EP0611589A1 - Draft tube, direct contact cryogenic crystallizer - Google Patents
Draft tube, direct contact cryogenic crystallizer Download PDFInfo
- Publication number
- EP0611589A1 EP0611589A1 EP94101297A EP94101297A EP0611589A1 EP 0611589 A1 EP0611589 A1 EP 0611589A1 EP 94101297 A EP94101297 A EP 94101297A EP 94101297 A EP94101297 A EP 94101297A EP 0611589 A1 EP0611589 A1 EP 0611589A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- crystallizer
- draft tube
- cryogenic fluid
- cryogenic
- direct contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 claims abstract description 68
- 239000012530 fluid Substances 0.000 claims abstract description 60
- 239000002002 slurry Substances 0.000 claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 54
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 36
- 238000002347 injection Methods 0.000 claims description 33
- 239000007924 injection Substances 0.000 claims description 33
- 239000007788 liquid Substances 0.000 claims description 30
- 229910052757 nitrogen Inorganic materials 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 10
- 230000008014 freezing Effects 0.000 claims description 8
- 238000007710 freezing Methods 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims 2
- 229910052786 argon Inorganic materials 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001307 helium Substances 0.000 claims 1
- 229910052734 helium Inorganic materials 0.000 claims 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000003949 liquefied natural gas Substances 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 8
- 238000013019 agitation Methods 0.000 abstract description 2
- 239000002826 coolant Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000010900 secondary nucleation Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 230000002821 anti-nucleating effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009882 destearinating Methods 0.000 description 1
- FGRVOLIFQGXPCT-UHFFFAOYSA-L dipotassium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [K+].[K+].[O-]S([O-])(=O)=S FGRVOLIFQGXPCT-UHFFFAOYSA-L 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B35/00—Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/26—Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/0004—Crystallisation cooling by heat exchange
- B01D9/0009—Crystallisation cooling by heat exchange by direct heat exchange with added cooling fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/0036—Crystallisation on to a bed of product crystals; Seeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
- B01J8/224—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
- B01J8/226—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement internally, i.e. the particles rotate within the vessel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10T117/10—Apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10T117/10—Apparatus
- Y10T117/1024—Apparatus for crystallization from liquid or supercritical state
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T117/00—Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
- Y10T117/10—Apparatus
- Y10T117/1024—Apparatus for crystallization from liquid or supercritical state
- Y10T117/1096—Apparatus for crystallization from liquid or supercritical state including pressurized crystallization means [e.g., hydrothermal]
Definitions
- the invention relates to a direct contact crystallizer.
- the invention is a draft tube, direct contact crystallizer employing a nozzle injection system which enables the use of cryogenic fluid such as gaseous or liquid nitrogen to simultaneously cool and agitate a crystal slurry for the production of crystals.
- a direct contact crystallizer is used to prevent fouling on heat transfer surfaces.
- Early designs of direct contact crystallizers used high volumes of refrigerants injected through spargers or distributors. Examples of refrigerants suggested for use in direct contact crystallizers include freon, water, alcohol solution, butane, propane, and air. However, these crystallizers have a very limited operating temperature range and have failed to provide true solid suspension or thorough mixing.
- the only commercially operated direct contact crystallizers use mechanical units to recompress refrigerants such as propane or butane. These mechanical-type crystallizers are equipped with agitators for vigorously stirring the slurry and keeping the crystals in suspension. The speed of the agitator must be fast enough to prevent large crystals from settling and coagulating in the bottom of the vessel.
- fast rotating agitators can break down large crystals on impact. In addition to breaking down large crystals, the impact of crystals on the mechanically agitated surfaces of other crystals promotes secondary nucleation. Secondary nucleation is the cause of excess fine crystals which are difficult to filter and are easily caked, thus, requiring recycling.
- cryogenic liquid or gas is able to provide a large amount of refrigeration to a crystal slurry.
- a cryogenic fluid such as liquid nitrogen is that it is inert and will not contaminate the crystal slurry.
- conventional crystallizers gas or liquid coolant is passed into a solution through a distributor which distributes the coolant over a wide area causing the coolant to bubble throughout the solution. By means of such coolant distribution, effective heat transfer with the solution is attained.
- the conventional practice of coolant introduction through a distributor while effective in conventional crystallization practice, is inadequate if a cryogenic gas or liquid were to be employed as the coolant.
- the direct contact crystallizer and crystallization method of this invention improves solid suspension while reducing secondary nucleation in a crystal slurry by employing a cryogenic fluid as the crystallizing coolant.
- a direct contact cryogenic crystallizer comprising:
- a method for producing crystals comprising:
- the direct contact crystallizer and crystallization method uses a draft tube assembly in combination with a cryogenic fluid nozzle injection system to simultaneously cool and agitate the crystal slurry.
- draft tubes have been used in conventional crystallizer designs, such conventional crystallizers having draft tubes typically require the use of mechanical agitators or recirculation pumps. Such mechanical agitators or recirculation pumps are not required in the practice of this invention.
- Figure 1 is a simplified illustration of one embodiment of the invention.
- Figure 2 is a detailed cross-sectional representation of one embodiment of the invention.
- Figure 3 is a cross-sectional representation of one embodiment of the injection nozzle useful in the practice of this invention.
- Figure 4 is a head-on view of the injection nozzle illustrated in Figure 3.
- a crystallizer vessel which, in this case, houses two draft tubes. Crystal slurry is provided in the crystallizer vessel and product crystals are withdrawn from the crystallizer vessel. Cryogenic fluid and warm gas are provided into the crystallizer vessel to carry out the efficient production of crystals by contact with the crystal slurry.
- the cryogenic fluid is liquid nitrogen and the warm gas is gaseous nitrogen.
- cryogenic fluid such as gaseous or liquified nitrogen to simultaneously cool and agitate a crystal slurry which may be provided into crystallizer vessel 10 through slurry feed conduit 50.
- cryogenic fluid means a fluid at a temperature of -109°F or less.
- the direct contact crystallizer can be used to crystallize, for example, potassium thiosulfate, citric acid, sodium thiosulfate, para-xylene, sodium hydroxide, sodium sulfate, potassium chloride, lactose, boric acid, or any organic, inorganic, or pharmaceutical chemical that can be separated from a solvent by cooling or evaporative crystallization. It can also be used for winterizing edible oils, purifying antibiotics, aerating water tanks, and dewatering organic chemicals such as by freezing the water into ice crystals.
- the crystal slurry is a suspension of solid crystals in a supersaturated solution comprising a solvent.
- the supersaturated solution is formed by dissolving a solute in a solvent at a higher temperature or a lower concentration. By decreasing the temperature and/or increasing the concentration, for example by evaporation, the solution becomes supersaturated.
- a vertical draft tube 16 is installed preferably at the center of a crystallizer vessel 10.
- the draft tube 16 and the vessel 10 can be made of any materials compatible with the chemical to be crystallized. Suitable materials include stainless steel and glass.
- the draft tube is supported by supports to which it is welded. The supports, in turn, are fixed to the top plate of the crystallizer by attachment to tube 47.
- the physical dimensions of the vessel 10 and draft tube 16 can vary. However, there are certain limitations.
- the vessel 10 can be as large or small as construction parameters will allow.
- the diameter of the draft tube 16 can range from 1 percent to 70.7 percent (i.e., the square root of 1/2) of the vessel diameter.
- the cross-sectional area inside the draft tube is approximately the same as the cross-sectional area outside the draft tube 16.
- the diameter of the draft tube 16 is 10 to 20 percent of the vessel diameter to achieve sufficient turbulence and uplift.
- multiple draft tubes can be provided instead of a single draft tube.
- multiple injection nozzles may be used.
- the lower end of the draft tube is spaced from the bottom of the crystallizer vessel.
- the distance between the opening at the lower end of the draft tube 16 and the bottom surface of the vessel 10 is approximately calculated as one-fourth (1/4) or more of the inside diameter of the draft tube.
- This opening generally has the same area as inside the draft tube.
- the fluid velocity at the opening is the same as inside the draft tube.
- the height of the draft tube may be adjusted. However, the upper end of the draft tube will always be spaced from the top surface of the crystallizer vessel to ensure adequate fluid flow through the draft tube.
- An injection nozzle 18 is positioned at the bottom of the crystallizer vessel 10 and pointed vertically upward to inject cryogenic fluid vertically upward into the draft tube.
- the nozzle 51 is used to inject the cryogenic fluid such as gaseous or liquid nitrogen directly into the crystallizer 10.
- the nozzle wall is thick enough so that the temperature on the outside of the nozzle 51 is close to the temperature of the crystal slurry.
- the nozzle has passing through it a cryogenic fluid nozzle passage 18 for ejecting cryogenic fluid into the crystallizer vessel.
- the diameter of the nozzle passage 18 is reduced in a portion of the nozzle length so as to increase the injection velocity of the cryogenic fluid. This increased injection velocity assists in preventing liquid from reentering the nozzle.
- the increased velocity causes the cryogenic fluid to cause turbulence inside the draft tube and, moreover, to experience a sudden release of pressure at the upper end of the draft tube thus enhancing the mixing and anti-nucleation effects of the invention.
- the heat transfer rate is enhanced by the turbulence inside the draft tube.
- the nozzle 51 is preferably constructed of fluorocarbon such as polytetrafluoroethylene to prevent ice or crystals from adhering to the nozzle wall.
- Fluorocarbons give the best non-wetting properties with low thermal conductivity so that ice or crystals will not adhere to the surface.
- the nozzle can be made of any materials or multiple layers of materials that exhibit good non-wetting, low thermal conductivity, thermal shock resistance properties.
- Fluorocarbons are generally not employed as nozzle materials because they are soft. However, when employed with a cryogenic fluid, the low temperature causes the fluorocarbon to harden and thus form an effective nozzle. This enables one to advantageously employ the known non-sticking attributes of fluorocarbons.
- Nozzle 51 also includes at least one, and preferably a plurality, of warm gas passages 52 for passing warm gas through nozzle 51 and into crystallizer vessel 10.
- the warm gas is passed to nozzle 51 through conduit 21 and has a temperature of at least above the freezing point of the solution or solvent of the crystal slurry.
- the warm gas would have a temperature of 0°C or more.
- the warm gas will be at a temperature exceeding -109°F.
- the temperature of the warm gas is within the range of from the freezing point to the boiling point of the solvent of the crystal slurry.
- the warm gas is chemically identical with the cryogenic fluid.
- the cryogenic fluid is liquid and/or gaseous nitrogen and the warm gas is gaseous nitrogen such as may be generated by separation from air using cryogenic rectification, pressure swing adsorption or membrane separation.
- the warm gas is passed through injection nozzle 51 and into crystallizer vessel 10 and draft tube 16 for at least a portion of the time that cryogenic fluid is being injected into the crystallizer vessel.
- the warm gas is especially useful during startup and shutdown of the crystallizer system.
- the warm gas performs a number of functions simultaneously to overcome the difficulties encountered with the use of cryogenic fluid thus enabling the effective use of cryogenic fluid to carry out the crystallization.
- the warm gas maintains pressure inside the nozzle to keep crystal slurry from flowing into the nozzle.
- the warm gas maintains the nozzle temperature at a level which prevents freezing of fluid on or within the nozzle.
- the warm gas increases or maintains the recirculation through the draft tube especially when the crystals have grown in size and the slurry becomes heavier.
- the warm gas recovers any heat loss from the cryogenic fluid to be reinjected into the crystal slurry.
- the cryogenic fluid linear injection velocity should be large enough to prevent back-fill of liquid and ice crystal adhesion.
- the linear or injection velocity is not less than about 10ft/sec.
- Gas is preferably injected at sonic velocity (e.g., about 1,000 ft/sec) and liquid is injected at subsonic speed but preferably achieves sonic velocity as it vaporizes.
- Smaller gas bubbles than are attainable with conventional processes are formed at a high injection velocity and these finer gas bubbles achieve a better heat transfer rate. On the other hand, these small bubbles formed are still larger than the cross section of a crystal. Therefore voids, which are present as is the case when gas is dispersed with a mechanical agitator, are avoided.
- Smaller or finer gas bubbles enable a greater likelihood for total thermal equilibrium or utilization of the cooling value of the cryogenic fluid.
- the velocity of the crystal slurry through the draft tube is great enough to suspend the solids and is greater than the terminal settling velocity of the crystals.
- the volumetric flow rate of the cryogenic fluid such as liquid or gaseous nitrogen depends on the cooling rate of the crystal slurry which is affected by the size and type of slurry. A higher cooling/evaporative rate will reduce the total batch time, but the cooling rate generally should not create more than 3°F of supersaturation. Excess driving force due to supersaturation will create abnormal crystal growth.
- liquid nitrogen is employed, the temperature of the liquid nitrogen is preferably at or lower than its boiling point of -196°C (77°K).
- Gaseous nitrogen can be at any cryogenic temperature. The colder the gas available, the better the cooling value.
- the crystal slurry can be controlled at any temperature depending on the type of chemicals and the amount of crystal to be recovered. More crystals can be recovered at a lower slurry temperature. However, this lower temperature may be more costly per pound of crystal to be recovered. Furthermore, crystal phase may also change. The lowest temperature limit generally will be the boiling point of the cryogenic fluid.
- a well-insulated transfer tube or pipe 20 is used to transfer cryogenic fluid such as high-quality gaseous or liquid nitrogen to nozzle 51.
- the transfer pipe 20 preferably has a double wall construction to minimize freezing in the outer wall. This double wall construction is also important to keep liquid nitrogen, for example, from vaporizing inside the tube.
- the nozzle 51 injects through passage 18 cryogenic fluid such as gaseous or liquid nitrogen directly into crystallizer vessel 10.
- cryogenic fluid such as gaseous or liquid nitrogen
- the gas and/or liquid are injected at the high velocity, such as sonic velocity, resulting from the nozzle injection, fine gas bubbles are formed due to shockwaves.
- These fine gas bubbles have a high surface area for heat transfer. Yet the bubbles are bigger than the cross sectional area of the crystals. Therefore, the potential problems of the formation of voids is prevented.
- the nozzle allows better utilization of the cooling value.
- the draft tube 16 is positioned so that the opening between the lower end of the draft tube 16 and the bottom of the crystallizer vessel 10 is large enough so that fluid velocity will be greater than settling velocity of the crystals.
- the draft tube creates sufficient turbulence so that thermal equilibrium can be achieved and the exiting gas has the same temperature as the bulk of the liquid. Also, the high slurry velocity inside the draft tube 16 prevents ice formation and fouling by reducing the thermal boundary layer next to any cold surfaces.
- the direct contact cryogenic crystallizer and method of the invention forms crystals of uniform shape and narrow size distribution, and minimizes fouling of heat exchanger surfaces.
- a sudden release of pressure occurs, thereby resulting in extremely turbulent mixing of the gas bubbles and the crystal slurry.
- the momentum due to the upward thrust of the gas bubbles rising through the draft tube 16 is usually dissipated as waves and splashes.
- a submerged baffle 24 is preferably positioned above the upper end of the draft tube and is used to change the direction of the three phase mixture before any significant amount of gas is separted from the mixture. The baffle plate at this position effectively works in concert with the sudden pressure release at the top of the draft tube resulting from the nozzle injection into and through the draft tube to improve the good distribution and anti-nucleation properties of the invention.
- the submerged baffle 24 can be a plate or an inverted cone.
- the baffle 24 can be any shape as long as it does not trap a significant amount of gas bubbles to form a gas-liquid interface.
- the baffle contains one or more perforations 48 which serve to limit gas bubble trapping.
- Crystals may be removed from crystallizer vessel 10 either by pump or by pressure transfer through conduit 55. Crystals are ready for removal when the sizes are large enough or within specifications. In commercial practice, crystals are removed when a certain desired temperature is reached.
- the crystallizer of this invention is especially suitable for crystals which have a very limited temperature range at which crystallization can occur.
- the crystallizer can be isothermally operated and super-saturation can be driven only by concentration gradient.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
- The invention relates to a direct contact crystallizer. In particular, the invention is a draft tube, direct contact crystallizer employing a nozzle injection system which enables the use of cryogenic fluid such as gaseous or liquid nitrogen to simultaneously cool and agitate a crystal slurry for the production of crystals.
- Continuous suspension of crystallizing solids and supersaturated liquid is very important for growing uniform crystals. A direct contact crystallizer is used to prevent fouling on heat transfer surfaces. Early designs of direct contact crystallizers used high volumes of refrigerants injected through spargers or distributors. Examples of refrigerants suggested for use in direct contact crystallizers include freon, water, alcohol solution, butane, propane, and air. However, these crystallizers have a very limited operating temperature range and have failed to provide true solid suspension or thorough mixing.
- The only commercially operated direct contact crystallizers use mechanical units to recompress refrigerants such as propane or butane. These mechanical-type crystallizers are equipped with agitators for vigorously stirring the slurry and keeping the crystals in suspension. The speed of the agitator must be fast enough to prevent large crystals from settling and coagulating in the bottom of the vessel. However, fast rotating agitators can break down large crystals on impact. In addition to breaking down large crystals, the impact of crystals on the mechanically agitated surfaces of other crystals promotes secondary nucleation. Secondary nucleation is the cause of excess fine crystals which are difficult to filter and are easily caked, thus, requiring recycling.
- It is known that a cryogenic liquid or gas is able to provide a large amount of refrigeration to a crystal slurry. The other advantage of a cryogenic fluid such as liquid nitrogen is that it is inert and will not contaminate the crystal slurry. However, it has not heretofore been possible to use such cryogenic fluids with conventional crystallizers. In conventional direct contact crystallizer practice, gas or liquid coolant is passed into a solution through a distributor which distributes the coolant over a wide area causing the coolant to bubble throughout the solution. By means of such coolant distribution, effective heat transfer with the solution is attained. The conventional practice of coolant introduction through a distributor, while effective in conventional crystallization practice, is inadequate if a cryogenic gas or liquid were to be employed as the coolant. In theory, holes are drilled uniformly on a distributor surface so that gas bubbles of the same size will distribute evenly over a wide body of liquid. However, it is not possible to manufacture a truly uniform distributor in practice. As a result, more gas will flow through larger holes where the pressure drop is lower. Therefore uniform gas velocity on each of the distributor holes cannot be maintained. Fluctuation of gas pressure due to the release of each individual gas bubble from the holes makes the situation more complicated. Subsequently, liquid will flow back through those apertures of the distributor where the gas velocity is lowest. This has not been a major problem in conventional practice other than experiencing some loss in sparging efficiency and in the need for periodic clean-up. However, if a cryogenic gas or liquid, such as nitrogen at a temperature less than -200°F, were to be employed as the coolant, such liquid inflow would result in freezing and fouling of those apertures of the distributor. Increasing the supply pressure to the distributor will not alleviate the problem since the larger holes will form excessively large bubbles which will result in unacceptably poor heat transfer. A vaporizing cryogenic fluid will expand hundreds of times in volume. Supply pressure usually fluctuates substantially with a cryogenic fluid. A distributor will not be able to control such a wide fluctuation in pressure thus resulting in an efficiency loss.
- Accordingly, it is an object of this invention to provide a direct contact crystallizer and crystallization method which will enable one to effectively employ a cryogenic fluid as the coolant.
- The direct contact crystallizer and crystallization method of this invention improves solid suspension while reducing secondary nucleation in a crystal slurry by employing a cryogenic fluid as the crystallizing coolant.
- In particular, one aspect of the invention is:
A direct contact cryogenic crystallizer comprising: - (A) a crystallizer vessel;
- (B) a draft tube positioned within said crystallizer vessel with the lower end of said draft tube spaced from the bottom surface of said vessel;
- (C) an injection nozzle positioned for injecting fluid into said draft tube;
- (D) means for providing cryogenic fluid through said injection nozzle; and
- (E) means for providing warm gas through said injection nozzle.
- Another aspect of the invention is:
A method for producing crystals comprising: - (A) providing a crystal slurry in a crystallizer vessel having a draft tube positioned within said crystallizer vessel with the lower end of said draft tube spaced from the bottom surface of said crystallizer vessel;
- (B) injecting cryogenic fluid through an injection nozzle into the crystallizer vessel and contacting the cryogenic fluid with the crystal slurry within the draft tube to produce crystals;
- (C) injecting warm gas having a temperature above the freezing point of the slurry solvent through said injection nozzle into the crystallizer for at least a portion of the time that cryogenic fluid is being injected into the crystallizer vessel; and
- (D) withdrawing crystals from the crystallizer vessel.
- The direct contact crystallizer and crystallization method uses a draft tube assembly in combination with a cryogenic fluid nozzle injection system to simultaneously cool and agitate the crystal slurry. Although draft tubes have been used in conventional crystallizer designs, such conventional crystallizers having draft tubes typically require the use of mechanical agitators or recirculation pumps. Such mechanical agitators or recirculation pumps are not required in the practice of this invention.
- Figure 1 is a simplified illustration of one embodiment of the invention.
- Figure 2 is a detailed cross-sectional representation of one embodiment of the invention.
- Figure 3 is a cross-sectional representation of one embodiment of the injection nozzle useful in the practice of this invention.
- Figure 4 is a head-on view of the injection nozzle illustrated in Figure 3.
- Referring now to Figure 1, there is illustrated a crystallizer vessel which, in this case, houses two draft tubes. Crystal slurry is provided in the crystallizer vessel and product crystals are withdrawn from the crystallizer vessel. Cryogenic fluid and warm gas are provided into the crystallizer vessel to carry out the efficient production of crystals by contact with the crystal slurry. In the embodiment illustrated in Figure 1, the cryogenic fluid is liquid nitrogen and the warm gas is gaseous nitrogen.
- The invention will be described in greater detail with reference to Figures 2, 3 and 4.
- Referring to Figure 2, the draft tube, direct contact cryogenic crystallizer of this invention uses a cryogenic fluid such as gaseous or liquified nitrogen to simultaneously cool and agitate a crystal slurry which may be provided into
crystallizer vessel 10 throughslurry feed conduit 50. As used herein, the term "cryogenic fluid" means a fluid at a temperature of -109°F or less. The direct contact crystallizer can be used to crystallize, for example, potassium thiosulfate, citric acid, sodium thiosulfate, para-xylene, sodium hydroxide, sodium sulfate, potassium chloride, lactose, boric acid, or any organic, inorganic, or pharmaceutical chemical that can be separated from a solvent by cooling or evaporative crystallization. It can also be used for winterizing edible oils, purifying antibiotics, aerating water tanks, and dewatering organic chemicals such as by freezing the water into ice crystals. - The crystal slurry is a suspension of solid crystals in a supersaturated solution comprising a solvent. The supersaturated solution is formed by dissolving a solute in a solvent at a higher temperature or a lower concentration. By decreasing the temperature and/or increasing the concentration, for example by evaporation, the solution becomes supersaturated.
- A
vertical draft tube 16 is installed preferably at the center of acrystallizer vessel 10. Thedraft tube 16 and thevessel 10 can be made of any materials compatible with the chemical to be crystallized. Suitable materials include stainless steel and glass. The draft tube is supported by supports to which it is welded. The supports, in turn, are fixed to the top plate of the crystallizer by attachment totube 47. - The physical dimensions of the
vessel 10 anddraft tube 16 can vary. However, there are certain limitations. Thevessel 10 can be as large or small as construction parameters will allow. The diameter of thedraft tube 16 can range from 1 percent to 70.7 percent (i.e., the square root of 1/2) of the vessel diameter. When the draft tube is 70.7 percent of the vessel diameter, the cross-sectional area inside the draft tube is approximately the same as the cross-sectional area outside thedraft tube 16. Preferably, the diameter of thedraft tube 16 is 10 to 20 percent of the vessel diameter to achieve sufficient turbulence and uplift. For a very large vessel, multiple draft tubes can be provided instead of a single draft tube. Furthermore, for a very large draft tube, multiple injection nozzles may be used. - The lower end of the draft tube is spaced from the bottom of the crystallizer vessel. The distance between the opening at the lower end of the
draft tube 16 and the bottom surface of thevessel 10 is approximately calculated as one-fourth (1/4) or more of the inside diameter of the draft tube. This opening generally has the same area as inside the draft tube. Thus, the fluid velocity at the opening is the same as inside the draft tube. The height of the draft tube may be adjusted. However, the upper end of the draft tube will always be spaced from the top surface of the crystallizer vessel to ensure adequate fluid flow through the draft tube. - An
injection nozzle 18 is positioned at the bottom of thecrystallizer vessel 10 and pointed vertically upward to inject cryogenic fluid vertically upward into the draft tube. - The
nozzle 51 is used to inject the cryogenic fluid such as gaseous or liquid nitrogen directly into thecrystallizer 10. The nozzle wall is thick enough so that the temperature on the outside of thenozzle 51 is close to the temperature of the crystal slurry. The nozzle has passing through it a cryogenicfluid nozzle passage 18 for ejecting cryogenic fluid into the crystallizer vessel. The diameter of thenozzle passage 18 is reduced in a portion of the nozzle length so as to increase the injection velocity of the cryogenic fluid. This increased injection velocity assists in preventing liquid from reentering the nozzle. Furthermore, the increased velocity causes the cryogenic fluid to cause turbulence inside the draft tube and, moreover, to experience a sudden release of pressure at the upper end of the draft tube thus enhancing the mixing and anti-nucleation effects of the invention. The heat transfer rate is enhanced by the turbulence inside the draft tube. - The
nozzle 51 is preferably constructed of fluorocarbon such as polytetrafluoroethylene to prevent ice or crystals from adhering to the nozzle wall. Fluorocarbons give the best non-wetting properties with low thermal conductivity so that ice or crystals will not adhere to the surface. However, the nozzle can be made of any materials or multiple layers of materials that exhibit good non-wetting, low thermal conductivity, thermal shock resistance properties. Fluorocarbons are generally not employed as nozzle materials because they are soft. However, when employed with a cryogenic fluid, the low temperature causes the fluorocarbon to harden and thus form an effective nozzle. This enables one to advantageously employ the known non-sticking attributes of fluorocarbons. Particles which might form at the nozzle due to the cryogenic temperatures adhere only loosely, if at all, to the nozzle. With the high pressure flow of coolant through the nozzle and subsequent resulting turbulence, such loosely adhering particles are swept away and do not lead to fouling of the crystallizer or nucleation within the crystallizer. -
Nozzle 51 also includes at least one, and preferably a plurality, ofwarm gas passages 52 for passing warm gas throughnozzle 51 and intocrystallizer vessel 10. The warm gas is passed tonozzle 51 throughconduit 21 and has a temperature of at least above the freezing point of the solution or solvent of the crystal slurry. For example, if the solvent of the crystal slurry were water, the warm gas would have a temperature of 0°C or more. Generally, the warm gas will be at a temperature exceeding -109°F. Preferably, the temperature of the warm gas is within the range of from the freezing point to the boiling point of the solvent of the crystal slurry. Preferably the warm gas is chemically identical with the cryogenic fluid. Most preferably the cryogenic fluid is liquid and/or gaseous nitrogen and the warm gas is gaseous nitrogen such as may be generated by separation from air using cryogenic rectification, pressure swing adsorption or membrane separation. - The warm gas is passed through
injection nozzle 51 and intocrystallizer vessel 10 anddraft tube 16 for at least a portion of the time that cryogenic fluid is being injected into the crystallizer vessel. The warm gas is especially useful during startup and shutdown of the crystallizer system. The warm gas performs a number of functions simultaneously to overcome the difficulties encountered with the use of cryogenic fluid thus enabling the effective use of cryogenic fluid to carry out the crystallization. The warm gas maintains pressure inside the nozzle to keep crystal slurry from flowing into the nozzle. The warm gas maintains the nozzle temperature at a level which prevents freezing of fluid on or within the nozzle. The warm gas increases or maintains the recirculation through the draft tube especially when the crystals have grown in size and the slurry becomes heavier. The warm gas recovers any heat loss from the cryogenic fluid to be reinjected into the crystal slurry. - The cryogenic fluid linear injection velocity should be large enough to prevent back-fill of liquid and ice crystal adhesion. Preferably the linear or injection velocity is not less than about 10ft/sec. Gas is preferably injected at sonic velocity (e.g., about 1,000 ft/sec) and liquid is injected at subsonic speed but preferably achieves sonic velocity as it vaporizes. Smaller gas bubbles than are attainable with conventional processes are formed at a high injection velocity and these finer gas bubbles achieve a better heat transfer rate. On the other hand, these small bubbles formed are still larger than the cross section of a crystal. Therefore voids, which are present as is the case when gas is dispersed with a mechanical agitator, are avoided. Smaller or finer gas bubbles enable a greater likelihood for total thermal equilibrium or utilization of the cooling value of the cryogenic fluid. The velocity of the crystal slurry through the draft tube is great enough to suspend the solids and is greater than the terminal settling velocity of the crystals.
- The volumetric flow rate of the cryogenic fluid such as liquid or gaseous nitrogen depends on the cooling rate of the crystal slurry which is affected by the size and type of slurry. A higher cooling/evaporative rate will reduce the total batch time, but the cooling rate generally should not create more than 3°F of supersaturation. Excess driving force due to supersaturation will create abnormal crystal growth.
- If liquid nitrogen is employed, the temperature of the liquid nitrogen is preferably at or lower than its boiling point of -196°C (77°K). Gaseous nitrogen can be at any cryogenic temperature. The colder the gas available, the better the cooling value.
- The crystal slurry can be controlled at any temperature depending on the type of chemicals and the amount of crystal to be recovered. More crystals can be recovered at a lower slurry temperature. However, this lower temperature may be more costly per pound of crystal to be recovered. Furthermore, crystal phase may also change. The lowest temperature limit generally will be the boiling point of the cryogenic fluid.
- A well-insulated transfer tube or
pipe 20 is used to transfer cryogenic fluid such as high-quality gaseous or liquid nitrogen tonozzle 51. Thetransfer pipe 20 preferably has a double wall construction to minimize freezing in the outer wall. This double wall construction is also important to keep liquid nitrogen, for example, from vaporizing inside the tube. - In operation, the
nozzle 51 injects throughpassage 18 cryogenic fluid such as gaseous or liquid nitrogen directly intocrystallizer vessel 10. As the gas and/or liquid are injected at the high velocity, such as sonic velocity, resulting from the nozzle injection, fine gas bubbles are formed due to shockwaves. These fine gas bubbles have a high surface area for heat transfer. Yet the bubbles are bigger than the cross sectional area of the crystals. Therefore, the potential problems of the formation of voids is prevented. Thus, the nozzle allows better utilization of the cooling value. - Due to the presence of
draft tube 16, both the fluid and the solids flow upwardly and the solids remain suspended and continuously circulate as long as the drag force of gas bubbles within the draft tube is greater than the gravitational force minus the buoyancy force of the solids. - The
draft tube 16 is positioned so that the opening between the lower end of thedraft tube 16 and the bottom of thecrystallizer vessel 10 is large enough so that fluid velocity will be greater than settling velocity of the crystals. The draft tube creates sufficient turbulence so that thermal equilibrium can be achieved and the exiting gas has the same temperature as the bulk of the liquid. Also, the high slurry velocity inside thedraft tube 16 prevents ice formation and fouling by reducing the thermal boundary layer next to any cold surfaces. - No mechanical agitators or re-circulation pumps are necessary in the direct contact cryogenic crystallizer of this invention. The crystals are suspended and circulated by the high velocity gas bubbles rising from the injection nozzle. The direct contact cryogenic crystallizer and method of the invention forms crystals of uniform shape and narrow size distribution, and minimizes fouling of heat exchanger surfaces.
- The largest crystals will settle fastest and are the first to contact the cold fluid from the
injection nozzle passage 18 where supersaturation is at its maximum. Subsequently, the larger crystals receive a higher recirculation and growth rate than the smaller crystals. As a result, this crystallizer configuration not only minimizes secondary nucleation, but also enhances the growth rate of the larger crystals. - As the high velocity gas bubbles reach the top of a
draft tube 16, a sudden release of pressure occurs, thereby resulting in extremely turbulent mixing of the gas bubbles and the crystal slurry. The momentum due to the upward thrust of the gas bubbles rising through thedraft tube 16 is usually dissipated as waves and splashes. However, a submergedbaffle 24 is preferably positioned above the upper end of the draft tube and is used to change the direction of the three phase mixture before any significant amount of gas is separted from the mixture. The baffle plate at this position effectively works in concert with the sudden pressure release at the top of the draft tube resulting from the nozzle injection into and through the draft tube to improve the good distribution and anti-nucleation properties of the invention. - The submerged
baffle 24 can be a plate or an inverted cone. Thebaffle 24 can be any shape as long as it does not trap a significant amount of gas bubbles to form a gas-liquid interface. Preferably, the baffle contains one ormore perforations 48 which serve to limit gas bubble trapping. By positioning thebaffle 24 below the liquid level 26 but above thedraft tube 16, the buoyancy force is converted into rotational force. Dead spaces are eliminated as the intensity of horizontal agitation is increased and recirculating loops are formed to sweep any settled crystals into thedraft tube 16. Placing thebaffle 24 below the liquid level substantially reduces the waves and splashes. - Finished crystals may be removed from
crystallizer vessel 10 either by pump or by pressure transfer throughconduit 55. Crystals are ready for removal when the sizes are large enough or within specifications. In commercial practice, crystals are removed when a certain desired temperature is reached. - The crystallizer of this invention is especially suitable for crystals which have a very limited temperature range at which crystallization can occur. By increasing the heat load at recirculation, the crystallizer can be isothermally operated and super-saturation can be driven only by concentration gradient.
- It is desirable to employ a coolant at a cryogenic temperature in a direct contact crystallizer because of the much greater refrigeration available per unit volume of coolant. Direct contact crystallizing has been carried out for many years. However, a cryogenic coolant has not heretofore been employed for direct contact crystallizing because of fouling, nucleation and distribution problems. The present invention, combining cryogenic fluid injection, a draft tube and warm gas injection preferably concentric with the cryogenic fluid injection into the draft tube, enables one to effectively employ a cryogenic coolant for direct contact crystallizing while avoiding fouling, nucleation and distribution problems. Although the invention has been described in detail with reference to certain embodiments, those skilled in the art will recognize that there are other embodiments of the invention within the spirit and the scope of the claims.
Claims (16)
- A direct contact cryogenic crystallizer comprising:(A) a crystallizer vessel;(B) a draft tube positioned within said crystallizer vessel with the lower end of said draft tube spaced from the bottom surface of said vessel;(C) an injection nozzle positioned for injecting fluid into said draft tube;(D) means for providing cryogenic fluid through said injection nozzle; and(E) means for providing warm gas through said injection nozzle.
- The direct contact cryogenic crystallizer of claim 1 where the means for providing cryogenic fluid through the injection nozzle comprises a central conduit through the injection nozzle and the means for providing warm gas through the injection nozzle comprises a plurality of conduits oriented around said central conduit.
- The direct contact crystallizer of claim 2 wherein said central conduit has a reduced diameter over a portion of its length.
- A direct contact cryogenic crystallizer of claim 1 further comprising a baffle positioned above said upper end of said draft tube.
- The direct contact cryogenic crystallizer of claim 4 wherein said baffle contains one or more perforations.
- The direct contact crystallizer of claim 1 wherein the draft tube has a height which is adjustable.
- The direct contact cryogenic crystallizer of claim 1 wherein the injection nozzle is comprised of fluorocarbon.
- A method for producing crystals comprising:(A) providing a crystal slurry in a crystallizer vessel having a draft tube positioned within said crystallizer vessel with the lower end of said draft tube spaced from the bottom surface of said crystallizer vessel.(B) injecting cryogenic fluid through an injection nozzle into the crystallizer vessel and contacting the cryogenic fluid with the crystal slurry within the draft tube to produce crystals.(C) injecting warm gas having a temperature above the freezing point of the slurry solvent through said injection nozzle into the crystallizer for at least a portion of the time the cryogenic fluid is being injected into the crystallizer vessel; and(D) withdrawing crystals from the crystallizer vessel.
- The method of claim 8 wherein the cryogenic fluid comprises a liquid.
- The method of claim 8 wherein the cryogenic fluid comprises a gas.
- The method of claim 8 wherein the cryogenic fluid comprises nitrogen.
- The method of claim 8 wherein the warm gas comprises nitrogen.
- The method of claim 8 wherein the cryogenic fluid comprises at least one fluid from the group consisting of helium, argon, oxygen, hydrogen, carbon dioxide, methane or liquefied natural gas.
- The method of claim 8 wherein the cryogenic fluid comprises a gas which is injected through the nozzle at sonic velocity.
- The method of claim 8 wherein the cryogenic fluid comprises a liquid which is injected through the nozzle at a velocity less than sonic.
- The method of claim 8 wherein the cryogenic fluid comprises a liquid which at least partially vaporizes within the draft tube.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11064 | 1993-01-29 | ||
| US08/011,064 US5362455A (en) | 1990-05-03 | 1993-01-29 | Draft tube, direct contact cryogenic crystallizer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0611589A1 true EP0611589A1 (en) | 1994-08-24 |
| EP0611589B1 EP0611589B1 (en) | 1997-08-06 |
Family
ID=21748723
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP94101297A Expired - Lifetime EP0611589B1 (en) | 1993-01-29 | 1994-01-28 | Draft tube, direct contact cryogenic crystallizer |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US5362455A (en) |
| EP (1) | EP0611589B1 (en) |
| JP (1) | JPH06226004A (en) |
| KR (1) | KR100192904B1 (en) |
| BR (1) | BR9400385A (en) |
| CA (1) | CA2114446C (en) |
| DE (1) | DE69404692T2 (en) |
| ES (1) | ES2105364T3 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0853974A3 (en) * | 1997-01-16 | 1998-08-05 | Praxair Technology, Inc. | Direct contact cooling of a reactor using cryogenic liquid |
| FR2764521A1 (en) * | 1997-06-16 | 1998-12-18 | Inst Francais Du Petrole | Device for crystallisation by isentropic expansion and its use |
| US6336334B1 (en) | 1997-06-16 | 2002-01-08 | Institut Francais De Petrole | Device for crystallization by isentropic expansion and its use |
| US7244307B2 (en) | 2002-05-31 | 2007-07-17 | Accentus Plc | Production of crystalline materials by using high intensity ultrasound |
| US7357835B2 (en) | 2002-05-31 | 2008-04-15 | Accentus Plc | Production of crystalline materials by using high intensity ultrasound |
| WO2010019144A1 (en) * | 2008-08-14 | 2010-02-18 | Praxair Technology, Inc. | System and method for liquid cryogen injection in missing or blending devices |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3094880B2 (en) * | 1995-03-01 | 2000-10-03 | 住友金属工業株式会社 | Method for controlling crystallization of organic compound and solid state element for controlling crystallization used therein |
| WO1999054207A1 (en) * | 1998-04-17 | 1999-10-28 | Toyo Seikan Kaisha, Ltd. | Method and device for manufacturing positive pressure packaging body |
| US6324852B1 (en) * | 2000-01-24 | 2001-12-04 | Praxair Technology, Inc. | Method of using high pressure LN2 for cooling reactors |
| US6415628B1 (en) | 2001-07-25 | 2002-07-09 | Praxair Technology, Inc. | System for providing direct contact refrigeration |
| US6604367B2 (en) | 2001-12-19 | 2003-08-12 | Praxair Technology, Inc. | System for providing refrigeration for chemical processing |
| ES2613391T3 (en) | 2005-02-10 | 2017-05-24 | Glaxo Group Limited | Lactose manufacturing procedures using preclassification techniques and pharmaceutical formulations formed therefrom |
| DE102007020671A1 (en) * | 2007-05-01 | 2008-11-06 | Justus-Liebig-Universität Giessen | Growth of inorganic, organic, bioorganic or biological object e.g. tissue or embryos from saturated/supersaturated nutrient solution, comprises flowing growth object in flow direction of the solution and then regulating the flow direction |
| US8544827B1 (en) | 2009-04-28 | 2013-10-01 | Nested Nozzle Mixers, Inc. | Nested nozzle mixer |
| US20180050930A1 (en) * | 2016-08-16 | 2018-02-22 | Naveed Aslam | Crystallizer for water reclamation |
| US20180050280A1 (en) * | 2016-08-16 | 2018-02-22 | Naveed Aslam | Crystallizer and method for water reclamation |
| KR102338539B1 (en) * | 2018-02-23 | 2021-12-14 | 주식회사 엘지화학 | Method for the preparation of bisphenol A |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2528611A1 (en) * | 1975-06-26 | 1976-12-30 | Bayer Ag | METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF CRYSTALS |
| EP0180796A2 (en) * | 1984-11-05 | 1986-05-14 | Hugo Petersen Ges. für verfahrenstechn. Anlagenbau mbH & Co KG | Method of cristallisation by cooling |
| EP0455243A2 (en) * | 1990-05-03 | 1991-11-06 | Praxair Technology, Inc. | Draft tube, direct contact crystallizer |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BE393136A (en) * | ||||
| DE1461394B2 (en) * | 1962-07-31 | 1972-01-13 | Institut Francais du Petrole des Carburants et Lubrifiants, Rueil Mal maison, Hauts de Seine (Frankreich) | METHOD AND DEVICE FOR SEPARATING CRYSTALS FROM YOUR CRYSTALLIZATION SOLUTION |
| US3599701A (en) * | 1968-07-30 | 1971-08-17 | Kema Nord Ab | Crystallization method |
| US3873275A (en) * | 1969-09-29 | 1975-03-25 | Whiting Corp | Crystallization apparatus and method |
| US3895920A (en) * | 1970-09-03 | 1975-07-22 | Donald E Garrett | Method of producing coarse potash |
| SU703114A1 (en) * | 1974-06-28 | 1979-12-15 | Предприятие П/Я А-3732 | Crystallizer with solution cooled by gaseous cooling agent |
| US4022820A (en) * | 1974-11-12 | 1977-05-10 | Monsanto Company | Solidification and crystallization of materials |
| FR2305496A2 (en) * | 1975-03-28 | 1976-10-22 | Langreney Francois | CONTINUOUS CRYSTALLIZER-EVAPORATOR |
| SU719652A1 (en) * | 1978-08-24 | 1980-03-05 | Всесоюзный научно-исследовательский и проектный институт алюминиевой, магниевой и электродной промышленности | Apparatus for crystallizing aluminate solutions |
| US4429535A (en) * | 1980-08-13 | 1984-02-07 | Magma Power Company | Geothermal plant silica control system |
| US4479351A (en) * | 1983-06-22 | 1984-10-30 | Electric Power Research Institute, Inc. | Venturi flash circulator for geothermal apparatus |
| CA1250411A (en) * | 1984-12-28 | 1989-02-28 | Tatsushi Kasai | System for dissolution-purification of zn-containing materials |
-
1993
- 1993-01-29 US US08/011,064 patent/US5362455A/en not_active Expired - Lifetime
-
1994
- 1994-01-28 KR KR1019940001551A patent/KR100192904B1/en not_active Expired - Fee Related
- 1994-01-28 DE DE69404692T patent/DE69404692T2/en not_active Expired - Fee Related
- 1994-01-28 BR BR9400385A patent/BR9400385A/en not_active IP Right Cessation
- 1994-01-28 ES ES94101297T patent/ES2105364T3/en not_active Expired - Lifetime
- 1994-01-28 CA CA002114446A patent/CA2114446C/en not_active Expired - Fee Related
- 1994-01-28 EP EP94101297A patent/EP0611589B1/en not_active Expired - Lifetime
- 1994-01-28 JP JP6024952A patent/JPH06226004A/en not_active Withdrawn
- 1994-07-15 US US08/272,978 patent/US5394827A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2528611A1 (en) * | 1975-06-26 | 1976-12-30 | Bayer Ag | METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF CRYSTALS |
| EP0180796A2 (en) * | 1984-11-05 | 1986-05-14 | Hugo Petersen Ges. für verfahrenstechn. Anlagenbau mbH & Co KG | Method of cristallisation by cooling |
| EP0455243A2 (en) * | 1990-05-03 | 1991-11-06 | Praxair Technology, Inc. | Draft tube, direct contact crystallizer |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0853974A3 (en) * | 1997-01-16 | 1998-08-05 | Praxair Technology, Inc. | Direct contact cooling of a reactor using cryogenic liquid |
| FR2764521A1 (en) * | 1997-06-16 | 1998-12-18 | Inst Francais Du Petrole | Device for crystallisation by isentropic expansion and its use |
| US6162262A (en) * | 1997-06-16 | 2000-12-19 | Institut Francais Du Petrole | Device for crystallization by isentropic expansion and its use |
| US6336334B1 (en) | 1997-06-16 | 2002-01-08 | Institut Francais De Petrole | Device for crystallization by isentropic expansion and its use |
| US7244307B2 (en) | 2002-05-31 | 2007-07-17 | Accentus Plc | Production of crystalline materials by using high intensity ultrasound |
| US7357835B2 (en) | 2002-05-31 | 2008-04-15 | Accentus Plc | Production of crystalline materials by using high intensity ultrasound |
| AU2003230006B2 (en) * | 2002-05-31 | 2008-06-19 | Accentus Plc | Production of crystalline materials by using high intensity ultrasound |
| WO2010019144A1 (en) * | 2008-08-14 | 2010-02-18 | Praxair Technology, Inc. | System and method for liquid cryogen injection in missing or blending devices |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH06226004A (en) | 1994-08-16 |
| CA2114446C (en) | 1999-07-27 |
| EP0611589B1 (en) | 1997-08-06 |
| BR9400385A (en) | 1994-08-16 |
| US5362455A (en) | 1994-11-08 |
| CA2114446A1 (en) | 1994-07-30 |
| DE69404692D1 (en) | 1997-09-11 |
| ES2105364T3 (en) | 1997-10-16 |
| KR100192904B1 (en) | 1999-06-15 |
| KR940018495A (en) | 1994-08-18 |
| DE69404692T2 (en) | 1998-02-12 |
| US5394827A (en) | 1995-03-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5362455A (en) | Draft tube, direct contact cryogenic crystallizer | |
| US6305178B1 (en) | Continuous system of freeze concentration for aqueous solutions | |
| US6653516B1 (en) | Production method for hydrate and device for proceeding the same | |
| CA2041676C (en) | Draft tube, direct contact crystallizer | |
| JP4876208B2 (en) | Apparatus and method for crystallization by hydrodynamic cavitation | |
| CN103071310A (en) | Evaporating crystallizer | |
| JP2011507694A (en) | Crystallization reactor for growth of giant crystal grains and crystal separation process system including the same | |
| CN204815768U (en) | Ultrasonic wave crystallizer | |
| US4754610A (en) | Apparatus and method of ice production by direct refrigerant contact with aqueous liquid | |
| AU4138896A (en) | Improved crystallization apparatus and method | |
| US4291550A (en) | Fluidized bed crystallization apparatus and method | |
| JP2000302701A (en) | Gas hydrate production equipment and production method | |
| US4046534A (en) | Method for recovering fresh water from brine | |
| CN112473571B (en) | Method capable of accelerating generation of gas hydrate in bubbling bed | |
| US3593536A (en) | Crystallization process and apparatus | |
| US3459509A (en) | Continuous crystallization apparatus for even grains | |
| CN201445824U (en) | Ultrasonic strengthened tri-pentaerythritol crystallizer | |
| Atwood | Developments in melt crystallization | |
| SU1113146A1 (en) | Method of crystallization of salts | |
| EP4019106A1 (en) | Crystalliser, method for crystallising and use of the crystalliser in performing the method | |
| JP2558816B2 (en) | Cool storage device | |
| JP2008036545A (en) | Crystallization method | |
| CN115925040A (en) | A high-salt water treatment process and system based on cyclone intensification | |
| US6657073B1 (en) | Crystallization of α-L-aspartyl-L-phenylalanine methyl ester | |
| WO2024093924A1 (en) | Heat-conducting assembly for hydration reaction, hydrate reactor, and hydrate reaction system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR IT NL |
|
| 17P | Request for examination filed |
Effective date: 19940912 |
|
| 17Q | First examination report despatched |
Effective date: 19960118 |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR IT NL |
|
| REF | Corresponds to: |
Ref document number: 69404692 Country of ref document: DE Date of ref document: 19970911 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2105364 Country of ref document: ES Kind code of ref document: T3 |
|
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20031229 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040122 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040301 Year of fee payment: 11 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050801 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050802 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050930 |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20050801 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080128 Year of fee payment: 15 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080130 Year of fee payment: 15 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20080206 Year of fee payment: 15 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090131 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090129 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090129 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090128 |