EP0701634A1 - Systeme de nettoyage a plusieurs solvants - Google Patents
Systeme de nettoyage a plusieurs solvantsInfo
- Publication number
- EP0701634A1 EP0701634A1 EP94919272A EP94919272A EP0701634A1 EP 0701634 A1 EP0701634 A1 EP 0701634A1 EP 94919272 A EP94919272 A EP 94919272A EP 94919272 A EP94919272 A EP 94919272A EP 0701634 A1 EP0701634 A1 EP 0701634A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cleaning
- solvent
- linear
- hydrocarbon
- hfc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 180
- 239000002904 solvent Substances 0.000 title claims abstract description 144
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 69
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 64
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 44
- 230000008569 process Effects 0.000 claims abstract description 35
- 239000002689 soil Substances 0.000 claims abstract description 24
- 238000011109 contamination Methods 0.000 claims abstract description 22
- 150000002430 hydrocarbons Chemical class 0.000 claims description 68
- 239000000203 mixture Substances 0.000 claims description 49
- 239000012530 fluid Substances 0.000 claims description 37
- 150000001875 compounds Chemical class 0.000 claims description 33
- 238000001035 drying Methods 0.000 claims description 30
- 238000009835 boiling Methods 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 7
- 239000012459 cleaning agent Substances 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 6
- 230000001629 suppression Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 2
- 238000007654 immersion Methods 0.000 abstract description 39
- 239000003960 organic solvent Substances 0.000 abstract description 14
- 238000005238 degreasing Methods 0.000 abstract description 11
- 239000002351 wastewater Substances 0.000 abstract description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 43
- 229910052799 carbon Inorganic materials 0.000 description 37
- 239000003921 oil Substances 0.000 description 30
- 238000002474 experimental method Methods 0.000 description 28
- 239000000758 substrate Substances 0.000 description 27
- 239000007788 liquid Substances 0.000 description 19
- 150000002576 ketones Chemical class 0.000 description 17
- 150000002148 esters Chemical class 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 239000003208 petroleum Substances 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 11
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 10
- 125000004122 cyclic group Chemical group 0.000 description 10
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 10
- 150000004702 methyl esters Chemical class 0.000 description 10
- -1 e.g. Substances 0.000 description 8
- 150000003505 terpenes Chemical class 0.000 description 8
- 235000007586 terpenes Nutrition 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- CRPUJAZIXJMDBK-UHFFFAOYSA-N camphene Chemical compound C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 6
- 239000013527 degreasing agent Substances 0.000 description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 150000003997 cyclic ketones Chemical class 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000012808 vapor phase Substances 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- JNCMHMUGTWEVOZ-UHFFFAOYSA-N F[CH]F Chemical compound F[CH]F JNCMHMUGTWEVOZ-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- MOYAFQVGZZPNRA-UHFFFAOYSA-N Terpinolene Chemical compound CC(C)=C1CCC(C)=CC1 MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.000 description 4
- 125000002015 acyclic group Chemical group 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 4
- QYMFNZIUDRQRSA-UHFFFAOYSA-N dimethyl butanedioate;dimethyl hexanedioate;dimethyl pentanedioate Chemical compound COC(=O)CCC(=O)OC.COC(=O)CCCC(=O)OC.COC(=O)CCCCC(=O)OC QYMFNZIUDRQRSA-UHFFFAOYSA-N 0.000 description 4
- 150000002009 diols Chemical class 0.000 description 4
- 239000002529 flux (metallurgy) Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229920000570 polyether Polymers 0.000 description 4
- 239000011877 solvent mixture Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- FDOPVENYMZRARC-UHFFFAOYSA-N 1,1,1,2,2-pentafluoropropane Chemical class CC(F)(F)C(F)(F)F FDOPVENYMZRARC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Primaeres Camphenhydrat Natural products C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229930006739 camphene Natural products 0.000 description 3
- ZYPYEBYNXWUCEA-UHFFFAOYSA-N camphenilone Natural products C1CC2C(=O)C(C)(C)C1C2 ZYPYEBYNXWUCEA-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 3
- VMXWYKXQWHKSHB-TYWVWOHTSA-N (1z,3z)-1,5-dimethylcycloocta-1,3-diene Chemical compound CC/1CCC\C(C)=C/C=C\1 VMXWYKXQWHKSHB-TYWVWOHTSA-N 0.000 description 2
- GETTZEONDQJALK-UHFFFAOYSA-N (trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC=C1 GETTZEONDQJALK-UHFFFAOYSA-N 0.000 description 2
- DUAKCVSNUIDZMC-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluorobutane Chemical class CC(F)(F)C(F)(F)C(F)(F)F DUAKCVSNUIDZMC-UHFFFAOYSA-N 0.000 description 2
- XMEPUXUKDYDDDY-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluorohexane Chemical class CCCC(F)(F)C(F)(F)C(F)(F)F XMEPUXUKDYDDDY-UHFFFAOYSA-N 0.000 description 2
- YLXMZWSVIPOWNY-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoropentane Chemical class CCC(F)(F)C(F)(F)C(F)(F)F YLXMZWSVIPOWNY-UHFFFAOYSA-N 0.000 description 2
- NVSXSBBVEDNGPY-UHFFFAOYSA-N 1,1,1,2,2-pentafluorobutane Chemical class CCC(F)(F)C(F)(F)F NVSXSBBVEDNGPY-UHFFFAOYSA-N 0.000 description 2
- CXIGIYYQHHRBJC-UHFFFAOYSA-N 1,1,1,4,4,4-hexafluorobutane Chemical class FC(F)(F)CCC(F)(F)F CXIGIYYQHHRBJC-UHFFFAOYSA-N 0.000 description 2
- AJKNNUJQFALRIK-UHFFFAOYSA-N 1,2,3-trifluorobenzene Chemical compound FC1=CC=CC(F)=C1F AJKNNUJQFALRIK-UHFFFAOYSA-N 0.000 description 2
- UUFQTNFCRMXOAE-UHFFFAOYSA-N 1-methylmethylene Chemical compound C[CH] UUFQTNFCRMXOAE-UHFFFAOYSA-N 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 235000001510 limonene Nutrition 0.000 description 2
- 229940087305 limonene Drugs 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012457 nonaqueous media Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- OSFBJERFMQCEQY-UHFFFAOYSA-N propylidene Chemical compound [CH]CC OSFBJERFMQCEQY-UHFFFAOYSA-N 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- GRWFGVWFFZKLTI-UHFFFAOYSA-N α-pinene Chemical compound CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 2
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- CXENHBSYCFFKJS-OXYODPPFSA-N (Z,E)-alpha-farnesene Chemical compound CC(C)=CCC\C(C)=C\C\C=C(\C)C=C CXENHBSYCFFKJS-OXYODPPFSA-N 0.000 description 1
- FUCPNELYUCUXTJ-UHFFFAOYSA-N 1,1,1,2,2,5,5,6,6,6-decafluorohexane Chemical compound FC(F)(F)C(F)(F)CCC(F)(F)C(F)(F)F FUCPNELYUCUXTJ-UHFFFAOYSA-N 0.000 description 1
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical class FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 description 1
- NZEXBCLLEJJKOM-UHFFFAOYSA-N 1,1,1,5,5,5-hexafluoropentane Chemical class FC(F)(F)CCCC(F)(F)F NZEXBCLLEJJKOM-UHFFFAOYSA-N 0.000 description 1
- FRCHKSNAZZFGCA-UHFFFAOYSA-N 1,1-dichloro-1-fluoroethane Chemical compound CC(F)(Cl)Cl FRCHKSNAZZFGCA-UHFFFAOYSA-N 0.000 description 1
- NDKGUMMLYBINOC-UHFFFAOYSA-N 1,2-dichloro-1-fluoroethane Chemical compound FC(Cl)CCl NDKGUMMLYBINOC-UHFFFAOYSA-N 0.000 description 1
- GRWFGVWFFZKLTI-IUCAKERBSA-N 1S,5S-(-)-alpha-Pinene Natural products CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229940088601 alpha-terpineol Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229930006722 beta-pinene Natural products 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- VUWZPRWSIVNGKG-UHFFFAOYSA-N fluoromethane Chemical compound F[CH2] VUWZPRWSIVNGKG-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000006342 heptafluoro i-propyl group Chemical group FC(F)(F)C(F)(*)C(F)(F)F 0.000 description 1
- 125000006341 heptafluoro n-propyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- UKACHOXRXFQJFN-UHFFFAOYSA-N heptafluoropropane Chemical class FC(F)C(F)(F)C(F)(F)F UKACHOXRXFQJFN-UHFFFAOYSA-N 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229930006978 terpinene Natural products 0.000 description 1
- 150000003507 terpinene derivatives Chemical class 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G5/00—Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
- C23G5/02—Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/50—Solvents
- C11D7/5004—Organic solvents
- C11D7/5018—Halogenated solvents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/24—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/28—Organic compounds containing halogen
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/26—Cleaning or polishing of the conductive pattern
Definitions
- the present invention relates to a method and apparatus of cleaning contaminated articles and apparatus thereof and, more particularly, to the defluxing or degreasing of parts in a non-aqueous cleaning system utilizing an organic solvent for cleaning the parts and a nonflammable fluorocarbon solvent.
- Solvent vapor phase degreasing and defluxing is a process of immersing a soiled substrate (e.g., a printed circuit board or a fabricated metal, glass, ceramic, plastic, or elastomer part or composite) into a boiling, nonflammable liquid such as a chlorocarbon or chlorofiuorocarbon fluid or admixture, followed by rinsing the part in a second tank or cleaning zone by immersion or distillate spray with a clean solvent which is the same chlorocarbon or chlorofiuorocarbon as used in the first cleaning zone.
- the parts are then dried by maintaining the cooled part in the condensing vapors until temperature has reached equilibrium.
- Solvent cleaning of various types of parts generally occurs in batch, hoist-assisted batch, conveyor batch, or in-line type conveyor degreaser and defluxer equipment.
- Such in-line conveyor degreaser and defluxer equipment are disclosed in U.S. 5,007,179 Patent (entitled “Cold Air Lock Vapor Seal"), commonly assigned to the assignee of the present invention.
- Parts may also be cleaned in open top defluxing or degreasing equipment, such as that disclosed in U.S. Patent Application Serial No. 07/587,893, filed September 25, 1990, also commonly assigned.
- the entrance and/or exit ends of the equipment are generally in open communication with both the ambient environment and the solvent within the equipment.
- hydrochlorofluorocarbon (HCFC) based solvents have been developed in the last few years to provide more environmentally acceptable alternatives to CFC based vapor phase degreasing and defluxing processes. While these materials have been shown to be excellent CFC substitutes for a variety of cleaning applications, they are considered to be an interim replacement to CFCs since they still possess a small, but finite, ozone depletion potential, although it is much lower than that of the CFCs which they are replacing. Hence, these HCFC solvents are also proposed for global phaseout in the near future. It is generally believed that organic solvents which do not contain chlorine, bromine, or iodine atoms will not contribute to stratospheric ozone depletion.
- perfluorinated hydrocarbons and hydrofluorocarbons possess many desirable solvent properties: zero ozone depletion potential; stable, non-reactive, high compatibility with plastics; good water displacement potential; generally non-toxic and inert, and ideally suited to vapor phase solvent cleaning equipment.
- perfluorocarbons have been found to be very poor solvents for many common organic and inorganic soils, e.g., fluxes.
- Hydrofluorocarbons offer improved but still limited cleaning ability over perfluorocarbons as the amount of fluorine content on the molecule diminishes, but low fluorine-content hydrofluorocarbons may start to exhibit undesirable flammability properties comparable to their hydrocarbon analogs.
- European Patent Publication 431 ,458 published June 12, 1991 teaches aliphatic hydrofluorocarbons of the formula C n F m H 2n+2 . m wherein 4 ⁇ n ⁇ 6 and 6 ⁇ m ⁇ 12 which are useful as cleaning compositions.
- the reference teaches that the aliphatic hydrofluorocarbon is the active component in the removal of the fluxes, fats and oils, and dust from soiled parts.
- an organic solvent selected from hydrocarbons, alcohols, esters, and ketones may be added in an amount from 0.5 to 30 weight percent to the aliphatic hydrofluorocarbon.
- Aqueous cleaning generally involves the cleaning of a substrate or a part in an aqueous solution of detergents or surfactants, followed by multiple rinsing steps with purified water. The part is then dried by lengthy evaporation in air or by energy intensive thermal drying machines. This process is not always desirable due to the high energy cost for drying and the additional capital investment and operating cost burden to provide aqueous waste water cleanup required by state and local authorities before sewering to ground water.
- Another cleaning process semi-aqueous cleaning, consists of cleaning a substrate in a hydrocarbon solvent based on, for example, terpenes, esters, or petroleum distillates having a high affinity for oils, waxes, and greases being cleaned from the parts, with or without the aid of a surfactant.
- the cleaned substrate is rinsed of the high boiling hydrocarbon solvent with multiple rinsing steps using purified water.
- the hydrocarbon solvent is phase separated back to the wash sump while the aqueous effluent must be processed before sewering to ground water. Consequently, high costs associated with drying energy and with processing waste effluent are evident, similar to the before-mentioned aqueous cleaning process.
- a further drawback is that the hydrocarbon solvent usually possesses a flash point and this must be carefully handled or blanketed with a nonflammable compressed gas such as nitrogen to avoid explosion. Nitrogen gas is much more fugitive than the dense vapors of a fluorocarbon contained in a condensing zone. Furthermore, in a number of applications, while the substrate to be cleaned may be compatible with the hydrocarbon solvent, some plastics or metals may be incompatible with the aqueous rinse solvent, resulting in water absorption or rusting of the substrate.
- Another object of the invention is to provide a non-aqueous cleaning system which does not use water for rinsing, and there does not exist a necessity for aqueous waste water cleanup, and whereby said nonaqueous cleaning system can be used in cases where materials are incompatible with water.
- Still a further object is to provide a non-aqueous cleaning system avoiding the need for drying by lengthy evaporation of rinsing fluid in air or by energy intensive thermal drying methods.
- a non-aqueous cleaning process for removing residual soils or surface contamination from a part comprises the steps of introducing the part into contact with an organic cleaning fluid of sufficient solvency to substantially remove said contamination and then removing the part from the organic fluid for rinsing in a rinsing agent having at least some degree of solubility for the organic cleaner to remove same from the substrate.
- the non-aqueous cleaning system of this invention utilizes a two tank cleaning process wherein a first tank contains the organic solvent and a second tank contains the rinsing agent.
- the parts or substrates to be cleaned may be conveyored from the cleaning tank to the rinsing tank utilizing known conveyor or hoist means.
- a non ⁇ aqueous cleaning process for removing residual soils or surface contamination from parts comprises the steps of introducing the substrate or part into an organic fluid of sufficient solvency to remove residual contamination from the parts. The parts are then rinsed by contact with a second organic solvent of lesser solvency for the soils or surface contamination than exhibited by the first organic fluid solvent but having excellent solvency characteristics towards the first solvent.
- the second solvent may be chosen preferably from the fluorocarbon class of solvents which contain at least one fluorine atom attached to an organic backbone comprised of two or more carbon atoms, with optionally other atoms also attached to the backbone such as oxygen, sulfur, nitrogen, phosphorous, hydrogen, or other halogen atoms; or less preferably the rinsing agent may be chosen from other classes of solvents such as alcohols, ethers, esters, ketones, hydrocarbons, and other non-aqueous media.
- the parts are then dried by holding under an inert vapor blanket which lessens or mitigates the flammability of the first organic cleaning solvent, or, if flammable, the second rinse solvent, where such flammability masking vapor blanket may be formed by at least one of nitrogen, carbon dioxide, perfluorocarbon, hydrofluorocarbon, or hydrochlorocarbon.
- the cleaning can be done in a system where a solution of the hydrocarbon solvent and the fluorocarbon solvent is mixed together optionally with a surfactant as a solubilizing agent in a degreaser.
- a surfactant as a solubilizing agent in a degreaser.
- the fluorocarbon being more volatile, provides a flammability suppression blanket.
- the same fluorocarbon would be used in the adjacent rinse sump for an initial immersion or spray liquid rinse followed by a final rinse in the vapor.
- the cleaning can be done in a one sump system where a solution of the hydrocarbon solvent and the lower boiling fluorocarbon solvent is mixed together optionally with a surfactant as a solubilizing agent.
- a surfactant as a solubilizing agent.
- the fluorocarbon being more volatile, provides a flammability suppression blanket, and if the soiled part which has been immersed in the cleaning mixture is held in the condensing fluorocarbon vapors for a sufficiently long period of time, the part can be removed from the vapor phase clean and is dry.
- hydrocarbon solvent means any solvent which has at least one hydrogen atom and at least one carbon atom.
- the organic cleaning solvent can be selected from linear or branched alkyl or alkanol monocarboxylic or dicarbox ⁇ iic esters having at least one carbon atom in the ester moiety and such solvent most preferably having a flash point greater then 200°F(93°C), or less preferably having a flash point greater than 150°F(66°C).
- Useful esters include methyl ester and a mixture of the dimethyl esters of adipic acid, succinic acid, and glutaric acid.
- the organic fluid may also be selected from linear or cyclic hydrocarbons containing at least one olefinic bond endo or exo to the ring.
- the hydrocarbon cleaning agent may comprise pinene and/or camphene, or may comprise terpinene, limonene, terpinolene, terpineol, linaleol, and other related members of the terpene family.
- the organic cleaning solvent may also consist of linear, branched or cyclic hydrocarbons containing C 10 to C 30 species.
- the organic cleaning fluid may also consist of hydrocarbon containing olefinic moieties which have been substituted with R-,-R 12 groups, wherein 1 -2 hydrogen atoms or alkyl groups containing 1 -6 carbon atoms or both may comprise the substituted group, i.e.,
- a useful example includes 1 ,5-dimethylcyclooctadiene.
- This organic cleaning fluid may also be comprised of acyclic or cyclic monols or diols defined by the linear structure (1 )
- n is selected from 1 to 20
- n is selected from 1 to 20 or the cyclic structure (3)
- Useful diois include cyclohexanol and polyethylene gl ⁇ col (MW 200) (a polyether diol).
- the organic fluid may also be comprised of linear, branched, or cyclic mono or polyketones, such as
- n is defined as 0 to 6 and R- ⁇ -R .
- o is defined as alkyl or hydrogen groups or mixtures thereof.
- a useful cyclic ketone include c ⁇ ciohexanone.
- organic cleaning fluids applicable to this invention may be comprised of:
- R alkyl or aryl nitriles of the formula R - CN where R may be an alkyl group (methyl, ethyl, etc), a phen ⁇ l group, or an alkyl substituted phenyl group
- alkyl esters such as diethylphthalate of the formula:
- R r R ⁇ is chosen from hydrogen, alkyl, fluoroalkyl, or halogen groups and combinations thereof, such as trifluorobenzene.
- Such organic cleaning solvent may also comprise mixtures of all the above organic cleaning solvents with fluorocarbons such as linear, branched, or cyclic perfluorocarbons or hydrofluorocarbons or hydrochlorofluorocarbons optionally with substituted oxygen, sulfur, nitrogen, phosphorous or other halogen atoms attached to a carbon atom and optionally with surfactant as a solubilizing agent.
- fluorocarbons such as linear, branched, or cyclic perfluorocarbons or hydrofluorocarbons or hydrochlorofluorocarbons optionally with substituted oxygen, sulfur, nitrogen, phosphorous or other halogen atoms attached to a carbon atom and optionally with surfactant as a solubilizing agent.
- the fluorocarbon rinse solvent may be selected from the class of hydrofluorocarbon or hydrochlorofluorocarbon compounds or mixtures comprised of linear, branched, or cyclic structures having a boiling point of at least 25°C to 120°C and such fluorocarbons may be optionally substituted with other functional groups chosen from the class consisting of other halogens and oxygen, sulfur, nitrogen, and phosphorous atoms
- the preferred hydrofluorocarbon compounds or the hydrochlorofluorocarbon compounds have a certain miscibility for the organic cleaning solvents in the boiling range of at least 25°C to 120°C so that at least 2 mole % of the hydrocarbon cleaning solvent is miscible with the hydrofluorocarbon fluid without obtaining phase separation.
- the hydrofluorocarbons preferably contain between 3 to 8 carbon atoms, hydrogen, and fluorine in the compound.
- the boiling point is preferably between 25°C and 120°C with at least 60 weight percent fluorine.
- the compounds preferably have a linear or branched chain.
- the present invention provides a composition for cleaning or removing residual soils or surface contamination from a part.
- the composition comprises a non-azeotropic mixture of hydrocarbon solvent and hydrofluorocarbon solvent.
- the hydrocarbon component is present in an amount of at least 2 weight percent based on the total composition and is capable of substantially removing the residual soils or surface contamination from the part.
- the hydrofluorocarbon component has a linear or branched chain structure having 3 to 7 carbon atoms and at least 60 weight percent fluorine, is capable of substantially removing any of the hydrocarbon component remaining on the part, and is less capable than the hydrocarbon component of substantially removing the residual soils or surface contamination from the part.
- the hydrocarbon component of the present cleaning compositions is capable of substantially removing the residual soils or surface contamination from a part.
- the hydrofluorocarbon component of the present cleaning compositions has excellent solvency characteristics toward the hydrocarbon component but has a lesser solvency than the hydrocarbon component for the soils or surface contamination. Providing flammability suppression can be maintained through the use of suitable vapor blanketing species.
- the rinse solvent may also be selected from compounds or mixtures comprised of other linear, branched, or cyclic alkyl or aryl alcohols, esters, nitro-, nitrocyclo-, or nitrile compounds, ethers, ketones, hydrocarbons, and other non-aqueous media.
- Figure 1 is a partial schematic view of degreasing or defluxing equipment that may be used in the multi-solvent non-aqueous cleaning system of the present invention
- Figure 2 is a schematic view depicting an alternative embodiment of equipment that may be used in the present invention.
- Figure 3 is a schematic view depicting a further alternative embodiment of equipment for use in the present invention
- Figure 4 is a partial schematic view of yet further alternative equipment for practicing the system of the present invention
- Figure 5 is another embodiment of equipment for use in the present invention.
- Figure 6 is a further embodiment of equipment for use in the present invention.
- the present invention is a novel non- aqueous cleaning process whereby the most attractive features of the semi-aqueous cleaning process and the solvent vapor degreasing solvent process are combined.
- a substrate or part to be cleaned e.g., a printed circuit board coated with a rosin-based flux, or a metallic or nonmetallic part coated with a petroleum, synthetic, or semi-synthetic based oil or grease
- a substrate or part to be cleaned e.g., a printed circuit board coated with a rosin-based flux, or a metallic or nonmetallic part coated with a petroleum, synthetic, or semi-synthetic based oil or grease
- a warm or ambient temperature hydrocarbon solvent tending to have a greater affinity for the soil or contaminant on the substrate than a fluorocarbon based solvent.
- the part is then rinsed by spray or immersion in a second tank or cleaning region containing a nonflammable fluorocarbon solvent, preferably having a lower boiling point than the hydrocarbon solvent.
- a nonflammable fluorocarbon solvent preferably having a lower boiling point than the hydrocarbon solvent.
- the fluorocarbon solvent has at least slight solubility for the hydrocarbon solvent and therefore rinses the hydrocarbon solvent from the surface of the part.
- the fluorocarbon solvent is then dried from the part surface by evaporation in a known manner. The benefit of this process is that drying costs are minimized, waste water treatment costs and equipment and capital investments are virtually eliminated, and safety of operation is improved. Further, through the use of hydrofluorocarbon or perfluorocarbon solvents in the rinse and drying steps, the environmental benefit is greatly improved over the chlorocarbon or chlorofiuorocarbon solvent systems.
- the organic cleaning agent is preferably a hydrocarbon which may be selected from linear or branched alkyl or alkanol monocarboxylic esters having at least six carbon atoms in the aliphatic moiety and at least one carbon atom in the ester moiety.
- the organic hydrocarbon fluid may also be selected from linear or cyclic hydrocarbons containing at least one olefinic bond endo or exo to the ring.
- the hydrocarbon may also be pinene and/or camphene.
- the preferred hydrofluorocarbons include compounds of the empirical formula:
- the three carbon hydrofluorocarbons include tetrafluoropropanes (HFC-254), pentafluoropropanes (HFC-245), hexafluoropropanes (HFC- 236), and heptafluoropropanes (HFC-227).
- Preferred three carbon hydrofluorocarbons include tetrafluoropropanes and pentafluoropropanes. Tetrafluoropropanes include the following isomers:
- Pentafluoropropanes include the following isomers:
- the preferred hydrofluorocarbons include linear or branched compounds of the empirical formula:
- the four carbon hydrofluorocarbons include pentafluorobutanes (HFC- 365), hexafluorobutanes (HFC-356), heptafluorobutanes (HFC-347), octafluorobutanes (HFC-338), and nonafluorobutanes (HFC-329).
- Pentafluorobutanes include the following isomers:
- Hexafluorobutanes include the following isomers:
- Heptafluorobutanes include the following isomers:
- Octafluorobutanes include the following isomers:
- Nonafluorobutanes include the following isomers:
- the preferred hydrofluorocarbons include linear or branched compounds of the empirical formula:
- the five carbon hydrofluorocarbons include hexafluoropentanes (HFC- 476), heptafluoropentanes (HFC-467), octafluoropentanes (HFC-458), nonfluoropentanes (HFC-449), decafluoropentanes (HFC-43-10), and undecafluoropentanes (HFC-42-1 1 ).
- Heptafluoropentanes include the following isomers: HFC-467
- Octafluoropentanes include the following isomers:
- a most preferred octafluoropentane is CF 3 CH 2 CF 2 CH 2 CF 3 which is known in the art as HFC-458 mfcf.
- Nonafluoropentanes include the following isomers:
- Decafluoropentanes include the following isomers:
- Undecafluoropentanes include the following isomers:
- the preferred hydrofluorocarbons include linear or branched compounds of the empirical formula:
- the six carbon hydrofluorocarbons include heptafluorohexanes (HFC- 587), octafluorohexanes (HFC-578), nonafluorohexanes (HFC-569), decaf luoropentanes (HFC-55-10), undecafluorohexanes (HFC-54-1 1 ), dodecafluorohexanes (HFC-53-12), and tridecafiuorohexanes (HFC-52- 13).
- Heptafluorohexanes include the following isomers:
- Undecafluorohexanes include the following isomers:
- a preferred undecafluorohexane is
- a preferred dodecafluorohexane is (CF 3 ) 2 CHCHFCF 2 CF 3 which is known in the art as HFC-53-12 mmze.
- Tridecafluorohexanes include the following isomers:
- hydrofluorocarbons include linear or branched compounds of the empirical formula: C 7 H n F where 1 ⁇ _ n ⁇ 8.
- the hydrofluorocarbon component may also be an azeotropic mixture of hydrofluorocarbon and another component as long as the azeotropic mixture is capable of substantially removing any hydrocarbon component remaining on the part and is less capable than the hydrocarbon component of substantially removing the residual soils or surface contamination from the part.
- azeotropic mixtures include CFXHXF 2 CH 2 CF 3 and one of the following components: methanol, ethanol, isopropanol, n- propanol, t-butanol, isobutanol, n-butanol, t-amyl alcohol, trichloroethylene, and perchloroethylene.
- FIG. 1 is a partial schematic illustration of one type of apparatus which can be used in the present process.
- a vessel (10) is divided into three sumps: a cleaning sump 15, a wash sump 20, and a rinsing sump 25.
- the cleaning compartment 15 is separated by one or more walls 17,19 from the second compartment 20, which contains a fluorocarbon fluid 22 heated to its boiling point by a heater 34, to provide a nonflammable condensing vapor blanket 30 or a flammability suppression blanket over all the sumps 15, 20, 25 common to vessel 10.
- Compartment 20 also provides an area where the bulk of the soil and organic cleaning agent can be washed from the substrate by either immersing into the fluorocarbon fluid contained in compartment 20 or by placement in a spray stream 18 of pure fluorocarbon condensate, whereby the contaminated liquid drops into the sump below.
- the cleaning compartment 15 is adapted to contain a body of the organic cleaning solvent 24 tailored for the cleaning application, which could be an organic hydrocarbon as noted above and in the examples below for heavy duty cleaning, or a mixture of an organic hydrocarbon with a milder solvent such as a fluorocarbon for less rigorous cleaning applications (where compatibility with the substrate may be of more important consideration).
- the washing compartment 20 is adapted to contain a rinsing agent 22 having at least slight solubility for the cleaning solvent 24.
- slight solubility of the rinsing fluorocarbon solvent for the hydrocarbon cleaning solvent is defined as having ⁇ 2 mole % of the hydrocarbon is soluble in fluorocarbon solvent.
- An appropriate rinsing agent 22 and one preferred in the present invention is a fluorocarbon based solvent as noted above and in the examples below.
- a second rinsing compartment 25, which is at a cooler temperature than compartment 20, may be provided downstream from the first rinsing compartment 20, and is also adapted to contain the fluorocarbon solvent rinsing agent.
- compartment 25 The purpose of compartment 25 is to provide a final immersion rinse for the substrate to remove trace residues of soil or cleaning solvent and also to cool the substrate so that the part is rinsed with pure condensing vapor in the vapor zone 30.
- the vapor zone 30 is formed above the respective compartments
- a cooling coil 32 of a type known in the art defines the uppermost extent of the vapor zone 32 to condense vapor for return of condensate to compartment 25.
- the hydrocarbon cleaning solvent 24 and fluorocarbon rinsing fluid 22 may be chosen for their respective mutual solubilities such that some means of physical separation such as phase separation may be employed to remove built-up soils as well as to recycle clean organic solvent back to its originating sump.
- a U-tube phase separator (not shown) or weir or skimmer may be used in conjunction with compartment 20 to separate or remove condensed hydrocarbon which will float on top of the fluorocarbon, and this separation device (not shown) may be arranged so that the excess hydrocarbon fluid will flow back to the cleaning tank 15 from the rinsing tank 20.
- the vessel 10 of Figure 1 is depicted as an open top type of defluxer or degreaser. However, it is to be understood that the vessel 10, in its schematic form, may also characterize an in-line type of degreaser or defluxer wherein conveyor means (not shown) may be used to successively convey the parts from the cleaning sump 15 to the rinsing sumps 20 and 25.
- the organic cleaning fluid in cleaning tank 15 may optionally be mixed with a fluorocarbon type solvent.
- the cleaning fluid in this case would be warmed to a sufficient temperature to boil off the fluorocarbon, where the boiling point of the fluorocarbon should be at least 10°C. lower than that of the organic hydrocarbon fluid.
- the mixture is heated with coils 33 so that the resulting vapor zone 30 immediately overlying the hydrocarbon is essentially a fluorocarbon-based nonflammable or flammability suppression vapor zone to minimize the possibility of explosion.
- the cleaning fluid mixture may or may not require a surfactant additive to ensure phase homogeneity between the organic hydrocarbon and the fluorocarbon solvents.
- the fluorocarbon which was boiled off would be maintained at a constant concentration in compartment 15 by either returning the vapor condensate back to this compartment and/or pumping fluid from the rinse compartment(s) 20,25 back to this sump through control with a volume or level-sensing transducer (not shown).
- the boiling rinse sump 20 may not be necessary, or it could function purely as a second rinse sump at any intermediate temperature between compartment 15 and compartment 25.
- sump 20 may be heated with heating coils 34 and heating coils
- heating coil 33 may not be necessary. In the two-sump option where sump 15 supplies the fluorocarbon vapor to form the nonflammable blanket 30 for vessel 10, heating coil 33 would be preferred and heating coil
- sump 15 supplies the fluorocarbon vapor to form the nonflammable blanket 30 for vessel 10
- sump 20 may not be necessary and sump 25 would provide a cool liquid rinse immersion prior to bringing the cleaned substrate into the vapor condensing zone 30 for a final pure condensate rinse.
- the rinse sump 20 may contain a saturated solution of the hydrocarbon based cleaning fluid and the fluorocarbon based rinsing solvent.
- the fluids are selected so that the hydrocarbon phase separates at some low concentration (i.e., less than 10 mole %) in the fluorocarbon and floats to the top of the more dense fluorocarbon, providing a cascading effect back into the cleaning sump 15.
- the rinse sump(s) 25a or 25b may also in turn cascade pure rinse solvent into sump 20 to maintain its level and also to directionally provide a flow skimming action to sweep the separated organic layer towards the boil sump 15.
- the boil sump 15 contains both hydrocarbon and fluorocarbon based solvents of sufficient immiscibility to form layered cleaning zones 15a and 15b.
- the advantage of this arrangement is that the heating coil 33, which provides the nonflammable vapor blanket for vessel 10, is now immersed in a fiuorocarbon-rich phase which lessens the possibility of accidental fire if the liquid in the sump drops below its intended level.
- the boiling fluorocarbon liquid now provides an agitation action to the top less dense organic hydrocarbon phase to assist in the cleaning performance.
- the fluorocarbon rinse solvent and the hydrocarbon cleaning solvent can be cascaded or pumped back to their respective sumps to ensure that sump liquid volumes are maintained.
- the hydrocarbon cleaning zone 15 may be separated from the rinsing zones 20 and 25 by being provided within separate structures 1 1 and 12.
- This configuration is intended to provide the ability to retrofit conventional solvent vapor degreasing or defluxing batch-type equipment such as represented by vessel 12 in Figure 5 with the cleaning process of this invention.
- the carry ⁇ over of organic solvent from vessel 1 1 to vessel 12 can be reduced by mechanical devices such as an air knife 37.
- Nitrogen or any other nonflammable compressed gas may be introduced into the vapor zone overlying the hydrocarbon sump 15 to reduce hydrocarbon flammability or the danger of explosion, as typical with many types of conventional semi-aqueous (organic cleaning/aqueous rinse) cleaning processes.
- the residual hydrocarbon carried over from cleaning sump 15 may be mechanically separated out as described in Figure 1 and recycled back with a pump 45 (as schematically depicted) in view of the physical separation of the two cleaning zones which would prevent cascading as in the previous embodiments.
- the organic cleaning solvent in cleaning sump 15 is immiscible or of low miscibility with the fluorocarbon-based rinsing solvent in rinsing sump 25.
- the first rinsing zone is provided with a coupling solvent (such as an alkanol like butanol, or another fluorochemical such as trifluorobenzene, or any other type of hydrocarbon) wherein the fluorocarbon solvent is miscible with the coupling solvent.
- the fluorocarbon solvent has a lower boiling point than either the organic cleaning solvent or the coupling solvent.
- the fluorocarbon in sump 25 primarily serves the purpose of blanketing the flammable liquids in sumps 15 and 20 with a nonflammable vapor, and the level of liquid in rinse sump 20 which is comprised primarily of coupling solvent is maintained by makeup with fluorocarbon liquid from sump 25.
- the substrate which has been rinsed in coupling solvent sump 20 is either subjected to a final immersion rinse in sumps(s) 25a and/or 25b or is held in the fluorocarbon condensing vapor zone 42 for a final rinse, which can be suitably accomplished since the coupling solvent is miscible with the fluorocarbon solvent.
- the following examples are used to demonstrate the unexpected cleaning performance observed when a soiled coupon is first immersed in an organic cleaning solvent followed by a rinse with a fluorochemical solvent.
- stainless steel coupons were coated with various commercial petroleum, semi- synthetic, and synthetic oils.
- the commercial petroleum oils are paraffinic, straight or branched chain saturated hydrocarbons. All of these oils are used in the metalworking industry for cooling and lubricating purposes.
- the synthetic oils contain synthetic polymer with additives containing fatty acids and amines.
- the semi- synthetic oils are mixtures of the petroleum and synthetic oils.
- the cleaning process used for tests to demonstrate this invention consisted of 30 second immersion of a coupon in the organic cleaning solvent followed by a 30 second immersion in the fluorochemical solvent and a 30 second rinse above the liquid in the cooling coil zone with the condensing vapors of the fluorochemical solvent.
- the amount of soil on the coupon before and after cleaning was determined with a commercial CO 2 coulometer, which measures to microgram sensitivity the amount of organic residue, expressed in carbon units, on a surface.
- the sample of residue on the coupon is introduced into a combustion furnace via a sample boat, and is combusted in oxygen atmosphere at a temperature of 650°C.
- the resulting CO 2 and other combustion products pass through scrubbers to remove any interfering halogens, sulfur, nitrogen oxides and water.
- the gas then passes to the coulometer cell which contains an indicating solution.
- CO 2 As the gas stream passes through the solution CO 2 is quantitatively absorbed, and reacts with a chemical in the solution to produce a titratable acid.
- An electric current is then automatically adjusted to neutralize the solution, the total current is integrated, and the results displayed as micrograms of carbon.
- the sensitivity of this method is +/- 0.01 micrograms carbon, which is one of the most sensitive methods to reproducibly analyze carbon components on a surface. Since all oils cleaned in this invention are primarily organic in nature, the monitoring of carbon content is an excellent way to determine with high reproducibility and sensitivity the amount of organic soil on a substrate.
- a (C 9 to Cn) methyl ester is used as the organic solvent.
- Spectroscopic characterization indicated a small quantity of a branched component.
- HFC 52-13 is a branched hydrofluorocarbon (C ⁇ F 13 H) used as the fluorocarbon rinsing agent.
- the methyl ester is effective in removing petroleum based oil from metal coupons at room temperature, but a thin film of the methyl ester solvent remained after the cleaning process. The oil is not able to be cleaned from the surface of the coupon by HFC 52-13.
- a dibasic ester cleaning solvent mixture was prepared in the laboratory by synthesizing the dimethyl esters of adipic acid, succinic acid, and glutaric acid in the proportions of 10 wt%/22 wt%/68 wt%, respectively.
- Soiled coupons were immersed in a mixture of the dibasic esters with HFC-365 (CFaCH ⁇ F ⁇ H ⁇ at 56 ° C for 30 seconds, followed by a 30 second immersion in HFC-365 at ambient temperature and a 30 second vapor rinse with HFC-365.
- This example demonstrates that a fluorochemical vapor rinse step is required to completely clean a soiled surface which has been immersed in either a dibasic ester or a mixture of a dibasic ester with fluorochemical, and neither the ester alone nor the fluorochemical solvent alone is sufficient to completely clean the surface.
- Soiled coupons were immersed in a 50 volume % mixture of polyethylene glycol (MW 200) (a polyether diol) and a methyl ester, and 50 volume % of HFC-365, a hydrofluorocarbon, for 30 seconds at 45-50°C followed by a 30 second immersion in HFC-365 at ambient temperature and a 30 second vapor rinse with HFC-365.
- MW 200 polyethylene glycol
- HFC-365 a hydrofluorocarbon
- FC-72 perfluorocarbons such as FC-72 are very poor solvents for oils, but when blended with hydrochlorocarbons or even hydrochlorofluorocarbons in the vapor or immersion rinse step of this process combined with an organic cleaning step, the dual solvent process produces completely clean coupons which could not be completely cleaned by the individual solvent themselves.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Detergent Compositions (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Un procédé de nettoyage non aqueux consiste à utiliser un solvant organique pour enlever des salissures ou toute substance contaminante superficielle d'articles contaminés tels que des plaquettes de circuits imprimés qui sont nettoyées par immersion dans un compartiment en forme de puits d'un réservoir de nettoyage contenant le solvant organique. Ce dernier est de préférence un solvant à base d'hydrocarbure. Les articles nettoyés et recouverts du solvant organique, sont ensuite disposés dans un puits de rinçage contenant un solvant de rinçage à base de fluorocarbone présentant une affinité par rapport au solvant nettoyant organique. Ce dernier est ainsi enlevé des articles, lesquels sont séchés sans eau résiduelle comme c'est le cas dans les procédés de dégraissage par vapeur de solvant classiques.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US7058693A | 1993-06-01 | 1993-06-01 | |
| US70586 | 1993-06-01 | ||
| PCT/US1994/006004 WO1994028196A1 (fr) | 1993-06-01 | 1994-05-27 | Systeme de nettoyage a plusieurs solvants |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0701634A1 true EP0701634A1 (fr) | 1996-03-20 |
Family
ID=22096214
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP94919272A Withdrawn EP0701634A1 (fr) | 1993-06-01 | 1994-05-27 | Systeme de nettoyage a plusieurs solvants |
Country Status (7)
| Country | Link |
|---|---|
| EP (1) | EP0701634A1 (fr) |
| JP (1) | JPH08506615A (fr) |
| KR (1) | KR960702872A (fr) |
| CN (1) | CN1127017A (fr) |
| AU (1) | AU693453B2 (fr) |
| CA (1) | CA2163351A1 (fr) |
| WO (1) | WO1994028196A1 (fr) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3227704B2 (ja) * | 1993-03-12 | 2001-11-12 | ダイキン工業株式会社 | 清浄化物品の製造方法 |
| US5696307A (en) * | 1994-01-21 | 1997-12-09 | Alliedsignal Inc. | Hydrofluoroalkanes as cleaning and degreasing solvents |
| US6855211B2 (en) | 1996-05-10 | 2005-02-15 | Emerald Agrochemicals Company Avv | Rapidly evaporating cleaning compositions |
| US5851435A (en) * | 1996-05-10 | 1998-12-22 | Occidental Chemical Corporation | Cleaning composition containing benzotrifluoride |
| KR20000016203A (ko) * | 1996-05-30 | 2000-03-25 | 나카노 가스히코 | 피 세척물의 세척방법 |
| FR2814691B1 (fr) * | 2000-09-29 | 2003-10-03 | Commissariat Energie Atomique | Procede et dispositif de degraissage |
| JP2017513711A (ja) * | 2014-04-11 | 2017-06-01 | ハネウェル・インターナショナル・インコーポレーテッド | 溶剤蒸気相脱脂及びフラックス除去組成物、方法、装置、及びシステム |
| CN107043939B (zh) * | 2017-06-14 | 2018-11-27 | 扬州亚联机械科技有限公司 | 一种不锈钢阀门用酸洗钝化装置 |
| JP7108466B2 (ja) * | 2018-05-28 | 2022-07-28 | 三井・ケマーズ フロロプロダクツ株式会社 | 非共沸性洗浄用組成物 |
| CN115537832A (zh) * | 2022-08-31 | 2022-12-30 | 深圳市鑫承诺环保产业股份有限公司 | 一种用于清洗金属件表面的碳氢清洗剂及其制备方法 |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2103705T3 (es) * | 1988-07-08 | 1997-10-01 | Rhone Poulenc Chimie | Limpieza y secado de conjuntos electronicos. |
| AU635362B2 (en) * | 1989-12-07 | 1993-03-18 | Daikin Industries, Ltd. | Cleaning composition |
| JPH03285997A (ja) * | 1990-04-02 | 1991-12-17 | Sanai Sekiyu Kk | 洗浄組成物 |
| JPH04272194A (ja) * | 1991-02-25 | 1992-09-28 | Toshiba Corp | 非水系洗浄方法 |
| JPH04297590A (ja) * | 1991-03-27 | 1992-10-21 | Asahi Chem Ind Co Ltd | 洗浄方法 |
-
1994
- 1994-05-27 CA CA002163351A patent/CA2163351A1/fr not_active Abandoned
- 1994-05-27 EP EP94919272A patent/EP0701634A1/fr not_active Withdrawn
- 1994-05-27 JP JP7500986A patent/JPH08506615A/ja active Pending
- 1994-05-27 CN CN94192765A patent/CN1127017A/zh active Pending
- 1994-05-27 AU AU70470/94A patent/AU693453B2/en not_active Ceased
- 1994-05-27 WO PCT/US1994/006004 patent/WO1994028196A1/fr not_active Ceased
-
1995
- 1995-12-01 KR KR1019950705430A patent/KR960702872A/ko not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9428196A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| AU7047094A (en) | 1994-12-20 |
| KR960702872A (ko) | 1996-05-23 |
| AU693453B2 (en) | 1998-07-02 |
| CA2163351A1 (fr) | 1994-12-08 |
| JPH08506615A (ja) | 1996-07-16 |
| CN1127017A (zh) | 1996-07-17 |
| WO1994028196A1 (fr) | 1994-12-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU664586B2 (en) | Multiple solvent cleaning system | |
| US6355113B1 (en) | Multiple solvent cleaning system | |
| US7985299B2 (en) | Solvent compositions containing chlorofloroolefins or fluoroolefins | |
| JPH05271692A (ja) | 物品の溶剤清浄化方法 | |
| US5273592A (en) | Method of cleaning using partially fluorinated ethers having a tertiary structure | |
| CN1738894B (zh) | 含有氟化烃和含氧溶剂的组合物 | |
| EP0787537A1 (fr) | Agent, procede et materiel de nettoyage | |
| AU693453B2 (en) | Multiple solvent cleaning system | |
| US7270717B2 (en) | Compositions and methods for cleaning contaminated articles | |
| KR20160145620A (ko) | 용매 증기상 디그리싱 및 디플럭싱 조성물, 방법, 장치 및 시스템 | |
| WO1998050517A1 (fr) | Compositions de solvant sans danger pour l'environnement, a base de 1-bromopropane, stabilisees, ininflammables et ayant les caracteristiques de solvabilite voulues | |
| EP0444598A1 (fr) | Compositions de solvants azéotropes | |
| JP2001509533A (ja) | 1−ブロモプロパンと高度フッ素化炭化水素の共沸混合物および共沸混合物様組成物 | |
| HK1007172B (en) | Multiple solvent cleaning system | |
| RU2113921C1 (ru) | Жидкая очищающая композиция, ее вариант и способ удаления загрязнений с подложкой с использованием очищающей композиции | |
| JP2002012894A (ja) | 低引火性の洗浄剤、洗浄方法および洗浄装置 | |
| JP2001240897A (ja) | 引火点を有さない洗浄剤、洗浄方法および洗浄装置 | |
| JP2002080893A (ja) | 不燃性洗浄剤、洗浄方法および洗浄装置 | |
| JP2001279298A (ja) | 引火点を持たない洗浄剤組成物、洗浄方法および洗浄装置 | |
| JP2001200293A (ja) | 安定化された非引火性洗浄剤、洗浄方法および洗浄装置 | |
| EP0994928A1 (fr) | Compositions azeotropes, et du type azeotrope, de 1-bromopropane et de dichloropentafluoropropanes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19951218 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IE IT |
|
| 17Q | First examination report despatched |
Effective date: 19960222 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 19960904 |