[go: up one dir, main page]

EP0750063B1 - Produits de nettoyages, substrat à cet effet, et procédé de sa fabrication - Google Patents

Produits de nettoyages, substrat à cet effet, et procédé de sa fabrication Download PDF

Info

Publication number
EP0750063B1
EP0750063B1 EP95304447A EP95304447A EP0750063B1 EP 0750063 B1 EP0750063 B1 EP 0750063B1 EP 95304447 A EP95304447 A EP 95304447A EP 95304447 A EP95304447 A EP 95304447A EP 0750063 B1 EP0750063 B1 EP 0750063B1
Authority
EP
European Patent Office
Prior art keywords
substrate
fibres
rubbing
wet wipe
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP95304447A
Other languages
German (de)
English (en)
Other versions
EP0750063A1 (fr
Inventor
Katherine Louise Heinicke Moore
Graham A. Richmond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8221233&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0750063(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to DE69513013T priority Critical patent/DE69513013T2/de
Priority to AT95304447T priority patent/ATE186085T1/de
Priority to ES95304447T priority patent/ES2137457T3/es
Priority to EP95304447A priority patent/EP0750063B1/fr
Priority to EP95118292A priority patent/EP0750062B1/fr
Priority to ES95118292T priority patent/ES2131742T3/es
Priority to DE69509879T priority patent/DE69509879T2/de
Priority to AT95118292T priority patent/ATE180519T1/de
Priority to CA002225161A priority patent/CA2225161C/fr
Priority to AU61525/96A priority patent/AU6152596A/en
Priority to KR1019970709613A priority patent/KR100272830B1/ko
Priority to PCT/US1996/008945 priority patent/WO1997000771A1/fr
Priority to JP9503855A priority patent/JPH11513906A/ja
Priority to CA002225147A priority patent/CA2225147A1/fr
Priority to KR1019970709661A priority patent/KR100266487B1/ko
Priority to JP9503866A priority patent/JPH11508256A/ja
Priority to AU62682/96A priority patent/AU6268296A/en
Priority to PCT/US1996/009863 priority patent/WO1997000988A1/fr
Publication of EP0750063A1 publication Critical patent/EP0750063A1/fr
Priority to MX9710463A priority patent/MX9710463A/es
Priority to MX9800108A priority patent/MX9800108A/es
Publication of EP0750063B1 publication Critical patent/EP0750063B1/fr
Application granted granted Critical
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4266Natural fibres not provided for in group D04H1/425
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • D04H18/04Needling machines with water jets

Definitions

  • This invention relates to cleaning articles, substrates therefor, and a process for the manufacture of such substrates.
  • the invention has particular application to substrates which are to be used to produce so-called wet wipes, i.e. small sheets, moistened with a liquid having cleansing or other relevant properties.
  • Such wipes are sold, for example, in the form of baby wipes, adult incontinent wipes, and facial/skin cleaning wipes.
  • the invention is also applicable to other forms of product used for cleaning areas of the human person, for example moist toilet paper and dry wipes, and is also applicable to wipes intended for cleaning other surfaces, for example kitchen and bathroom surfaces, and surfaces which require cleaning in industry, for example surfaces of machinery or of automobiles.
  • some, though not all, of the advantages afforded by the present invention and embodiments thereof are relevant to cleaning such inanimate surfaces.
  • Wet wipes commonly comprise a substrate of a non-woven fibrous material, wetted by a suitable liquid.
  • the non-woven substrate material is formed to have a high strength. Some limitations may be imposed on the strength of the substrate if it is desired that its density should be low enough to permit the presence of pores in which a significant amount of the wetting liquid can be held. However, this is not much of a limitation, and it may be no limitation at all, since all or most of the wetting liquid can be held by virtue of the strongly hydrophilic surfaces of the fibres, rather than by the capillary action of any open pores between the fibres. This is true, for example in the case of cellulose/pulp air laid tissues.
  • a known wet wipe substrate will have a breaking tensile strength of about 50 or 60 N in MD and about 8N in CD, where MD and CD refer to machine direction (i.e. the direction of travel of the substrate through the machine which is producing it) and cross direction (a direction in the plane of the substrate and at 90° to machine direction).
  • a web of fibres for example a carded web, travels beneath at least one array of orifices, and preferably a plurality of from successive arrays, from which jets of water are emitted.
  • Each array extends transversely with respect to the path of travel of the web, and provides a large number of closely spaced jets.
  • jets act like sharp needles, and entangle the fibres to form a substrate. This entanglement holds the fibres in a coherent substrate, without the need for adhesives or thermal bonding.
  • the orifices typically have a diameter of from about 80 to about 180 micrometers, preferably about 90 to 150 micrometers, and there may typically be from about 800 to 1700 nozzles per metre of orifice array.
  • the water is supplied to the orifice arrays at a pressure which generally increases stepwise from the first array, where it may be as little as 30 bar, to the last array, where it may be as much as about 250 bar. This stepwise increase is provided to allow for the fact that the fibres are progressively more and more difficult to move as entanglement proceeds.
  • the total energy supplied to the web by the liquid jets from all the orifice arrays combined is 0.5 to 1.0 kWh/kg of fibre material.
  • wet wipes can be produced which have superior properties to known wet wipes, both as regards as their cleaning ability and as regards the softness which the user perceives them to have, if the substrate is one which is significantly less strong than the substrates of known wet wipes, and provided certain other conditions are fulfilled.
  • the lower strength can be achieved by reducing total energy input of liquid jets.
  • the water can be replaced by another liquid, or by a gas, for example air or steam.
  • the fluid "needles” can be replaced by mechanical needles, in a process known as needlepunching.
  • needlepunching In this barbed needles, e.g. of steel, are punched through the web, hooking tufts of fibres across it and thereby bonding it in the needlepunched areas. The needles enter and leave the web while it is trapped between two plates, the web being pulled through the apparatus by draw rolls.
  • thermal bonding in which the fibres are of thermoplastic material, or have an outer layer of thermoplastic material, and are bonded together in discrete spots by heat.
  • This bonding can be achieved using a drum which has at least one heating element in the interior thereof, and which has an exterior surface carrying an embossed pattern with which the fibrous layer is pressed into contact.
  • a substrate produced in this way is unlikely to be as soft as one produced by hydrogentangling, or needlepunching, and may have a substantially proportion of completely loose fibres.
  • Yet another method involves wet-laying a mixture of fibres and chemical binder, somewhat in the manner employed, for example, in paper making.
  • Needlepunching, thermal bonding, and wet-laying are all well known per se and will therefore not be described in detail below.
  • Hydroentangling is also well known per se, but is described further below, because it is the preferred method and for the purpose of mentioning a number of modifications to the hydrogentangling procedure as it is usually practised.
  • a non-woven fibrous substrate for use in a cleaning article, wherein the substrate has a major surface for rubbing on a surface to be cleaned, a low strength in at least one direction, and comprises at least a proportion of long fibres which are capable of protruding from the said major surface as a result of said rubbing whilst remaining attached to the substrate.
  • the substrate has a toughness of less than 0.6Nm in at least one direction, preferably not more than 0.5 Nm.
  • the toughness is preferably less than 1.2 Nm in each of two mutually perpendicular directions.
  • the tensile strength is preferably not more than 45 N.
  • the toughness is preferably reduced by at least 15%, and is preferably less than 0.5 Nm, in at least one direction, and less than 0.6 in each of two mutually perpendicular directions.
  • the tensile strength after rubbing is preferably not more than 10N in at least one direction, and not more than 30N in each of two mutually perpendicular directions.
  • the invention further provides a wet wipe comprising a substrate as aforesaid and a cleaning liquid:
  • the invention also provides a method of producing a non-woven, fibrous substrate for use in a cleaning article, and having a major surface for rubbing on a surface to be cleaned, wherein a fibrous layer comprising fibres of which at least a proportion are long fibres, is subjected to hydroentangling by means of jets of liquid which apply to the fibrous layer a force sufficient to produce a coherent substrate but low enough for at least some of said long fibres to be capable of protruding from said major surface as a result of said rubbing, whilst remaining attached to the substrate.
  • a substrate according to the invention must thus possess two significant characteristics identified as (a) and (b) below, and should desirably possess two others, identified as (c) and (d). These are:
  • the low strength may be in MD or CD or both.
  • At least a certain proportion of the fibres are sufficiently long that even though they extend from the surface plane of the substrate as a result of the friction produced by rubbing, they nevertheless remain attached to the body of the substrate.
  • substantially all the fibres are long fibres. Such fibres can either remain attached at one end, with the other end extending from the substrate surface, or they can remain attached at both ends, but have a central portion extending from the substrate surface.
  • the fibres referred to herein as "long” have a length of at least 2cm, normally from 2 to 6cm, and more preferably at least 3cm, normally from 3 to 5cm.
  • the desired effect is unlikely to be achieved if the loosened fibre portions have a tendency to remain against the substrate surface.
  • One way in which this tendency can be avoided is if at least a proportion of the fibres concerned has a relatively high flexural stiffness, even when the substrate is wetted by a cleaning liquid, if present, and so will tend to protrude from the substrate surface.
  • such fibres should preferably have a tensile strength, when dry, of at least 2.5cN, more preferably at least 5cN, and still more preferably of the order of 10cN.
  • the tensile strength should therefore preferably not exceed 30cN, and more preferably should not exceed 20cN.
  • the substrate is to be used for an article, such as a wet wipe, containing a cleaning liquid which is either an aqueous solution or an emulsion in which the continuous phase is aqueous
  • a cleaning liquid which is either an aqueous solution or an emulsion in which the continuous phase is aqueous
  • the desired effect may be achieved if those fibres are hydrophobic, and thus resist the absorption of the cleaning liquid which the wet wipe contains.
  • Fibre materials which have suitably hydrophobic properties include polyolefins such as polypropylene and polyethylene, polyamides such as nylon, and polyethylene terephthalate.
  • the fibres could be caused to protrude from the surface of the substrate by their being hydrophilic, and suitable fibre materials for this purpose include viscose fibres and cotton fibres.
  • the cleaning liquid prefferably be a silicone emulsion, in which case the fibres must be such as will continue to protrude from the substrate in the presence of such an emulsion.
  • the apparatus 10 shown in Figure 1 comprises a continuous belt 12, on the upper run of which the hydrogentangling process takes place. As viewed in Figure 1, the upper run travels in a rightward direction and preferably does so at a speed of 25-75 m/min, more preferably 40-60 m/min.
  • the belt is apertured, as described in more detail below.
  • a layer of fibres 14, such as a nonwoven batt or other initial fibrous layer is fed on to the belt, as indicated diagrammatically by arrow 16.
  • the initial fibrous layer may consist of any suitable web, mat or batt of loose fibres, disposed in random relationship with one another, or in any degree of alignment, such as might be produced by carding or the like.
  • the initial fibrous layer may be made by any desired technique, such as by carding, random laydown, air or slurry deposition or the like.
  • Each array extends transversely across the line of travel of the belt 12 and fibrous layer 14. In the drawing, five such arrays 18 are shown, but it must be emphasised that the number of arrays could be more or less than this, say from 2 to 15. There might be only a single nozzle array, but a plurality is preferable.
  • Each array 18 has a perforated plate on the underside thereof in which is formed at least one row of orifices. Typically, there is a single row or a pair of parallel rows, and where there is a pair of rows the orifices in one row may be staggered with respect to the orifices in the other row.
  • the row, or each row, as the case may be, runs parallel to the length of the array 18.
  • the orifices used in one preferred form of the present invention have a diameter of from 100-120 micrometers, and are arranged, for example, at about 0.6mm centres.
  • Water is fed to the arrays via a high pressure line 20 and individual pressure regulators 22, one per array.
  • the pressure can differ from array to array.
  • the pressure may increase stepwise from one array to the next, as considered from the upstream end to the downstream end of the belt.
  • the sum total of the pressure applied to individual arrays is preferably from 40-1100 bars, more preferably from 40-200 bars.
  • the water flow rate through each array is preferably from 2-5 m 3 /hr for each metre length of the array.
  • the flow velocity of each water jet is from 40 to 110 m/sec, more preferably from 40 to 100 m/sec, and the energy flow per water jet is preferably from 300-14000 bars.m/sec, more preferably at least 800 bars.m/sec.
  • the total power input to the web from all the arrays combined is preferably from 1.0-120 kW/m of web width, and is more preferably not more than 100 kW/m.
  • the total energy input to the web is from 0.005 to 0.8 kWh/kg of material, and preferably less than 0.5 kWh/kg. More preferably it is in a range of from 0.1 to less than 0.5 kWh/kg. Still more preferably the upper limit of this range is 0.4 or 0.3, and the lower limit of the range may be 0.2.
  • Vacuum boxes 24, one for each array 18, are provided beneath the belt, for the purpose of taking away the water after it has passed through the belt.
  • the belt is in the form of a wire grid, preferably a rectangular, and, more preferably, square, grid, defining a corresponding array of apertures.
  • a grid may be used in which there are from 12 to 30 apertures per cm 2 , preferably from 20 to 30 apertures per cm 2 . It must be understood, however, that finer or coarser grids may be used, and that the apertures may be arranged in ways which do not constitute square or rectangular grids.
  • the water is used to supply an amount of energy which is low compared to that conventionally used, though sufficient to effect hydroentangling.
  • One effect of this is that the substrate thus formed does not have openings extending through it even at the locations where, during its formation, it is immediately above the wire crossing points in the belt, at least as regards a substantial proportion of those locations.
  • not more than 50% of the locations form open apertures, and more preferably not more than 30%.
  • at least a few percent of the locations will provide open apertures, say at least 5%.
  • the substrate consists of areas of reduced thickness formed above the wire crossing points and ridges elsewhere.
  • the absence of large numbers of openings in the substrate is an advantage where, for example, it is to be used as the substrate for a wet wipe. If many openings were present these could permit dirt and other undesirable materials to pass through the substrate from the surface being cleaned to, for example, the hand of the user.
  • the existence of the above mentioned ridges in the substrate has at least two significant advantages. One is that it increases the caliper of the substrate material without a proportionate increase in the amount of material required to make it. The other is that the ridges form initiation areas where friction produced during rubbing can start the partial break-up of the surface of the substrate, with the attendant desirable effects already described.
  • the amount, and nature, of the entangling produced by the water jets depends, inter alia on the belt speed and the direction of the jets.
  • the direction of belt travel (MD) as the y direction the direction transverse thereto in the plane of the belt (CD) as the x direction, and the direction perpendicular to the plane of the belt as the z direction, the greater the difference between the component of belt velocity in the x or y direction, and the component of jet velocity in the same direction, the greater will be the entangling effect in that direction.
  • the respective strength in these two directions can be altered by angling the jets upstream (increasing the y direction entangling), downstream (decreasing the y direction entangling), laterally (increasing the x direction entangling), or in some combination thereof.
  • the jets can be angled upstream or downstream by up to 45° with respect to the normal to the belt, and/or laterally by up to 45°.
  • some jets could point in different directions to other jets, either within a given array or from one array to another. Further, some or all of the orifices could be shaped to give a swirling motion to the jets issuing therefrom.
  • the surface on which hydroentangling takes place has been referred to as a belt. It is to be understood, however, this is only by way of example, and the surface could be any suitable travelling surface, whether travelling linearly or, in the case of a drum for example, circularly.
  • the apparatus shown in Figure 1 has water jets only on one surface of the substrate. It may be desirable to effect hydroentangling from both surfaces.
  • the web of Figure 1 can be passed through a second, oppositely disposed assembly of orifices arrays and vacuum boxes.
  • the initial web can pass through an assembly in which orifice arrays on one side of the web alternate with orifice arrays on the other side.
  • Hydroentangling equipment suitable for use in carrying out the present invention is obtainable from ICBT Perfojet, Z.A. Pre-Millet, 38330 Mont Bonnot, France.
  • compositions can be used to produce the substrate, though preferably the composition should include sufficient fibres which have the desired ability to protrude from the surface of the substrate.
  • examples of fibre compositions which can be used include mixtures of a hydrophilic fibre material (e.g. viscose, cotton or flax) and a hydrophobic fibre material (e.g. polyethylene terephthalate or polypropylene), which may be present in any desired proportions, or purely hydrophilic or purely hydrophobic materials.
  • Two particularly preferred compositions are 50% viscose/50% PP and 50% viscose/50% PET.
  • One advantage provided by having such a large amount of viscose fibres is that their surfaces are ridged, having ridges of the order of 10 micrometers high, and their ridges provide additional friction to help initiate partial break-up of the substrate.
  • the substrate preferably has a basis weight of at least 30 gm -2 .
  • a basis weight of at least 30 gm -2 is unlikely that a basis weight of more than 150 gm -2 will be required, though in theory higher basis weights could be employed.
  • the basis weight is preferably in the range of 30-130 gm -2 more preferably 30-70 gm -2 , and still more preferably 55 to 65 gm -2 .
  • the texturing as already mentioned can be achieved by carrying out the hydroentangling on an apertured surface. If the overall caliper is less than about 0.4 mm it may be difficult to incorporate a textured surface, and such a surface is advantageous, for the reasons already given.
  • the caliper of the substrate is from 0.4mm to 2.0mm, more preferably from 0.4 to 0.95mm.
  • the bulk density of the substrate is preferably not more than 0.1g/cm 3 , preferably not more than 0.9g/cm 3 , and still preferably not more than 0.8g/cm 3 .
  • the volume of the substrate is calculated using the caliper of the substrate including the texturing.
  • a substrate produced according to the present invention results in superior cleaning properties to those obtained by substrates according to the prior art.
  • the principle reason for this is believed to be the fact that the fibres which protrude from the substrate surface as the cleaning process proceeds provide additional cleaning surfaces.
  • the actual cleaning mechanism may involve other effects in addition to, or instead of, the one just described, and no reliance is to be placed on the particular theoretical explanation just given.
  • the second relevant mechanism is believed to be that as fibres are caused to protrude from the substrate they can be felt by the skin with which the substrate is in contact, and since these fibres, even if relatively stiff, are then free to bend, the sensation to the user is one of softness.
  • the increased in perceived softness may result from other effects in addition to, or instead of, those just described, and no reliance is to be placed on the particular theoretical explanation just given.
  • Example 5 Four substrates according to the invention (Examples 1 to 4) will now be described, together with a comparative example (Example 5) of a substrate not according to the invention.
  • Examples 1 to 4 were made from the same fibre composition, namely 50% viscose and 50% polypropylene, all the fibres having a length of 4cm and a diameter equivalent to 1.7dtex. Examples 1 to 4 were all made in the same way. The only difference between them was basis weight of the substrate, which was as follows (the basis weight of Example 5 also being given for completeness): Ex 1 60.7 g/m 2 Ex 2 62.8 g/m 2 Ex 3 55.8 g/m 2 Ex 4 59.2 g/m 2 Ex 5 63.2 g/m 2
  • Example 5 used the same fibre composition and fibre diameter as Examples 1-4.
  • Example 1 The apparatus used in Examples 1 to 4 had an apertured belt with 25 apertures/cm arranged in a square grid. The line travelled at about 50 m/min. 13 orifice arrays were used, each having about 1666 orifices per metre of their length, with each orifice being about 100 micrometers in diameter.
  • Example 5 was made using a belt which was not apertured. In all of Examples 1-5 the jets were directed perpendicularly to the fibrous web. Other process conditions for Examples 1 to 4 and comparative Example 5 are set out in the following Table 1.
  • Example 6 which, like Examples 1-4, was a hydroentangled substrate, but, unlike comparative Example 5, was apertured.
  • Example 6 was produced using more energy than for Examples 1 to 4.
  • Example 6 had a basis weight of 53.9 gm -2 .
  • the results of these tests are set out in Table 2. The way in which the various tests were carried out is described later in this specification.
  • modulus is those for initial modulus, as is also the case in Table 2 below.
  • the initial CD modulus is very low, and that even though there are relatively few apertures the density is also low.
  • Example 2 substantially alters the properties of Example 2 (which is according to the invention), but has a much less marked effect on Examples 5 and 6 (which are not).
  • the alteration in Example 2 is consistent with its being significantly weaker than Examples 5 and 6, the effect of rubbing being to cause the substrate to beak up to an extent sufficient to produce the desired sensation to the user, but not such as to cause complete disintegration (which is undesired).
  • Example 2 attention is drawn to the fact that in Example 2 the caliper is significantly increased and the toughness is significantly decreased, both of which reflect the partial break-up of the substrate.
  • FIG. 2 A comparison of Figures 2 and 3 shows the extent to which rubbing causes a substrate according to the invention (Example 2) to being to break up.
  • the following tensile properties of the previous examples are evaluated with an Instron tester under the following conditions. All tests are conducted at laboratory conditions of 21 C and 65% relative humidity.
  • the Instron gauge length is 10 cm. Elongation rate is 10cm/min or 100%/minute.
  • the Instron "jaws" that secure the sample are flat and rubber coated.
  • Tensile strength, initial modulus and toughness in both the MD and CD directions are determined from 1" wide strips cut to 15 cm in length and fixed without slack but without tension on the Instron tester within jaws set at 10 cm distance.
  • the energy input from the Instron machine to the sample is then plotted over time with the y axis indicating the force applied to the sample in Newtons and the x axis indicating the % elongation of the sample at the indicated elongation rate.
  • the tensile strength number is defined as the peak force from this force over elongation curve.
  • the initial modulus number is obtained from the graph produced from the same test. It is the initial slope of the force/elongation curve and is indicated as the y axis in units of Newtons/% elongation.
  • the toughness is the number obtained also from this same test and results graph. Toughness is defined as the area under the entire curve indicated in Newtons by % elongation.
  • Substrate caliper is measured using standard EDANA non-woven industry methodology, reference method #30-4-89.
  • Entanglement frequency is evaluated from the following data produced on the Instron tester with strips of varying widths, as indicated.
  • Strip Width indication Avg CD Strip Tensile Example#2 Strip Width (in) Instron Gauge Length (in) Elongation Rate (in/minute) w0 8.0 0.8 0 0.5 w1 8.2 0.3 1.5 5 w2 17.1 1.9 1.5 5
  • entanglement frequency CD 2(T2-T1) w1T2-w2T1.
  • test substrate to be evaluated is clamped into a fixed, taught but not stretched position on a horizontal surface.
  • the circular clamp holding this material in place is 5" in diameter.
  • the rubbing test is then conducted on the area of the sample within this fixed circular clamp.
  • a second sample of the test material is then clamped taught but not stretched in a fixed position on a 1.75" diameter flat and solid ended cylinder. This second sample is then rubbed on the first sample for the purpose of the test.
  • the vertical force, or absolute mass (weight) of the second sample against the first sample is 0.68 Kg.
  • the second sample with this weight is then rubbed against the first sample in a repeating pattern, known as a Lissajous pattern, that fully covers the test sample, as shown in Figure 7.
  • One cycle is represented by the full pattern shown above.
  • One cycle consists of 15 oscillations in one direction and a second 15 oscillations at right angles to the first set of oscillations.
  • One full cycle of these 30 oscillations is done over 18 seconds.
  • the substrate within the 5" fixed ring is then considered the treated sample.
  • this piece of substrate is then cut in the CD or MD direction into strips of the appropriate width and length for the Instron test.
  • this treated strip is cut to 1" wide by 15 cm long strips, one such strip being indicated by the rectangle S in Figure 7.
  • Figure 6a to 6e are curves of the type just mentioned derived from three different materials, as follows:
  • Figures 6a, 6c and 6e are for MD, and Figures 6b, 6d and 6f are for CD.
  • the rotation "NORMAL” means before rubbing and "RUBBED” means after rubbing.
  • the ordinate in each the graphs is in N, and the abscissa is in % elongation of the sample.
  • the % value is converted into m by %/100 x 0.lm, with 0.lm being the length of the strips being tested.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Nonwoven Fabrics (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Claims (28)

  1. Substrat fibreux non tissé pour l'utilisation dans un article de nettoyage, dans lequel le substrat a une surface principale pour frotter une surface devant être nettoyée, un faible résistance mécanique dans au moins une direction de manière à avoir une ténacité telle que définie dans la présente description inférieure à 0,6 Nm, et comprend au moins 20% de fibres longues qui sont capables de faire saillie de ladite surface principale par suite du frottement comme défini dans la présente description, tout en restant attachées au substrat.
  2. Substrat selon la revendication 1 qui, tel que réalisé, a une ténacité, telle que définie dans la présente description, qui n'est pas supérieure à 0,5 Nm dans au moins une direction.
  3. Substrat selon l'une quelconque des revendications précédentes, qui, tel que réalisé, a une ténacité, telle que définie dans la présente description, inférieure à 1,2 Nm dans chacune de deux directions mutuellement perpendiculaires.
  4. Substrat selon l'une quelconque des revendications précédentes, qui a une ténacité, telle que définie dans la présente description, après frottement, tel que défini aussi dans la présente description, de moins de 0,5 Nm dans au moins une direction.
  5. Substrat selon l'une quelconque des revendications précédentes, qui a une ténacité, telle que définie dans la présente description, après frottement, tel que défini aussi dans la présente description, de moins de 0,6 Nm dans chacune de deux directions mutuellement perpendiculaires.
  6. Substrat selon l'une quelconque des revendications précédentes, dans lequel le frottement, tel que défini dans la présente description, réduit la ténacité, telle que définie aussi dans la présente description, d'au moins 15%.
  7. Substrat selon l'une quelconque des revendications précédentes, qui, tel que réalisé, a une résistance à la traction, telle que définie dans la présente description, qui n'est pas supérieure à 45N dans n'importe quelle direction.
  8. Substrat selon l'une quelconque des revendications précédentes, qui a une résistance à la traction, telle que définie dans la présente description, après frottement, tel que défini aussi dans la présente description, qui n'est pas supérieure à 10N dans au moins une direction, et/ou pas supérieure à 30N dans chacune de deux directions mutuellement perpendiculaires.
  9. Substrat selon l'une quelconque des revendications précédentes, dans lequel lesdites fibres longues ont une longueur d'au moins 2 cm, de préférence une longueur de 2 à 6 cm, et mieux encore une longueur d'au moins 3 cm, bien mieux encore de 3 à 5 cm.
  10. Substrat selon l'une quelconque des revendications précédentes, dans lequel lesdites fibres longues ont une résistance à la traction d'au moins 2,5 cN, de préférence d'au moins 5 cN.
  11. Substrat selon l'une quelconque des revendications précédentes, dans lequel ladite surface principale est texturée.
  12. Substrat selon la revendication 11, dans lequel ladite texture est sous la forme d'une grille de dépressions et de crêtes, pour laquelle pas plus de 80%, de préférence pas plus de 50%, des dépressions forment des jours ouverts sur la face opposée du substrat.
  13. Substrat selon la revendication 11, dans lequel il existe de 12 à 30 dépressions/cm2.
  14. Lingette imbibée qui comprend un substrat selon l'une quelconque des revendications précédentes, et un liquide de nettoyage porté par celle-ci.
  15. Lingette imbibée selon la revendication 14, dans laquelle le substrat a une masse volumique, quand il est sec, qui n'est pas supérieure à 0,1 g/cm3.
  16. Lingette imbibée selon la revendication 14 ou 15, dans laquelle le liquide de nettoyage est aqueux, ou a une phase continue aqueuse, et dans laquelle lesdites fibres longues comprennent des fibres qui sont hydrophobes.
  17. Lingette imbibée selon la revendication 16, dans laquelle lesdites fibres hydrophobes sont en poly(téréphtalate d'éthylène) ou en polypropylène, ou ont une couche externe constituée de ces composants.
  18. Lingette imbibée selon la revendication 16 ou 17, dans laquelle le liquide de nettoyage est une huile ou a une phase continue huileuse, et dans laquelle lesdites fibres longues comprennent des fibres qui sont hydrophiles.
  19. Lingette imbibée selon la revendication 14, dans laquelle le liquide de nettoyage est une émulsion de silicone.
  20. Lingette imbibée selon la revendication 18, dans laquelle lesdites fibres hydrophiles sont en viscose, coton ou lin.
  21. Lingette imbibée selon l'une quelconque des revendications 14 à 20, dans laquelle lesdites fibres longues comprennent un mélange de fibres hydrophobes et hydrophiles.
  22. Lingette imbibée selon l'une quelconque des revendications 14 à 21, dans laquelle toutes ou sensiblement toutes les fibres du substrat sont des fibres longues.
  23. Procédé de fabrication d'un substrat fibreux non tissé pour l'utilisation dans un article de nettoyage, et ayant une surface principale pour frotter une surface devant être nettoyée, dans lequel on soumet une couche fibreuse comprenant des fibres dont au moins 20% sont des fibres longues, à un emmêlement par l'eau au moyen de jets de liquide qui appliquent à la couche fibreuse une énergie de force qui n'est pas supérieure à 0,8 kWh/kg du matériau en couche fibreux, suffisante pour produire un substrat cohérent mais suffisamment faible pour qu'au moins quelques-unes desdites fibres longues soient capables de faire saillie de ladite surface principale par suite du frottement comme défini dans la présente description, tout en restant attachées au substrat.
  24. Procédé selon la revendication 23, dans lequel les jets de liquide appliquent à la couche fibreuse une énergie qui n'est pas supérieure à 0,5 kWh/kg.
  25. Procédé selon la revendication 24, dans lequel ladite énergie est d'au moins 0,0005 kWh/kg.
  26. Procédé selon l'une quelconque des revendications 23 à 25, dans lequel les jets de liquide sont dirigés sur la couche fibreuse pendant que la couche se déplace dans une première direction à une vitesse d'au moins 25 m/min, de préférence d'au moins 40 m/min.
  27. Procédé selon la revendication 26, dans lequel les jets de liquide sont dirigés sur la couche fibreuse selon un angle qui, tel que vu dans une première direction et/ou vu perpendiculairement à ladite première direction, dévie de la normale à la couche fibreuse d'une quantité prédéterminée, de préférence jusqu'à 45°.
  28. Procédé selon l'une quelconque des revendications 23 à 27, dans lequel la couche fibreuse est placée sur une surface support munie d'ouvertures, de préférence de 12 à 30 ouvertures/cm2.
EP95304447A 1995-06-23 1995-06-23 Produits de nettoyages, substrat à cet effet, et procédé de sa fabrication Revoked EP0750063B1 (fr)

Priority Applications (20)

Application Number Priority Date Filing Date Title
DE69513013T DE69513013T2 (de) 1995-06-23 1995-06-23 Reinigungsartikel, Substrat dafür und sein Herstellungsverfahren
AT95304447T ATE186085T1 (de) 1995-06-23 1995-06-23 Reinigungsartikel, substrat dafür und sein herstellungsverfahren
ES95304447T ES2137457T3 (es) 1995-06-23 1995-06-23 Articulos de limpieza, substratos para los mismos y metodo para la fabricacion de substratos.
EP95304447A EP0750063B1 (fr) 1995-06-23 1995-06-23 Produits de nettoyages, substrat à cet effet, et procédé de sa fabrication
EP95118292A EP0750062B1 (fr) 1995-06-23 1995-11-21 Articles jetables pour nettoyage de la peau
ES95118292T ES2131742T3 (es) 1995-06-23 1995-11-21 Articulos desechables para la limpieza de la piel.
DE69509879T DE69509879T2 (de) 1995-06-23 1995-11-21 Wegwerfhautreinigungsgegenstände
AT95118292T ATE180519T1 (de) 1995-06-23 1995-11-21 Wegwerfhautreinigungsgegenstände
KR1019970709613A KR100272830B1 (ko) 1995-06-23 1996-06-04 건조한 일회용 피부 크린싱 제품
AU61525/96A AU6152596A (en) 1995-06-23 1996-06-04 Disposable skin cleansing articles
CA002225161A CA2225161C (fr) 1995-06-23 1996-06-04 Articles jetables pour le nettoyage de la peau
PCT/US1996/008945 WO1997000771A1 (fr) 1995-06-23 1996-06-04 Articles jetables pour le nettoyage de la peau
JP9503855A JPH11513906A (ja) 1995-06-23 1996-06-04 使い捨て皮膚清浄用物品
PCT/US1996/009863 WO1997000988A1 (fr) 1995-06-23 1996-06-07 Articles de nettoyage, substrats correspondants et procede de fabrication desdits substrats
KR1019970709661A KR100266487B1 (ko) 1995-06-23 1996-06-07 세정용품,이를위한기재및기재의제조방법
JP9503866A JPH11508256A (ja) 1995-06-23 1996-06-07 清浄物品、そのための支持体、及び支持体の製造方法
AU62682/96A AU6268296A (en) 1995-06-23 1996-06-07 Cleaning articles, substrates therefor, and method of substrate manufacture
CA002225147A CA2225147A1 (fr) 1995-06-23 1996-06-07 Articles de nettoyage, substrats correspondants et procede de fabrication desdits substrats
MX9710463A MX9710463A (es) 1995-06-23 1997-12-19 Articulos de limpieza para la piel, desechables.
MX9800108A MX9800108A (es) 1995-06-23 1998-01-07 Articulos de limpieza, substratos para los mismos y metodo para la fabricacion del substrato.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95304447A EP0750063B1 (fr) 1995-06-23 1995-06-23 Produits de nettoyages, substrat à cet effet, et procédé de sa fabrication

Publications (2)

Publication Number Publication Date
EP0750063A1 EP0750063A1 (fr) 1996-12-27
EP0750063B1 true EP0750063B1 (fr) 1999-10-27

Family

ID=8221233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95304447A Revoked EP0750063B1 (fr) 1995-06-23 1995-06-23 Produits de nettoyages, substrat à cet effet, et procédé de sa fabrication

Country Status (10)

Country Link
EP (1) EP0750063B1 (fr)
JP (1) JPH11508256A (fr)
KR (1) KR100266487B1 (fr)
AT (2) ATE186085T1 (fr)
AU (1) AU6268296A (fr)
CA (1) CA2225147A1 (fr)
DE (2) DE69513013T2 (fr)
ES (2) ES2137457T3 (fr)
MX (1) MX9800108A (fr)
WO (1) WO1997000988A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7293738B2 (en) 2003-11-26 2007-11-13 Kimberly-Clark Worldwide, Inc. Freestanding dispenser for dispensing two different substrates
US7354598B2 (en) 2002-12-20 2008-04-08 Kimberly-Clark Worldwide, Inc. Packaging two different substrates
US10617576B2 (en) 2012-05-21 2020-04-14 Kimberly-Clark Worldwide, Inc. Process for forming a fibrous nonwoven web with uniform, directionally-oriented projections

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0789793T3 (da) * 1994-11-02 2000-07-10 Procter & Gamble Fremgangsmåde til fremstilling af nonwovenstoffer
US6753063B1 (en) 1997-11-19 2004-06-22 The Procter & Gamble Company Personal cleansing wipe articles having superior softness
EP1005845A1 (fr) * 1998-12-03 2000-06-07 The Procter & Gamble Company Mode d'emploi pour un non-tissé jetable
FR2795100B1 (fr) * 1999-06-16 2001-09-14 Fort James France Produit de coton hydrophile comportant une face douce et une face grattante
US6716805B1 (en) 1999-09-27 2004-04-06 The Procter & Gamble Company Hard surface cleaning compositions, premoistened wipes, methods of use, and articles comprising said compositions or wipes and instructions for use resulting in easier cleaning and maintenance, improved surface appearance and/or hygiene under stress conditions such as no-rinse
US6986897B1 (en) 1999-10-04 2006-01-17 Johnson & Johnson Consumer Companies, Inc. Alcohol-free anti-bacterial wipes
US6340663B1 (en) 1999-11-24 2002-01-22 The Clorox Company Cleaning wipes
EP1106723B1 (fr) * 1999-12-07 2003-03-12 Georgia-Pacific France Tampon de coton hydrophile destiné aux soins de la peau et comportant deux faces externes différentes
US20010029966A1 (en) 1999-12-10 2001-10-18 Arthur Wong Non-apertured cleaning sheets having non-random macroscopic three-dimensional character
CA2407741C (fr) * 2000-05-04 2009-04-07 Kimberly-Clark Worldwide, Inc. Polymeres hydrodispersibles, sensibles aux ions, leur procede de production et articles utilisant ces polymeres
EP1167510A1 (fr) * 2000-06-23 2002-01-02 The Procter & Gamble Company Lingette humide, jetable pour le nettoyage des surfaces dures
DE10059584A1 (de) 2000-11-30 2002-06-06 Beiersdorf Ag Kosmetische oder dermatologische getränkte Tücher
CN1217045C (zh) * 2000-12-01 2005-08-31 花王株式会社 清洁片材
US20030109411A1 (en) 2001-08-24 2003-06-12 The Clorox Company, A Delaware Corporation Bactericidal cleaning wipe
KR100758843B1 (ko) * 2002-08-29 2007-09-19 더 프록터 앤드 갬블 캄파니 저밀도 고로프트 부직포 기재
US7651989B2 (en) 2003-08-29 2010-01-26 Kimberly-Clark Worldwide, Inc. Single phase color change agents
CN116018066A (zh) 2020-08-21 2023-04-25 克劳罗克斯公司 包含极低水平的表面活性剂的基于有机酸的抗微生物制剂

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2162213B (en) * 1984-06-27 1987-06-17 Spontex Sa Improvements in and relating to cleaning
US4755421A (en) * 1987-08-07 1988-07-05 James River Corporation Of Virginia Hydroentangled disintegratable fabric
US5238644A (en) * 1990-07-26 1993-08-24 Johnson & Johnson Inc. Low fluid pressure dual-sided fiber entanglement method, apparatus and resulting product
JP3313786B2 (ja) * 1991-11-13 2002-08-12 花王株式会社 湿式清掃用シート及びその製造方法
US5292581A (en) * 1992-12-15 1994-03-08 The Dexter Corporation Wet wipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354598B2 (en) 2002-12-20 2008-04-08 Kimberly-Clark Worldwide, Inc. Packaging two different substrates
US7559434B2 (en) 2002-12-20 2009-07-14 Kimberly-Clark Worldwide, Inc. Packaging two different substrates
US7293738B2 (en) 2003-11-26 2007-11-13 Kimberly-Clark Worldwide, Inc. Freestanding dispenser for dispensing two different substrates
US10617576B2 (en) 2012-05-21 2020-04-14 Kimberly-Clark Worldwide, Inc. Process for forming a fibrous nonwoven web with uniform, directionally-oriented projections

Also Published As

Publication number Publication date
KR100266487B1 (ko) 2000-10-02
EP0750063A1 (fr) 1996-12-27
DE69513013T2 (de) 2000-04-20
JPH11508256A (ja) 1999-07-21
MX9800108A (es) 1998-11-30
ATE180519T1 (de) 1999-06-15
ES2131742T3 (es) 1999-08-01
DE69509879T2 (de) 1999-12-02
WO1997000988A1 (fr) 1997-01-09
AU6268296A (en) 1997-01-22
KR19990028346A (ko) 1999-04-15
CA2225147A1 (fr) 1997-01-09
DE69513013D1 (de) 1999-12-02
ATE186085T1 (de) 1999-11-15
ES2137457T3 (es) 1999-12-16
DE69509879D1 (de) 1999-07-01

Similar Documents

Publication Publication Date Title
EP0750063B1 (fr) Produits de nettoyages, substrat à cet effet, et procédé de sa fabrication
KR100272830B1 (ko) 건조한 일회용 피부 크린싱 제품
US6936333B2 (en) Bulky sheet and process for producing the same
US4100324A (en) Nonwoven fabric and method of producing same
CA1285132C (fr) Non-tisse a fibres emmelees par voie hydraulique, extra-solide a l'etat humide
US3966519A (en) Method of bonding fibrous webs and resulting products
US3494821A (en) Patterned nonwoven fabric of hydraulically entangled textile fibers and reinforcing fibers
US4109353A (en) Apparatus for forming nonwoven web
US20030019088A1 (en) Imaged nonwoven fabric for cleaning applications
JP2019508603A (ja) 天然繊維ウェブ層を含む不織複合体及びその形成方法
KR101410112B1 (ko) 부직포 및 그 제조 방법, 및 닦음재
US20030118777A1 (en) Imaged nonwoven fabrics in hygienic wipe applications
NZ217470A (en) Entangled non-woven fabric with at least 75 percent polyester staple fibres
US7611594B2 (en) Method of making a fiber laminate
AU731392B2 (en) Cleaning articles, substrates therefor, and method of substrate manufacture
EP0132028A2 (fr) Procédé de production d'étoffes non-tissées en coton présentant une structure selon un dessin
JP3017507B2 (ja) 積層不織布
JP2003336160A (ja) 起毛様不織布、その製造方法及びそれを用いた繊維製品
JP2002263043A (ja) ワイピング用不織布
HK1046937B (en) Bulky sheet and process for producing the same
EP1005845A1 (fr) Mode d'emploi pour un non-tissé jetable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

AX Request for extension of the european patent

Free format text: LT;LV;SI

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19970605

17Q First examination report despatched

Effective date: 19980630

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

DAX Request for extension of the european patent (deleted)
REF Corresponds to:

Ref document number: 186085

Country of ref document: AT

Date of ref document: 19991115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & SEIFERT

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69513013

Country of ref document: DE

Date of ref document: 19991202

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: UNILEVER PLC

Effective date: 20000727

Opponent name: SCA HYGIENE PRODUCTS AB

Effective date: 20000726

NLR1 Nl: opposition has been filed with the epo

Opponent name: UNILEVER PLC

Opponent name: SCA HYGIENE PRODUCTS AB

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010319

Year of fee payment: 7

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010327

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010405

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010502

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010503

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010614

Year of fee payment: 7

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010627

Year of fee payment: 7

Ref country code: CH

Payment date: 20010627

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010713

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20010701

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20010701

NLR2 Nl: decision of opposition
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO