EP0713539A1 - Phosphate treatment process for steel strip with one galvanised surface - Google Patents
Phosphate treatment process for steel strip with one galvanised surfaceInfo
- Publication number
- EP0713539A1 EP0713539A1 EP94924298A EP94924298A EP0713539A1 EP 0713539 A1 EP0713539 A1 EP 0713539A1 EP 94924298 A EP94924298 A EP 94924298A EP 94924298 A EP94924298 A EP 94924298A EP 0713539 A1 EP0713539 A1 EP 0713539A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- galvanized
- steel strip
- sheet
- alloy
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 21
- 239000010959 steel Substances 0.000 title claims abstract description 21
- 229910019142 PO4 Inorganic materials 0.000 title abstract description 21
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title abstract description 21
- 239000010452 phosphate Substances 0.000 title abstract description 21
- 239000011701 zinc Substances 0.000 claims abstract description 27
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 24
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 24
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000008139 complexing agent Substances 0.000 claims abstract description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 15
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 13
- 239000000956 alloy Substances 0.000 claims abstract description 13
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 9
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims abstract description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 6
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011572 manganese Substances 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 239000011975 tartaric acid Substances 0.000 claims abstract description 6
- 235000002906 tartaric acid Nutrition 0.000 claims abstract description 6
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000001768 cations Chemical class 0.000 claims abstract description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims abstract description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 3
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 3
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 26
- 239000008397 galvanized steel Substances 0.000 claims description 26
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 7
- 229910001453 nickel ion Inorganic materials 0.000 claims description 7
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 6
- 239000004202 carbamide Substances 0.000 claims description 6
- 229910001437 manganese ion Inorganic materials 0.000 claims description 6
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims description 5
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 claims description 5
- 239000002738 chelating agent Substances 0.000 claims description 2
- 229940104869 fluorosilicate Drugs 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 3
- -1 nickel cations Chemical class 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract 2
- 239000013522 chelant Substances 0.000 abstract 1
- 229960001484 edetic acid Drugs 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 16
- 239000010802 sludge Substances 0.000 description 11
- 239000002253 acid Substances 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005844 autocatalytic reaction Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052827 phosphophyllite Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
- C23C22/182—Orthophosphates containing manganese cations containing also zinc cations
- C23C22/184—Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/12—Orthophosphates containing zinc cations
- C23C22/17—Orthophosphates containing zinc cations containing also organic acids
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
- C23C22/182—Orthophosphates containing manganese cations containing also zinc cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/362—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/40—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
- C23C22/44—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/46—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
- C23C22/47—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates containing also phosphates
Definitions
- the invention relates to a method for the phosphating treatment of one-sided galvanized or alloy-galvanized steel strip or sheet with the aid of phosphating solutions which contain zinc, nitrate and nitrite.
- phosphating of metals pursues the goal of producing firmly adherent metal phosphate layers on the metal surface, which in themselves improve the corrosion resistance and, in conjunction with paints and other organic coatings, contribute to a significant increase in the adhesion and resistance to infiltration when exposed to corrosion.
- phosphate layers serve as insulation against the passage of electrical currents and, in conjunction with lubricants, to facilitate sliding processes.
- the low-zinc phosphating processes are particularly suitable, in which the phosphating solutions contain comparatively low zinc ion contents of e.g. B. 0.5 to 1.5 g / 1 (DE-C-22 32 067, EP-B-39 093).
- the phosphating solutions contain comparatively low zinc ion contents of e.g. B. 0.5 to 1.5 g / 1 (DE-C-22 32 067, EP-B-39 093).
- phosphate layers with a high content of phosphophyllite (Zn-Fe (P0 4 ) 2 • 4 H 2 0) are produced on steel, which is considerably more corrosion-resistant than the hopite (Zn- (PO.) ⁇ • deposited from zinc-rich phosphating solutions. 4 H 2 0).
- nickel and / or manganese ions in the phosphating solutions contain comparatively low zinc ion contents of e.g. B. 0.5 to 1.5 g / 1 (DE-C-22 32 067, EP-B-39 09
- Low-zinc phosphating solutions can further increase the protection quality in connection with paints (EP-A-228 151, EP-B-414 296, EP-B-414 301, EP-A-544 650, DE-A-39 18 136) .
- Low zinc process with the addition of z. B. 0.5 to 1.5 g / 1 manganese ions and z. B. 0.3 to 2.0 g / 1 of nickel ions are widely used as a so-called trication process for preparing metal surfaces for painting, for example for the cathodic electrocoating of car bodies.
- Allow phosphate layer within short treatment times For example, it is from the
- DE-A-32 45 411 known, in particular electrolytically galvanized steel strips with a phosphate layer
- Phosphating of electrolytically and / or hot-dip galvanized steel strip provides for phosphating solutions to be applied over a period of 2 to 30 seconds in the temperature range from 40 to 70 ° C., which contain 0.02 to 0.75 g / 1 zinc, 0.2 to
- Range from 1.6 to 3.0 points, the content of Total acid in the range from 12 to 40 points and the weight ratio of nickel ions to nitrate ions in the range from 1:10 to 1:60 and the weight ratio of manganese ions to nitrate ions in the range from 1: 1 to 1:40 (DE-A-39 27 131).
- the object of the invention is to provide a method for the phosphating treatment of one-sided galvanized or alloy-galvanized steel strip or sheet, which largely suppresses sludge formation, prevents the formation of a phosphate layer on the steel side, and the formation and quality of the phosphate layer on the galvanized or alloy-galvanized steel side is not impaired and is nevertheless simple and economical to carry out the process.
- the object is achieved by designing the method of the type mentioned at the outset in accordance with the invention in such a way that the galvanized or alloy-galvanized steel strip or sheet is baked for 4 to 20 seconds with a solution of a temperature of 45 to 80 ° C. Brings contact that
- the limits of the specified ranges for complexing agents are important insofar as too high complexing agent concentrations impair the formation of the phosphate layer by complexing the layer-forming cations. If the amount of complexing agent added is too low, phosphate sludge formation in the phosphating solution and starting phosphate layer formation on the steel side cannot be avoided. With a higher or lower setting of the nitrite concentration, the phosphating on the galvanized or alloy-galvanized steel side and the complexation of the detached iron can be adversely affected. So z. B. with an excessive nitrite concentration, an incipient layer formation on the steel side cannot be avoided. Such beginning layer formation can impair the subsequent phosphating in the automotive plant, but in any case leads to undesirable sludge formation.
- a particularly suitable countermeasure is to keep the nitrite concentration of the phosphating solution within the limits mentioned by means of nitrite-degrading substances such as urea and / or amidosulfonic acid. This can be done by continuous or discontinuous addition.
- a particularly elegant method provides for the nitrite concentration to be kept within the required limits by having a urea concentration of 1 to 3 g / l and / or in the phosphating solution Amidosulfonic acid concentration of 0.5 to 2 g / 1. This creates a steady state in that as much nitrite is broken down by the urea or amidosulfonic acid content as is produced by autocatalysis.
- the steel strips or sheets to be used within the method according to the invention can have layers of electrolytic zinc (ZE), hot zinc (Z), or alloys based on zinc / nickel (ZNE), zinc / iron (ZF) or zinc / Have aluminum (ZA or AZ).
- ZE electrolytic zinc
- ZNE zinc / nickel
- ZF zinc / iron
- ZA or AZ zinc / Have aluminum
- the latter are usually alloys with z. B. 55 wt .-% Al and 45 wt .-% Zn counted.
- This embodiment of the invention has the advantage that the sludge formation is particularly low and that good phosphate layers are also formed on the galvanized or alloy-galvanized side.
- the galvanized or alloy galvanized Steel strip or sheet is brought into contact with a solution which, as a complexing agent, contains chelating agents such as tartaric acid, citric acid,
- Ethylenediaminetetraacetic acid, nitrilotriacetic acid and / or oxalic acid contains.
- the contents of the phosphating solutions in the aforementioned complexing agents should preferably be used
- the quality of the phosphate layer produced can be improved if, in accordance with a further embodiment of the invention, the galvanized or alloy-galvanized steel strip or sheet is brought into contact with a phosphating solution which contains further divalent cations, in particular manganese and or nickel ions.
- a phosphating solution which contains further divalent cations, in particular manganese and or nickel ions.
- phosphating solutions which contain complex and / or simple fluoride preferably in amounts of 0.1 to 3 g / l (calculated as F ), contain.
- Fluoroborate, fluorosilicate is a complex fluoride. Fluorotitanate and / or fluorozirconate preferred.
- the phosphating treatment of the strip or sheet can be carried out by conventional methods, that is to say in immersion or spraying. However, it is particularly advantageous to apply the solution by spraying.
- the phosphating solution is usually supplemented by a supplementary concentrate, with the control e.g. B. is done automatically via a conductivity measurement.
- a suitable supplement concentrate contains e.g. B. 10 to 30 wt .-% P 2 ° 5 ' 3 to 20 wt - -% N0 3 and ° to 2 wt .-% zinc.
- the zinc content in the supplemental concentrate depends essentially on the reactivity of the zinc or alloy zinc layer on the steel strip or sheet. If this layer has a higher reactivity and thus larger amounts of zinc get into the bath due to the pickling attack of the phosphating solution, a supplementary solution with lower zinc concentrations within the range of 0 to 2% by weight is possible.
- the supplemental concentrate can also be zinc-free.
- the supplementary concentrate also contains 0.2 to 2% by weight of nickel and / or 1 to 4% by weight of manganese.
- the supplementary solution can also already contain the complexing agent for iron and, if necessary, the N0 2 -degrading substance; however, for reasons of better adjustability of the required concentrations, it will generally be preferable to supplement these two substances separately.
- Nickel 1.3 g / i
- the phosphating treatment was carried out over a period of time
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Electroplating Methods And Accessories (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE4326388 | 1993-08-06 | ||
| DE4326388A DE4326388A1 (en) | 1993-08-06 | 1993-08-06 | Process for the phosphating treatment of one-sided galvanized steel strip |
| PCT/EP1994/002510 WO1995004842A1 (en) | 1993-08-06 | 1994-07-29 | Phosphate treatment process for steel strip with one galvanised surface |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0713539A1 true EP0713539A1 (en) | 1996-05-29 |
| EP0713539B1 EP0713539B1 (en) | 1998-09-09 |
Family
ID=6494574
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP94924298A Expired - Lifetime EP0713539B1 (en) | 1993-08-06 | 1994-07-29 | Phosphate treatment process for steel strip with one galvanised surface |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US5795408A (en) |
| EP (1) | EP0713539B1 (en) |
| JP (1) | JP3372954B2 (en) |
| CN (1) | CN1131444A (en) |
| AT (1) | ATE170931T1 (en) |
| DE (2) | DE4326388A1 (en) |
| ES (1) | ES2122318T3 (en) |
| WO (1) | WO1995004842A1 (en) |
| ZA (1) | ZA945881B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0804632A4 (en) * | 1993-12-15 | 1997-11-05 |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19756735A1 (en) * | 1997-12-19 | 1999-06-24 | Henkel Kgaa | Phosphating one-side galvanized steel strip on the galvanized side only |
| US20040221924A1 (en) * | 1999-09-30 | 2004-11-11 | Klaus-Dieter Nittel | Method for applying manganese phosphate layers |
| WO2002046494A1 (en) * | 2000-12-04 | 2002-06-13 | Jfe Steel Corporation | Zinc-based metal plated steel sheet and method for production thereof |
| DE102006051384A1 (en) | 2006-10-27 | 2008-04-30 | Seppeler Holding Und Verwaltungs Gmbh & Co. Kg | Process for the pre-weathering of metal parts with a predominantly zinc surface |
| CN102304709B (en) * | 2011-04-25 | 2013-10-30 | 大连三达奥克化学股份有限公司 | Black phosphating agent for automotive special tools and preparation method thereof |
| CN102677034A (en) * | 2012-05-25 | 2012-09-19 | 衡阳市金化科技有限公司 | Medium-temperature low-sediment zinc phosphorizing solution |
| CN103184444B (en) * | 2013-03-29 | 2016-08-03 | 柳州煜华科技有限公司 | A kind of Phosphating Solution being applicable to metal fastenings |
| RU2560891C1 (en) * | 2014-05-05 | 2015-08-20 | Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Производственное объединение "Старт" им. М.В. Проценко" (ФГУП ФНПЦ "ПО "Старт" им. М.В. Проценко") | Method of iron-cobalt alloy phosphating |
| CN105369238B (en) * | 2015-11-23 | 2017-11-14 | 安徽千和新材料科技发展有限公司 | Normal temperature is without slag phosphating solution and preparation method thereof before Progress in Automobile Galvanized Steel Sheets electrophoresis |
| US10465292B2 (en) | 2016-10-07 | 2019-11-05 | Goodrich Corporation | Anti-corrosion and/or passivation composition for metal-containing substrates and methods for making, enhancing, and applying the same |
| MX2021004002A (en) * | 2018-10-08 | 2021-06-23 | Rhodia Operations | Method for ni-free phosphatizing of metal surfaces and composition for use in such a method. |
| US11566330B2 (en) * | 2019-04-16 | 2023-01-31 | Ppg Industries Ohio, Inc. | Systems and methods for maintaining pretreatment baths |
| CN113755777B (en) * | 2021-09-23 | 2023-01-24 | 马鞍山钢铁股份有限公司 | A kind of environment-friendly surface-treated galvanized steel sheet and preparation method thereof |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB866377A (en) * | 1958-11-28 | 1961-04-26 | Pyrene Co Ltd | Improvements relating to the production of phosphate coatings on metals |
| US3619300A (en) * | 1968-11-13 | 1971-11-09 | Amchem Prod | Phosphate conversion coating of aluminum, zinc or iron |
| US4402765A (en) * | 1982-01-18 | 1983-09-06 | Nihon Parkerizing Co., Ltd. | Method and apparatus for treating steel sheet structures |
| FR2569203B1 (en) * | 1984-08-16 | 1989-12-22 | Produits Ind Cie Fse | PROCESS FOR THE TREATMENT BY CHEMICAL CONVERSION OF SUBSTRATES IN ZINC OR IN ONE OF ITS ALLOYS, CONCENTRATE AND BATH USED FOR THE IMPLEMENTATION OF THIS PROCESS |
| ATE99002T1 (en) * | 1985-08-27 | 1994-01-15 | Nippon Paint Co Ltd | ACIDIC AQUEOUS PHOSPHATE COATING SOLUTIONS FOR A PROCESS FOR PHOSPHATE COATING METALLIC SURFACE. |
| JPS63100185A (en) * | 1986-10-16 | 1988-05-02 | Nippon Parkerizing Co Ltd | Phosphating method |
| DE3636390A1 (en) * | 1986-10-25 | 1988-04-28 | Metallgesellschaft Ag | METHOD FOR PRODUCING PHOSPHATE COATINGS ON METALS |
| DE3712339A1 (en) * | 1987-04-11 | 1988-10-20 | Metallgesellschaft Ag | METHOD FOR PHOSPHATIZING BEFORE ELECTROPLATING |
| US5236565A (en) * | 1987-04-11 | 1993-08-17 | Metallgesellschaft Aktiengesellschaft | Process of phosphating before electroimmersion painting |
| DE3828676A1 (en) * | 1988-08-24 | 1990-03-01 | Metallgesellschaft Ag | PHOSPHATING PROCESS |
| JPH02101174A (en) * | 1988-10-06 | 1990-04-12 | Nippon Paint Co Ltd | Treatment with zinc phosphate for cold working |
| DE3927131A1 (en) * | 1989-08-17 | 1991-02-21 | Henkel Kgaa | METHOD FOR THE PRODUCTION OF MANGANIZED ZINC PHOSPHATE LAYERS ON GALVANIZED STEEL |
| KR100197145B1 (en) * | 1989-12-19 | 1999-06-15 | 후지이 히로시 | Method for phosphating metal surface with zinc phosphate |
| JPH04341574A (en) * | 1991-05-18 | 1992-11-27 | Nippon Paint Co Ltd | Zinc phosphate treatment method for metal surfaces |
| DE4228470A1 (en) * | 1992-08-27 | 1994-03-03 | Henkel Kgaa | Process for phosphating steel strips galvanized on one side |
-
1993
- 1993-08-06 DE DE4326388A patent/DE4326388A1/en not_active Withdrawn
-
1994
- 1994-07-29 CN CN94193432A patent/CN1131444A/en active Pending
- 1994-07-29 AT AT94924298T patent/ATE170931T1/en not_active IP Right Cessation
- 1994-07-29 WO PCT/EP1994/002510 patent/WO1995004842A1/en not_active Ceased
- 1994-07-29 JP JP50619895A patent/JP3372954B2/en not_active Expired - Fee Related
- 1994-07-29 DE DE59406893T patent/DE59406893D1/en not_active Expired - Lifetime
- 1994-07-29 EP EP94924298A patent/EP0713539B1/en not_active Expired - Lifetime
- 1994-07-29 US US08/596,220 patent/US5795408A/en not_active Expired - Fee Related
- 1994-07-29 ES ES94924298T patent/ES2122318T3/en not_active Expired - Lifetime
- 1994-08-05 ZA ZA945881A patent/ZA945881B/en unknown
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9504842A1 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0804632A4 (en) * | 1993-12-15 | 1997-11-05 |
Also Published As
| Publication number | Publication date |
|---|---|
| ATE170931T1 (en) | 1998-09-15 |
| DE59406893D1 (en) | 1998-10-15 |
| DE4326388A1 (en) | 1995-02-09 |
| JPH09501202A (en) | 1997-02-04 |
| ES2122318T3 (en) | 1998-12-16 |
| EP0713539B1 (en) | 1998-09-09 |
| US5795408A (en) | 1998-08-18 |
| JP3372954B2 (en) | 2003-02-04 |
| ZA945881B (en) | 1996-02-05 |
| WO1995004842A1 (en) | 1995-02-16 |
| CN1131444A (en) | 1996-09-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0459541B1 (en) | Process for phosphating metal surfaces | |
| EP2507408B1 (en) | Multi-stage pre-treatment method for metal components having zinc and iron surfaces | |
| WO2009115504A1 (en) | Optimized passivation on ti-/zr-basis for metal surfaces | |
| EP1235949B1 (en) | Method for applying a phosphate covering and use of metal parts thus phospated | |
| EP0064790A1 (en) | Method of phosphating metals, as well as its use in the electrodip painting pretreatment | |
| EP2092090A1 (en) | Zr-/ti-containing phosphating solution for passivation of metal composite surfaces | |
| EP0713539B1 (en) | Phosphate treatment process for steel strip with one galvanised surface | |
| EP0717787B1 (en) | Nickel-free phosphatization process | |
| EP0359296B1 (en) | Phosphating process | |
| DE3932006A1 (en) | METHOD FOR APPLYING PHOSPHATE | |
| EP0931179B1 (en) | Method for phosphating a steel band | |
| EP0656957B1 (en) | Process for phosphatizing steel zinc-coated on one side only | |
| DE3245411C2 (en) | ||
| EP1060290B1 (en) | Aqueous solution and method for phosphatizing metallic surfaces | |
| WO1991002829A2 (en) | Process for producing manganese-containing zinc phosphate coatings on galvanized steel | |
| EP1019564A1 (en) | Method for phosphatizing a steel strip | |
| EP1090160B1 (en) | Method for controlling the coating weight for strip-phosphating | |
| EP0215041B1 (en) | Process for the phosphating of metal surfaces | |
| EP0866888B1 (en) | Method of phosphating metal surfaces | |
| EP0461133B1 (en) | Process for producing zinc/barium phosphate coatings on metal surfaces | |
| DE3918136A1 (en) | METHOD FOR PRODUCING MANAGE-CONTAINING PHOSPHATE COATINGS ON METAL SURFACES | |
| EP1042533A1 (en) | Phosphatization of a single-face galvanized steel strip |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19960306 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE ES FR GB IT LU NL SE |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| 17Q | First examination report despatched |
Effective date: 19980210 |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT LU NL SE |
|
| REF | Corresponds to: |
Ref document number: 170931 Country of ref document: AT Date of ref document: 19980915 Kind code of ref document: T |
|
| REF | Corresponds to: |
Ref document number: 59406893 Country of ref document: DE Date of ref document: 19981015 |
|
| RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT |
|
| ET | Fr: translation filed | ||
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981120 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2122318 Country of ref document: ES Kind code of ref document: T3 |
|
| NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040630 Year of fee payment: 11 Ref country code: GB Payment date: 20040630 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20040705 Year of fee payment: 11 Ref country code: LU Payment date: 20040705 Year of fee payment: 11 Ref country code: AT Payment date: 20040705 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040708 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040716 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20040804 Year of fee payment: 11 |
|
| NLS | Nl: assignments of ep-patents |
Owner name: CHEMETALL GMBH |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CA |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050729 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050729 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050730 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050730 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060201 |
|
| EUG | Se: european patent has lapsed | ||
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060331 |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060201 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060331 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20050730 |
|
| BERE | Be: lapsed |
Owner name: *METALLGESELLSCHAFT A.G. Effective date: 20050731 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100923 Year of fee payment: 17 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120201 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59406893 Country of ref document: DE Effective date: 20120201 |