[go: up one dir, main page]

EP0891343A1 - Inhibiteurs de la farnesyl-proteine transferase - Google Patents

Inhibiteurs de la farnesyl-proteine transferase

Info

Publication number
EP0891343A1
EP0891343A1 EP97920032A EP97920032A EP0891343A1 EP 0891343 A1 EP0891343 A1 EP 0891343A1 EP 97920032 A EP97920032 A EP 97920032A EP 97920032 A EP97920032 A EP 97920032A EP 0891343 A1 EP0891343 A1 EP 0891343A1
Authority
EP
European Patent Office
Prior art keywords
substituted
alkyl
unsubstituted
aryl
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97920032A
Other languages
German (de)
English (en)
Inventor
Neville J. Anthony
Robert P. Gomez
Kelly M. Solinsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck and Co Inc
Original Assignee
Merck and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9613462.2A external-priority patent/GB9613462D0/en
Priority claimed from GBGB9617254.9A external-priority patent/GB9617254D0/en
Application filed by Merck and Co Inc filed Critical Merck and Co Inc
Publication of EP0891343A1 publication Critical patent/EP0891343A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/70One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • Ras proteins are part of a signalling pathway that links cell surface growth factor receptors to nuclear signals initiating cellular proliferation.
  • Biological and biochemical studies of Ras action indicate that Ras functions like a G-regulatory protein.
  • Ras In the inactive state, Ras is bound to GDP.
  • Ras Upon growth factor receptor activation Ras is induced to exchange GDP for GTP and undergoes a conformational change.
  • the GTP- bound form of Ras propagates the growth stimulatory signal until the signal is terminated by the intrinsic GTPase activity of Ras, which returns the protein to its inactive GDP bound form (D.R. Lowy and D.M.
  • Mutated ras genes (Ha-ras, Ki4a-r ⁇ 5, Ki4b-r ⁇ s and N-ras) are found in many human cancers, including colorectal carcinoma, exocrine pancreatic carcinoma, and myeloid leukemias. The protein products of these genes are defective in their GTPase activity and constitutively transmit a growth stimulatory signal.
  • Ras must be localized to the plasma membrane for both normal and oncogenic functions. At least 3 post-translational modifications are involved with Ras membrane localization, and all 3 modifications occur at the C-terminus of Ras.
  • the Ras C-terminus contains a sequence motif termed a "CAAX" or box (Cys is cysteine, Aaa is an aliphatic amino acid, the Xaa is any amino acid) (Willumsen et al., Nature 570:583-586 (1984)).
  • this motif serves as a signal sequence for the enzymes famesyl-protein transferase or geranylgeranyl-protein transferase, which catalyze the alkylation of the cysteine residue of the CAAX motif with a C15 or C20 isoprenoid, respectively.
  • the Ras protein is one of several proteins that are known to undergo post-translational farnesyl- ation.
  • famesylated proteins include the Ras-related GTP-binding proteins such as Rho, fungal mating factors, the nuclear lamins, and the gamma subunit of transducin. James, et al., J. Biol. Chem. 269, 14182 (1994) have identified a peroxisome associated protein Pxf which is also famesylated. James, et al., have also suggested that there are famesyl ⁇ ated proteins of unknown structure and function in addition to those listed above.
  • Famesyl-protein transferase utilizes famesyl pyrophosphate to covalently modify the Cys thiol group of the Ras CAAX box with a famesyl group (Reiss et al, Cell, 62:81-88 (1990); Schaber et al, J. Biol. Chem., 265: 14701-14704 (1990); Schafer et al, Science, 249: 1133-1139 (1990); Manne et al, Proc. Natl Acad. Sci USA, ⁇ 7:7541-7545 (1990)).
  • Inhibition of famesyl pyrophosphate biosynthesis by inhibiting HMG-CoA reductase blocks Ras membrane localization in cultured cells.
  • direct inhibition of famesyl- protein transferase would be more specific and attended by fewer side effects than would occur with the required dose of a general inhibitor of isoprene biosynthesis.
  • FPTase famesyl-protein transferase
  • FPP famesyl diphosphate
  • Ras protein substrates
  • Bisubstrate inhibitors and inhibitors of famesyl-protein transferase that are non-competitive with the substrates have also been described.
  • the peptide derived inhibitors that have been described are generally cysteine containing molecules that are related to the CAAX motif that is the signal for protein prenylation.
  • Such inhibitors may inhibit protein prenylation while serving as alternate substrates for the famesyl-protein transferase enzyme, or may be purely competitive inhibitors (U.S. Patent 5,141,851, University of Texas; N.E. Kohl et al, Science, 260: 1934-1937 (1993); Graham, et al., J. Med. Chem., 37, 725 (1994)).
  • deletion of the thiol from a CAAX derivative has been shown to dramatically reduce the inhibitory potency of the compound.
  • the thiol group potentially places limitations on the therapeutic application of FPTase inhibitors with respect to pharmacokinetics, pharmacodynamics and toxicity. Therefore, a functional replacement for the thiol is desirable.
  • famesyl-protein transferase inhibitors are inhibitors of proliferation of vascular smooth muscle cells and are therefore useful in the prevention and therapy of arteriosclerosis and diabetic disturbance of blood vessels (JP H7- 112930).
  • the present invention comprises peptidomimetic arylheteroaryl-containing compounds which inhibit the famesyl-protein transferase. Further contained in this invention are chemotherapeutic compositions containing these famesyl transferase inhibitors and methods for their production.
  • the compounds of this invention are useful in the inhibition of famesyl-protein transferase and the famesylation of the oncogene protein Ras.
  • the inhibitors of famesyl-protein transferase are illustrated by the formula A:
  • a is N or C
  • b, c, d and e are independently N, NH, O and S, and the remaining b, c, d and e atoms are independently CH, provided that if a is C, then at least one of b, c, d or e is independently N, NH, O or S;
  • Rla and Rib are independently selected from: a) hydrogen, b) aryl, heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, RlOO-, Rl lS(0) m -, R10C(O)NR10-, Rl lC(0)0-, (RlO) 2 NC(0)-, Rl 2 N-C(NRlO)-, CN, N02, R 10 C(O)-, N3, -N(Rl )2, or Rl lOC(O)NRl0-, c) unsubstituted or substituted C1-C6 alkyl wherein the substituent on the substituted C1-C6 alkyl is selected from unsubstituted or substituted aryl, heterocyclic, C3-C10 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, RlOo, Rl lS(0)m-, R
  • R10 2 N-C(NR10)-, CN, RlOC(O)-, N3, -N(Rl0)2, and Rl lOC(O)-NRl0- ;
  • R2, R3, R4 an d R5 are independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C -C6 alkenyl, C -C6 alkynyl, halogen, C1-C6 perfluoroalkyl, Rl2 ⁇ -, R n S(0) m -, RlOC(0)NRlO-, (RlO) 2 NC(0)-, Rl lC(0)0-, Rl ⁇ 2N-C(NRlO) .
  • R 6a , R 6b , R 6c and R 6d are independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C 2 -C6 alkynyl, halogen, C1-C6 perfluoroalkyl, Rl 2 0-, R 1 ⁇ (Ojm-, R 10 C(O)NRl0-, (RlO) 2 NC(0)-, R 1 !C(0)0-,
  • Rl is selected from: H; Cl-4 alkyl, C3-6 cycloalkyl, heterocycle, aryl, aroyl, heteroaroyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with: a) Cl-4 alkoxy, b) aryl or heterocycle, c) halogen, d) HO,
  • R8 is independently selected from: a) hydrogen, b) aryl, substituted aryl, heterocycle, C3-C10 cycloalkyl, C 2 -C6 alkenyl, C 2 -C6 alkynyl, perfluoroalkyl, F, CI, Br, RlOO-, Rl lS(0) m -, R1 C(O)N 10-, (Rl0) 2 NC(O)-,
  • R9 is independently selected from: a) hydrogen, b) C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 perfluoroalkyl, halogen, RHO-, Rl lS(0) m -, R 10 C(O)NRl0-, (Rl0)2NC(O)-, Rl0 2 N-C(NRlO)-, CN, N0 , RlOc(O)-,
  • RlO is independently selected from hydrogen, C1-C6 alkyl, 2,2,2- trifluoroethyl,benzyl and aryl;
  • Rl 1 is independently selected from C1-C6 alkyl and aryl
  • Rl2 is independently selected from hydrogen, C1-C6 alkyl, C1-C6 aralkyl, C1-C6 substituted aralkyl, C1-C6 heteroaralkyl, C1-C6 substituted heteroaralkyl, aryl, substituted aryl, heteroaryl, substituted heteraryl, C1-C6 perfluoroalkyl,
  • V is selected from: a) hydrogen, b) heterocycle, c) aryl, d) C1-C20 alkyl wherein from 0 to 4 carbon atoms are replaced with a heteroatom selected from O, S, and N, and e) C2-C20 alkenyl, provided that V is not hydrogen if A ⁇ is S(0)m and V is not hydrogen if Al is a bond, n is 0 and A 2 is S(0)m; provided that when V is heterocycle, attachment of V to R8 and to Al is through a substitutable ring carbon;
  • W is a heterocycle
  • a is N or C
  • b, c, d and e are independently N, NH, O and S, and the remaining b, c, d and e atoms are independently CH, provided that if a is C, then at least one of b, c, d or e is independently N, NH, O or S;
  • Rla is independently selected from: hydrogen, C3-C10 cycloalkyl, RIOO, -N(RlO)2, F or C1-C6 alkyl;
  • Rib is independently selected from: a) hydrogen, b) aryl, heterocycle, C3-C10 cycloalkyl, R Oo, -N(R10) 2 , F or C -C6 alkenyl, c) unsubstituted or substituted Cl-C ⁇ alkyl wherein the substituent on the substituted C1-C6 alkyl is selected from unsubstituted or substituted aryl, heterocycle, C3-C10 cycloalkyl, C 2 -C6 alkenyl, RlOO- and -N(RlO) 2;
  • R 2 , R3, R4 and R ⁇ are independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, R12O-, Rl lS(0) m -, R1°C(0)NR10-, (Rl0) 2 NC(O)-, Rl 2 N-C(NRlO)-, CN, N02, R i 0 C(O)-, N3, -N(RlO)2, or RH ⁇ C(O)NRl0-, c) unsubstituted Cl-C ⁇ alkyl; d) substituted C1-C6 alkyl wherein the substituent on the substituted C1-C6 alkyl is selected from unsubstituted or substituted aryl, unsubstitute
  • R6a 5 R6b 5 R6C an ⁇ j R6d ar e independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, halogen, C1-C6 perfluoroalkyl,
  • R7 is selected from: H; Cl-4 alkyl, C3-6 cycloalkyl, heterocycle, aryl, aroyl, heteroaroyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with: a) Cl-4 alkoxy, b) aryl or heterocycle, c) halogen, d) HO,
  • R8 is independently selected from: a) hydrogen, b) aryl, substituted aryl, heterocycle, Cl-C6 alkyl, C -C6 alkenyl, C2-C6 alkynyl, -C6 perfluoroalkyl, F, CI, RIOO, Rl0c(O)NRl0-, CN, N ⁇ 2, (R10)2N-C(NR10)-, RlOC(O)-, -N(RlO) 2 , or Rl 10C(0)NR10-, and c) Cl-C ⁇ alkyl substituted by Cl-C6 perfluoroalkyl, RlOO-, Rl0c(O)NRl0-, (RlO) 2 N-C(NRl )-, RlOc(O)-,
  • R9 is independently selected from: a) hydrogen, b) C2-C6 alkenyl, C2-C6 alkynyl, Cl-C6 perfluoroalkyl, F, CI, Rl lO-, Rl lS(0)m-, R 10 C(O)NRl0-, (Rl0) 2 NC(O)-, CN, N ⁇ 2, (Rl°)2N-C(NRlO)-, RlOC(O)-, -N(R O)2, or RH ⁇ C(O)NRl0-, and c) C 1 -C ⁇ alkyl unsubstituted or substituted by C l -C6 perfluoroalkyl, F, CI, RlOO-, Rl lS(0) m -, R!0C(O)NR10-, (RlO)2NC(0)-, CN, (RlO)2N-C(NRlO)-, RlOc(O)-, -N(RlO
  • RlO is independently selected from hydrogen, Cl-C6 alkyl, 2,2,2- trifluoroethyl.benzyl and aryl;
  • Rl is independently selected from Cl-C6 alkyl and aryl
  • R 2 is independently selected from hydrogen, Cl-C6 alkyl, Cl-C6 aralkyl, C1-C6 substituted aralkyl, Cl-C6 heteroaralkyl, Cl-C6 substituted heteroaralkyl, aryl, substituted aryl, heteroaryl, substituted heteraryl, Cl-C6 perfluoroalkyl, 2-aminoethyl and 2,2,2-trifluoroethyl;
  • V is selected from: a) hydrogen, b) heterocycle selected from pyrrolidinyl, imidazolyl, imidazolinyl, pyridinyl, thiazolyl, oxazoiyi, indolyl, quinolinyl, isoquinolinyl, triazolyl and thienyl, c) aryl, d) Cl-C 2 0 alkyl wherein from 0 to 4 carbon atoms are replaced with a heteroatom selected from O, S, and N, and e) C2-C20 alkenyl, and provided that V is not hydrogen if Al is S(0)m and V is not hydrogen if Al is a bond, n is 0 and A 2 is S(0)m', provided that when V is heterocycle, attachment of V to R8 and to Al is through a substitutable ring carbon;
  • W is a heterocycle selected from pyrrolidinyl, imidazolyl, imidazolinyl, pyridinyl, thiazolyl, oxazoiyi, indolyl, quinolinyl, triazolyl or isoquinolinyl;
  • a is N or C
  • b, c, d and e are independently N, NH, O and S, and the remaining b, c, d and e atoms are independently CH, provided that if a is C, then at least one of b, c, d or e is independently N, NH, O or S;
  • Rla is independently selected from: hydrogen, C3-C10 cycloalkyl, RlOo-, -N(RlO)2, F or C1-C6 alkyl;
  • Rib is independently selected from: a) hydrogen, b) aryl, heterocycle, C3-C10 cycloalkyl, RlOO-, -N(RlO)2, F or C2-C6 alkenyl, c) unsubstituted or substituted C ⁇ -C ⁇ alkyl wherein the substituent on the substituted C1-C6 alkyl is selected from unsubstituted or substituted aryl, heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, RlOO- and -N(RlO) 2;
  • R 2 and R3 are independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C -C ⁇ alkenyl, C -C ⁇ alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, R12O-, Rl lS(0)m-, R1°C(0)NR10-, (R 10 )2NC(O)-, Rl 2 N-C(NRlO)-, CN, N0 2 , RlOC(O)-, N3, -N(R10) 2 , or RH ⁇ C(O)NRl0-, c) unsubstituted Cl-C ⁇ alkyl, d) substituted Cl-C ⁇ alkyl wherein the substituent on the substituted Cl-C ⁇ alkyl is selected from unsubstituted or substituted aryl, unsubstituted or substituted heterocyclic,
  • R6C a nd R6d are independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, R12O-, Rl lS(0)m-, R 10 C(O)NRl0., (Rl0) 2 NC(O)-, RH>2N-C(NRlO)-, CN > N °2, R 10 C(O)-, N3, -N(RlO) ,
  • R8 is independently selected from: a) hydrogen, b) aryl, substituted aryl, heterocycle, Cl-C ⁇ alkyl, C -C ⁇ alkenyl, C 2 -C ⁇ alkynyl, Cl-C ⁇ perfluoroalkyl, F, CI,
  • R9 and R ⁇ b are independently hydrogen, Cl-C ⁇ alkyl, trifluoromethyl and halogen;
  • RlO is independently selected from hydrogen, Cl-C ⁇ alkyl, 2,2,2- trifluoroethyl,benzyl and aryl;
  • Rl is independently selected from Cl-C ⁇ alkyl and aryl
  • R 2 is independently selected from hydrogen, Cl-C ⁇ alkyl, Cl-C ⁇ aralkyl, Cl-C ⁇ substituted aralkyl, Cl-C ⁇ heteroaralkyl, Cl-C ⁇ substituted heteroaralkyl, aryl, substituted aryl, heteroaryl, substituted heteraryl, Cl-C ⁇ perfluoroalkyl,
  • V is selected from: a) hydrogen, b) heterocycle selected from pyrrolidinyl, imidazolyl, imidazolinyl, pyridinyl, thiazolyl, oxazoiyi, indolyl, quinolinyl, isoquinolinyl, triazolyl and thienyl, c) aryl, d) C1-C20 alkyl wherein from 0 to 4 carbon atoms are replaced with a heteroatom selected from O, S, and N, and e) C 2 -C 2 0 alkenyl, and provided that V is not hydrogen if A is S(0)m and V is not hydrogen if Al is a bond, n is 0 and A 2 is S(0) m ; provided that when V is heterocycle, attachment of V to R8 and to Al is through a substitutable ring carbon;
  • a is N or C; from 0-4 of b, c, d and e are independently N, NH, O and S, and the remaining b, c, d and e atoms are independently CH, provided that if a is C, then at least one of b, c, d or e is independently N, NH, O or S;
  • Rla is independently selected from: hydrogen, C3-C10 cycloalkyl, RIOO-, -N(RlO) 2 , F or Cl-C ⁇ alkyl;
  • Rib is independently selected from: a) hydrogen, b) aryl, heterocycle, C3-C10 cycloalkyl, Rl°0-, -N(RlO) 2 , F or C2-C6 alkenyl, c) unsubstituted or substituted Cl-C ⁇ alkyl wherein the substituent on the substituted Cl-C ⁇ alkyl is selected from unsubstituted or substituted aryl, heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, RlOO- and -N(RlO) 2 ;
  • R 2 and R ⁇ are independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, R12O-, Rl lS(0) m -, R1 C(0)NR10-, CN(RlO) 2 NC(0)-, R10 2 N-C(NR10)-, CN, N0 , RIOC(O)-, N3, -N(RlO) , or RH ⁇ C(O)NRl0-, c ) unsubstituted Cl-C ⁇ alkyl, d) substituted Cl-C ⁇ alkyl wherein the substituent on the substituted C l -Co alkyl is selected from unsubstituted or substituted aryl, unsubstituted or substituted heterocyclic, C
  • R 12o Rl lS(0)m-, R 10 C(O)NRl0-, (RlO) 2 NC(0)-, R10 2 N-C(NR10)-, CN, RlOC(O)-, N3, -N(RlO) , and R1 1OC(O)-NR10-; provided that when R 2 or R3 is unsubstituted or substituted heterocycle, attachment of R 2 or R ⁇ to the phenyl ring is through a substitutable heterocycle ring carbon;
  • R 6a , R 6b , R6c and R 6 a re independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C 2 -C ⁇ alkenyl, C 2 -C ⁇ alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, Rl 2 0-, Rl lS(0)m-, R1°C(0)NR10-, CN(RlO) 2 NC(0)-,
  • R8 is independently selected from: a) hydrogen, b) aryl, substituted aryl, heterocycle, substituted heterocycleCl-C ⁇ alkyl, C2-C6 alkenyl, C2-C6 alkynyl,
  • Cl-C ⁇ perfluoroalkyl F, CI, RlOO-, R10C(O)NR10-, CN, N ⁇ 2, (R1°)2N-C(NR10)-, RlOc(O)-, -N(RlO) 2 , or Rl lOC(O)NRl0-, and c) Cl-C ⁇ alkyl substituted by Cl-C ⁇ perfluoroalkyl, Rl°0-, Rl0c(O)NRl0-, (RlO)2N-C(NRlO)-, RlOc(O)-,
  • R9a and R9b are independently hydrogen, Cl-C ⁇ alkyl, trifluoromethyl and halogen;
  • RlO is independently selected from hydrogen, Cl-C ⁇ alkyl, 2,2,2- trifluoroethyl,benzyl and aryl;
  • Rl 1 is independently selected from Cl-C ⁇ alkyl and aryl
  • Rl is independently selected from hydrogen, Cl-C ⁇ alkyl, Cl-C ⁇ aralkyl, Cl-C ⁇ substituted aralkyl, Cl-C ⁇ heteroaralkyl,
  • V is selected from: a) hydrogen, b) heterocycle selected from pyrrolidinyl, imidazolyl, imidazolinyl, pyridinyl, thiazolyl, oxazoiyi, indolyl, quinolinyl, isoquinolinyl triazolyl and thienyl, c) aryl, d) C 1 -C20 alkyl wherein from 0 to 4 carbon atoms are replaced with a heteroatom selected from O, S, and N, and e) C2-C20 alkenyl, and provided that V is not hydrogen if Al is S(0)m and V is not hydrogen if A is a bond, n is 0 and A 2 is S(0)m; provided that when V is heterocycle, attachment of V to R and to Al is through a substitutable ring carbon;
  • the inhibitors of famesyl-protein transferase are illustrated by the formula D:
  • a is N or C
  • b, c, d and e are independently N, NH, O and S, and the remaining b, c, d and e atoms are independently CH, provided that if a is C, then at least one of b, c, d or e is independently N, NH, O or S;
  • Rla is independently selected from: hydrogen, C3-C10 cycloalkyl or Cl-C ⁇ alkyl;
  • R b is independently selected from: a) hydrogen, b) aryl, heterocycle, C3-C10 cycloalkyl, R OO-, -N(RlO) 2 ,
  • R 2 is selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C -C ⁇ alkenyl, C 2 -C ⁇ alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, Rl 2 0-, Rl lS(0)m-, R!0C(O)NR10-, (RlO) 2 NC(0)-,
  • R 3 is selected from H, halogen, Cl-C ⁇ alkyl and CF3;
  • ROa 5 R6b ? R6C a nd R6d a re independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C 2 -C ⁇ alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, R12O-, Rl ls(0) m -, R10C(O)NR10-, (RlO) 2 NC(0)-, Rl0 2 N-C(NRlO)-, CN, N0 , Rl C(O)-, N3, -N(Rl0)2, or RH ⁇ C(O)NRl0-, c) unsubstituted Cl-C ⁇ alkyl, d) substituted Cl-C ⁇ alkyl wherein the substituent on the substituted Cl-C ⁇ alkyl is selected from unsubstituted or substituted
  • R8 is independently selected from: a) hydrogen, b) aryl, substituted aryl, heterocycle, Cl-C ⁇ alkyl, C -C ⁇ alkenyl, C -C ⁇ alkynyl, Cl-C ⁇ perfluoroalkyl, F, CI, RIOO-, Rl0c(O)NRl0-, CN, N0 2 , (R10) N-C(NR 0)-, RlOC(O)-, -N(RlO) 2 , or RHOC(O)NR10-, and c) Cl-C ⁇ alkyl substituted by Cl-C ⁇ perfluoroalkyl, Rl O-, Rl0C(O)NRl0-, (RlO) 2 N-C(NRlO)-, RlOC(O)-, -N(RlO)2, or Rl l ⁇ C(O)NRl - ; provided that when R8 is heterocycle, attachment of R8 to V is through a substitutable
  • R9a and R ⁇ b are independently hydrogen, halogen, CF3 or methyl
  • RlO is independently selected from hydrogen, Cl-C ⁇ alkyl, 2,2,2- trifluoroethyl,benzyl and aryl;
  • Rl 1 is independently selected from Cl-C ⁇ alkyl and aryl
  • Rl 2 is independently selected from hydrogen, Cl-C ⁇ alkyl, Cl-C ⁇ aralkyl, Cl-C ⁇ substituted aralkyl, Cl-C ⁇ heteroaralkyl,
  • Al is selected from: a bond, -C(O)-, O, -NCR!**)- or S(0) m ;
  • n is 0 or 1 ; provided that n is not 0 if Al is a bond, O,
  • the inhibitors of famesyl-protein transferase are illustrated by the formula E:
  • a is N or C
  • b, c, d and e are independently N, NH, O and S, and the remaining b, c, d and e atoms are independently CH, provided that if a is C, then at least one of b, c, d or e is independently N, NH, O or S;
  • Rla is independently selected from: hydrogen, RlOO-, -N(RlO)2, F, C3-C10 cycloalkyl or Cl-C ⁇ alkyl;
  • Rib is independently selected from: a) hydrogen, b) aryl, heterocycle, C3-C 10 cycloalkyl, R 1 OO-, -N(R 1 °) , F or C2-C6 alkenyl, c) C1-C6 alkyl unsubstituted or substituted by aryl, heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, RlOo, or -N(RlO) 2;
  • R 2 is selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C 2 -C ⁇ alkenyl, C2-C6 alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, Rl 0-, Rl lS(0) m -, RK>C(O)NR10-, (Rl0) 2 NC(O)-,
  • Rl0 2 N-C(NRlO)-, CN> N ⁇ 2 ⁇ Rl0c(O)-, N3, -N(RlO) 2 ,
  • R3 is selected from H, halogen, Cl-C ⁇ alkyl and CF3;
  • R6a ? R6b 5 R6C an d R6d ar e independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, R12 0 -, Rl lS(0) m -, R10C(0)NR10-, (Rl0) 2 NC(O)-, Rl ⁇ 2N-C(NRlO)-, CN, N02, Rl°C(0)-, N3, -N(RlO) 2 , or RH ⁇ C(O)NRl0-, c) unsubstituted C 1 -Co alkyl , d) substituted Cl-C ⁇ alkyl wherein the substituent on the substituted Cl-C ⁇ alkyl is selected from unsubstituted or substituted
  • R8 is independently selected from: a) hydrogen, b) aryl, substituted aryl, heterocycle, Cl-C ⁇ alkyl, C -C ⁇ alkenyl, C 2 -C ⁇ alkynyl, Cl-C ⁇ perfluoroalkyl, F, CI, RlOO-, R! C(O)NR10-, CN, N02, (R1°)2N-C(NR10)-,
  • R9 and R ⁇ b are independently hydrogen, halogen, CF3 or methyl
  • RlO is independently selected from hydrogen, Cl-C ⁇ alkyl, 2,2,2- trifluoroethyl,benzyl and aryl;
  • RU is independently selected from Cl-C ⁇ alkyl and aryl
  • R! 2 is independently selected from hydrogen, Cl-C ⁇ alkyl, Cl-C ⁇ aralkyl, Cl-C ⁇ substituted aralkyl, Cl -C ⁇ heteroaralkyl, Cl-C ⁇ substituted heteroaralkyl, aryl, substituted aryl, heteroaryl, substituted heteraryl, Cl-C ⁇ perfluoroalkyl, 2-aminoethyl and 2,2,2-trifluoroethyl;
  • a is N or C
  • b, c, d and e are independently N, NH, O and S, and the remaining b, c, d and e atoms are independently CH, provided that if a is C, then at least one of b, c, d or e is independently N, NH, O or S;
  • Rl is independently selected from: hydrogen, C3-C10 cycloalkyl or Cl-C ⁇ alkyl;
  • Rib is independently selected from: a) hydrogen, b) aryl, heterocycle, C3-C10 cycloalkyl, RlOO-, -N(RlO) or F, c) Cl-C ⁇ alkyl unsubstituted or substituted by aryl, heterocycle, C3-C10 cycloalkyl, RlOO-, or -N(Rl°) 2 ;
  • R 2 is selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C 2 -C ⁇ alkenyl, C -C ⁇ alkynyl, halogen, Cl-C ⁇ perfluoroalkyl,
  • R1 1OC(O)-NR10-; provided that when R 2 is unsubstituted or substituted heterocycle, attachment of R 2 to the phenyl ring is through a substitutable heterocycle ring carbon;
  • R3 is selected from H, halogen, CH3 and CF3;
  • R6C a nd R ⁇ d are independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, R12O-, Rl lS(0)m-, R1°C(0)NR10-, (RlO) 2 NC(0)-, Rl ⁇ 2N-C(NRlO)-, CN, N02, Rl°C(0)-, N3, -N(Rl ) 2 ,
  • R ⁇ a and R ⁇ b are independently hydrogen, halogen, CF3 or methyl
  • RIO is independently selected from hydrogen, Cl-C ⁇ alkyl, 2,2,2- trifluoroethyl,benzyl and aryl;
  • RU is independently selected from C1-C6 alkyl and aryl
  • Rl 2 is independently selected from hydrogen, Cl-C ⁇ alkyl, Cl-C ⁇ aralkyl, Cl-C ⁇ substituted aralkyl, Cl-C ⁇ heteroaralkyl, Cl-C ⁇ substituted heteroaralkyl, aryl, substituted aryl, heteroaryl, substituted heteraryl, Cl-C ⁇ perfluoroalkyl, 2-aminoethyl and 2,2,2-trifluoroethyl;
  • a is N or C
  • b, c, d and e are independently N, NH, O and S, and the remaining b, c, d and e atoms are independently CH, provided that if a is C, then at least one of b, c, d or e is independently N, NH, O or S;
  • Rla is independently selected from: hydrogen, RlOO-, -N(R10) 2 , F, C3-C10 cycloalkyl or Cl-C ⁇ alkyl;
  • Rib is independently selected from: a) hydrogen, b) aryl, heterocycle or C3-C10 cycloalkyl, c) Cl-C ⁇ alkyl unsubstituted or substituted by aryl, heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, R 10 O-, or
  • R 2 is selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C2-C6 alkenyl, C 2 -C ⁇ alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, R12O, Rl lS(0) m -, R!0C(O)NR10-, (Rl0) 2 NC(O)-, R10 2 N-C(NR10)-, CN, N0 2 , RlOC(O)-, N3, -N(RlO) 2 , or RH ⁇ C(O)NRl0-, c) unsubstituted Cl-C ⁇ alkyl, d) substituted Cl-C ⁇ alkyl wherein the substituent on the substituted Cl-C ⁇ alkyl is selected from unsubstituted or substituted aryl, unsubstituted or substituted heterocyclic, C3
  • R10 2 N-C(NR1 )-, CN, RlOC(O)-, N3, -N(RlO) 2 , and R1 1OC(O)-NR10- ; provided that when R 2 is unsubstituted or substituted heterocycle, attachment of R 2 to the phenyl ring is through a substitutable heterocycle ring carbon;
  • R is selected from H, halogen. CH3 and CF3;
  • R ⁇ a Ob ? ROC and R ⁇ d are independently selected from: a) hydrogen, b) unsubstituted or substituted aryl, unsubstituted or substituted heterocycle, C3-C10 cycloalkyl, C 2 -C ⁇ alkenyl, C 2 -C ⁇ alkynyl, halogen, Cl-C ⁇ perfluoroalkyl, R12 0 -, Rl lS(0) m -, R 10 C(O)NRl0-, (Rl0) 2 NC(O)-, Rl ⁇ 2N-C(NRlO)-, CN, NO2, Rl°C(0)-, N3, -N(RlO) 2 , or RH ⁇ C(O)NRl0-, c) unsubstituted C l -Co alkyl, d) substituted Cl -C ⁇ alkyl wherein the substituent on the substituted Cl-C ⁇ alkyl is selected from unsubstituted or substituted ary
  • R9a and R ⁇ b are independently hydrogen, halogen, CF3 or methyl;
  • RlO is independently selected from hydrogen, Cl-C ⁇ alkyl, 2,2,2- trifluoroethyl,benzyl and aryl;
  • RU is independently selected from Cl-C ⁇ alkyl and aryl
  • Rl 2 is independently selected from hydrogen, Cl-C ⁇ alkyl, Cl-C ⁇ aralkyl, Cl-C ⁇ substituted aralkyl, Cl-C ⁇ heteroaralkyl,
  • Al is selected from: a bond, -C(O)-, O, -N(R10)-, or S(0) m ;
  • n 0, 1 or 2;
  • the compounds of the present invention may have asymmetric centers and occur as racemates, racemic mixtures, and as individual diastereomers, with all possible isomers, including optical isomers, being included in the present invention.
  • any variable e.g. aryl, heterocycle, R a , R b etc.
  • its definition on each occurence is independent at every other occurence.
  • combinations of substituents/or variables are permissible only if such combinations result in stable compounds.
  • alkyl and the alkyl portion of aralkyl and similar terms, is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms; “alkoxy” represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge.
  • cycloalkyl is intended to include non- aromatic cyclic hydrocarbon groups having the specified number of carbon atoms.
  • examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • alkenyl groups include those groups having the specified number of carbon atoms and having one or several double bonds. Examples of alkenyl groups include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, isoprenyl, famesyl, geranyl, geranylgeranyl and the like. "Alkynyl” groups include those groups having the specified number of carbon atoms and having one triple bonds.
  • alkynyl groups include acetylene, 2-butynyl, 2-pentynyl, 3-pentynyl and the like.
  • Halogen or "halo” as used herein means fluoro, chloro, bromo and iodo.
  • aryl and the aryl portion of aralkyl and aroyl, is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 members in each ring, wherein at least one ring is aromatic.
  • aryl elements include phenyl, naphthyl, tetrahydronaphthyl, indanyl, biphenyl, phenanthryl, anthryl or acenaphthyl.
  • heterocycle or heterocyclic represents a stable 5- to 7-membered monocyclic or stable 8- to 11 -membered bicyclic heterocyclic ring which is either saturated or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group consisting of N, O, and S, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring.
  • the heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure.
  • heterocyclic elements include, but are not limited to, azepinyl, benzimidazolyl, benzisoxazolyl, benzofurazanyl, benzopyranyl, benzothiopyranyl, benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, chromanyl, cinnolinyl, dihydrobenzofuryl, dihydrobenzothienyl, dihydrobenzothiopyranyl, dihydrobenzothiopyranyl sulfone, furyl, imidazolidinyl, imidazolinyl, imidazolyl, indolinyl, indolyl, isochromanyl, isoindolinyl, isoquinolinyl, isothiazolidinyl, isothiazolyl, isothiazolidinyl, morpholinyl, naphthyridinyl, oxadiazolyl,
  • heteroaryl is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 members in each ring, wherein at least one ring is aromatic and wherein from one to four carbon atoms are replaced by heteroatoms selected from the group consisting of N, O, and S.
  • heterocyclic elements include, but are not limited to, benzimidazolyl, benzisoxazolyl, benzofurazanyl, benzopyranyl, benzothiopyranyl, benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, chromanyl, cinnolinyl, dihydrobenzofuryl, dihydrobenzothienyl, dihydrobenzothiopyranyl, dihydrobenzothiopyranyl sulfone, furyl, imidazolyl, indolinyl, indolyl, isochromanyl, isoindolinyl, isoquinolinyl, isothiazolyl, naphthyridinyl, oxadiazolyl, pyridyl, pyrazinyl, pyrazolyl, pyridazinyl, pyrimidinyl, pyrrolyl, quinazolin
  • substituted Cl-8 alkyl, substituted C3-6 cycloalkyl, substituted aroyl, substituted aryl, substituted heteroaroyl, substituted arylsulfonyl, substituted heteroarylsulfonyl and substituted heterocycle include moieties containing from 1 to 3 substituent s in addition to the point of attachment to the rest of the compound.
  • substituted aryl substituted heterocycle
  • substituted cycloalkyl are intended to include the cyclic group which is substituted on a substitutable ring carbon atom with 1 or 2 substitutents selected from the group which includes but is not limited to F, CI, Br, CF3, NH2, N(Cl-C ⁇ alkyl) 2 , N ⁇ 2, CN, (Cl-C ⁇ alkyDO-, -OH, (Cl-C ⁇ alkyl)S(0)m-, (Cl-C ⁇ alkyl)C(0)NH-, H2N-C(NH)-, (Cl-C ⁇ alkyl)C(O)-, (Cl-C ⁇ alkyl)OC(O)-, N3,(Cl-C ⁇ alkyl)OC(0)NH-, phenyl, pyridyl, imidazolyl, oxazoiyi,
  • aromatic 5-membered heterocyclic ring is selected from:
  • Rla and R b are independently selected from: hydrogen, RHC(0)0-, -N(RlO) 2 , R10C(0)NR10-, RlOo- or unsubstituted or substituted Cl-C ⁇ alkyl wherein the substituent on the substituted Cl-C ⁇ alkyl is selected from unsubstituted or substituted phenyl, -N(RlO) , Rl°0- and RIOC(O)NRK)-.
  • R 2 is selected from: a) hydrogen, b) C3-C10 cycloalkyl, halogen, Cl-C ⁇ perfluoroalkyl, Rl 2 0-, CN, N02, Rl°C(0)- or -N(RlO) 2 , c) unsubstituted Cl-C ⁇ alkyl, d) substituted Cl-C ⁇ alkyl wherein the substituent on the substituted Cl-C ⁇ alkyl is selected from unsubstituted or substituted aryl, unsubstituted or substituted heterocyclic, C3-C10 cycloalkyl, C -C ⁇ alkenyl, C -C ⁇ alkynyl, R i2 0-, Rl lS(0)m-, R!0C(O)NR10-, (RlO)2NC(0)-,
  • Rl0 2 N-C(NRlO)-, CN, RlOC(O)-, N3, -N(RlO) 2 , and Rll ⁇ C(O)-NR 0-.
  • R3 is selected from: hydrogen, halogen, trifluoromethyl, trifluoromethoxy and Cl-C ⁇ alkyl.
  • R4 and R5 are hydrogen.
  • R°A R b, R6C an Rod are independently selected from: a) hydrogen, b) C3-C10 cycloalkyl, halogen, Cl-C ⁇ perfluoroalkyl, Rl 2 0-, Rl lS(0)m-, CN, N ⁇ 2, Rl°C(0)- or -N(RlO) 2 , c) unsubstituted Cl-C ⁇ alkyl; d) substituted Cl-C ⁇ alkyl wherein the substituent on the substituted Cl-C ⁇ alkyl is selected from unsubstituted or substituted aryl, C3-C10 cycloalkyl, Rl 2 0-, Rl lS(0) m -, RlOC(O)- or -N(RlO) 2 .
  • R8 is independently selected from: a) hydrogen, and b) aryl, substituted aryl, heterocycle, substituted heterocycle, Cl-C ⁇ perfluoroalkyl or CN.
  • R9 is hydrogen, halogen, CF3 or methyl.
  • RlO is selected from H, Cl-C ⁇ alkyl and benzyl.
  • a and A 2 are independently selected from: a bond, -C(O)NRl0-, -NRK>C(0)-, O, -N(R10)-, -S(0) N(R10). and -N(RlO)S(0) 2 -.
  • V is selected from hydrogen, heterocycle and aryl. More preferably, V is phenyl.
  • W is selected from imidazolinyl, imidazolyl, oxazoiyi, pyrazolyl, pyyrolidinyl, thiazolyl and pyridyl. More preferably, W is selected from imidazolyl and pyridyl.
  • n and r are independently 0, 1, or 2.
  • s is 0.
  • t is 1.
  • any substituent or variable e.g., Rla, Rib, R9, n? e t c .
  • a t a particular location in a molecule be independent of its definitions elsewhere in that molecule.
  • -N(RlO) represents -NHH, -NHCH3, -NHC2H5, etc.
  • substituents and substitution patterns on the compounds of the instant invention can be selected by one of ordinary skill in the art to provide compounds that are chemically stable and that can be synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials.
  • the pharmaceutically acceptable salts of the compounds of this invention include the conventional non-toxic salts of the compounds of this invention as formed, e.g., from non-toxic inorganic or organic acids.
  • such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like: and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxy-benzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, trifiuoroacetic and the like.
  • the pharmaceutically acceptable salts of the compounds of this invention can be synthesized from the compounds of this invention which contain a basic moiety by conventional chemical methods. Generally, the salts are prepared either by ion exchange chromatography or by reacting the free base with stoichiometric amounts or with an excess of the desired salt-forming inorganic or organic acid in a suitable solvent or various combinations of solvents.
  • Reactions used to generate the compounds of this invention are prepared by employing reactions as shown in the Schemes 1-22, in addition to other standard manipulations such as ester hydrolysis, cleavage of protecting groups, etc., as may be known in the literature or exemplified in the experimental procedures.
  • Substituents R 2 , R6 and R° ⁇ as shown in the Schemes represent the substituents R 2 , R , R 4 , R5, R6a, R6b ⁇ R6C, R6d an d R8; although only one such R 2 , R6 or R8 is present in the intermediates and products of the schemes, it is understood that the reactions shown are also applicable when such aryl or heteroaryl moieties contain multiple substituents.
  • Schemes 1- 13 illustrate synthesis of the instant aryl- heteroaryl compound which incorporate a preferred benzylimidazolyl sidechain.
  • a arylheteroaryl intermediate that is not commercially available may be synthesized by methods known in the art.
  • a suitably substituted heteroaryl boronic acid such as a suitably substituted thienyl boronic acid I may be reacted under Suzuki coupling conditions ⁇ Pure Appl.
  • Schemes 2-5 illustrate other methods of synthesizing the key alcohol intermediates, which can then be processed as described in Scheme 1.
  • Scheme 2 illustrates the analogous series of arylheteroaryl alcohol forming reactions starting with the halogenated arylaldehyde.
  • Scheme 3 illustrates the reaction wherein the "terminal" 5-membered heteroaryl moiety is employed in the Suzuki coupling as the halogenated reactant. Such a coupling reaction is also compatible when one of the reactants incorporates a suitably protected hydroxyl functionality as illustrated in Scheme 4.
  • Negishi chemistry (Org. Synth., 66:67 (1988)) may also be employed to form the arylheteroaryl component of the instant compounds, as shown in Scheme 5.
  • a suitably substituted zinc bromide adduct may be coupled to a suitably substituted phenyl halide in the presence of nickel (II) to provide the arylheteroaryl VII.
  • the heteroaryl halide and the zinc bromide adduct may be selected based on the availability of the starting reagents.
  • Scheme 6 illustrates the utilization of a suitably substituted arylheteroarylmethyl bromide in the reaction with the protected imidazole as described in Scheme 1.
  • a suitably substituted imidazole may first be alkylated with a suitably substituted benzyl halide to provide intermediate VIII.
  • Intermediate VIII can then undergo Suzuki type coupling to a suitably substituted heteroaryl boronic acid.
  • Scheme 8 illustrates synthesis of an instant compound wherein a non-hydrogen R9b i s inco ⁇ orated in the preferred W moiety, imidazolyl.
  • a readily available 4-substituted imidazole IX may be selectively iodinated to provide the 5-iodoimidazole X. That imidazole may then be protected and coupled to a suitably substituted benzyl moiety to provide intermediate XI. Intermediate XI can then undergo the alkylation reactions that were described hereinabove.
  • Scheme 9 illustrates synthesis of instant compounds that inco ⁇ orate a preferred imidazolyl moiety connected to the arylheteroaryl via an alkyl amino, sulfonamide or amide linker.
  • the 4-aminoalkylimidazole XII wherein the primary amine is protected as the phthalimide, is selectively alkylated then deprotected to provide the amine XIII.
  • the amine XIII may then react under conditions well known in the art with various activated arylheteroaryl moieties to provide the instant compounds shown.
  • Compounds of the instant invention wherein the Al(CRl a 2)nA 2 (CRl a 2)n linker is oxygen may be synthesized by methods known in the art, for example as shown in Scheme 10.
  • the suitably substituted phenol XIV may be reacted with methyl N-(cyano)methanimidate to provide the 4-phenoxyimidazole XV.
  • the intermediate XVI can undergo alkylation reactions as described for the benzylimidazoles hereinabove.
  • Scheme 11 illustrates an analogous series of reactions wherein the (CR 1 b 2 ) p X(CR 1 b 2 ) p linker of the instant compounds is oxygen.
  • a suitably substituted haloaryl alcohol such as 4-bromophenol and the like, is reacted with methyl N-(cyano) methanimidate to provide intermediate XVI.
  • Intermediate XVI is then protected and, if desired to form a compound of a preferred embodiment, alkylated with a suitably protected benzyl.
  • the intermediate XVII can then be coupled to a heteroaryl moiety by Suzuki chemistry to provide the instant compound.
  • Grignard chemistry may also be employed to form a substituted alkyl linker between the arylheteroaryl and the preferred W (imidazolyl) as shown in Scheme 13. Similar substituent manipulation as shown in Scheme 12 may be performed on the fully functionalized compound which inco ⁇ orates an R lb hydroxyl moiety.
  • Compound XXI can be deoxygenated by methods known in the art, such as a catalytic hydrogention, then deprotected with trifiuoroacetic acid in methylene chloride to give the final compound XXII.
  • the final product XXII may be isolated in the salt form, for example, as a trifluoroacetate, hydrochloride or acetate salt, among others.
  • the product diamine XXII can further be selectively protected to obtain XXIII, which can subsequently be reductively alkylated with a second aldehyde to obtain XXIV. Removal of the protecting group, and conversion to cyclized products such as the dihydroimidazole XXV can be accomplished by literature procedures.
  • the arylheteroaryl subunit reagent is reacted with an aldehyde which also has a protected hydroxyl group, such as XXVI in Scheme 15, the protecting groups can be subsequently removed to unmask the hydroxyl group (Schemes 15, 16).
  • the alcohol can be oxidized under standard conditions to e.g. an aldehyde, which can then be reacted with a variety of organometallic reagents such as Grignard reagents, to obtain secondary alcohols such as XXX.
  • the fully deprotected amino alcohol XXXI can be reductively alkylated (under conditions described previously) with a variety of aldehydes to obtain secondary amines, such as XXXII (Scheme 16), or tertiary amines.
  • the Boc protected amino alcohol XXVIII can also be utilized to synthesize 2-aziridinylmethylarylheteroaryl such as XXXIII (Scheme 17). Treating XXVIII with l,l'-sulfonyldiimidazole and sodium hydride in a solvent such as dimethylformamide led to the formation of aziridine XXXIII . The aziridine is reacted with a nucleophile, such as a thiol, in the presence of base to yield the ring- opened product XXXIV .
  • a nucleophile such as a thiol
  • arylheteroaryl subunit reagent can be reacted with aldehydes derived from amino acids such as O-alkylated tyrosines, according to standard procedures, to obtain compounds such as XL, as shown in Scheme 18.
  • R' is an aryl group
  • XL can first be hydrogenated to unmask the phenol, and the amine group deprotected with acid to produce XLI.
  • the amine protecting group in XL can be removed, and O-alkylated phenolic amines such as XLII produced.
  • the instant compounds are useful as pharmaceutical agents for mammals, especially for humans. These compounds may be administered to patients for use in the treatment of cancer.
  • Examples of the type of cancer which may be treated with the compounds of this invention include, but are not limited to, colorectal carcinoma, exocrine pancreatic carcinoma, myeloid leukemias and neurological tumors. Such tumors may arise by mutations in the ras genes themselves, mutations in the proteins that can regulate Ras activity (i.e., neuro- fibromin (NF-1), neu, scr, abl, lck, fyn) or by other mechanisms.
  • the compounds of the instant invention inhibit famesyl- protein transferase and the famesylation of the oncogene protein Ras.
  • the instant compounds may also inhibit tumor angiogenesis, thereby affecting the growth of tumors (J. Rak et al. Cancer Research, 55:4575-4580 (1995)).
  • Such anti-angiogenesis properties of the instant compounds may also be useful in the treatment of certain forms of blindness related to retinal vascularization.
  • the compounds of this invention are also useful for inhibiting other proliferative diseases, both benign and malignant, wherein Ras proteins are aberrantly activated as a result of oncogenic mutation in other genes (i.e., the Ras gene itself is not activated by mutation to an oncogenic form) with said inhibition being accomplished by the administration of an effective amount of the compounds of the invention to a mammal in need of such treatment.
  • a component of NF-1 is a benign proliferative disorder.
  • the instant compounds may also be useful in the treatment of certain viral infections, in particular in the treatment of hepatitis delta and related viruses (J.S. Glenn et al. Science, 256: 1331-1333 (1992).
  • the compounds of the instant invention are also useful in the prevention of restenosis after percutaneous transluminal coronary angioplasty by inhibiting neointi al formation (C. Indolfi et al. Nature medicine, 1 :541-545(1995).
  • the instant compounds may also be useful in the treatment and prevention of polycystic kidney disease (D.L. Schaffner et al.
  • the instant compounds may also be useful for the treatment of fungal infections.
  • the compounds of this invention may be administered to mammals, preferably humans, either alone or, preferably, in combination with pharmaceutically acceptable carriers or diluents, optionally with known adjuvants, such as alum, in a pharmaceutical composition, according to standard pharmaceutical practice.
  • the compounds can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.
  • the selected compound may be administered, for example, in the form of tablets or capsules, or as an aqueous solution or suspension.
  • carriers which are commonly used include lactose and com starch, and lubricating agents, such as magnesium stearate, are commonly added.
  • useful diluents include lactose and dried com starch.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring agents may be added.
  • sterile solutions of the active ingredient are usually prepared, and the pH of the solutions should be suitably adjusted and buffered.
  • the total concentration of solutes should be controlled in order to render the preparation isotonic.
  • the compounds of the instant invention may also be co-administered with other well known therapeutic agents that are selected for their particular usefulness against the condition that is being treated.
  • the instant compounds may be useful in combination with known anti-cancer and cytotoxic agents.
  • the instant compounds may be useful in combination with agents that are effective in the treatment and prevention of NF-1, restinosis, polycystic kidney disease, infections of hepatitis delta and related viruses and fungal infections.
  • compositions of this invention include aqueous solutions comprising compounds of this invention and pharmacolo ⁇ gically acceptable carriers, e.g., saline, at a pH level, e.g., 7.4. The solutions may be introduced into a patient's blood-stream by local bolus injection.
  • composition is intended to encompass a product comprising the specified ingredients in the specific amounts, as well as any product which results, directly or indirectly, from combination of the specific ingredients in the specified amounts.
  • the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, and response of the individual patient, as well as the severity of the patient's symptoms.
  • a suitable amount of compound is administered to a mammal undergoing treatment for cancer.
  • Administration occurs in an amount between about 0.1 mg/kg of body weight to about 60 mg/kg of body weight per day, preferably of between 0.5 mg/kg of body weight to about 40 mg/kg of body weight per day.
  • the compounds of the instant invention are also useful as a component in an assay to rapidly determine the presence and quantity of famesyl-protein transferase (FPTase) in a composition.
  • FPTase famesyl-protein transferase
  • the composition to be tested may be divided and the two portions contacted with mixtures which comprise a known substrate of FPTase (for example a tetrapeptide having a cysteine at the amine terminus) and famesyl pyrophosphate and, in one of the mixtures, a compound of the instant invention.
  • the chemical content of the assay mixtures may be determined by well known immuno- logical, radiochemical or chromatographic techniques. Because the compounds of the instant invention are selective inhibitors of FPTase, absence or quantitative reduction of the amount of substrate in the assay mixture without the compound of the instant invention relative to the presence of the unchanged substrate in the assay containing the instant compound is indicative of the presence of FPTase in the composition to be tested.
  • potent inhibitor compounds of the instant invention may be used in an active site titration assay to determine the quantity of enzyme in the sample.
  • a series of samples composed of aliquots of a tissue extract containing an unknown amount of famesyl-protein transferase, an excess amount of a known substrate of FPTase (for example a tetrapeptide having a cysteine at the amine terminus) and famesyl pyrophosphate are incubated for an appropriate period of time in the presence of varying concentrations of a compound of the instant invention.
  • concentration of a sufficiently potent inhibitor i.e., one that has a Ki substantially smaller than the concen ⁇ tration of enzyme in the assay vessel
  • concentration of a sufficiently potent inhibitor i.e., one that has a Ki substantially smaller than the concen ⁇ tration of enzyme in the assay vessel
  • Step A l-Trityl-4-(4-CvanobenzylVimidazole
  • Step B 4-Thien-3-yl-benzyl alcohol To a solution of methyl (4-thien-3-yl)benzoate
  • Step C l-(4-[Thien-3-yl]phenylmethyl)-5-(4- cyanobenzy imidazole hydrochloride salt To a solution of 4-thien-3-yl-benzyl alcohol (253 mg,
  • Bovine FPTase was assayed in a volume of 100 ⁇ l containing 100 mM N-(2- hydroxy ethyl) piperazine-.V-(2-ethane sulfonic acid) (HEPES), pH 7.4, 5 mM MgCl2, 5 mM dithiothreitol (DTT), 100 mM [3H]-farnesyl diphosphate ([ ⁇ HJ-FPP; 740 CBq/mmol, New England Nuclear), 650 nM Ras-CVLS and 10 ⁇ g/ml FPTase at 31°C for 60 min. Reactions were initiated with FPTase and stopped with 1 ml of 1.0 M HCL in ethanol.
  • Precipitates were collected onto filter-mats using a TomTec Mach II cell harvestor, washed with 100% ethanol, dried and counted in an LKB ⁇ -plate counter.
  • the assay was linear with respect to both substrates, FPTase levels and time; less than 10% of the [ ⁇ HJ-FPP was utilized during the reaction period.
  • Purified compounds were dissolved in 100% dimethyl sulfoxide (DMSO) and were diluted 20-fold into the assay. Percentage inhibition is measured by the amount of incorporation of radioactivity in the presence of the test compound when compared to the amount of incorporation in the absence of the test compound.
  • Human FPTase was prepared as described by Omer et al., Biochemistry 32:5167-5176 (1993).
  • the cell line used in this assay is a v-ras line derived from either Ratl or NIH3T3 cells, which expressed viral Ha-ras p21.
  • the assay is performed essentially as described in DeClue, J.E. et al., Cancer Research 51:712-717. (1991). Cells in 10 cm dishes at 50-75% confluency are treated with the test compound (final concentration of solvent, methanol or dimethyl sulfoxide, is 0.1%).
  • the cells After 4 hours at 37°C, the cells are labelled in 3 ml methionine-free DMEM supple ⁇ mented with 10% regular DMEM, 2% fetal bovine serum and 400 mCi[35S]methionine (1000 Ci mmol). After an additional 20 hours, the cells are lysed in 1 ml lysis buffer (1% NP40/20 mM HEPES, pH 7.5/5 mM MgCl2/l ⁇ M DTT/10 mg/ml aprotinen/2 mg/ml leupeptin/2 mg/ml antipain 0.5 mM PMSF) and the ly sates cleared by centrifugation at 100,000 x g for 45 min.
  • 1 ml lysis buffer 1% NP40/20 mM HEPES, pH 7.5/5 mM MgCl2/l ⁇ M DTT/10 mg/ml aprotinen/2 mg/ml leupeptin/2 mg/ml antipain 0.5 mM PMSF
  • the immunoprecipitates are washed four times with IP buffer (20 nM HEPES, pH 7.5/1 mM EDTA/1% Triton X- 100.0.5% deoxycholate/0.1%/SDS/0.1 M NaCI) boiled in SDS-PAGE sample buffer and loaded on 13% acrylamide gels. When the dye front reached the bottom, the gel is fixed, soaked in Enlightening, dried and autoradiographed. The intensities of the bands corresponding to famesylated and nonfamesylated ras proteins are compared to determine the percent inhibition of famesyl transfer to protein.
  • IP buffer (20 nM HEPES, pH 7.5/1 mM EDTA/1% Triton X- 100.0.5% deoxycholate/0.1%/SDS/0.1 M NaCI
  • Rat 1 cells transformed with either v-ras, v-raf, or v-mos are seeded at a density of 1 x 10 4 cells per plate (35 mm in diameter) in a 0.3% top agarose layer in medium A (Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum) over a bottom agarose layer (0.6%).
  • medium A Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum
  • Both layers contain 0.1% methanol or an appropriate concentration of the instant compound (dissolved in methanol at 1000 times the final concentration used in the assay).
  • the cells are fed twice weekly with 0.5 ml of medium A containing 0.1 % methanol or the concentration of the instant compound. Photomicrographs are taken 16 days after the cultures are seeded and comparisons are made.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Virology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

L'invention concerne des composés qui inhibent la farnesyl-protéine transférase (FTase) et la farnesylation de la protéine oncogène Ras. Elle concerne également des compositions chimiothérapeutiques contenant ces composés et des procédés permettant d'inhiber la farnésyl-protéine transférase, ainsi que la farnésylation de la protéine oncogène Ras.
EP97920032A 1996-04-03 1997-04-01 Inhibiteurs de la farnesyl-proteine transferase Withdrawn EP0891343A1 (fr)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US1459296P 1996-04-03 1996-04-03
US14592P 1996-04-03
GB9613462 1996-06-27
GBGB9613462.2A GB9613462D0 (en) 1996-06-27 1996-06-27 Inhibitors of farnesyl-protein transferase
US2233296P 1996-07-24 1996-07-24
US22332P 1996-07-24
GBGB9617254.9A GB9617254D0 (en) 1996-08-16 1996-08-16 Inhibitors of farnesyl-protein transferase
GB9617254 1996-08-16
PCT/US1997/005384 WO1997036886A1 (fr) 1996-04-03 1997-04-01 Inhibiteurs de la farnesyl-proteine transferase

Publications (1)

Publication Number Publication Date
EP0891343A1 true EP0891343A1 (fr) 1999-01-20

Family

ID=27451469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97920032A Withdrawn EP0891343A1 (fr) 1996-04-03 1997-04-01 Inhibiteurs de la farnesyl-proteine transferase

Country Status (5)

Country Link
EP (1) EP0891343A1 (fr)
JP (1) JP2000507593A (fr)
AU (1) AU721952B2 (fr)
CA (1) CA2249645A1 (fr)
WO (1) WO1997036886A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627629B2 (en) 2000-06-30 2003-09-30 Bristol-Myers Squibb Pharma N-ureidoheterocycloalkyl-piperidines as modulators of chemokine receptor activity
US6992087B2 (en) 2001-11-21 2006-01-31 Pfizer Inc Substituted aryl 1,4-pyrazine derivatives
EP1499599A1 (fr) 2002-04-26 2005-01-26 Pharmacia & Upjohn Company LLC Derives pyraziniques substitues
EP1625125A1 (fr) 2003-05-09 2006-02-15 Pharmacia & Upjohn Company LLC Composes utilises comme antagonistes du recepteur de type 1 de la corticoliberine (crf)
HRP20100675T1 (hr) 2003-12-23 2011-01-31 Astex Therapeutics Limited Derivati pirazola kao modulatori protein kinaze
JP2008546751A (ja) 2005-06-22 2008-12-25 アステックス・セラピューティクス・リミテッド 医薬組成物
EP1933832A2 (fr) 2005-06-23 2008-06-25 Astex Therapeutics Limited Combinaisons pharmaceutiques comprenant des derives de pyrazole en tant que modulateurs de proteine kinase
UY30892A1 (es) 2007-02-07 2008-09-02 Smithkline Beckman Corp Inhibidores de la actividad akt
GB0704932D0 (en) 2007-03-14 2007-04-25 Astex Therapeutics Ltd Pharmaceutical compounds
UA103319C2 (en) 2008-05-06 2013-10-10 Глаксосмитклайн Ллк Thiazole- and oxazole-benzene sulfonamide compounds
CA2756870A1 (fr) 2009-03-31 2010-10-07 Arqule, Inc. Composes indolo-pyridinone substitues
TW201444798A (zh) 2013-02-28 2014-12-01 必治妥美雅史谷比公司 作爲強效rock1及rock2抑制劑之苯基吡唑衍生物
US9828345B2 (en) 2013-02-28 2017-11-28 Bristol-Myers Squibb Company Phenylpyrazole derivatives as potent ROCK1 and ROCK2 inhibitors
AU2016295693B2 (en) 2015-07-17 2020-05-21 Sunshine Lake Pharma Co., Ltd. Substituted quinazoline compounds and preparation and uses thereof
EP4085056A1 (fr) 2020-01-03 2022-11-09 Berg LLC Amides polycycliques utilisés en tant que modulateurs d'ube2k pour le traitement du cancer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU557755A3 (ru) * 1968-08-19 1977-05-05 Янссен Фармасьютика Н.В. (Фирма) Способ получени производных имидазола
DE2059949C3 (de) * 1970-12-05 1979-12-13 Bayer Ag, 5090 Leverkusen Thienyl-fettsäurederivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel
DE3228266A1 (de) * 1982-07-29 1984-02-02 A. Nattermann & Cie GmbH, 5000 Köln Imidazolylalkylthiophene, verfahren zu ihrer herstellung und diese enthaltende pharmazeutische praeparate
AT395425B (de) * 1991-04-04 1992-12-28 Laevosan Gmbh & Co Kg Neue thiophen-2-carbonsaeurederivate und verfahren zu deren herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9736886A1 *

Also Published As

Publication number Publication date
CA2249645A1 (fr) 1997-10-09
AU721952B2 (en) 2000-07-20
JP2000507593A (ja) 2000-06-20
AU2432697A (en) 1997-10-22
WO1997036886A1 (fr) 1997-10-09

Similar Documents

Publication Publication Date Title
US5854264A (en) Inhibitors of farnesyl-protein transferase
AU714851B2 (en) Inhibitors of farnesyl-protein transferase
US6051574A (en) Inhibitors of farnesyl-protein transferase
US5854265A (en) Biheteroaryl inhibitors of farnesyl-protein transferase
US5872136A (en) Arylheteroaryl inhibitors of farnesyl-protein transferase
US5859035A (en) Arylheteroaryl inhibitors of farnesyl-protein transferase
US5939557A (en) Inhibitors of farnesyl-protein transferase
US5874452A (en) Biheteroaryl inhibitors of farnesyl-protein transferase
US5885995A (en) Inhibitors of farnesyl-protein transferase
EP0891361A1 (fr) Inhibiteurs de transferase de farnesyl-proteine
AU715606B2 (en) Inhibitors of farnesyl-protein transferase
EP0891339A1 (fr) Inhibiteurs de la farnesyl-proteine transferase
US5780492A (en) Inhibitors of farnesyl-protein transferase
EP0897303A1 (fr) Inhibiteurs de farnesyl-proteine transferase
CA2250353A1 (fr) Inhibiteurs de la farnesyl-proteine transferase
EP0904076A1 (fr) Inhibiteurs de la farnesyl-proteine transferase
WO1997036888A1 (fr) Inhibiteurs de farnesyl-proteine transferase
EP0880320A1 (fr) Inhibiteurs de la farnesyl-proteine transferase
AU721952B2 (en) Inhibitors of farnesyl-protein transferase
AU704792B2 (en) Inhibitors of farnesyl-protein transferase
AU706314B2 (en) Inhibitors of farnesyl-protein transferase
WO1997036892A1 (fr) Inhibiteurs de farnesyle-proteine transferase
EP0900081A1 (fr) Inhibiteurs de farnesyl-proteine transferase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021101