499A (en) * | 1987-03-20 | 1989-08-15 | Kabushiki Kaisha Toshiba | High temperature combustion catalyst and method for producing the same |
| DE3723603A1 (de) * | 1987-07-17 | 1989-01-26 | Helmut Prof Dr Rer Nat Krauch | Waermetauscher |
| US5094611A (en) * | 1989-09-07 | 1992-03-10 | Atomic Energy Of Canada Limited | Catalyst structures and burners for heat producing devices |
| RU2015380C1 (ru) * | 1990-01-17 | 1994-06-30 | Вилен Вагаршевич Азатян | Способ работы газотурбинной установки |
| US5213781A (en) * | 1990-10-08 | 1993-05-25 | Kabushiki Kaisha Riken | Method of cleaning nitrogen oxide containing exhaust gas |
| DE4210543A1 (de) * | 1992-03-31 | 1993-10-07 | Asea Brown Boveri | Druckwellenmaschine |
| GB2268694A (en) * | 1992-07-14 | 1994-01-19 | Rolls Royce Plc | A catalytic combustion chamber |
| GB2269764A (en) * | 1992-08-18 | 1994-02-23 | Rolls Royce Plc | A catalytic combustion chamber |
-
1995
- 1995-06-12 DE DE1995121356 patent/DE19521356C2/de not_active Expired - Fee Related
-
1996
- 1996-06-11 JP JP9502491A patent/JPH11507433A/ja not_active Ceased
- 1996-06-11 DE DE59604179T patent/DE59604179D1/de not_active Expired - Fee Related
- 1996-06-11 RU RU98100472A patent/RU2143643C1/ru not_active IP Right Cessation
- 1996-06-11 EP EP96915991A patent/EP0832398B1/fr not_active Expired - Lifetime
- 1996-06-11 ES ES96915991T patent/ES2142587T3/es not_active Expired - Lifetime
- 1996-06-11 WO PCT/DE1996/001020 patent/WO1996041992A1/fr not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9641992A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH11507433A (ja) | 1999-06-29 |
| RU2143643C1 (ru) | 1999-12-27 |
| DE59604179D1 (de) | 2000-02-17 |
| DE19521356C2 (de) | 1999-04-01 |
| WO1996041992A1 (fr) | 1996-12-27 |
| DE19521356A1 (de) | 1996-12-19 |
| EP0832398B1 (fr) | 2000-01-12 |
| ES2142587T3 (es) | 2000-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5946917A (en) | Catalytic combustion chamber operating on preformed fuel, preferably for a gas turbine | |
| EP0832398B1 (fr) | Chambre de combustion catalytique pour turbine a gaz | |
| EP1279898B1 (fr) | Brûleur à prémélange offrant une haute stabilité de flamme | |
| DE69829250T2 (de) | Kombikraftwerk | |
| DE69222777T2 (de) | NOx-ARME VERBRENNUNG, GESTEUERT DURCH NOx-ARME PILOTBRENNER | |
| EP0767345A2 (fr) | Procédé de fonctionnement d'une centrale d'énergie | |
| EP0995066B1 (fr) | Agencement de bruleurs pour une installation de chauffe, notamment une chambre de combustion de turbine a gaz | |
| DE69513596T2 (de) | Brennstoffeinspritz- und Zündeinheit | |
| DE10119035A1 (de) | Katalytisch arbeitender Brenner | |
| EP0832397B1 (fr) | Bruleur a turbine a gaz catalytique | |
| EP1800062B1 (fr) | Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur | |
| US20070128093A1 (en) | Catalyzer | |
| DE3809240A1 (de) | Verfahren zur verringerung der no(pfeil abwaerts)x(pfeil abwaerts)-emission von brennkraftturbinen | |
| US5950434A (en) | Burner, particularly for a gas turbine, with catalytically induced combustion | |
| EP0832399B1 (fr) | Bruleur d'allumage catalytique pour turbine a gaz | |
| EP0484777B1 (fr) | Procédé pour la stabilisation d'un processus de combustion | |
| WO1999046540A1 (fr) | Chambre de combustion et mode de fonctionnement d'une chambre de combustion | |
| DE4202018C1 (en) | Combustion chamber for gas turbine plant - has two catalyst holders consisting of honeycomb segments with flame holder downstream of them. | |
| EP1654497B1 (fr) | Procede de combustion d'un combustible fluide, et bruleur, en particulier de turbine a gaz, servant a la mise en oeuvre dudit procede | |
| DE2708940A1 (de) | Verfahren zum betreiben einer gasturbine sowie verbesserte gasturbinen- verbrennungskammer | |
| DE102014104317A1 (de) | Lufterhitzungssystem mit katalytischer Verbrennung | |
| DE4415916A1 (de) | Verfahren und Vorrichtung zur Verbrennung eines fließfähigen Brennstoffs | |
| EP1754937A2 (fr) | Tête de brûleur et procédé pour brûler du combustible | |
| WO2000012933A1 (fr) | Bruleur hybride et procede permettant de le faire fonctionner | |
| WO2000049337A1 (fr) | Systeme de bruleurs et procede permettant de le faire fonctionner |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19971204 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI SE |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| 17Q | First examination report despatched |
Effective date: 19990618 |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI SE |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG Ref country code: CH Ref legal event code: EP |
|
| REF | Corresponds to: |
Ref document number: 59604179 Country of ref document: DE Date of ref document: 20000217 |
|
| ITF | It: translation for a ep patent filed | ||
| ET | Fr: translation filed | ||
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000316 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2142587 Country of ref document: ES Kind code of ref document: T3 |
|
| EUG | Se: european patent has lapsed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20060613 Year of fee payment: 11 Ref country code: GB Payment date: 20060613 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060623 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060630 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20060713 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060821 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20060912 Year of fee payment: 11 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| EUG | Se: european patent has lapsed | ||
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070611 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080229 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070630 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080101 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070630 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070611 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070612 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070612 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070702 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070612 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070611 |