EP0693323A1 - Conductive color-keyed automotive primers - Google Patents
Conductive color-keyed automotive primers Download PDFInfo
- Publication number
- EP0693323A1 EP0693323A1 EP95304997A EP95304997A EP0693323A1 EP 0693323 A1 EP0693323 A1 EP 0693323A1 EP 95304997 A EP95304997 A EP 95304997A EP 95304997 A EP95304997 A EP 95304997A EP 0693323 A1 EP0693323 A1 EP 0693323A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- conductive
- primer
- coat
- weight
- pigment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000049 pigment Substances 0.000 claims abstract description 27
- 239000004033 plastic Substances 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000002987 primer (paints) Substances 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 21
- 239000008199 coating composition Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 5
- 238000004924 electrostatic deposition Methods 0.000 claims 1
- 238000009503 electrostatic coating Methods 0.000 abstract description 4
- 229920000728 polyester Polymers 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 5
- 229920003270 Cymel® Polymers 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229920003180 amino resin Polymers 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229920003265 Resimene® Polymers 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- CMPQUABWPXYYSH-UHFFFAOYSA-N phenyl phosphate Chemical compound OP(O)(=O)OC1=CC=CC=C1 CMPQUABWPXYYSH-UHFFFAOYSA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- LAVARTIQQDZFNT-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-yl acetate Chemical compound COCC(C)OCC(C)OC(C)=O LAVARTIQQDZFNT-UHFFFAOYSA-N 0.000 description 1
- ZAXXZBQODQDCOW-UHFFFAOYSA-N 1-methoxypropyl acetate Chemical compound CCC(OC)OC(C)=O ZAXXZBQODQDCOW-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- DRLRGHZJOQGQEC-UHFFFAOYSA-N 2-(2-methoxypropoxy)propyl acetate Chemical compound COC(C)COC(C)COC(C)=O DRLRGHZJOQGQEC-UHFFFAOYSA-N 0.000 description 1
- WDBZEBXYXWWDPJ-UHFFFAOYSA-N 3-(2-methylphenoxy)propanoic acid Chemical compound CC1=CC=CC=C1OCCC(O)=O WDBZEBXYXWWDPJ-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 240000005926 Hamelia patens Species 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000004849 alkoxymethyl group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- -1 cycloaliphatic Chemical group 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical class O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- ZZSIDSMUTXFKNS-UHFFFAOYSA-N perylene red Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N(C(=O)C=1C2=C3C4=C(OC=5C=CC=CC=5)C=1)C(=O)C2=CC(OC=1C=CC=CC=1)=C3C(C(OC=1C=CC=CC=1)=CC1=C2C(C(N(C=3C(=CC=CC=3C(C)C)C(C)C)C1=O)=O)=C1)=C2C4=C1OC1=CC=CC=C1 ZZSIDSMUTXFKNS-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
- B05D7/56—Three layers or more
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
- B05D1/04—Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
- B05D1/045—Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field on non-conductive substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/02—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
Definitions
- This invention relates to the electrostatic coating of plastic substrates. More particularly, it relates to a two coat primer system comprising a non-conductive, chromatically pigmented first coat and a relatively thin translucent conductive second coat. It relates still more particularly to a conductive primer that is color-keyed to the hue of the topcoat.
- a method comprising applying a non-conductive, colored primer coating composition to hide the substrate and then applying a translucent conductive primer coating to the wet surface of the non-conductive primer and baking the coated substrate.
- the word color and all derivatives of it are used to mean a chromatic color as opposed to white and black, which actually are the absence of color and the combination of all colors of the spectrum, respectively.
- the substrate may be metal as well as plastic but the invention finds its reason in the coating of plastic parts.
- the translucency of the conductive coating is an attribute of the poor hiding power of the conductive pigment; as well as the relatively thin layer of the conductive primer as compared to the first layer which hides the substrate.
- the preferred binder for both the non-conductive and conductive primer coating compositions is a hydroxyl-functional polyester having an OH value of from 170 to 240, preferably from 190 to 220.
- the polyesters are preferably made from saturated aliphatic acids and polyols by methods which are well known by and routinely practiced by those of ordinary skill in the art.
- the reactants may be heated to a temperature in the range of from 135 to 220°C (275 to 430°F) while being sparged with a stream of inert gas such as nitrogen to remove water as it forms. Vacuum or an azeotrope-forming solvent may be used at the appropriate temperature to assist the removal of water.
- Suitable dicarboxylic acids include malonic, succinic, adipic, methyladipic, sebacic, and suberic acid.
- suitable polyols are ethylene glycol, 1,3-propylene glycol, diethylene glycol, neopentyl glycol, and trimethylolpropane. Mixtures of the acids and of the polyols may be used. The use of vacuum to assist the removal of water must take into account the potential loss of polyol through sublimation. A catalyst may be used but satisfactory results are achieved without one.
- the weight average molecular weight (Mw) may range from about 500 to about 20,000, preferably between about 600 and about 1000.
- the hydroxy functionality of a preferred resin is about 3/molecule and the carboxy functionality is about 0.1/molecule.
- the Brookfield viscosity of the resin, using a # 3 spindle at 20 rpm, is from about 3600 to about 7200 centipoises. Its density is about 1.09 grams/cc or about 9.06 pounds per gallon.
- Suitable polyesters for the practice of this invention are available from Ruco and Miles under the trademarks Rucoflex and Desmophen.
- Dispersions in a solvent of one or more non-conductive pigments and from about 20 to about 40 per cent by weight of the polyester and, optionally the appropriate amount of curing agent and/or an epoxy resin, are made in a sand mill to a Hegman grind of about 6.5 + or a particle size on the order of about 20 microns or less.
- Epoxy resins suitable for this invention are generally known and are prepared by well known techniques. They are conpounds or mixtures of compounds containing at least one, but typically more than one, 1,2-epoxy group. They may be saturated or unsaturated, aliphatic, cycloaliphatic, aromatic, or heterocyclic.
- suitable epoxy resins include polyglycidyl ethers of polyphenols such as bisphenol A and bisphenol F, polyglycidyl ethers of mononuclear polyhydric phenols such as resorcinol and pyrogallol, polyglycidyl ethers of polyhydric alcohols such as ethylene glycol and pentaerythritol, and glycidyl esters of acrylic and methacrylic acid.
- Minimal amounts of up to about 2 % by weight of the coating composition are useful in certain formulations.
- dispersions are then blended with a curing agent, flatteners, flow agents, and other additives such as dispersants, surfactants, UV absorbers and, sufficient additional amounts of the polyester to make the first or non-conductive coating composition and the second, conductive coating composition having the desired properties.
- the non-conductive coating composition of this invention may be made from about 1 to about 55 per cent by weight of the non-conductive dispersion and from about 5 to about 20 per cent by weight of additional polyester. Titanium dioxide is the major ingredient in the non-conductive dispersion mentioned above and it becomes the major pigment in the non-conductive primer coating compositions for its hiding power.
- the colored pigments preferably are the same as those present in the topcoat and may be organic or inorganic and are exemplified by phthalocyanine blue, phthalocyanine green, quinacridone red, perylene red, isoindolenone yellow, and the various iron oxides.
- the non-conductive coating composition may also contain up to about 4 % by weight of a microgel solution.
- the conductive primer coating composition contains from about 15 to about 25 % by weight of a conductive white or clear pigment as exemplified by an antimony doped tin oxide on a mica support sold under the trademark MINATEC by EM Industries, Inc.
- a conductive white or clear pigment is exemplified by an antimony doped tin oxide on a mica support sold under the trademark MINATEC by EM Industries, Inc.
- Another example of a suitable conductive pigment is the potassium titanate fiber sold by Otsuka Chemical Co., Ltd. under the trademark TISMO.
- the TISMO 200B powder is a particular example of such pigments.
- Antimony/tin oxides are described in U. S. Patent Nos. 4,655,966 and 5,104,583, which are incorporated herein by reference.
- the pigment to binder ratio in the conductive composition is about 1:1.7 or less by weight; in terms of percent, the weight of the pigment is about 60 % or less of the weight of the binder.
- the final conductive coating composition of this invention may be made with from about 15 to about 25 per cent by weight of the conductive pigment and from about 20 to about 30 per cent by weight of the polyester beyond that which comes from the pigmented dispersions.
- the polyesters are curable through the hydroxyl groups, preferably with aminoplasts, which are oligomers that are the reaction products of aldehydes, particularly formaldehyde, with amino- or amido-group-carrying substances exemplified by melamine, urea, dicyanodiamide, and benzoguanamine.
- aminoplasts which are modified with alkanols having from one to four carbon atoms.
- suitable aminoplast resins include the alkoxymethyl glycourils such as tetra (methoxymethyl) glycouril.
- amino crosslinking agents sold by American Cyanamid under the trademark Cymel and by Monsanto under the trademark Resimene.
- Cymel 301, Cymel 303, Cymel 385, Resimene 745 and Resimene 755 alkylated melamine-formaldehyde resins are useful.
- Hydroxyl-reactive cross-linking is generally provided in an amount sufficient to react with at least one-half the hydroxyl groups of the polyester, i.e., be present at at least one-half the stoichiometric equivalent of the hydroxyl functionality.
- the cross-linking agent is sufficient to substantially completely react with all of the hydroxyl functionality of the polyester, and cross-linking agents having nitrogen cross-linking functionality are provided in amounts of from about 1 to about 12 equivalents of nitrogen cross-linking functionality per equivalent of hydroxyl functionality of the polyester.
- the first, non-conductive coating composition contains from about 10 to about 20 per cent by weight of the curing agent while the conductive coating composition contains from about 12 to about 25 per cent by weight.
- the solvent used in making the dispersions and further in making the coating compositions from them is one that will give good wet out and flow properties to the coatings and at the same time it is one that will not attack the plastic substrate being coated.
- N-methyl-2-pyrrolidone (NMP) ethyl benzene, isobutanol, xylene, ethyl-3-ethoxypropionate, aromatic naphtha, dipropylene glycol monomethyl ether acetate (DPMA), propylene glycol methyl ether acetate (PM acetate), and mineral spirits are examples of suitable solvents. Often a mixture of selected solvents is used to meet such requirements.
- the dispersions contain from about 15 to about 65 per cent by weight of solvent and the solvent content of the coating compositions is from about 20 to about 40 per cent by weight.
- a preferred thixotrope is a fumed silica such as is available under the trademarks Cab-O-Sil and Aerosil. When present in a coating composition, it is used in amounts of less than 1 per cent of the total weight. An amorphous silica available from SCM Corporation is useful at less than 2 per cent by weight as a flattening agent. The dispersants, surfactants, UV absorbers, and other additives are all as conventionally used in coating compositions.
- a conventional curing catalyst is added to each of the primer compositions prior to use. The amount of active catalyst may be from about 0.2 to about 1.2 % by weight of the total composition.
- the catalyst may be most any organic soluble acid as exemplified by p-toluene sulfonic acid and phenyl acid phosphate.
- a dispersion of a non-conductive pigment was made from the following constituents in a water cooled sand mill, Model No.Red Head L3J standard, sold by Chicago Boiler Company.
- the Hegman grind of the non-conductive dispersion was 7+.
- a non-conductive coating composition was made from the dispersion of Example I according to the formula:
- a conductive coating composition was made according to the formula:
- the non-conductive composition is reduced with 3 parts of catalyst per 100 parts of the product of Example II.
- the conductive composition is reduced with 3 parts of catalyst per 100 parts of the product of Example III.
- the two primer compositions are preferably applied wet-on-wet by spray gun in order to increase the throughput of coated parts.
- the first coat is sprayed onto the plastic part from a gun at an air pressure of about 60 psi to build a film having a dry thickness sufficient to hide the substrate, e.g., from about 0.7 to 0.8 mil, and then allowed to stand at ambient temperature for about 1 minute to flash off a portion of the solvent.
- the conductive coat is then sprayed in similar fashion to a dry film thickness of from about 0.3to about 0.4 mil.
- the coated part is baked at about 250°F for about 30 minutes to cure both primer coats.
- the coated part has a conductivity of from about 130 to about 165 Ransburg units as measured with a Ransburg Sprayability Meter No. 8333-00.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
Abstract
An inexpensive, two coat primer system for the electrostatic coating of plastic parts is provided in which hiding of the substrate is achieved with a coloured non-conductive first coat and the conductivity is supplied by a thin translucent coat containing the conductive pigment.
Description
- This invention relates to the electrostatic coating of plastic substrates. More particularly, it relates to a two coat primer system comprising a non-conductive, chromatically pigmented first coat and a relatively thin translucent conductive second coat. It relates still more particularly to a conductive primer that is color-keyed to the hue of the topcoat.
- Until recently, conductive black primers were the only primers available for the electrostatic coating of plastic parts. This made it difficult to hide the primer with white or colored topcoats and also made chips in the topcoat quite visible. The introduction of conductive white or clear pigments in recent years has allowed the development of conductive primers in chromatic colors to match the topcoat but these pigments are very expensive and the cost of primers made therefrom is prohibitive.
- The creation of a one-coat non-black conductive coating capable of both good substrate hiding and conductivity is fraught with a number of problems. To obtain hiding with a colored system, a substantial number of non-conductive pigment particles must be present in the coating composition but then it must be converted into a conductive coating. To do this, one must add the expensive conductive pigment in an amount sufficient to overcome the insulating effect of the hiding pigments. The cost of such a one-coat coating system is very high because the amount of conductive pigment which is sufficient is very large indeed.
- It is an object of this invention, therefore, to provide an inexpensive, two coat primer system for the electrostatic coating of plastic parts in which hiding of the substrate is achieved with a colored non-conductive first coat and the conductivity is supplied by a thin translucent coat containing the conductive pigment.
- It is a related object of this invention to provide a color-keyed primer for electrostatically coated plastic parts.
- It is another related object of this invention to provide a wet-on-wet method for applying a two-coat, colored primer suitable for the electrostatic application of a topcoat.
- These and other objects of this invention which will become apparent from the following description are achieved by a method comprising applying a non-conductive, colored primer coating composition to hide the substrate and then applying a translucent conductive primer coating to the wet surface of the non-conductive primer and baking the coated substrate. In the context of this invention, the word color and all derivatives of it are used to mean a chromatic color as opposed to white and black, which actually are the absence of color and the combination of all colors of the spectrum, respectively. The substrate may be metal as well as plastic but the invention finds its reason in the coating of plastic parts. The translucency of the conductive coating is an attribute of the poor hiding power of the conductive pigment; as well as the relatively thin layer of the conductive primer as compared to the first layer which hides the substrate.
- The preferred binder for both the non-conductive and conductive primer coating compositions is a hydroxyl-functional polyester having an OH value of from 170 to 240, preferably from 190 to 220. The polyesters are preferably made from saturated aliphatic acids and polyols by methods which are well known by and routinely practiced by those of ordinary skill in the art. The reactants may be heated to a temperature in the range of from 135 to 220°C (275 to 430°F) while being sparged with a stream of inert gas such as nitrogen to remove water as it forms. Vacuum or an azeotrope-forming solvent may be used at the appropriate temperature to assist the removal of water. Examples of suitable dicarboxylic acids include malonic, succinic, adipic, methyladipic, sebacic, and suberic acid. Among the suitable polyols are ethylene glycol, 1,3-propylene glycol, diethylene glycol, neopentyl glycol, and trimethylolpropane. Mixtures of the acids and of the polyols may be used. The use of vacuum to assist the removal of water must take into account the potential loss of polyol through sublimation. A catalyst may be used but satisfactory results are achieved without one.
- The weight average molecular weight (Mw) may range from about 500 to about 20,000, preferably between about 600 and about 1000. The hydroxy functionality of a preferred resin is about 3/molecule and the carboxy functionality is about 0.1/molecule. The Brookfield viscosity of the resin, using a # 3 spindle at 20 rpm, is from about 3600 to about 7200 centipoises. Its density is about 1.09 grams/cc or about 9.06 pounds per gallon. Suitable polyesters for the practice of this invention are available from Ruco and Miles under the trademarks Rucoflex and Desmophen.
- Dispersions in a solvent of one or more non-conductive pigments and from about 20 to about 40 per cent by weight of the polyester and, optionally the appropriate amount of curing agent and/or an epoxy resin, are made in a sand mill to a Hegman grind of about 6.5 + or a particle size on the order of about 20 microns or less.
- Epoxy resins suitable for this invention are generally known and are prepared by well known techniques. They are conpounds or mixtures of compounds containing at least one, but typically more than one, 1,2-epoxy group. They may be saturated or unsaturated, aliphatic, cycloaliphatic, aromatic, or heterocyclic. Examples of suitable epoxy resins include polyglycidyl ethers of polyphenols such as bisphenol A and bisphenol F, polyglycidyl ethers of mononuclear polyhydric phenols such as resorcinol and pyrogallol, polyglycidyl ethers of polyhydric alcohols such as ethylene glycol and pentaerythritol, and glycidyl esters of acrylic and methacrylic acid. Minimal amounts of up to about 2 % by weight of the coating composition are useful in certain formulations.
- These dispersions are then blended with a curing agent, flatteners, flow agents, and other additives such as dispersants, surfactants, UV absorbers and, sufficient additional amounts of the polyester to make the first or non-conductive coating composition and the second, conductive coating composition having the desired properties.
- The non-conductive coating composition of this invention may be made from about 1 to about 55 per cent by weight of the non-conductive dispersion and from about 5 to about 20 per cent by weight of additional polyester. Titanium dioxide is the major ingredient in the non-conductive dispersion mentioned above and it becomes the major pigment in the non-conductive primer coating compositions for its hiding power. In order to provide a color-keyed primer for electrostatically coated plastic parts, the colored pigments preferably are the same as those present in the topcoat and may be organic or inorganic and are exemplified by phthalocyanine blue, phthalocyanine green, quinacridone red, perylene red, isoindolenone yellow, and the various iron oxides. Very small amounts, on the order of about 0.15 per cent by weight of the total weight of the non-conductive composition, of these pigments are sufficient to impart the desired color. About 0.1 per cent by weight of a conductive pigment such as carbon black may be present in the non-conductive composition. The non-conductive coating composition may also contain up to about 4 % by weight of a microgel solution.
- The conductive primer coating composition contains from about 15 to about 25 % by weight of a conductive white or clear pigment as exemplified by an antimony doped tin oxide on a mica support sold under the trademark MINATEC by EM Industries, Inc. Another example of a suitable conductive pigment is the potassium titanate fiber sold by Otsuka Chemical Co., Ltd. under the trademark TISMO. The TISMO 200B powder is a particular example of such pigments. Antimony/tin oxides are described in U. S. Patent Nos. 4,655,966 and 5,104,583, which are incorporated herein by reference. It is preferred to add colored pigments like those given above to tint the conductive composition to approximate the color of the non-conductive primer coat and maintain the color match between the primer and the topcoat that is the object of this invention. Again, small amounts of conductive black pigments may be tolerated. The pigment to binder ratio in the conductive composition is about 1:1.7 or less by weight; in terms of percent, the weight of the pigment is about 60 % or less of the weight of the binder. The final conductive coating composition of this invention may be made with from about 15 to about 25 per cent by weight of the conductive pigment and from about 20 to about 30 per cent by weight of the polyester beyond that which comes from the pigmented dispersions.
- The polyesters are curable through the hydroxyl groups, preferably with aminoplasts, which are oligomers that are the reaction products of aldehydes, particularly formaldehyde, with amino- or amido-group-carrying substances exemplified by melamine, urea, dicyanodiamide, and benzoguanamine. Especially advantageous are the aminoplasts, which are modified with alkanols having from one to four carbon atoms. Other suitable aminoplast resins include the alkoxymethyl glycourils such as tetra (methoxymethyl) glycouril. Thus, a wide variety of commercially available aminoplasts and their precursors can be used for combining with the linear polyesters of this invention. Particularly preferred are the amino crosslinking agents sold by American Cyanamid under the trademark Cymel and by Monsanto under the trademark Resimene. In particular, the Cymel 301, Cymel 303, Cymel 385, Resimene 745 and Resimene 755 alkylated melamine-formaldehyde resins are useful. Of course, it is possible to use mixtures of all of the above N-methylol products. Hydroxyl-reactive cross-linking is generally provided in an amount sufficient to react with at least one-half the hydroxyl groups of the polyester, i.e., be present at at least one-half the stoichiometric equivalent of the hydroxyl functionality. Preferably, the cross-linking agent is sufficient to substantially completely react with all of the hydroxyl functionality of the polyester, and cross-linking agents having nitrogen cross-linking functionality are provided in amounts of from about 1 to about 12 equivalents of nitrogen cross-linking functionality per equivalent of hydroxyl functionality of the polyester. The first, non-conductive coating composition contains from about 10 to about 20 per cent by weight of the curing agent while the conductive coating composition contains from about 12 to about 25 per cent by weight.
- The solvent used in making the dispersions and further in making the coating compositions from them is one that will give good wet out and flow properties to the coatings and at the same time it is one that will not attack the plastic substrate being coated. N-methyl-2-pyrrolidone (NMP) , ethyl benzene, isobutanol, xylene, ethyl-3-ethoxypropionate, aromatic naphtha, dipropylene glycol monomethyl ether acetate (DPMA), propylene glycol methyl ether acetate (PM acetate), and mineral spirits are examples of suitable solvents. Often a mixture of selected solvents is used to meet such requirements. The dispersions contain from about 15 to about 65 per cent by weight of solvent and the solvent content of the coating compositions is from about 20 to about 40 per cent by weight.
- A preferred thixotrope is a fumed silica such as is available under the trademarks Cab-O-Sil and Aerosil. When present in a coating composition, it is used in amounts of less than 1 per cent of the total weight. An amorphous silica available from SCM Corporation is useful at less than 2 per cent by weight as a flattening agent. The dispersants, surfactants, UV absorbers, and other additives are all as conventionally used in coating compositions. A conventional curing catalyst is added to each of the primer compositions prior to use. The amount of active catalyst may be from about 0.2 to about 1.2 % by weight of the total composition. The catalyst may be most any organic soluble acid as exemplified by p-toluene sulfonic acid and phenyl acid phosphate. A catalyst solution containing 17.5 % p-toluene sulfonic acid and 13.1 % phenyl acid phosphate, by weight, is suitable but other ratios of the two may also be used to meet the demands of particular coating compositions.
- The following examples illustrate the invention. Unless otherwise indicated, all amounts, parts, and percentages are by weight.
-
-
-
- Shortly before the first primer coat is to be applied, the non-conductive composition is reduced with 3 parts of catalyst per 100 parts of the product of Example II. Likewise, the conductive composition is reduced with 3 parts of catalyst per 100 parts of the product of Example III.
- In this invention, the two primer compositions are preferably applied wet-on-wet by spray gun in order to increase the throughput of coated parts. The first coat is sprayed onto the plastic part from a gun at an air pressure of about 60 psi to build a film having a dry thickness sufficient to hide the substrate, e.g., from about 0.7 to 0.8 mil, and then allowed to stand at ambient temperature for about 1 minute to flash off a portion of the solvent. The conductive coat is then sprayed in similar fashion to a dry film thickness of from about 0.3to about 0.4 mil. After air drying at ambient temperature for about 10 minutes, the coated part is baked at about 250°F for about 30 minutes to cure both primer coats. The coated part has a conductivity of from about 130 to about 165 Ransburg units as measured with a Ransburg Sprayability Meter No. 8333-00.
Claims (10)
- A method for adapting a plastic substrate for an electrostatic deposition of a topcoat, said method comprising applying a non-conductive, coloured primer coating composition to the substrate to hide the substrate and then applying an amount of a conductive, primer coating composition sufficient to give a dry film thickness of from 7.6 to 10.2 µm (0.3 to 0.4 mil) to the surface of the non-conductive primer and baking the coated substrate.
- A method according to claim 1 wherein the non-conductive coating is still wet when the conductive coating is applied.
- A method according to claim 1 or claim 2 wherein the non-conductive primer is colour-keyed to the topcoat.
- A method according to any preceding claim wherein the conductive primer composition contains a coloured pigment.
- A method according to claim 3 wherein the coloured pigment is chosen to approximate the colour of the non-conductive primer.
- A method according to any preceding claim wherein the conductive coating composition comprises a binder and a conductive pigment in a ratio of 1:4 or less by weight.
- A plastic article having a coloured, non-conductive first primer coat and a translucent conductive second primer coat having a thickness of 7.6 to 10.2 µm (0.3 to 0.4 mil).
- A plastic article according to claim 7 wherein the conductive primer coat is tinted to approximate the non-conductive primer coat.
- A plastic article having a coloured, non-conductive first primer coat, a conductive second primer coat having a thickness of 7.6 to 10.2 µm (0.3 to 0.4 mil), and an electrostatically applied topcoat colour matched to the non-conductive primer coat.
- A plastic article according to any one of claims 7 to 9 wherein the conductive second primer coat has a pigment to binder ratio of 1:1.7 or less by weight.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US27847894A | 1994-07-20 | 1994-07-20 | |
| US278478 | 1994-07-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0693323A1 true EP0693323A1 (en) | 1996-01-24 |
Family
ID=23065119
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP95304997A Withdrawn EP0693323A1 (en) | 1994-07-20 | 1995-07-18 | Conductive color-keyed automotive primers |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP0693323A1 (en) |
| JP (1) | JP2582238B2 (en) |
| CA (1) | CA2148885A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0753358A1 (en) * | 1995-07-07 | 1997-01-15 | FIAT AUTO S.p.A. | Method of painting elements made from plastics, and elements formed thereby |
| FR2767075A1 (en) * | 1997-08-05 | 1999-02-12 | Peguform France | Chromed plastic component for use in e.g. vehicles or electrical household appliances |
| EP2754700A1 (en) * | 2013-01-11 | 2014-07-16 | Vestocor GmbH | Paint system for areas subject to risk of explosion with a high corrosive load |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6078182A (en) * | 1998-04-21 | 2000-06-20 | Illinois Tool Works Inc | Resistance measuring meter with voltage multiplier |
| NL2004623C2 (en) * | 2010-04-28 | 2011-10-31 | Heller Design B V De | Method and use of a binder for providing a metallic coat covering a surface. |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3334961A1 (en) * | 1983-05-21 | 1984-11-22 | Nippon Paint Co., Ltd., Osaka | METHOD FOR PRODUCING A MULTI-LAYER COATING |
| DE3334960A1 (en) * | 1983-09-27 | 1985-04-18 | Nippon Paint Co., Ltd., Osaka | METHOD FOR PRODUCING A MULTILAYER COATING |
| US4655966A (en) | 1984-08-02 | 1987-04-07 | Centre National D'etudes Spatiales Et Master Peintures | Process for the preparation of an antimony oxide-doped tin oxide pigment with improved electrical conductivity properties, and white and tinted conductive paints containing this pigment which are useful for the removal of electrostatic charges |
| EP0217385A2 (en) * | 1985-10-02 | 1987-04-08 | Nippon Paint Co., Ltd. | Method of forming metallic coatings |
| EP0328710A1 (en) * | 1986-05-23 | 1989-08-23 | E.I. Du Pont De Nemours And Company | High gloss color keyed guide coat |
| US5104583A (en) | 1990-05-07 | 1992-04-14 | E. I. Du Pont De Nemours And Company | Light colored conductive electrocoat paint |
-
1995
- 1995-05-08 CA CA 2148885 patent/CA2148885A1/en not_active Abandoned
- 1995-07-18 EP EP95304997A patent/EP0693323A1/en not_active Withdrawn
- 1995-07-20 JP JP7184173A patent/JP2582238B2/en not_active Expired - Lifetime
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3334961A1 (en) * | 1983-05-21 | 1984-11-22 | Nippon Paint Co., Ltd., Osaka | METHOD FOR PRODUCING A MULTI-LAYER COATING |
| DE3334960A1 (en) * | 1983-09-27 | 1985-04-18 | Nippon Paint Co., Ltd., Osaka | METHOD FOR PRODUCING A MULTILAYER COATING |
| US4655966A (en) | 1984-08-02 | 1987-04-07 | Centre National D'etudes Spatiales Et Master Peintures | Process for the preparation of an antimony oxide-doped tin oxide pigment with improved electrical conductivity properties, and white and tinted conductive paints containing this pigment which are useful for the removal of electrostatic charges |
| EP0217385A2 (en) * | 1985-10-02 | 1987-04-08 | Nippon Paint Co., Ltd. | Method of forming metallic coatings |
| EP0328710A1 (en) * | 1986-05-23 | 1989-08-23 | E.I. Du Pont De Nemours And Company | High gloss color keyed guide coat |
| US5104583A (en) | 1990-05-07 | 1992-04-14 | E. I. Du Pont De Nemours And Company | Light colored conductive electrocoat paint |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0753358A1 (en) * | 1995-07-07 | 1997-01-15 | FIAT AUTO S.p.A. | Method of painting elements made from plastics, and elements formed thereby |
| FR2767075A1 (en) * | 1997-08-05 | 1999-02-12 | Peguform France | Chromed plastic component for use in e.g. vehicles or electrical household appliances |
| EP2754700A1 (en) * | 2013-01-11 | 2014-07-16 | Vestocor GmbH | Paint system for areas subject to risk of explosion with a high corrosive load |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0852412A (en) | 1996-02-27 |
| CA2148885A1 (en) | 1996-01-21 |
| JP2582238B2 (en) | 1997-02-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4981730A (en) | Low VOC aqueous coating compositions and coated substrates | |
| KR100641962B1 (en) | Powder coating composition | |
| EP2507194B1 (en) | Coatings for ceramic substrates | |
| RU2567631C2 (en) | Application of powder coating | |
| MXPA05001464A (en) | Continuous process for applying a tricoat finish on a vehicle. | |
| JP5148480B2 (en) | Method for forming glittering multilayer coating film | |
| US5282887A (en) | Conductive coating composition comprising pigment grade carbon | |
| US8779052B2 (en) | Effect pigment-containing, water-borne base coating compositions | |
| US3935147A (en) | Aqueous pattern paint from carboxylic resin, N-aldehyde resin, polysiloxane resin and fluorocarbon surfactant | |
| US4132686A (en) | Process for coating employing a two-pack type aqueous paint composition | |
| US4383055A (en) | Process for preparing heat-curable, water-dilutable coating compositions and their use as coatings | |
| CA2144688A1 (en) | Waterborne polyester paint | |
| JP2006095522A (en) | Application method of water-based base coat paint | |
| KR100759909B1 (en) | Manufacturing method of powder coating, powder coating and coating film forming method | |
| EP0693323A1 (en) | Conductive color-keyed automotive primers | |
| EP0626403B1 (en) | Water reducible polyester and resin composition for a flexible plastic primer | |
| CN108384419B (en) | High-adhesion low-temperature refinishing paint composition and preparation method thereof | |
| JPH056595B2 (en) | ||
| CN118080288B (en) | Primer-free thermosetting powder coating material and coating method thereof | |
| JP2000000514A (en) | Metallic coat formation | |
| JP2883960B2 (en) | Waterborne intermediate coating | |
| US5418046A (en) | Composite articles having multicolored coatings | |
| EP2699639B1 (en) | A waterborne mid-coat paint composition | |
| EP1945379B1 (en) | Process for the production of a multilayer vehicle repair coating | |
| JPH05263018A (en) | Polyester resin composition for powder coating |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE ES FR GB IT |
|
| 17P | Request for examination filed |
Effective date: 19960629 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Withdrawal date: 19970402 |