[go: up one dir, main page]

EP0877108B1 - Method and device for cleaning yarns - Google Patents

Method and device for cleaning yarns Download PDF

Info

Publication number
EP0877108B1
EP0877108B1 EP98106399A EP98106399A EP0877108B1 EP 0877108 B1 EP0877108 B1 EP 0877108B1 EP 98106399 A EP98106399 A EP 98106399A EP 98106399 A EP98106399 A EP 98106399A EP 0877108 B1 EP0877108 B1 EP 0877108B1
Authority
EP
European Patent Office
Prior art keywords
yarn
density
defects
values
classification field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98106399A
Other languages
German (de)
French (fr)
Other versions
EP0877108A1 (en
Inventor
Hanspeter Wepfer
Johannes Heusser
Enrico Biondi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uster Technologies AG
Original Assignee
Uster Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uster Technologies AG filed Critical Uster Technologies AG
Publication of EP0877108A1 publication Critical patent/EP0877108A1/en
Application granted granted Critical
Publication of EP0877108B1 publication Critical patent/EP0877108B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/06Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to presence of irregularities in running material, e.g. for severing the material at irregularities ; Control of the correct working of the yarn cleaner
    • B65H63/062Electronic slub detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method and an apparatus for cleaning yarn in which measurable properties of the yarn during its production or rewinding detected and yarn defects to be cleaned defined by an adjustable cleaning limit which indicates which yarn defects are cleaned and which are not.
  • Such a method is known for example from CH 683 350.
  • Two-dimensional yarn defect due to a deviation from a target value of the yarn thickness and the length of the yarn defect are mapped and classified.
  • the numbers of yarn defects that have occurred and are measured are entered, for example stored in cells.
  • the cleaning limit is set so that it is in the Surroundings of cells with high numbers of yarn defects outside, in the surroundings of cells with low numbers of yarn defects is moved inwards. In this way the number of necessary knots or splices in the yarn is reduced.
  • EP 415222 describes a method for setting response limits electronically Yarn cleaner known. The measured values of the Delicacy is recorded continuously and over a long length of yarn and it becomes their distribution certainly. From this distribution and from a predetermined permissible alarm frequency the response limits become independent on the basis of statistical laws established. These response limits become additional to known cleaning limits specified.
  • This further procedure concerns the setting of response limits in yarn monitoring systems, where yarn number deviations or deviations in yarn count, the middle dimension of a yarn, trigger an alarm or stop production, where a yarn as a whole is wrong or right, i.e. has the right delicacy or not.
  • a method for optimally managing a cleaning limit without much effort is missing with that still.
  • the invention as characterized in the claims, therefore solves the problem of to create a method and a device that allow the determination and Adjust the cleaning limit for yarn cleaners so that they are as frequent as possible and an optimal setting can be achieved if certain requirements are met.
  • the cleaning limit is once set is also automatically set on the thread cleaner so that it changes periodically or can continuously adapt to the type and frequency of yarn defects that occur. This can based on a standard or initial setting, or data from a previous one Production of the same item is done.
  • the definition of the cleaning limit is that Result of a regulation, the measured values of properties of the yarn and various, important criteria for the course of the cleaning limit are taken into account and preferably processed according to rules of fuzzy logic. The criteria mentioned can be difficult be measurable or not in a clear mathematical context with the Cleaning limit.
  • the device mentioned essentially consists of a control loop with a fuzzy controller, an input for values of properties recorded on the yarn and from units for Entry of criteria for determining or influencing the cleaning limit.
  • a control loop can also have multiple entries for values of several yarns and with several Yarn cleaner to be connected to the output of a common cleaning limit.
  • the advantages achieved by the invention can be seen in the fact that different criteria can be considered for the design of the cleaning limit. These can refer to the yarn such as the density of the yarn defects or the shape of the package, or they can affect the line on which yarn is produced or rewound such as the type of sensor (optical or capacitive). Further criteria can consider general quality considerations such as the fact that large yarn defects are more disturbing than small ones or that certain defects in one area affect the Disturb users particularly badly, etc. Also, cleaning limits can be reached Adjust the method used to measure yarn defects. For example, so take into account the fact that the capacitive scanning of the yarn is very short Yarn defects are no longer fully detected, but the optical scanning also shows short yarn defects in full extent.
  • the system can be left to its own devices, that is, without it special input, starting from a standard input, work or it can be optimized by appropriate entries according to all possible criteria work.
  • the proposed modeling of the yarn defects based on the determined Yarn error values can be the amount of samples or yarn error values required for creation a representative relief of the yarn defect density and thus for the determination of a cleaning limit are necessary to be reduced.
  • 1 shows a horizontal axis 1, along the values for a first dimension or one first parameters, here the length, of yarn defects are recorded.
  • a vertical Axis 2 are deviations in diameter (or mass) for a yarn to an average diameter (or average mass) as a percentage of the average Diameter (or the average mass) as a second dimension or second parameter applied.
  • Fields 3 in particular fields 3a, 3b, 3c, etc., the classes for yarn defects define how they are already described in CH 477 573 and general are known under the name USTER CLASSIMAT. In the plane or in the fields 3 yarn error measurements are indicated by crosses.
  • the cross indicates 4 that the length of the yarn defect is about 8 cm and its thickness or mass is the middle Diameter or the average mass exceeds 400%.
  • the cleaning limit is 5 piles or Clouds of crosses and thus yarn faults are circumvented in such a way that between axis 1 and the cleaning limit 5.
  • Fig. 2 shows a block diagram of the method or the device for cleaning yarn.
  • the device consists of a control circuit 6, which is preferably a fuzzy controller trained controller 7 and several processing units 8, 9 and 10 for individual process steps has, but which are just as well understood as part of the controller 7 can. Here they are for clearer presentation of individual functions or procedural steps listed individually.
  • the processing unit 8 is actually a memory with several Storage locations, the parameters (length and diameter deviation) of a yarn defect save for a selectable thread length (e.g. 100km).
  • the processing unit 8 with the The memory also has at least one input 11 a, 11 b for measured values and this is again connected to a yarn cleaner 32, 33. If the device for several Yarn cleaner works, several inputs 11 are provided accordingly.
  • the processing unit 9 is used to prepare the individual measured values, as will be shown later and consists essentially of a processor or computer or a part of such.
  • the processing unit 10 also consists of a memory with several Storage locations corresponding to fields 3a, 3b, 3c etc. (Fig. 1).
  • the regulator 7, the out a processor or computer also has an output 12 for values of a cleaning limit and, if it is designed as a fuzzy controller, further inputs 13 for which Entering productivity criteria, 14 for entering general quality criteria, 15 for entering yarn-specific criteria, 16 for entering plant-specific criteria Criteria and 17 for entering additional or special quality criteria.
  • the exit 12 is in turn connected to the processing unit 8, so that the values of the Cleaning limit, as indicated by field 30, there again for storage, for Display or issue for further purposes.
  • the output 12 is the Controller 7 is preferably also connected to the yarn cleaners 32, 33.
  • a modeled yarn defect is a partial and simplified reconstruction of a yarn defect from a single measurement. For example, it is modeled as a Gauss bell. Its maximum is provided at the point where the corresponding cross, for example cross 4 in Fig. 1, would be in the classification field.
  • the volume under the bell is defined as 1.
  • the partial surface 19 is here through an axis 20, along the radius or Diameter deviations are plotted and an axis 21, along which the lengths of the Errors are plotted limited.
  • the height or the volume is along an axis 22 of the yarn error.
  • the values of the yarn defects are recorded with certain tolerances are determined by the system for the registration, e.g. uneven speed of the yarn. If the same thread defect were measured a second time, it could easily be different Result in values and can even be classified differently in the classification field. On the other hand, decreased the meaning of the mentioned tolerances if a lot of yarn errors are measured can.
  • FIG. 4 shows the sum of modeled yarn defects over a level according to level 3 in FIG. 1 shown as area 29. These modeled yarn defects are plotted on the same axes, as they are known from FIG. 3. In contrast to Fig. 3, there are many Partial areas 19 with the modeled yarn errors added together recorded so that the modeled measured values of the individual partial areas 19 are also correct can still influence each other by making smooth transitions between the Adjust marginal areas of the partial areas. Large error frequencies can be seen in particular in an area 23, lower error rates in an area 24 and none noteworthy frequencies in adjacent areas.
  • a surface 25 which indicates the degree of disturbance caused by a yarn defect. From this you can see for example, that a yarn defect with a large length and a large mass or Diameter deviation means a major disturbance caused, for example, by Values can be quantified.
  • areas 26a, 26b, 26c, etc. are increasing disturbing yarn defects defined.
  • the area 25 is thus a Part of a conical surface. But it can also be any area that indicates the degree of interference represented in the sense of the user.
  • a yarn cleaner 32, 33 yarn errors or their measured values are determined with the yarn sensor, which correspond, for example, to the diameter or the mass of the yarn.
  • the diameter deviation and the length of a yarn defect are chosen as parameters - they are related in a known manner to an average value for the diameter or the mass of the yarn per unit length and from this the relative deviation to the average Diameter or the average yarn mass calculated. Values for the length of such deviations which exceed a threshold value (for the mass or the diameter) are determined in the yarn cleaner in a likewise known manner from these measured values.
  • Such measured values for the relative deviation and the length of the deviation are introduced into the control circuit 6 via the input 11.
  • these values first reach the processing unit 8, where they are stored.
  • yarn error values are stored for a predetermined yarn length, which can occupy an entire classification field, as shown in FIG. 1 with the yarn errors indicated by crosses 4.
  • These processes are already known per se, since the classification of values that are measured on the yarn has long been state of the art.
  • the processes just described can also be carried out for measured values of several yarns from several yarn cleaners, which input all of their measured values into the processing unit 8 via the inputs 11.
  • the contents of the memories or just the yarn defects are read into the processing unit 9, where the yarn defects are modeled as shown in FIG. 3.
  • the entire classification field i.e. the entirety of fields 3a, 3b, 3c, etc. according to FIG.
  • a grid is finely divided by a grid, the grid fields of which can comprise one or more partial areas 19, so that a modeled yarn defect is spread over one or more grid fields can extend.
  • the grid can, for example, be resolved in 5% steps along axis 2 and in 1 mm steps along axis 1.
  • the extent of the Gauss bell can also be varied and should expediently extend over several grid fields. The more the bell is stretched, the smaller its height so that the volume remains constant. The further away the yarn defect to be modeled is from the intersection of axes 1 and 2, the more the Gauss bell representing it should be stretched. In order to later calculate the density in a grid, the volumes of all Gauss bell parts located above the grid are added together.
  • the density is also calculated in the same way over the entire classification field, so that the density can be represented as area 29, as shown in FIG. 4.
  • the purpose of these processes is to ensure that, when determining the local yarn defect density, there are no isolated discrete values, but an area is formed that allows a statement about the density of the yarn defects at every location in the classification field. This is especially true where only a few yarn defects are to be expected.
  • a surface 25 was loaded into the processing unit 10 in parallel or in advance, as shown in Fig. 5, which is a representation of the gard of the failure of yarn defects indicates.
  • the controller 7 finds a comparison between the now available ones Values about the yarn defect density and given criteria instead. All of these operations in the processing units 9, 10 and in the computer 7 run on a purely computing level from, i.e. the illustrations shown in FIGS. 3 to 5 are only for a better explanation to understand.
  • the allowable degree of disruption as caused by the Area 25 is expressed and the sum of modeled yarn defects or the yarn defect density as expressed by the area 29 (FIG. 4), it can be determined which yarn defects, which are shown in Fig. 4, are not permitted and which are not.
  • controller 7 or preferably fuzzy controller, which is thus a known first Rule taken into account, which is roughly as follows: The larger the product of mass and the length of the yarn defect, the more troublesome the yarn defect.
  • This rule will be expressed by the representation in FIG. 5.
  • this could be the first Cleaning limit can be obtained by cutting the surface 25 with that surface which represents the sum of the modeled yarn defects in FIG. As for ongoing measurements on the yarn this sum also forms a continuously changing surface that Surface 25 but remains the same over time, the cutting line adjusts and thus the cleaning limit automatically to changed conditions and thus the controller 7 passes the output 12 the values of a cleaning limit. This can be periodic, ongoing or happen at the external instigation. A conventional one is sufficient for this controllers known from other applications 7.
  • the course of a cleaning limit is in Fig. 4 designated 31.
  • the cleaning limit is not optimized for all cases. To do this, there should be further criteria can be taken into account. These can be productivity criteria, for example, which are entered into controller 7 via input 13.
  • productivity criteria for example, which are entered into controller 7 via input 13.
  • One such criterion is, for example the number of allowed cuts per km of yarn.
  • General quality criteria can be entered via input 14 become. For example, can be specified as a rule that areas with relatively high Yarn defect density in the classification field must be avoided by the cleaning limit.
  • Soche areas can be identified by the fuzzy controller when it leaves the processing unit 10 receives an indication of the yarn defect density and this with a specification compares.
  • Yarn-specific criteria e.g. to adjust the Cleaning can be specified to the yarn characteristics. As a criterion, for example a distance to the package is entered, which defines a zone around the package, in which errors are disregarded. System-specific can also be input 16 Criteria can be entered. Here the comparability of measured values from different (optical, capacitive) cleaning systems are promoted by as As a rule, it is specified that short yarn errors are greater for capacitively determined measured values, however, long yarn defects are weighted more heavily for optically determined measured values. Or it can be specified that process-related systematic yarn defects are specially cleared or not to be cleaned.
  • the invention uses a preferred example of properties of the yarn, i.e. the deviations in thickness or mass and their length has been set out, this can in the same sense for other properties such as the color, the structure (hairiness, Twist), periodic fluctuations in the diameter of the yarn. So could also for yarn defects such as foreign fibers, foreign substances, hairiness etc. cleaning limits be set and adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Quality & Reliability (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Reinigen von Garn in welchen messbare Eigenschaften des Garns während seiner Produktion oder dem Umspulen erfasst und auszureinigende Garnfehler durch eine einstellbare Reinigungsgrenze definiert werden, welche angibt, welche Garnfehler ausgereinigt werden und welche nicht.The invention relates to a method and an apparatus for cleaning yarn in which measurable properties of the yarn during its production or rewinding detected and yarn defects to be cleaned defined by an adjustable cleaning limit which indicates which yarn defects are cleaned and which are not.

Ein solches Verfahren ist beispielsweise aus der CH 683 350 bekannt. Dabei werden Garnfehler zweidimensional auf Grund einer Abweichung von einem Sollwert der Garndicke und der Länge des Garnfehlers abgebildet und klassiert. In einem zweidimensionalen Klassierfeld werden die Zahlen aufgetretener und gemessener Garnfehler eingetragen und beispielsweise in Zellen gespeichert. Die Reinigungsgrenze wird so gelegt, dass sie in der Umgebung von Zellen mit hohen Zahlen von Garnfehlern nach aussen, in der Umgebung von Zellen mit niedrigen Zahlen von Garnfehlern nach innen verlegt wird. Auf diese Weise wird die Zahl der notwendigen Knoten oder Spleisse im Garn verringert.Such a method is known for example from CH 683 350. In doing so Two-dimensional yarn defect due to a deviation from a target value of the yarn thickness and the length of the yarn defect are mapped and classified. In a two-dimensional classification field the numbers of yarn defects that have occurred and are measured are entered, for example stored in cells. The cleaning limit is set so that it is in the Surroundings of cells with high numbers of yarn defects outside, in the surroundings of cells with low numbers of yarn defects is moved inwards. In this way the number of necessary knots or splices in the yarn is reduced.

Dieses Verfahren erlaubt es, die Reinigungsgrenze beliebig zu legen, so dass sie auch beliebige Formen annehmen kann. Allerdings sind dazu aufwendige Versuche an einem Garn notwendig, die der Garnproduktion oder dem Umspulen des Garns vorausgehen müssen.This procedure allows the cleaning limit to be set arbitrarily so that it can also take any form. However, this involves extensive tests on one Yarn necessary before the yarn production or the winding of the yarn have to.

Aus der EP 415222 ist ein Verfahren zum Einstellen von Ansprechgrenzen elektronischer Garnreiniger bekannt. Dabei werden während des Reinigungsprozesses die Messwerte der Feinheit laufend und über eine grosse Länge des Garns registriert und es wird ihre Verteilung bestimmt. Aus dieser Verteilung und aus einer vorgegebenen zulässigen Alarmhäufigkeit werden anhand statistischer Gesetzmässigkeiten die Ansprechgrenzen selbständig festgelegt. Diese Ansprechgrenzen werden zusätzlich zu bekannten Reinigungsgrenzen vorgegeben.EP 415222 describes a method for setting response limits electronically Yarn cleaner known. The measured values of the Delicacy is recorded continuously and over a long length of yarn and it becomes their distribution certainly. From this distribution and from a predetermined permissible alarm frequency the response limits become independent on the basis of statistical laws established. These response limits become additional to known cleaning limits specified.

Dieses weitere Verfahren betrifft die Einstellung von Ansprechgrenzen bei Garnüberwachungsanlagen, wo Garnnummerabweichungen oder Abweichungen der Garnfeinheit, also der mittleren Dimension eines Garnes, einen Alarm auslösen oder die Produktion stoppen, wobei ein Garn als Ganzes falsch oder richtig ist, d.h. die richtige Feinheit aufweist oder nicht. This further procedure concerns the setting of response limits in yarn monitoring systems, where yarn number deviations or deviations in yarn count, the middle dimension of a yarn, trigger an alarm or stop production, where a yarn as a whole is wrong or right, i.e. has the right delicacy or not.

Aus der EP 439767 ist femer ein Verfahren zur Qualitätsbewertung von Garnen und eine Einrichtung zur Durchführung des Verfahrens bekannt. Dabei geht man von einer vorgegebenen Garnreinigungsanlage mit einer vorgegebenen Reinigungsgrenze aus. Damit wird eine Reinigungsprofil erstellt, welches über einem rechtwinkligen Koordinatensystem aufgespannt wird. Das Reinigungsprofil ist eine gekrümmte Fläche, die einen Raum über dem Koordinatensystem begrenzt, die die Menge aller möglichen Kombinationen von Einstellparametern und Reinigerschnitten darstellt. Daraus kann für ein Garn bestimmter Länge und für alle möglichen Kombinationen von Einstellparametern die Zahl der zu erwartenden Reinigerschnitte angegeben werden.From EP 439767 there is also a method for quality evaluation of yarns and one Establishment of the method known. One starts from a given one Yarn cleaning system with a predetermined cleaning limit. So that will created a cleaning profile that spanned a right-angled coordinate system becomes. The cleaning profile is a curved surface that has a space above it Coordinate system that limits the set of all possible combinations of setting parameters and represents cleaner cuts. This can be used for a yarn of a certain length and for all possible combinations of setting parameters, the number of expected cleaner cuts can be specified.

Dagegen ist ein solches Verfahren aus der DE 4020330 bekannt. Dabei wird vorgeschlagen, eine Reinigungsgrenze durch zwei Punkte in einem Koordinatensystem und durch eine, diese zwei Punkte verbindende, Verbindungslinie einzustellen. Ausserhalb der beiden Punkte soll die Reinigungsgrenze einen vorgegebenen Verlauf haben.In contrast, such a method is known from DE 4020330. It is proposed a cleaning limit by two points in a coordinate system and by one to set a connecting line connecting these two points. Outside of the two Points, the cleaning limit should have a predetermined course.

Ein Verfahren zum optimalen Führen einer Reinigungsgrenze ohne grossen Aufwand fehlt damit immer noch.A method for optimally managing a cleaning limit without much effort is missing with that still.

Die Erfindung, wie sie in den Patentansprüchen gekennzeichnet ist, löst demnach die Aufgabe, ein Verfahren und eine Vorrichtung zu schaffen, die es erlauben, die Festlegung und Einstellung der Reinigungsgrenze für Garnreiniger so zu verbessern, dass möglichst häufig und unter Erfüllung bestimmter Vorgaben eine optimale Einstellung erreicht werden kann.The invention, as characterized in the claims, therefore solves the problem of to create a method and a device that allow the determination and Adjust the cleaning limit for yarn cleaners so that they are as frequent as possible and an optimal setting can be achieved if certain requirements are met.

Dies wird dadurch erreicht, dass die Festlegung der Reinigungsgrenze ausgehend von den erfassten Eigenschaften selbsttätig erfolgt, indem die Reinigungsgrenze durch selbsttätige Berechnung ermittelt wird. Die wird Reinigungsgrenze, wenn sie einmal festgelegt ist, auch automatisch am Garnreiniger eingestellt, so dass sie sich periodisch oder laufend an die Art und Häufigkeit der auftretenden Garnfehler anpassen kann. Dies kann ausgehend von einer Standard- oder Anfangseinstellung, oder von Daten einer vormaligen Produktion desselben Artikels erfolgen. Die Festlegung der Reinigungsgrenze ist dabei das Ergebnis einer Regelung, die Messwerte von Eigenschaften des Garns und verschiedene, für den Verlauf der Reinigungsgrenze wichtige Kriterien berücksichtigt und vorzugsweise nach Regeln der Fuzzy-Logik verarbeitet. Dabei können die genannten Kriterien schwer messbar sein oder nicht in einen eindeutigen mathematischen Zusammenhang mit der Reinigungsgrenze gebracht werden. Für die Festlegung, werden durch Garnreiniger am Garn Garnfehler durch deren Werte erfasst, gemäss gemessenen Parametern geordnet, indem sie in einem Klassierfeld abgelegt werden und gemäss vorgegebenen Annahmen über Garnfehler modelliert. Aus den modellierten Garnfehlern wird die Dichte der Garnfehler im Klassierfeld ermittelt, aus der Kriterien über die Lage der Reinigungsgrenze abgeleitet werden.This is achieved by setting the cleaning limit based on the recorded properties takes place automatically by the cleaning limit by automatic Calculation is determined. The cleaning limit is once set is also automatically set on the thread cleaner so that it changes periodically or can continuously adapt to the type and frequency of yarn defects that occur. This can based on a standard or initial setting, or data from a previous one Production of the same item is done. The definition of the cleaning limit is that Result of a regulation, the measured values of properties of the yarn and various, important criteria for the course of the cleaning limit are taken into account and preferably processed according to rules of fuzzy logic. The criteria mentioned can be difficult be measurable or not in a clear mathematical context with the Cleaning limit. For the determination, are made by Yarn cleaner on yarn Yarn defects detected by their values, according to measured parameters ordered by placing them in a classification field and according to the given Modeled assumptions about yarn defects. The modeled yarn defects become the Density of yarn defects in the classification field determined from the criteria on the location of the cleaning limit be derived.

Die genannte Vorrichtung besteht im wesentlichen aus einem Regelkreis, mit einem Fuzzy-Regler, einer Eingabe für Werte am Garn erfasster Eigenschaften und aus Einheiten zur Eingabe von Kriterien zur Bestimmung oder Beeinflussung der Reinigungsgrenze. Ein Regelkreis kann auch mehrere Eingaben für Werte mehrerer Garne aufweisen und mit mehreren Garnreinigem zur Ausgabe einer gemeinsamen Reinigungsgrenze verbunden sein.The device mentioned essentially consists of a control loop with a fuzzy controller, an input for values of properties recorded on the yarn and from units for Entry of criteria for determining or influencing the cleaning limit. A control loop can also have multiple entries for values of several yarns and with several Yarn cleaner to be connected to the output of a common cleaning limit.

Die durch die Erfindung erreichten Vorteile sind darin zu sehen, dass verschiedenste Kriterien für die Gestaltung der Reinigungsgrenze berücksichtigt werden können. Diese können sich auf das Garn beziehen wie z.B. die Dichte der Garnfehler oder die Gestalt des Garnkörpers, oder sie können die Anlage betreffen, auf der Garn produziert oder umgespult wird, wie z.B. der Typ des Sensors (optisch oder kapazitiv arbeitend). Weitere Kriterien können allgemeine Betrachtungen zur Qualität berücksichtigen wie z.B. den Umstand dass grosse Garnfehler mehr stören als kleine oder dass bestimmte Fehler in einem Bereich den Anwender besonders stark stören usw. Ebenso können damit Reinigungsgrenzen an die Methode angepasst werden, mit der Garnfehler gemessen werden. Beispielsweise kann so der Umstand berücksichtigt werden, dass die kapazitive Abtastung des Garns sehr kurze Garnfehler nicht mehr voll erfasst, die optische Abtastung aber auch kurze Garnfehler in voller Ausdehnung erfasst. So kann dafür gesorgt werden, dass ein nach optischer Abtastung gereinigtes Garn nicht häufiger gespleisst oder verknotet wird als ein Garn, das kapazitiv abgetastet wurde. Das System kann sowohl sich selbst überlassen, das heisst ohne besondere Eingabe, zunächst von einer Standardeingabe ausgehend, arbeiten, oder es kann durch entsprechende Eingaben nach allen möglichen wünschbaren Kriterein optimiert arbeiten. Durch die vorgeschlagene Modellierung der Garnfehler ausgehend von ermittelten Garnfehlerwerten, kann die Menge der Proben oder Garnfehlerwerte, die für die Erstellung eines repräsentativen Reliefs der Garnfehlerdichte und damit für die Festlegung einer Reinigungsgrenze notwendig sind, verringert werden.The advantages achieved by the invention can be seen in the fact that different criteria can be considered for the design of the cleaning limit. these can refer to the yarn such as the density of the yarn defects or the shape of the package, or they can affect the line on which yarn is produced or rewound such as the type of sensor (optical or capacitive). further criteria can consider general quality considerations such as the fact that large yarn defects are more disturbing than small ones or that certain defects in one area affect the Disturb users particularly badly, etc. Also, cleaning limits can be reached Adjust the method used to measure yarn defects. For example, so take into account the fact that the capacitive scanning of the yarn is very short Yarn defects are no longer fully detected, but the optical scanning also shows short yarn defects in full extent. This can ensure that after optical scanning cleaned yarn is not spliced or knotted more often than a yarn that is capacitive was scanned. The system can be left to its own devices, that is, without it special input, starting from a standard input, work or it can be optimized by appropriate entries according to all possible criteria work. Through the proposed modeling of the yarn defects based on the determined Yarn error values, can be the amount of samples or yarn error values required for creation a representative relief of the yarn defect density and thus for the determination of a cleaning limit are necessary to be reduced.

Im folgenden wird die Erfindung anhand eines Beispiels und mit Bezug auf die beiliegenden Figuren näher erläutert. Es zeigen

  • Figur 1 eine Darstellung einer Reinigungsgrenze in einem Klassierfeld,
  • Figur 2 eine schematische Darstellung der erfindungsgemässen Vorrichtung,
  • Figur 3 eine schematische Darstellung eines modellierten Garnfehlers,
  • Figur 4 ein Relief der Garnfehlerdichte und
  • Figur 5 eine schematische Darstellung von Kriterien zur Beurteilung von Garnfehlern.
  • The invention is explained in more detail below using an example and with reference to the accompanying figures. Show it
  • FIG. 1 shows a cleaning limit in a classification field,
  • FIG. 2 shows a schematic illustration of the device according to the invention,
  • FIG. 3 shows a schematic representation of a modeled yarn defect,
  • 4 shows a relief of the yarn defect density and
  • Figure 5 is a schematic representation of criteria for assessing yarn defects.
  • Fig. 1 zeigt eine horizontale Achse 1, längs der Werte für eine erste Dimension oder einen ersten Parameter, hier die Länge, von Garnfehlern aufgezeichnet sind. Längs einer vertikalen Achse 2 sind für ein Garn Abweichungen des Durchmessers (oder der Masse) bezogen auf einen mittleren Durchmesser (oder die mittlere Masse) in Prozenten des mittleren Durchmessers (oder der mittleren Masse) als zweite Dimension oder zweiter Parameter aufgetragen. In einer Ebene, die durch diese beiden Achsen 1 und 2 aufgespannt ist, sind Felder 3, insbesondere Felder 3a, 3b, 3c usw. eingezeichnet, die Klassen für Garnfehler definieren, wie sie beispielsweise bereits in der CH 477 573 beschrieben und allgemein unter dem Namen USTER CLASSIMAT bekannt sind. In der Ebene oder in den Feldern 3 sind Garnfehlermessungen durch Kreuze angegeben. Beispielsweise gibt das Kreuz 4 an, dass die Länge des Garnfehlers etwa 8 cm beträgt und seine Dicke oder Masse den mittleren Durchmesser oder die mittlere Masse um 400% übersteigt. Eine Reinigungsgrenze ist hier mit 5 bezeichnet. Sie definiert welche Garnfehler ausgereinigt oder aus dem Garn herausgeschnitten werden und welche nicht. So werden Garnfehler, die durch Kreuze vertreten sind, die zwischen der Achse 1 und der Reinigungsgrenze 5 liegen, nicht herausgeschnitten und damit auch keine Spleissung oder Verknotung des Garns bewirkt. In erster Näherung kann hier festgestellt werden, dass die Reinigungsgrenze 5 Anhäufungen oder Wolken von Kreuzen und damit Garnfehlern so umgeht, dass diese zwischen der Achse 1 und der Reinigungsgrenze 5 liegen.1 shows a horizontal axis 1, along the values for a first dimension or one first parameters, here the length, of yarn defects are recorded. Along a vertical Axis 2 are deviations in diameter (or mass) for a yarn to an average diameter (or average mass) as a percentage of the average Diameter (or the average mass) as a second dimension or second parameter applied. In a plane that is spanned by these two axes 1 and 2 Fields 3, in particular fields 3a, 3b, 3c, etc., the classes for yarn defects define how they are already described in CH 477 573 and general are known under the name USTER CLASSIMAT. In the plane or in the fields 3 yarn error measurements are indicated by crosses. For example, the cross indicates 4 that the length of the yarn defect is about 8 cm and its thickness or mass is the middle Diameter or the average mass exceeds 400%. There is a cleaning limit here designated 5. It defines which yarn defects have been cleaned or cut out of the yarn and which are not. This is how yarn defects are represented by crosses that are between the axis 1 and the cleaning limit 5 are not cut out and thus does not cause splicing or knotting of the yarn. First Approximation can be found here that the cleaning limit is 5 piles or Clouds of crosses and thus yarn faults are circumvented in such a way that between axis 1 and the cleaning limit 5.

    Fig. 2 zeigt ein Blockschema des Verfahrens oder der Vorrichtung zum Reinigen von Garn. Die Vorrichtung besteht aus einem Regelkreis 6, der einen vorzugsweise als Fuzzy-Regler ausgebildeten Regler 7 und mehrere Verarbeitungseinheiten 8, 9 und 10 für einzelne Verfahrensschritte aufweist, die jedoch genausogut als Teil des Reglers 7 aufgefasst werden können. Hier sind sie zur klareren Darstellung einzelner Funktionen oder Verfahrensschritte einzeln aufgeführt. Die Verarbeitungseinheit 8 ist eigentlich ein Speicher mit mehreren Speicherplätzen, die Parameter (Länge und Durchmesserabweichung) eines Garnfehlers für eine wählbare Garnlänge (z.B. 100km) speichern. Die Verarbeitungseinheit 8 mit dem Speicher weist auch mindestens einen Eingang 11 a, 11b für Messwerte auf und dieser ist wiederum mit einem Garnreiniger 32, 33 verbunden. Falls die Vorrichtung für mehrere Garnreiniger arbeitet, sind entsprechend mehrere Eingänge 11 vorgesehen. Die Verarbeitungseinheit 9 dient der Aufbereitung der einzelnen Messwerte, wie das später gezeigt wird und besteht im wesentlichen aus einem Prozessor oder Rechner oder einem Teil eines solchen. Die Verarbeitungseinheit 10 besteht ebenfalls aus einem Speicher mit mehreren Speicherplätzen, die Feldern 3a, 3b, 3c usw. (Fig. 1) entsprechen. Der Regler 7, der aus einem Prozessor oder Rechner besteht, hat auch einen Ausgang 12 für Werte einer Reinigungsgrenze und, wenn er als Fuzzy-Regler ausgebildet ist, weitere Eingänge 13, für die Eingabe von Produktivitätskriterien, 14 für die Eingabe von generellen Qualitätskriterien, 15 für die Eingabe von garnspezifischen Kriterien, 16 für die Eingabe von anlagespezifischen Kriterien und 17 für die Eingabe von weiteren oder speziellen Qualitätskriterien. Der Ausgang 12 ist wiederum mit der Verarbeitungseinheit 8 verbunden, so dass die Werte der Reinigungsgrenze, wie durch das Feld 30 angedeutet, dort wieder zur Speicherung, zur Anzeige oder zur Ausgabe für weitere Zwecke anliegen. Über den Ausgang 12 ist damit der Regler 7 vorzugsweise auch mit den Garnreinigern 32, 33 verbunden.Fig. 2 shows a block diagram of the method or the device for cleaning yarn. The device consists of a control circuit 6, which is preferably a fuzzy controller trained controller 7 and several processing units 8, 9 and 10 for individual process steps has, but which are just as well understood as part of the controller 7 can. Here they are for clearer presentation of individual functions or procedural steps listed individually. The processing unit 8 is actually a memory with several Storage locations, the parameters (length and diameter deviation) of a yarn defect save for a selectable thread length (e.g. 100km). The processing unit 8 with the The memory also has at least one input 11 a, 11 b for measured values and this is again connected to a yarn cleaner 32, 33. If the device for several Yarn cleaner works, several inputs 11 are provided accordingly. The processing unit 9 is used to prepare the individual measured values, as will be shown later and consists essentially of a processor or computer or a part of such. The processing unit 10 also consists of a memory with several Storage locations corresponding to fields 3a, 3b, 3c etc. (Fig. 1). The regulator 7, the out a processor or computer, also has an output 12 for values of a cleaning limit and, if it is designed as a fuzzy controller, further inputs 13 for which Entering productivity criteria, 14 for entering general quality criteria, 15 for entering yarn-specific criteria, 16 for entering plant-specific criteria Criteria and 17 for entering additional or special quality criteria. The exit 12 is in turn connected to the processing unit 8, so that the values of the Cleaning limit, as indicated by field 30, there again for storage, for Display or issue for further purposes. The output 12 is the Controller 7 is preferably also connected to the yarn cleaners 32, 33.

    Fig. 3 zeigt einen modellierten Garnfehler 18, der über einer Teilfläche 19 aufgetragen ist. Ein modellierter Garnfehler ist eine teilweise und vereinfachte Rekonstruktion eines Garnfehlers aus einem einzelnen Messwert. Beispielsweise ist er als Gauss-Glocke modelliert. Sein Maximum ist an jener Stelle vorgesehen, wo normalerweise das entsprechende Kreuz, beispielsweise Kreuz 4 in Fig. 1, im Klassierfeld liegen würde. Das Volumen unter der Glokke wird als 1 definiert. Die Teilfläche 19 ist hier durch eine Achse 20, längs der Radius- oder Durchmesserabweichungen aufgetragen sind und eine Achse 21, längs der die Längen der Fehler aufgetragen sind, begrenzt. Längs einer Achse 22 ist die Höhe oder das Volumen des Garnfehlers aufgezeichnet. 3 shows a modeled yarn defect 18, which is plotted over a partial area 19. A modeled yarn defect is a partial and simplified reconstruction of a yarn defect from a single measurement. For example, it is modeled as a Gauss bell. Its maximum is provided at the point where the corresponding cross, for example cross 4 in Fig. 1, would be in the classification field. The volume under the bell is defined as 1. The partial surface 19 is here through an axis 20, along the radius or Diameter deviations are plotted and an axis 21, along which the lengths of the Errors are plotted limited. The height or the volume is along an axis 22 of the yarn error.

    Bei dieser Darstellung geht es darum, die Bedeutung eines Garnfehlers in einem Klassierfeld richtig darzustellen und später daraus abgeleitete Werte, wie die Darstellung der Dichte der Garnfehler so zu beeinflussen, dass keine falschen Schlüsse gezogen werden können. Die Gefahr besteht darin, dass der Garnfehler für die spätere Verwendung und Verarbeitung bloss als Punkt in einem Feld aufgefasst wird und seine Wirkung auf die Umgebung im Klassierfeld vernachlässigt wird. Insbesondere sollen damit zwei Umstände berücksichtigt werden.This presentation is about the importance of a yarn error in a classification field to represent correctly and later derived values, such as the representation of density to influence the yarn error so that no wrong conclusions can be drawn. The danger is that the yarn will fail for later use and processing is merely understood as a point in a field and its effect on the environment in the Classification field is neglected. In particular, two circumstances should be taken into account become.

    Einerseits geschieht die Erfassung der Werte der Garnfehler mit gewissen Toleranzen, die durch das System für die Erfassung bedingt sind, z.B. ungleichmässige Geschwindigkeit des Garns. Würde derselbe Garnfehler ein zweites Mal gemessen, könnte er leicht andere Werte ergeben und sogar im Klassierfeld anders klassiert werden. Andererseits verringert sich die Bedeutung der genannten Toleranzen wenn sehr viele Garnfehler gemessen werden können. Man kann durch die Modellierung der Garnfehler somit diejenige Anzahl gemessener Garnfehler verringern, die notwendig ist um ein repräsentatives Relief der Garnfehlerdichte, oder einfach um genügend Garnfehlerdichtewerte für die Feststellung der Geinigungsgrenze, zu erhalten. Durch die genannte Modellierung erhält man somit schon frühzeitig, nach einer relativ kleinen Zahl gemessener Garnfehler ein repräsentatives Relief der Garnfehlerdichte und kann daraus eine gute Reinigungsgrenze und eine zuverlässige Prognose über zu erwartende Schnitthäufigkeiten ableiten. Damit kann eine Verbesserung oder Optimierung eines Produktionsablaufes hinsichtlich Qualität und/oder Produktivität schon vor der Produktionsaufnahme sichergestellt werden.On the one hand, the values of the yarn defects are recorded with certain tolerances are determined by the system for the registration, e.g. uneven speed of the yarn. If the same thread defect were measured a second time, it could easily be different Result in values and can even be classified differently in the classification field. On the other hand, decreased the meaning of the mentioned tolerances if a lot of yarn errors are measured can. By modeling the yarn defects, you can measure that number Reduce yarn error, which is necessary for a representative relief of the yarn error density, or simply by enough yarn defect density values to determine the cleaning limit, to obtain. With the above-mentioned modeling, you get after a relatively small number of measured yarn defects, a representative relief of the Yarn defect density and can result in a good cleaning limit and a reliable forecast derive from expected cutting frequencies. This can be an improvement or optimization of a production process with regard to quality and / or productivity be ensured before the start of production.

    Fig. 4 zeigt die Summe modellierter Garnfehler über einer Ebene gemäss Ebene 3 in Fig. 1 als Fläche 29 dargestellt. Diese modellierten Garnfehler sind über denselben Achsen aufgetragen, wie sie aus der Fig. 3 bekannt sind. Im Gegensatz zu Fig. 3 sind aber hier viele Teilflächen 19 mit den zusammengerechneten modellierten Garnfehlern nebeneinander aufgezeichnet, so dass die modellierten Messwerte der einzelnen Teilflächen 19 sich auch noch gegenseitig beeinflussen können, indem sich fliessende Übergänge zwischen den Randbereichen der Teilflächen einstellen. Man erkennt insbesondere grosse Fehlerhäufigkeiten in einem Bereich 23, geringere Fehlerhäufigkeiten in einem Bereich 24 und keine nennenswerten Häufigkeiten in daneben liegenden Bereichen.FIG. 4 shows the sum of modeled yarn defects over a level according to level 3 in FIG. 1 shown as area 29. These modeled yarn defects are plotted on the same axes, as they are known from FIG. 3. In contrast to Fig. 3, there are many Partial areas 19 with the modeled yarn errors added together recorded so that the modeled measured values of the individual partial areas 19 are also correct can still influence each other by making smooth transitions between the Adjust marginal areas of the partial areas. Large error frequencies can be seen in particular in an area 23, lower error rates in an area 24 and none noteworthy frequencies in adjacent areas.

    Fig. 5 zeigt über denselben bekannten Achsen 20, 21 und 22 aufgetragen, eine Fläche 25, welche den Grad der Störung, die ein Garnfehler verursacht, angibt. Daraus erkennt man beispielsweise, dass ein Garnfehler mit einer grossen Länge und einer grossen Massenoder Durchmesserabweichung eine grosse Störung bedeutet, die beispielsweise durch Werte quantifiziert werden kann. Beispielsweise sind Bereiche 26a, 26b, 26c, usw. für zunehmend störende Garnfehler definiert. Die mathematische Funktion, welche durch diese Fläche repräsentiert wird, lautet beispielsweise: z = x y, wenn als Ausgangspunkt der Schnittpunkt der Achsen 20 und 21 angenommen wird und längs der Achse 20 x-Werte und längs der Achse 21 y-Werte aufgetragen sind oder umgekehrt. Die Fläche 25 ist damit ein Teil einer Kegelfläche. Es kann aber auch eine beliebige Fläche, die den Grad der Störung im Sinne des Anwenders repräsentiert, definiert werden.5 shows 20, 21 and 22 plotted over the same known axes, a surface 25, which indicates the degree of disturbance caused by a yarn defect. From this you can see for example, that a yarn defect with a large length and a large mass or Diameter deviation means a major disturbance caused, for example, by Values can be quantified. For example, areas 26a, 26b, 26c, etc. are increasing disturbing yarn defects defined. The mathematical function, which through this Area is represented, for example: z = x y, if the starting point is Intersection of axes 20 and 21 is assumed and along the axis 20 x values and 21 y values are plotted along the axis or vice versa. The area 25 is thus a Part of a conical surface. But it can also be any area that indicates the degree of interference represented in the sense of the user.

    Die Wirkungsweise der Erfindung ist wie folgt:
    In einem Garnreiniger 32, 33 werden mit dem Garnsensor Garnfehler oder deren Messwerte ermittelt, die beispielsweise dem Durchmesser oder der Masse des Garns entsprechen. Um diese Garnfehler gemäss vorgegebenen Parametern zu ordnen - hier sei die Durchmesserabweichung und die Länge eines Garnfehlers als Parameter gewählt - werden sie in bekannter Weise zu einem Mittelwert für den Durchmesser oder die Masse des Garns pro Längeneinheit in Beziehung gesetzt und daraus die relative Abweichung zum mittleren Durchmesser oder zur mittleren Garnmasse berechnet. In ebenso bekannter Weise werden im Garnreiniger aus diesen Messwerten Werte für die Länge solcher Abweichungen ermittelt, die einen Schwellwert (für die Masse oder den Durchmesser) überschreiten. Solche Messwerte für die relative Abweichung und die Länge der Abweichung werden über den Eingang 11 in den Regelkreis 6 eingeführt. Dort gelangen diese Werte zuerst in die Verarbeitungseinheit 8, wo sie gespeichert werden. In der Verarbeitungseinheit 8 sind somit für eine vorgegebene Garnlänge Garnfehlerwerte gespeichert, die ein ganzes Klassierfeld belegen können, wie dies die Fig. 1 mit den durch Kreuze 4 angegebenen Garnfehlern zeigt. Diese Vorgänge sind an sich bereits bekannt, da das Klassieren von Werten, die am Garn gemessen werden, längst Stand der Technik ist. Die eben beschriebenen Vorgänge können auch für Messwerte von mehreren Garnen aus mehreren Garnreinigem durchgeführt werden, die alle ihre Messwerte über die Eingänge 11 in die Verarbeitungseinheit 8 eingeben. Aus der Verarbeitungseinheit 8 werden die Inhalte der Speicher oder eben die Garnfehler in die Verarbeitungseinheit 9 eingelesen, wo die Garnfehler, wie in Fig. 3 gezeigt modelliert werden. Dazu wird vorausgehend das gesamte Klassierfeld, also die Gesamtheit der Felder 3a, 3b, 3c usw. gemäss Fig. 1, durch einen Raster fein unterteilt, dessen Rasterfelder eine oder mehrere Teilflächen 19 umfassen können, sodass sich ein modellierter Garnfehler über ein oder mehrere Rasterfelder erstrecken kann. Der Raster kann beispielsweise längs der Achse 2 in 5%-Schritte und längs der Achse 1 in 1mm-Schritte aufgelöst sein. Die Ausdehnung der Gauss-Glocke kann auch variiert werden und sollte sich sinnvollerweise über mehrere Rasterfelder erstrecken. Je mehr die Glocke gestreckt wird, umso kleiner wird ihre Höhe, damit das Volumen konstant bleibt. Je weiter weg sich der zu modellierende Garnfehler vom Schnittpunkt der Achsen 1 und 2 befindet, umso stärker sollte die ihn darstellende Gauss-Glocke gestreckt werden. Um später die Dichte in einem Rasterfeld zu berechnen, werden die Volumina aller sich über dem Rasterfeld befindlichen Gauss-Glockenteile zusammengezählt. Dann wird auch die Dichte über das ganze Klassierfeld in gleicher Weise berechnet, so dass sich die Dichte als Fläche 29, wie in der Fig. 4 gezeigt, darstellen lässt. Der Sinn dieser Vorgänge liegt darin, dafür zu sorgen, dass beim Ermittlen der lokalen Garnfehlerdichte nicht vereinzelte diskrete Werte auftreten, sondern eine Fläche gebildet wird, die an jedem Ort des Klassierfeldes eine Aussage über die Dichte der Garnfehler erlaubt. Dies insbesondere auch dort, wo nur wenige Garnfehler zu erwarten sind.
    The operation of the invention is as follows:
    In a yarn cleaner 32, 33, yarn errors or their measured values are determined with the yarn sensor, which correspond, for example, to the diameter or the mass of the yarn. In order to order these yarn defects according to given parameters - here the diameter deviation and the length of a yarn defect are chosen as parameters - they are related in a known manner to an average value for the diameter or the mass of the yarn per unit length and from this the relative deviation to the average Diameter or the average yarn mass calculated. Values for the length of such deviations which exceed a threshold value (for the mass or the diameter) are determined in the yarn cleaner in a likewise known manner from these measured values. Such measured values for the relative deviation and the length of the deviation are introduced into the control circuit 6 via the input 11. There, these values first reach the processing unit 8, where they are stored. Thus, in the processing unit 8, yarn error values are stored for a predetermined yarn length, which can occupy an entire classification field, as shown in FIG. 1 with the yarn errors indicated by crosses 4. These processes are already known per se, since the classification of values that are measured on the yarn has long been state of the art. The processes just described can also be carried out for measured values of several yarns from several yarn cleaners, which input all of their measured values into the processing unit 8 via the inputs 11. From the processing unit 8, the contents of the memories or just the yarn defects are read into the processing unit 9, where the yarn defects are modeled as shown in FIG. 3. For this purpose, the entire classification field, i.e. the entirety of fields 3a, 3b, 3c, etc. according to FIG. 1, is finely divided by a grid, the grid fields of which can comprise one or more partial areas 19, so that a modeled yarn defect is spread over one or more grid fields can extend. The grid can, for example, be resolved in 5% steps along axis 2 and in 1 mm steps along axis 1. The extent of the Gauss bell can also be varied and should expediently extend over several grid fields. The more the bell is stretched, the smaller its height so that the volume remains constant. The further away the yarn defect to be modeled is from the intersection of axes 1 and 2, the more the Gauss bell representing it should be stretched. In order to later calculate the density in a grid, the volumes of all Gauss bell parts located above the grid are added together. Then the density is also calculated in the same way over the entire classification field, so that the density can be represented as area 29, as shown in FIG. 4. The purpose of these processes is to ensure that, when determining the local yarn defect density, there are no isolated discrete values, but an area is formed that allows a statement about the density of the yarn defects at every location in the classification field. This is especially true where only a few yarn defects are to be expected.

    Parallel dazu oder vorausgehend wurde in die Verarbeitungseinheit 10 eine Fläche 25 geladen, wie sie die Fig. 5 zeigt, die eine Darstellung des Gardes der Störung von Garnfehlern angibt. Im Regler 7 findet anschliessend ein Vergleich zwischen den nun vorliegenden Werten über die Garnfehlerdichte und vorgegebenen Kriterien statt. Alle diese Vorgänge in den Verarbeitungseinheiten 9, 10 und im Rechner 7 laufen auf rein rechnerischer Ebene ab, d.h. die in den Fig. 3 bis 5 gezeigten Darstellungen sind lediglich zur besseren Erklärung zu verstehen. Durch Vergleich des zulässigen Grades der Störung wie er durch die Fläche 25 ausgedrückt ist und der Summe modellierter Garnfehler oder der Garnfehlerdichte wie sie durch die Fläche 29 (Fig. 4) ausgedrückt ist, lässt sich bestimmen, welche Garnfehler, die in Fig. 4 dargestellt sind, unzulässig sind und welche nicht. Ein solcher Vergleich findet im Regler 7, oder vorzugsweise Fuzzy-Regler statt, der damit eine bekannte erste Regel berücksichtigt, die etwa folgendermassen lautet Je grösser das Produkt aus Masse und Länge des Garnfehlers ist, desto störender ist der Garnfehler. Diese Regel wird eben durch die Darstellung in der Fig. 5 ausgedrückt. Im einfachsten Falle könnte so eine erste Reinigungsgrenze erhalten werden, indem die Fläche 25 mit derjenigen Fläche geschnitten wird, die in Fig. 4 die Summe der modellierten Garnfehler darstellt. Da für laufende Messungen am Garn diese Summe ebenfalls eine sich laufend verändernde Fläche bildet, die Fläche 25 aber mit der Zeit gleich bleibt, passt sich die Schnittlinie und damit die Reinigungsgrenze automatisch an veränderte Verhältnisse an und damit gibt der Regler 7 über den Ausgang 12 die Werte einer Reinigungsgrenze aus. Dies kann periodisch, laufend oder auf äussere Veranlassung hin geschehen. Dazu genügt auch ein konventioneller an sich aus anderen Anwendungen bekannter Regler 7. Der Verlauf einer Reinigungsgrenze ist in Fig. 4 mit 31 bezeichnet.A surface 25 was loaded into the processing unit 10 in parallel or in advance, as shown in Fig. 5, which is a representation of the gard of the failure of yarn defects indicates. The controller 7 then finds a comparison between the now available ones Values about the yarn defect density and given criteria instead. All of these operations in the processing units 9, 10 and in the computer 7 run on a purely computing level from, i.e. the illustrations shown in FIGS. 3 to 5 are only for a better explanation to understand. By comparing the allowable degree of disruption as caused by the Area 25 is expressed and the sum of modeled yarn defects or the yarn defect density as expressed by the area 29 (FIG. 4), it can be determined which yarn defects, which are shown in Fig. 4, are not permitted and which are not. Such a comparison takes place in controller 7, or preferably fuzzy controller, which is thus a known first Rule taken into account, which is roughly as follows: The larger the product of mass and the length of the yarn defect, the more troublesome the yarn defect. This rule will be expressed by the representation in FIG. 5. In the simplest case, this could be the first Cleaning limit can be obtained by cutting the surface 25 with that surface which represents the sum of the modeled yarn defects in FIG. As for ongoing measurements on the yarn this sum also forms a continuously changing surface that Surface 25 but remains the same over time, the cutting line adjusts and thus the cleaning limit automatically to changed conditions and thus the controller 7 passes the output 12 the values of a cleaning limit. This can be periodic, ongoing or happen at the external instigation. A conventional one is sufficient for this controllers known from other applications 7. The course of a cleaning limit is in Fig. 4 designated 31.

    Damit ist aber die Reinigungsgrenze nicht für alle Fälle optimiert. Dazu sollen weitere Kriterien berücksichtigt werden können. Das können beispielsweise Produktivitätskriterien sein, die über den Eingang 13 in den Regler 7 eingegeben werden. Ein solches Kriterium ist beispielsweise die Anzahl zugelassener Schnitte pro km Garn. Durch dieses Kriterium wird die Reinigungsgrenze ganz oder in einzelnen Bereichen verschoben. Aus der Verarbeitungseinheit 8 sind nämlich die für eine vorgegebene Garnlänge durch die aktuelle Reinigungsgrenze 5 vorgesehenen Schnitte (= Anzahl der Kreuze ausserhalb der Reinigungsgrenze 5 in Fig. 1) bekannt und diese Anzahl kann dadurch verändert werden, dass man die Reinigungsgrenze anders legt. Über den Eingang 14 können generelle Qualitätskriterien eingegeben werden. Z.B. kann als Regel vorgegeben werden, dass Bereiche mit relativ hoher Garnfehlerdichte im Klassierfeld durch die Reinigungsgrenze zu umfahren sind. Soche Bereiche können durch den Fuzzy-Regler identifiziert werden, wenn er aus der Verarbeitungseinheit 10 eine Angabe über die Garnfehlerdichte erhält und diese mit einer Vorgabe vergleicht. Über den Eingang 15 können garnspezifische Kriterien z.B. zur Anpassung der Reinigung an die Garncharakteristik vorgegeben werden. Als Kriterium kann beispielsweise ein Abstand zum Garnkörper eingegeben werden, der eine Zone um den Garnkörper definiert, in der Fehler unberücksichtigt bleiben. Über den Eingang 16 können auch anlagespezifische Kriterien eingegeben werden. Hier kann die Vergleichbarkeit von Messwerten aus verschiedenen (optischen, kapazitiven) Reinigersystemen gefördert werden, indem als Regel vorgegeben wird, dass für kapazitiv ermittelte Messwerte kurze Garnfehler stärker, für optisch ermittelte Messwerte dagegen lange Garnfehler stärker gewichtet werden. Oder es kann vorgegeben werden, dass prozessbedingte systematische Garnfehler speziell ausgereinigt oder eben nicht ausgereinigt werden sollen. Weitere spezielle Qualitätskriterien könnten über den Eingang 17 eingegeben werden. Hier könnten beispielsweise besondere Garnfehlerverteilungen eingegeben werden, die auf besondere Vorkommnisse hindeuten. Wenn eine solche Verteilung sich aus den Messwerten ergeben hat, was im Fuzzy-Regler 7 verglichen wird, so könnte eine automatische Kompensation durchgeführt oder ein Alarm ausgelöst werden. Die Berücksichtigung dieser Kriterien, die alle als Zahlenwerte oder als in Zahlen umgesetzte ungefähre Angaben eingegeben werden, erfolgt durch den Fuzzy-Regler 7. Durch diese Angaben wird der Verlauf der Reinigungsgrenze 5 verändert und optimiert, indem diese Kriterien in Vorgaben über die Garnfehlerdichte umgesetzt werden und indem diese Vorgaben mit den aktuellen und lokalen Werten der Garnfehlerdichte verglichen werden. Optimierte Reinigungsgrenzen können so selbsttätig festgelegt und anschliessend automatisch ein- und nachgestellt werden, indem diese automatisch in die Garnreiniger geladen werden.However, the cleaning limit is not optimized for all cases. To do this, there should be further criteria can be taken into account. These can be productivity criteria, for example, which are entered into controller 7 via input 13. One such criterion is, for example the number of allowed cuts per km of yarn. By this criterion the Cleaning limit shifted entirely or in individual areas. From the processing unit 8 are namely for a given yarn length by the current cleaning limit 5 cuts (= number of crosses outside the cleaning limit 5 in Fig. 1) and this number can be changed by changing the cleaning limit puts differently. General quality criteria can be entered via input 14 become. For example, can be specified as a rule that areas with relatively high Yarn defect density in the classification field must be avoided by the cleaning limit. Soche areas can be identified by the fuzzy controller when it leaves the processing unit 10 receives an indication of the yarn defect density and this with a specification compares. Yarn-specific criteria e.g. to adjust the Cleaning can be specified to the yarn characteristics. As a criterion, for example a distance to the package is entered, which defines a zone around the package, in which errors are disregarded. System-specific can also be input 16 Criteria can be entered. Here the comparability of measured values from different (optical, capacitive) cleaning systems are promoted by as As a rule, it is specified that short yarn errors are greater for capacitively determined measured values, however, long yarn defects are weighted more heavily for optically determined measured values. Or it can be specified that process-related systematic yarn defects are specially cleared or not to be cleaned. Other special quality criteria could be entered via input 17. Here, for example, could be special Thread error distributions are entered that indicate special events. If such a distribution has resulted from the measured values, what is in the fuzzy controller 7 an automatic compensation or an alarm could be carried out to be triggered. Taking these criteria into account, all as numerical values or as in Fuzzy controllers are used to enter approximate numbers 7. With this information, the course of the cleaning limit 5 is changed and optimized by converting these criteria into specifications for yarn defect density and by providing these specifications with the current and local yarn defect density values be compared. Optimized cleaning limits can be set automatically and then can be automatically adjusted and adjusted by automatically inserting them into the Yarn cleaner loaded.

    Obwohl die Erfindung anhand eines vorzugsweisen Beispiels für Eigenschaften des Garns, d.h. die Abweichungen der Dicke oder Masse und deren Länge dargelegt wurde, kann diese im gleichen Sinne für andere Eigenschaften wie z.B. die Farbe, die Struktur (Haarigkeit, Drehung), periodische Durchmesserschwankungen des Garns, realisiert werden. So könnten auch für Garnfehler wie Fremdfasem, Fremdstoffe, Haarigkeit usw. Reinigungsgrenzen festgelegt und eingestellt werden.Although the invention uses a preferred example of properties of the yarn, i.e. the deviations in thickness or mass and their length has been set out, this can in the same sense for other properties such as the color, the structure (hairiness, Twist), periodic fluctuations in the diameter of the yarn. So could also for yarn defects such as foreign fibers, foreign substances, hairiness etc. cleaning limits be set and adjusted.

    Claims (9)

    1. Method of clearing yarn, in which measurable properties of the yarn are determined during its production or during spooling and yarn defects to be removed are defined by an adjustable clearing limit (5), which defines which yarn defects are cut out of the yarn and which are not, characterised in that values of parameters of yarn defects are acquired and classified according to measured parameters in a classification field (3), whereas a parameter is a property taken from a group of properties, said group including the density, the mass, the color, the structure and the content of foreign matter on the one hand and the extension of said property along the yarn on the other hand, in that from the acquired values and from preselected assumptions about yarn defects the density or frequency (23, 24, 26) of the yarn defects in the classification field is determined in order to make it possible at each location of the classification field to obtain an indication of the density of the yarn defects, in that criteria (25) for a yarn defect density are preset and in that the clearing limit is automatically fixed by comparing the density of yarn defects in the classification field with a tolerated density value on the basis of acquired properties in a closed-loop control.
    2. Method according to claim 1, characterised in that additional criteria are taken into account for the fixing of the clearing limit, which are treated according to rules of a fuzzy logic.
    3. Method according to claim 2, characterised in that the additional criteria are converted into preset values of the density of the yarn defects.
    4. Method according to claim 1, characterised in that a preselected assumption about a yarn defect in the classification field is a reconstruction of a yarn defect from an individual measured value according to a given model for a yarn defect that defines a volume superposed to the classification field.
    5. Method according to claim 4, characterised in that the given model is a Gaussian bell having a maximum corresponding to the measured value.
    6. Device for clearing yarn in which measurable properties of the yarn are determined during its production or during spooling and yarn defects to be removed are defined by an adjustable clearing limit (5), which defines which yarn defects are cut out of the yarn and which are not, characterised by a control loop (6) comprising a processing unit (8) having an input (11) for values of properties determined from the yarn and a memory for storing the measured values in a classification field, a processing unit (9)for calculating the density of the yarn defects in the classification field, and a controller (7) for comparing preset values of the density with actual values of the density for determining the clearing limit, whereas values of parameters of yarn defects are acquired and classified according to measured parameters in a classification field (3), whereas a parameter is a property taken from a group of properties, said group including the density, the mass, the color, the structure and the content of foreign matter on the one hand and the extension of said property along the yarn on the other hand, in that from the acquired values and from preselected assumptions about yarn defects the density or frequency (23, 24, 26) of the yarn defects in the classification field is determined in order to make it possible at each location of the classification field to obtain an indication of the density of the yarn defects, in that criteria (25) for a yarn defect density are preset and in that the clearing limit is automatically fixed by comparing the density of yarn defects in the classification field with a tolerated density value on the basis of acquired properties in a closed-loop control.
    7. Device according to claim 6, characterised in that the control loop comprises a plurality of inputs (11) for values of a plurality of yarns.
    8. Device according to claim 6, characterised in that said device is connected by inputs (11) to a plurality of yarn clearers (32, 33) for outputting a common clearing limit.
    9. Device according to claim 6, characterised in that the loop controller takes the form of a fuzzy loop controller and that the latter is provided with units (13, 14, 15, 16, 17) for entering criteria for fixing the cleaning limit.
    EP98106399A 1997-04-23 1998-04-08 Method and device for cleaning yarns Expired - Lifetime EP0877108B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    CH93897 1997-04-23
    CH93897 1997-04-23
    CH938/97 1997-04-23

    Publications (2)

    Publication Number Publication Date
    EP0877108A1 EP0877108A1 (en) 1998-11-11
    EP0877108B1 true EP0877108B1 (en) 2003-07-16

    Family

    ID=4198676

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98106399A Expired - Lifetime EP0877108B1 (en) 1997-04-23 1998-04-08 Method and device for cleaning yarns

    Country Status (5)

    Country Link
    US (1) US6374152B1 (en)
    EP (1) EP0877108B1 (en)
    JP (1) JP4117583B2 (en)
    CN (1) CN1154758C (en)
    DE (1) DE59809009D1 (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008037758A1 (en) 2008-08-14 2010-02-18 Oerlikon Textile Gmbh & Co. Kg Method for quality monitoring of longitudinally moving yarn at workplace of textile machine manufacturing cross-coil, involves measuring errors in yarn using tester and evaluation device
    DE102019116475A1 (en) * 2019-06-18 2020-12-24 Saurer Spinning Solutions Gmbh & Co. Kg Optimization of the operation of a spinning machine
    DE102022004857A1 (en) * 2022-12-22 2024-06-27 Oerlikon Textile Gmbh & Co. Kg Method for determining the coil quality of a collecting coil

    Families Citing this family (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ATE235418T1 (en) 1999-05-29 2003-04-15 Luwa Ag Zellweger METHOD AND DEVICE FOR CLEANING YARN
    DE10129201A1 (en) * 2001-06-18 2002-12-19 Rieter Ingolstadt Spinnerei For a self-setting operation at a yarn processing machine, threshold values are established for a yarn thickness where a yarn break probability can be set, with measurements for variations to alter them for a second probability
    DE10141963A1 (en) * 2001-08-28 2003-03-20 Rieter Ingolstadt Spinnerei Setting acceptance limits for electronic yarn clearer, involves use of single point on predetermined curve of fault value against length
    DE10352429A1 (en) 2003-11-10 2005-06-23 Saurer Gmbh & Co. Kg yarn clearer
    DE102004013776B4 (en) * 2004-03-20 2017-07-27 Rieter Ingolstadt Gmbh Method and device for cleaning yarn defects
    JP2007211363A (en) * 2006-02-08 2007-08-23 Murata Mach Ltd Method for determining clearing of yarn defect and device for processing yarn
    DE102007028651A1 (en) * 2007-06-21 2008-12-24 Oerlikon Textile Gmbh & Co. Kg Method for visualization of frequency distribution of errors in longitudinally moving yarn, involves manufacturing of yarn in cross-wound bobbin and representing detected error frequency as color point
    DE102008017258A1 (en) 2008-04-04 2009-10-08 Oerlikon Textile Gmbh & Co. Kg Foreign fiber i.e. thread, detecting method for use in longitudinal moving fiber stand, involves forming ratio from absolute deviation and predetermined fixed value that is specified for fiber stand
    CH699219A1 (en) * 2008-07-25 2010-01-29 Uster Technologies Ag Method and device for yarn cleaning.
    CH699599A1 (en) 2008-09-29 2010-03-31 Uster Technologies Ag METHOD AND APPARATUS FOR MONITORING SPLICE IN AN ELONGATED TEXTILE test material.
    CH700209A1 (en) * 2009-01-07 2010-07-15 Uster Technologies Ag METHOD AND APPARATUS FOR CHARACTERIZATION OF AN ELONGATED TEXTILE test material.
    CH701957A8 (en) * 2009-10-02 2011-11-15 Uster Technologies Ag Method for defining a cleaning limit on a yarn cleaning system.
    EP2686261B1 (en) 2011-03-16 2016-05-18 Uster Technologies AG Characterizing an elongated textile test material
    DE102012102576A1 (en) 2012-03-26 2013-09-26 Maschinenfabrik Rieter Ag Method for yarn monitoring
    JP2013227155A (en) * 2012-03-28 2013-11-07 Murata Machinery Ltd Yarn defect classifying apparatus and yarn winding machine
    WO2013185248A1 (en) 2012-06-11 2013-12-19 Uster Technologies Ag Comparing the quality of elongate textile samples
    WO2013185247A1 (en) 2012-06-11 2013-12-19 Uster Technologies Ag Location-related characterization of the quality of an elongated textile test material
    WO2013185246A1 (en) 2012-06-11 2013-12-19 Uster Technologies Ag Comparing the quality of elongate textile samples
    WO2013185249A1 (en) 2012-06-11 2013-12-19 Uster Technologies Ag Rating a presumed cleaning process of an elongated textile test material
    WO2013185245A1 (en) 2012-06-11 2013-12-19 Uster Technologies Ag Characterization of regular events in an elongated textile test material
    WO2014107817A1 (en) 2013-01-09 2014-07-17 Uster Technologies Ag Determination of fault causes in a production process of an elongated textile structure
    CZ306820B6 (en) * 2015-11-03 2017-07-26 Rieter Cz S.R.O. The method of adjusting a work station and a yarn cleaner or a yarn quality sensor on a yarn producing textile machine
    WO2017190259A1 (en) 2016-05-04 2017-11-09 Uster Technologies Ag Monitoring contamination in a stream of fiber flocks
    CZ2016607A3 (en) * 2016-09-29 2018-05-02 Rieter Cz S.R.O. A method of monitoring the yarn at the working station of a textile machine and a textile machine for its implementation
    JP2019137537A (en) * 2018-02-14 2019-08-22 村田機械株式会社 Clearing limit setting device and yarn winding machine
    WO2020154820A1 (en) * 2019-01-31 2020-08-06 Uster Technologies Ag Optimizing a spinning process with respect to foreign materials

    Family Cites Families (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH477573A (en) * 1967-10-03 1969-08-31 Zellweger Uster Ag Device for yarn clearer
    GB1247917A (en) * 1968-11-13 1971-09-29 Zellweger Uster Ag Displaying of the relationship between the settings of electronic yarn cleaners
    CH641422A5 (en) * 1979-03-16 1984-02-29 Zellweger Uster Ag METHOD FOR EVALUATING YARN ERRORS.
    JPS60236979A (en) * 1984-05-10 1985-11-25 Toyoda Autom Loom Works Ltd Yarn clearer
    JPH01250426A (en) * 1988-03-30 1989-10-05 Teijin Ltd Polyester blended yarn
    CH678173A5 (en) * 1989-06-29 1991-08-15 Zellweger Uster Ag
    CH681462A5 (en) * 1989-08-31 1993-03-31 Zellweger Uster Ag
    ES2082818T3 (en) * 1990-01-26 1996-04-01 Luwa Ag Zellweger PROCEDURE FOR THE EVALUATION OF THE QUALITY OF THREADS AND INSTALLATION FOR THE PERFORMANCE OF THE PROCEDURE.
    CH680803A5 (en) * 1990-01-26 1992-11-13 Zellweger Uster Ag
    CH683350A5 (en) * 1991-09-11 1994-02-28 Peyer Ag Siegfried Method and apparatus for classifying and cleaning of yarns.
    US5671061A (en) * 1992-06-18 1997-09-23 Zellweger Luwa Ag Method and apparatus for assessing the effect of yarn faults on woven or knitted fabrics
    JP2653029B2 (en) * 1992-09-26 1997-09-10 鐘紡株式会社 Top cleanliness inspection equipment
    JP2611611B2 (en) * 1992-10-16 1997-05-21 村田機械株式会社 Yarn unevenness information analyzer
    DE4417357C2 (en) * 1994-05-18 2003-10-30 Buehler Ag Process and device for cleaning pasta presses
    JPH0881841A (en) * 1994-06-02 1996-03-26 Zellweger Luwa Ag Method and apparatus for determining the cause of yarn defects in yarn, roving and sliver
    JPH08254504A (en) * 1994-11-29 1996-10-01 Zellweger Luwa Ag Method and apparatus for recording the properties of a stretched object

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008037758A1 (en) 2008-08-14 2010-02-18 Oerlikon Textile Gmbh & Co. Kg Method for quality monitoring of longitudinally moving yarn at workplace of textile machine manufacturing cross-coil, involves measuring errors in yarn using tester and evaluation device
    DE102008037758B4 (en) 2008-08-14 2019-09-19 Saurer Spinning Solutions Gmbh & Co. Kg Method for monitoring the quality of a longitudinally moving yarn at a workstation of a textile machine producing cross-wound bobbins
    DE102019116475A1 (en) * 2019-06-18 2020-12-24 Saurer Spinning Solutions Gmbh & Co. Kg Optimization of the operation of a spinning machine
    EP3760772A1 (en) 2019-06-18 2021-01-06 Saurer Spinning Solutions GmbH & Co. KG Optimization of the operation of a spinning machine
    US11643757B2 (en) 2019-06-18 2023-05-09 Saurer Spinning Solutions Gmbh & Co. Kg Optimization of the operation of a spinning machine
    DE102022004857A1 (en) * 2022-12-22 2024-06-27 Oerlikon Textile Gmbh & Co. Kg Method for determining the coil quality of a collecting coil

    Also Published As

    Publication number Publication date
    JP4117583B2 (en) 2008-07-16
    DE59809009D1 (en) 2003-08-21
    CN1154758C (en) 2004-06-23
    EP0877108A1 (en) 1998-11-11
    US6374152B1 (en) 2002-04-16
    JPH10298836A (en) 1998-11-10
    CN1198486A (en) 1998-11-11

    Similar Documents

    Publication Publication Date Title
    EP0877108B1 (en) Method and device for cleaning yarns
    EP1949097B1 (en) Method for characterising effect yarn
    EP2483190B1 (en) Method for establishing a clearing limit of a yarn clearing system
    EP2338819B1 (en) Monitoring the quality of splices in an elongated textile test material
    EP2686261B1 (en) Characterizing an elongated textile test material
    EP2373562B1 (en) Method and apparatus for characterizing an elongated textile object to be tested
    EP2303743B1 (en) Method and device for yarn cleaning
    EP1187786B1 (en) Method and device for cleaning yarn
    EP1100989B1 (en) Method and device for evaluating defects in flat textile structures
    EP2830982B1 (en) Yarn monitoring method
    CH703067A1 (en) METHOD AND DEVICE FOR TESTING OF REGULAR EVENTS IN AN ELONGATED TEXTILE test material.
    WO2025054744A1 (en) Method and device for classifying an event in an elongate textile test specimen
    CH684488A5 (en) Method and device for online detection of poorly controlled or defective drafting of ring spinning machines.
    WO2013185245A1 (en) Characterization of regular events in an elongated textile test material
    WO2013185249A1 (en) Rating a presumed cleaning process of an elongated textile test material

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE CH DE FR GB IT LI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19990511

    AKX Designation fees paid

    Free format text: BE CH DE FR GB IT LI

    17Q First examination report despatched

    Effective date: 20010220

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: USTER TECHNOLOGIES AG

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): BE CH DE FR GB IT LI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030716

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59809009

    Country of ref document: DE

    Date of ref document: 20030821

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PVP

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20030716

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: GC

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040419

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20060410

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PVP

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: RG

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PVP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PVP

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070430

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCOW

    Free format text: USTER TECHNOLOGIES AG;SONNENBERGSTRASSE 10;8610 USTER (CH)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20110411

    Year of fee payment: 14

    BERE Be: lapsed

    Owner name: *USTER TECHNOLOGIES A.G.

    Effective date: 20120430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120430

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170419

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20170419

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20170424

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59809009

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL