EP0668870A1 - Inhibitors of picornavirus proteases - Google Patents
Inhibitors of picornavirus proteasesInfo
- Publication number
- EP0668870A1 EP0668870A1 EP92914531A EP92914531A EP0668870A1 EP 0668870 A1 EP0668870 A1 EP 0668870A1 EP 92914531 A EP92914531 A EP 92914531A EP 92914531 A EP92914531 A EP 92914531A EP 0668870 A1 EP0668870 A1 EP 0668870A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lower alkyl
- aryl
- protease
- coch
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 108091005804 Peptidases Proteins 0.000 title claims abstract description 47
- 239000004365 Protease Substances 0.000 title claims abstract description 46
- 102000035195 Peptidases Human genes 0.000 title abstract description 10
- 239000003112 inhibitor Substances 0.000 title description 33
- 241000709664 Picornaviridae Species 0.000 title description 6
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims abstract description 37
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 30
- 150000001413 amino acids Chemical class 0.000 claims abstract description 30
- 150000001875 compounds Chemical class 0.000 claims abstract description 22
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 16
- 125000002252 acyl group Chemical group 0.000 claims abstract description 7
- 125000003118 aryl group Chemical group 0.000 claims abstract description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 6
- 230000002797 proteolythic effect Effects 0.000 claims abstract description 5
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 4
- 235000001014 amino acid Nutrition 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 241000700605 Viruses Species 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 18
- 230000003612 virological effect Effects 0.000 claims description 9
- 241000709661 Enterovirus Species 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 241000709687 Coxsackievirus Species 0.000 claims description 4
- 241000991587 Enterovirus C Species 0.000 claims description 4
- 241000710198 Foot-and-mouth disease virus Species 0.000 claims description 4
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 4
- 108010005843 Cysteine Proteases Proteins 0.000 claims description 3
- 102000005927 Cysteine Proteases Human genes 0.000 claims description 3
- 241001466953 Echovirus Species 0.000 claims description 2
- 241000710188 Encephalomyocarditis virus Species 0.000 claims description 2
- 241000709721 Hepatovirus A Species 0.000 claims description 2
- 208000036142 Viral infection Diseases 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 230000009385 viral infection Effects 0.000 claims description 2
- STAVRDQLZOTNKJ-RHYQMDGZSA-N Leu-Arg-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O STAVRDQLZOTNKJ-RHYQMDGZSA-N 0.000 claims 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 claims 1
- 241001144416 Picornavirales Species 0.000 abstract description 10
- 239000003443 antiviral agent Substances 0.000 abstract description 3
- 235000019419 proteases Nutrition 0.000 description 32
- 229940024606 amino acid Drugs 0.000 description 24
- 108090000765 processed proteins & peptides Proteins 0.000 description 23
- 102000004190 Enzymes Human genes 0.000 description 14
- 108090000790 Enzymes Proteins 0.000 description 14
- 229940088598 enzyme Drugs 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- 238000003776 cleavage reaction Methods 0.000 description 11
- 230000007017 scission Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- -1 hydrocarbon radicals Chemical class 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 230000027455 binding Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108700022715 Viral Proteases Proteins 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 239000006225 natural substrate Substances 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 150000007970 thio esters Chemical class 0.000 description 3
- 229940086542 triethylamine Drugs 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 208000006740 Aseptic Meningitis Diseases 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 208000031229 Cardiomyopathies Diseases 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 108010016626 Dipeptides Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 229910004373 HOAc Inorganic materials 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 206010027201 Meningitis aseptic Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 229960002433 cysteine Drugs 0.000 description 2
- 229940042396 direct acting antivirals thiosemicarbazones Drugs 0.000 description 2
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000002390 rotary evaporation Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 235000013616 tea Nutrition 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 150000003584 thiosemicarbazones Chemical class 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- LPXQXJCKIVPYEJ-ZCFIWIBFSA-N (2r)-5-[carbamimidoyl(methyl)amino]-2-(methylamino)pentanoic acid Chemical compound CN[C@@H](C(O)=O)CCCN(C)C(N)=N LPXQXJCKIVPYEJ-ZCFIWIBFSA-N 0.000 description 1
- AQTUACKQXJNHFQ-LURJTMIESA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]pentanedioic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCC(O)=O AQTUACKQXJNHFQ-LURJTMIESA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- LIEVTTYXDCZXRG-UHFFFAOYSA-N 2,3,4-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C([N+]([O-])=O)C([N+]([O-])=O)=C1[N+]([O-])=O LIEVTTYXDCZXRG-UHFFFAOYSA-N 0.000 description 1
- ZYJSTSMEUKNCEV-UHFFFAOYSA-N 3-diazo-1-diazonioprop-1-en-2-olate Chemical class [N-]=[N+]=CC(=O)C=[N+]=[N-] ZYJSTSMEUKNCEV-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 108091032955 Bacterial small RNA Proteins 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010008909 Chronic Hepatitis Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000543381 Cliftonia monophylla Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010011831 Cytomegalovirus infection Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000709691 Enterovirus E Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010010369 HIV Protease Proteins 0.000 description 1
- 208000037319 Hepatitis infectious Diseases 0.000 description 1
- 201000006219 Herpangina Diseases 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 241000699727 Human echovirus Species 0.000 description 1
- 241001207270 Human enterovirus Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- 235000019766 L-Lysine Nutrition 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 229930195722 L-methionine Natural products 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 206010035623 Pleuritic pain Diseases 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 101710115215 Protease inhibitors Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010061494 Rhinovirus infection Diseases 0.000 description 1
- 229910006124 SOCl2 Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- UATJOMSPNYCXIX-UHFFFAOYSA-N Trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UATJOMSPNYCXIX-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108700010756 Viral Polyproteins Proteins 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 1
- 201000009840 acute diarrhea Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229940061720 alpha hydroxy acid Drugs 0.000 description 1
- 150000001280 alpha hydroxy acids Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229940003587 aquaphor Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 239000002852 cysteine proteinase inhibitor Substances 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940093495 ethanethiol Drugs 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000034217 membrane fusion Effects 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000003883 ointment base Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000009116 palliative therapy Methods 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 108010043277 recombinant soluble CD4 Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- NXLOLUFNDSBYTP-UHFFFAOYSA-N retene Chemical compound C1=CC=C2C3=CC=C(C(C)C)C=C3C=CC2=C1C NXLOLUFNDSBYTP-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 229940099261 silvadene Drugs 0.000 description 1
- UEJSSZHHYBHCEL-UHFFFAOYSA-N silver(1+) sulfadiazinate Chemical compound [Ag+].C1=CC(N)=CC=C1S(=O)(=O)[N-]C1=NC=CC=N1 UEJSSZHHYBHCEL-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 210000001032 spinal nerve Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229960002898 threonine Drugs 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 229960004441 tyrosine Drugs 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000007502 viral entry Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- MTZBBNMLMNBNJL-UHFFFAOYSA-N xipamide Chemical compound CC1=CC=CC(C)=C1NC(=O)C1=CC(S(N)(=O)=O)=C(Cl)C=C1O MTZBBNMLMNBNJL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0802—Tripeptides with the first amino acid being neutral
- C07K5/0804—Tripeptides with the first amino acid being neutral and aliphatic
- C07K5/0808—Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/32011—Picornaviridae
- C12N2770/32022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- This invention relates to the fields of virology and proteases. More specifically, the invention relates to small compounds useful as inhibitors of picornavirus pro ⁇ tease enzymes, and their use in the treatment of viral disease.
- Picornaviruses are very small RNA-containing viruses which infect a broad range of animals, including humans.
- the Picomaviridae include human polioviruses, human cox- sackieviruses, human echoviruses, human and bovine enteroviruses, rhinoviruses, encephalomyocarditis viruses, foot-and-mouth disease viruses (FMDV) , and hepa ⁇ titis A virus (HAV) , among others.
- Poliovirus is an acid-stable virus which infects humans. The virus enters by oral ingestion, multiplies in the gastrointestinal tract, and invades the nervous system. Poliovirus may spread along nerve fibers until it reaches the central nervous system, whereupon it attacks the motor nerves, spinal cord, and brain stem. Advanced infection may result in paralysis. Although severe infection is rare in the Western world, occasional cases still occur. Only palliative therapy is currently available.
- Coxsackieviruses and echoviruses are related entero ⁇ viruses causing a diverse variety of diseases, including herpangina, pleurodynia, aseptic meningitis, myocardiop- athy, acute hemorrhagic con unctivitis, and acute diarrhea. Aseptic meningitis and myocardiopathy are par ⁇ ticularly serious, and may be fatal. Rhinoviruses are the most important etiologic agents of the common cold, and infect nearly every human at some point during his or her lifetime. There is no current treatment approved.
- HAV is a highly transmissible etiologic cause of infectious hepatitis. Although it rarely causes chronic hepatitis, there is no current vaccine or effective treatmen .
- FMDV is considered to be the most serious single pathogen affecting livestock, and thus is a commercially significant virus. It is highly contagious, and may reach mortality rates as high as 70%. Control of the virus in the U.S. generally mandates that all exposed animals be destroyed, or vaccinated and sequestered until all animals are free of symptoms for 30 days. The dis- ease may be passed to humans by contact.
- infections in general, relies upon the premise that the infecting organism employs a metabolic system distinct from its host.
- antibiotics are used to combat bacterial infection because they specific- ally (or preferentially) inhibit or disrupt some aspect of the bacterium's life cycle.
- bacterial enzymes are structurally different from eukaryotic (e.g., human) enzymes makes it possible to find compounds which inactivate or disable a bacterial enzyme without untoward effect on the eukaryotic counterpart.
- viruses rely on local host enzymes and metabolism to a large extent: thus it is difficult to treat viral infection because viruses present few targets which differ signifi ⁇ cantly from the host. As a result, only a few antiviral drugs are presently available, and most present serious side effects.
- acyclovir and gan- ciclovir target the viral polymerase.
- These drugs are nucleic acid analogs, and rely on the fact that the viral polymerase is less discriminating than eukaryotic pol- ymerases: the drug is incorporated into replicating viral DNA by the polymerase, which is then unable to attach additional bases. The viral replication is then incomplete and ineffective.
- these drugs present serious side effects, and are currently used only for treatment of AIDS and AIDS-related infections such as cytomegalovirus infection in immunocompromised patients.
- Another strategy is to block the virus's means for entering the host cell.
- Viruses typically bind to a par ⁇ ticular cell surface receptor and enter the cell, either by internalization of the receptor by the host, or by membrane fusion with the host. Thus, one could theoret ⁇ ically prevent viral entry (and thus replication and infection) by blocking the receptor used for entry.
- An example of this approach is the use of soluble CD4 to inhibit entry of HIV.
- An alternate strategy relies upon the protein expression system peculiar to some viruses.
- the entire viral genome is expressed as one long "polyprotein", which is then cleaved into the structural and non-structural viral proteins.
- the cleavage may be accomplished by specific viral proteases or endogenous host cell proteases, or a combination of the two.
- the viral protease may require a very specific cleavage site, constrained to a particular primary (and possibly second ⁇ ary) structure. Thus, it may be possible to design com ⁇ pounds which mimic the cleavage/recognition site of a viral protease, inhibiting the protease and interfering with the viral replication cycle.
- Proteases hav ⁇ ing low specificity may be constrained only by the iden- tity of the residues in the P ⁇ and P x ' positions, cleav ⁇ ing all polypeptides containing that dipeptide regardless of the more removed residues.
- most specific proteases require that at least some of the residues P 4 - P 4 ' be limited to certain amino acids (or a small set of certain amino acids) .
- the picornaviral cysteine pro ⁇ teases generally require Gin at the P x position.
- a general form of protease inhibitor includes enough polypeptide sequence to induce binding to the protease to be inhibited, but substitutes an electrophillic anchoring group for the P -P, portion.
- the anchor group binds to the essential resi ⁇ dues in the active site, such as the active site nucleo- phile, and inhibits further proteolytic activity.
- the inhibitors of the invention are compounds of formula I:
- Rj is -OR 3 or -NR 3 R 4 , where R 3 is lower alkyl, hydroxy, lower alkoxy, or aryl-lower alkyl, and R 4 is H or lower alkyl; R 2 is H or lower acyl; X is an anchor group selected from the group consisting of -CHO, -C ⁇ N, -COCH 2 F, -COCHjCl.
- n indicates a polypeptide of 2-40 amino acids which is recognized spe ⁇ cifically by the particular protease selected.
- Another aspect of the invention is a method for treating picornaviral infection by administering an effective amount of a compound of formula I to a subject in need thereof.
- Another aspect of the invention is a method for pre ⁇ paring the compounds of formula I.
- Figure 1 is a graph depicting the inhibition of HAV C3 protease as a function of inhibitor concentration for the inhibitors Ac-LRTE(OMe)-CHO, Ac-TPLSTE(OMe)-CHO, and Ac- RTQ(NMe 2 )-CHO.
- lower alkyl refers to straight and branched chain hydrocarbon radicals having from 1 to 8 carbon atoms, such as methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, and the like.
- Lower alkoxy refers to radicals of the formula -OR, where R is lower alkyl as defined above.
- Aryl refers to aromatic hydrocarbons having up to 14 carbon atoms, preferably phenyl or naphthyl.
- Aryl-lower alkyl refers to radicals of the form Ar-R-, where Ar is aryl and R is lower alkyl.
- lower acyl refers to a radical of the formula RCO-, in which R is H, lower alkyl as defined above, phenyl or benzyl. Exemplary lower acyl groups include acetyl, propionyl, formyl, benzoyl, and the like.
- picornaviral cysteine protease refers to an enzyme encoded within the genome of a picornavirus, which contains a cysteine residue within the active site of the enzyme.
- the picornaviral cysteine protease is preferably an enzyme essential to the replication and/or infectivity of the virus, particularly a protease respon ⁇ sible for cleaving the viral polyprotein into its consti- tuent proteins.
- anchor refers to a radical which, when introduced into the active site of a pro ⁇ tease, binds to the protease reversibly or irreversibly and inhibits the proteolytic activity of the enzyme.
- the most effective anchor group may vary from protease to protease.
- the term "effective amount" refers to an amount of compound sufficient to exhibit a detectable therapeutic effect.
- the therapeutic effect may include, for example, without limitation, inhibiting the replication of patho ⁇ gens, inhibiting or preventing the release of toxins by pathogens, killing pathogens, and preventing the estab ⁇ lishment of infection (prophylaxis) .
- the precise effec ⁇ tive amount for a subject will depend upon the subject's size and health, the nature of the pathogen, the severity of the infection, and the like. Thus, it is not possible to specify an exact effective amount in advance. How ⁇ ever, the effective amount for a given situation can be determined by routine experimentation based on the infor- mation provided herein.
- pharmaceutically acceptable refers to compounds and compositions which may be administered to mammals without undue toxicity.
- exemplary pharmaceutic ⁇ ally acceptable salts include mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as ace ⁇ tates, propionates, malonates, benzoates, and the like.
- amino acid refers generally to those nat ⁇ urally-occurring amino acids commonly found as constit- uents of proteins and peptides: L-alanine (A), L-cys- teine (C) , L-aspartic acid (D) , -glutamic acid (E) , L- phenylalanine (F) , glycine (G) , -histidine (H) , L-iso- leucine (I) , L-lysine (K) , -leucine (L) , L-methionine (M) , -asparagine (N) , -proline (P) , L-glutamine (Q) , - arginine (R) , -serine (S) , L-threonine (T) , L-valine (V) , L-tryptophan (W) , and L-ty
- analogous compounds may be substituted if they do not adversely affect recognition of the inhibitor by the selected protease.
- exemplary analogs include D- isomers of the above-listed amino acids, homologs such as norleu- cine, phenylglycine, N,N'-dimethyl-D-arginine, and the like.
- Preferred amino acids are common, naturally-occur ⁇ ring amino acids.
- specific inhibition and “specifically inhibiting” refer to the reduction or blockage of the proteolytic activity of a selected protease, without sub ⁇ stantial effect on proteolytic enzymes having a different substrate specificity.
- protease inhibitors of the invention preferably include enough of the specifying sequence (typically 4-7 amino acids upstream from the cleavage site) so that only the selected picornaviral protease recognizes and is inhibited by the compound.
- “recognize” refers to the fact that the pro- tease will bind and cleave only peptides having a partic ⁇ ular amino acid sequence: peptides having such a sequence are "recognized” by the protease.
- the amino acid sequences of picornaviral substra es may be determined by examination of the viral genome and comparison to the termini of viral proteins. By aligning the viral proteins with the genomic nucleic acid sequence, one can ascertain the putative cleavage sites, which may be confirmed by synthesis of a peptide contain ⁇ ing the cleavage site and incubation with the viral pro ⁇ tease.
- the inhibitor is- prepared by the methods des ⁇ cribed herein.
- the (aa) n portion of the inhibitor may be altered systematically to optimize activity.
- the most effective inhibitor will not necessarily exhibit a sequence identical to the native substrate, although it is expected that any variation will be minor (less than three amino acids difference) .
- the picornaviral proteases share similar substrate sequence requirements.
- P j should be Gin
- P 4 should be aliphatic ( e . g. , Leu, lie, Val, and the like) .
- P 2 should bear a hydroxyl side chain (e.g., Ser, Thr, hydroxypro- line, and the like) .
- the P 3 and P 5 residues do not appear to contribute to protease specificity.
- the mini ⁇ mal substrate recognitions sites for picornaviral pro ⁇ teases are currently believed to be polio: ALFQ(GPL) ; HRV 14: PVWQ(GP); HAV: LRTQ(SFS); where P n ' residues are in parentheses.
- a "library" of inhibitors may be syn ⁇ thesized following the methods disclosed in U.S. Pat. No. 5,010,175, and copending application USSN 07/652,194 filed 16 February 1991, both incorporated herein by ref ⁇ erence in full. Briefly, one prepares a mixture of pep ⁇ tides, which is then screened to determine the peptides exhibiting the desired activity. In the '175 method, a suitable peptide synthesis support ⁇ e. g. , a resin) is coupled to a mixture of appropriately protected, acti ⁇ vated amino acids.
- each amino acid in the reaction mixture is balanced or adjusted in inverse proportion to its coupling reaction rate so that the product is an equimolar mixture of amino acids coup- led to the starting resin.
- the bound amino acids are then deprotected, and reacted with another balanced amino acid mixture to form an equimolar mixture of all possible dipeptides. This process is repeated until a mixture of peptides of the desired length (e.g., hexamers) is formed.
- a mixture of peptides of the desired length e.g., hexamers
- one need not include all amino acids in each step one may include only one or two amino acids in some steps (e.g., where it is known that a par ⁇ ticular amino acid is essential in a given position) , thus reducing the complexity of the mixture.
- the final amino acid added would be a
- Gln(X) thioester derivative such as Glu(OMe)-thioester.
- the mixture of inhibitors is screened for bind ⁇ ing to (or inhibition of) the selected picornaviral pro- tease. Inhibitors exhibiting satisfactory activity are then isolated and sequenced.
- the method described in '194 is similar. However, instead of reacting the synthesis resin with a mixture of activated amino acids, the resin is divided into twenty equal portions (or into a number of portions correspond ⁇ ing to the number of different amino acids to be added in that step) , and each amino acid is coupled individually to its portion of resin. The resin portions are then combined, mixed, and again divided into a number of equal portions for reaction with the second amino acid. In this manner, each reaction may be easily driven to com ⁇ pletion. Additionally, one may maintain separate "sub- pools" by treating portions in parallel, rather than co - bining all resins at each step. This simplifies the pro ⁇ cess of determining which inhibitors are responsible for any observed activity.
- the '175 and '194 methods may be used even in instances where the natural substrate for the protease is unknown or undetermined.
- the mixtures of candidate inhibitors may be assayed for binding to protease in the absence of the natural substrate.
- one may determine the substrates by using the '175 and '194 methods i.e., by preparing a mixture of all possible oligomers, contacting the mixture with the enzyme, and assaying the reaction products to determine which oligo ⁇ mers were cleaved
- One may, in fact, employ the '194 method to determine inhibitors of particular viruses even in cases where the viral proteases have not been identi- fied or isolated.
- the virus is cultured on host cells in a number of wells, and is treated with subpools containing, e.g., 1-2,000 candidates each.
- Each subpool that produces a positive result is then resynthe- sized as a group of smaller subpools (sub-subpools) con- taining, e.g., 20-100 candidates, and reassayed.
- Posi ⁇ tive sub-subpools may be resynthesized as individual com ⁇ pounds, and assayed finally to determine the active inhibitors.
- Protease inhibitors are screened using any available method. The methods described herein are presently pre ⁇ ferred. In general, a substrate is employed which mimics the enzyme's natural substrate, but which provides a quantifiable signal when cleaved. The signal is prefer ⁇ ably detectable by colorimetric or fluorometric means: however, other methods such as HPLC or silica gel chroma- tography, GC-MS, nuclear magnetic resonance, and the like may also be useful. After optimum substrate and enzyme concentrations are determined, a candidate protease inhibitor is added to the reaction mixture at a range of concentrations.
- the assay conditions ideally should resemble the conditions under which the protease is to be inhibited in vivo, i.e., under physiologic pH, tempera- ture, ionic strength, etc. Suitable inhibitors will exhibit strong protease inhibition at concentrations which do not raise toxic side effects in the subject. Inhibitors which compete for binding to the protease active site may require concentrations equal to or greater than the substrate concentration, while inhib ⁇ itors capable of binding irreversibly to the protease active site may be added in concentrations on the order of the enzyme concentration. It is presently preferred to mix the substrate with the candidate inhibitors in varying concentrations, fol ⁇ lowed by addition of the protease.
- Aliquots of the reac ⁇ tion mixture are quenched at periodic time points, and assayed for extent of substrate cleavage.
- the presently preferred technique is to add TNBS (trinitrobenzene sul- fonate) to the quenched solution, which reacts with the free amine generated by cleavage to provide a quantifi ⁇ able yellow color.
- TNBS trinitrobenzene sul- fonate
- the protease inhibitors of the invention may be administered by a variety of methods, such as intraven ⁇ ously, orally, intramuscularly, intraperitoneally, bron- chially, intranasally, and so forth. The preferred route of administration will depend upon the nature of the inhibitor and the pathogen to be treated.
- inhibitors administered for the treatment of rhinovirus infection will most preferably be administered intranas ⁇ ally. Inhibitors may sometimes be administered orally if well absorbed and not substantially degraded upon inges- tion. However, most inhibitors are expected to be sensi ⁇ tive to digestion, and must generally be administered by parenteral routes.
- the inhibitors may be administered as pharmaceutical compositions in combination with a pharma ⁇ ceutically acceptable excipient. Such compositions may be aqueous solutions, emulsions, creams, ointments, sus ⁇ pensions, gels, liposomal suspensions, and the like.
- suitable excipients include water, saline, Ringer's solution, dextrose solution, and solutions of ethanol, glucose, sucrose, dextran, mannose, mannitol, sorbitol, polyethylene glycol (PEG) , phosphate, acetate, gelatin, collagen, Carbopol®, vegetable oils, and the like.
- suitable preservatives stabi ⁇ lizers, antioxidants, antimicrobials, and buffering agents, for example, BHA, BHT, citric acid, ascorbic acid, tetracycline, and the like.
- Cream or ointment bases useful in formulation include lanolin, Silvadene® (Marion), Aquaphor® (Duke Laboratories), and the like.
- Topical formulations include aerosols, bandages, sustained-release patches, and the like.
- Other devices include indwelling catheters and devices such as the
- Lyo- philized formulations typically contain stabilizing and bulking agents, for example human serum albumin, sucrose, mannitol, and the like.
- stabilizing and bulking agents for example human serum albumin, sucrose, mannitol, and the like.
- a protected peptide having the sequence Ac-T(t-Bu)- P-L-S(t-Bu) -T(t-Bu)-OH was synthesized by the standard solid-phase Fmoc method using Rink resin as support (H. Rink, Tetrahedron Lett (1987) 2j3:3787) .
- the peptide was cleaved from the resin using 10% HOAc in CH 2 C1 2 for two hours.
- t-Boc-glutamate methyl ester (2.5 g) was reacted with ethane thiol (10 eq, 7.16 g) and ethyl chloroformate (3.6 eq, 4.5 g) in the presence of triethylamine (7.1 eq, 8.39 g) and DMAP (0.1 eq, 0.14 g) at 0°C for one hour.
- the fc-Boc protecting groups were removed by reaction with 100 mL of 25% trifluoroacetic acid ("TFA") in CH 2 C1 2 for 30 minutes at room temperature to provide ethyl glutamate thioester.
- TFA trifluoroacetic acid
- the protected peptide (41.5 mg) was coupled to the ethyl glutamate thioester (117.5 mg, 3 eq) using HOBt (3 eq, 77 mg) and BOP (3 eq, 252 mg) in DMF (1.14 mL) .
- the fc-butyl protecting groups were then removed by treating the peptide (20 mg) with 50% TFA in CH 2 C1 2 for two hours at room temperature to provide the peptide thioester.
- the peptide (Ac-TPLSTE(OMe)-SEt) was then reduced by treating the peptide (2 mg) with triethylsilane (40 eq, 70 mg) and palladium (1.4 eq, 13.9 mg) in CH 2 C1 2 (1 mL) for one hour at room temperature.
- Inhibitors having other anchoring groups are pre ⁇ pared as described above, with modification of the alde ⁇ hyde by standard chemical techniques.
- the -CHO group may be converted to an amide, followed by dehydration (e.g., using SOCl 2 ) to provide the nitrile.
- Alpha-keto esters are prepared by treating the aldehyde with KCN to form an ⁇ -hydroxy acid, followed by esterif- ication.
- Diazomethylketo analogs are prepared by con ⁇ verting the aldehyde to an acyl halide, followed by reac ⁇ tion with diazomethane.
- Thiosemicarbazones are prepared from the aldehyde by simple addition.
- Halomethylketo groups are prepared following the method described in J, Med Chem (1990) 23:394-407.
- t-Boc-glutamate ⁇ -O-benzyl ester (3 g) was mixed with dimethylamine- ⁇ C1 (2 eq, 1.46 g) and BOP (1.1 eq, 4.33 g) in the presence of triethyl- amine (1.1 eq, 1 g) for two hours at room temperature to provide t-Boc-glutamate- ⁇ -O-benzyl- ⁇ -dimethylamide.
- the benzyl group was removed by hydrogenolysis over Pd (0.69 g) in MeOH (19 mL) and HOAc (1 mL) to yield t-Boc-gluta- ate ⁇ -dimethylamide.
- Boc-glutamate ⁇ -dimethylamide thioester (3 eq, 137 mg) using HOBt (3 eq, 85 mg) and BOP (3 eq, 278 mg) .
- Pmc and fc-butyl protecting groups were removed by treating the peptide (50 mg) with 50% TFA in CH 2 C1 2 (100 mL) for two hours at room temperature to afford the peptide thio ⁇ ester, which was then reduced to the aldehyde by treating 2 mg with triethylsilane (20 eq, 70 mg) and Pd (0.6 eq, 16 mg) in anhydrous acetone (1 mL) for one hour at room temperature.
- Example 3 (Demonstration of Protease Inhibition) The inhibitors prepared in Examples 1 and 2 were assayed for inhibition of HAV 3C protease on 96-well microtiter plates.
- reaction buffer (6 mM Na citrate, 94 mM Na phosphate, 2 mM EDTA, 3.5 mM substrate LRTESFS, pH 7.6) to provide a final reaction volume of 80 ⁇ L having inhibitor at a concentration of 60, 20, 6.0, 2.0, 0.6, 0.2, 0.06, and 0.02 ⁇ M.
- the reaction was initiated by adding 8 ⁇ L of purified HAV 3C protease (3.7 ⁇ M) , and was incubated at room temperature.
- Cleavage of the substrate was halted by transferring 8 ⁇ L aliquots from each reac- tion vial into 50 ⁇ L of quench solution (0.24 M borate, 0.125 M NaOH) in a microtiter plate well at five minute intervals.
- the degree of substrate cleavage is determined by reaction of the resulting free amine with TNBS (trinitro- benzene sulfonate) .
- TNBS trinitro- benzene sulfonate
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Compounds of formula (I) inhibit the proteolytic activity of picornaviral proteases, and are thus effective antiviral agents. In formula (I) R1 is -OR3 or -NR3R4, where R3 is lower alkyl, hydroxy, lower alkoxy, or aryl-lower alkyl, and R4 is H or lower alkyl; R2 is H or lower acyl; n is an integer from 2 to 40 inclusive; X is an anchor group selected from the group consisting of -CHO, -C=N, -COCH2F, -COCH2Cl, -COCH2N2, -CH=N-NHC(=S)NH2 or -COCOR5 where R5 is lower alkyl, lower alkoxy, lower aryl, aryl-lower alkyl or aryl-lower alkoxy; and aa indicates an amino acid; wherein (aa)n is an amino acid sequence recognized specifically by said selected protease.
Description
INHIBITORS OF PICORNAVIRUS PROTEASES
Description
Technical Field
This invention relates to the fields of virology and proteases. More specifically, the invention relates to small compounds useful as inhibitors of picornavirus pro¬ tease enzymes, and their use in the treatment of viral disease.
Background of the Invention
Picornaviruses are very small RNA-containing viruses which infect a broad range of animals, including humans. The Picomaviridae include human polioviruses, human cox- sackieviruses, human echoviruses, human and bovine enteroviruses, rhinoviruses, encephalomyocarditis viruses, foot-and-mouth disease viruses (FMDV) , and hepa¬ titis A virus (HAV) , among others.
Poliovirus is an acid-stable virus which infects humans. The virus enters by oral ingestion, multiplies in the gastrointestinal tract, and invades the nervous system. Poliovirus may spread along nerve fibers until it reaches the central nervous system, whereupon it attacks the motor nerves, spinal cord, and brain stem. Advanced infection may result in paralysis. Although severe infection is rare in the Western world, occasional cases still occur. Only palliative therapy is currently available.
Coxsackieviruses and echoviruses are related entero¬ viruses causing a diverse variety of diseases, including
herpangina, pleurodynia, aseptic meningitis, myocardiop- athy, acute hemorrhagic con unctivitis, and acute diarrhea. Aseptic meningitis and myocardiopathy are par¬ ticularly serious, and may be fatal. Rhinoviruses are the most important etiologic agents of the common cold, and infect nearly every human at some point during his or her lifetime. There is no current treatment approved.
HAV is a highly transmissible etiologic cause of infectious hepatitis. Although it rarely causes chronic hepatitis, there is no current vaccine or effective treatmen .
FMDV is considered to be the most serious single pathogen affecting livestock, and thus is a commercially significant virus. It is highly contagious, and may reach mortality rates as high as 70%. Control of the virus in the U.S. generally mandates that all exposed animals be destroyed, or vaccinated and sequestered until all animals are free of symptoms for 30 days. The dis- ease may be passed to humans by contact.
Treatment of infection, in general, relies upon the premise that the infecting organism employs a metabolic system distinct from its host. Thus, antibiotics are used to combat bacterial infection because they specific- ally (or preferentially) inhibit or disrupt some aspect of the bacterium's life cycle. The fact that bacterial enzymes are structurally different from eukaryotic (e.g., human) enzymes makes it possible to find compounds which inactivate or disable a bacterial enzyme without untoward effect on the eukaryotic counterpart. However, viruses rely on local host enzymes and metabolism to a large extent: thus it is difficult to treat viral infection because viruses present few targets which differ signifi¬ cantly from the host. As a result, only a few antiviral
drugs are presently available, and most present serious side effects.
Current antiviral drugs, such as acyclovir and gan- ciclovir, target the viral polymerase. These drugs are nucleic acid analogs, and rely on the fact that the viral polymerase is less discriminating than eukaryotic pol- ymerases: the drug is incorporated into replicating viral DNA by the polymerase, which is then unable to attach additional bases. The viral replication is then incomplete and ineffective. However, these drugs present serious side effects, and are currently used only for treatment of AIDS and AIDS-related infections such as cytomegalovirus infection in immunocompromised patients. Another strategy is to block the virus's means for entering the host cell. Viruses typically bind to a par¬ ticular cell surface receptor and enter the cell, either by internalization of the receptor by the host, or by membrane fusion with the host. Thus, one could theoret¬ ically prevent viral entry (and thus replication and infection) by blocking the receptor used for entry. An example of this approach is the use of soluble CD4 to inhibit entry of HIV. However, it would be difficult to block all receptors used by viruses due to the large num¬ bers of receptors. Even if successful, blocking such receptors could have other adverse effects due to inter¬ ference with the receptor's normal function.
An alternate strategy relies upon the protein expression system peculiar to some viruses. In some viruses, the entire viral genome is expressed as one long "polyprotein", which is then cleaved into the structural and non-structural viral proteins. The cleavage may be accomplished by specific viral proteases or endogenous host cell proteases, or a combination of the two. The viral protease may require a very specific cleavage site,
constrained to a particular primary (and possibly second¬ ary) structure. Thus, it may be possible to design com¬ pounds which mimic the cleavage/recognition site of a viral protease, inhibiting the protease and interfering with the viral replication cycle. Moiling et al., EP 373,576 disclosed peptides which mimic the recognition site for an HIV protease. The peptides contain only one uncommon amino acid (5-oxoproline) , and thus presumably act by competitive binding. The residues surrounding a protease recognition site within a peptide are generally designated as follows:
• • • P -" -?~ ~-?2~-?l~Pi —~?2 *P3 • • • where cleavage occurs between P-. and P . Proteases hav¬ ing low specificity may be constrained only by the iden- tity of the residues in the Pα and Px' positions, cleav¬ ing all polypeptides containing that dipeptide regardless of the more removed residues. However, most specific proteases require that at least some of the residues P4- P4' be limited to certain amino acids (or a small set of certain amino acids) . The picornaviral cysteine pro¬ teases generally require Gin at the Px position.
A general form of protease inhibitor includes enough polypeptide sequence to induce binding to the protease to be inhibited, but substitutes an electrophillic anchoring group for the P -P, portion. Upon recognition by the protease, the anchor group binds to the essential resi¬ dues in the active site, such as the active site nucleo- phile, and inhibits further proteolytic activity. How¬ ever, it is difficult to prepare peptide protease inhib- itors which end with Glu or Gin, due to the tendency of these residues to cyclize and reduce the concentration of the anchoring moiety (which significantly decreases bind¬ ing to the protease) .
Disclosure of the Invention
We have now invented a class of cysteine protease inhibitors which are useful in the therapeutic treatment of infection by picornaviridae such as Hepatitis A virus, rhinovirus, coxsackieviruses, and the like. We have found that Px Gin residues may be replaced with Gin ana¬ logs which retain side chain carbonyl group, with reten¬ tion of protease binding activity. The inhibitors of the invention are compounds of formula I:
R2- Formula I
wherein Rj is -OR3 or -NR3R4, where R3 is lower alkyl, hydroxy, lower alkoxy, or aryl-lower alkyl, and R4 is H or lower alkyl; R2 is H or lower acyl; X is an anchor group selected from the group consisting of -CHO, -C≡N, -COCH2F, -COCHjCl. -COCH2N2, -CH=N-NH-C(=S)-NH2, or -COCOR5 where R5 is lower alkyl, lower alkoxy, lower aryl, aryl- lower alkyl or aryl-lower alkoxy; and (aa)n indicates a polypeptide of 2-40 amino acids which is recognized spe¬ cifically by the particular protease selected.
Another aspect of the invention is a method for treating picornaviral infection by administering an effective amount of a compound of formula I to a subject in need thereof.
Another aspect of the invention is a method for pre¬ paring the compounds of formula I.
Brief Description of the Drawings
Figure 1 is a graph depicting the inhibition of HAV C3 protease as a function of inhibitor concentration for the inhibitors Ac-LRTE(OMe)-CHO, Ac-TPLSTE(OMe)-CHO, and Ac- RTQ(NMe2)-CHO.
Modes of Carrying Out The Invention A. Definitions
The term "lower alkyl" as used herein refers to straight and branched chain hydrocarbon radicals having from 1 to 8 carbon atoms, such as methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, and the like. "Lower alkoxy" refers to radicals of the formula -OR, where R is lower alkyl as defined above. "Aryl" refers to aromatic hydrocarbons having up to 14 carbon atoms, preferably phenyl or naphthyl. "Aryl-lower alkyl" refers to radicals of the form Ar-R-, where Ar is aryl and R is lower alkyl.
The term "lower acyl" refers to a radical of the formula RCO-, in which R is H, lower alkyl as defined above, phenyl or benzyl. Exemplary lower acyl groups include acetyl, propionyl, formyl, benzoyl, and the like. The term "picornaviral cysteine protease" refers to an enzyme encoded within the genome of a picornavirus, which contains a cysteine residue within the active site of the enzyme. The picornaviral cysteine protease is preferably an enzyme essential to the replication and/or infectivity of the virus, particularly a protease respon¬ sible for cleaving the viral polyprotein into its consti- tuent proteins.
The term "anchor" as used herein refers to a radical which, when introduced into the active site of a pro¬ tease, binds to the protease reversibly or irreversibly and inhibits the proteolytic activity of the enzyme.
Presently preferred anchors include aldehyde (-CHO) , nitrile (-C≡N), α-keto esters (-COCOR5) , halo-methyl- ketones (-COCH2F, -C0CH2C1), diazomethylketones (-COCH2N2), and thiosemicarbazones (-CH=N-NH-C(=S)-NH2) . The most effective anchor group may vary from protease to protease.
The term "effective amount" refers to an amount of compound sufficient to exhibit a detectable therapeutic effect. The therapeutic effect may include, for example, without limitation, inhibiting the replication of patho¬ gens, inhibiting or preventing the release of toxins by pathogens, killing pathogens, and preventing the estab¬ lishment of infection (prophylaxis) . The precise effec¬ tive amount for a subject will depend upon the subject's size and health, the nature of the pathogen, the severity of the infection, and the like. Thus, it is not possible to specify an exact effective amount in advance. How¬ ever, the effective amount for a given situation can be determined by routine experimentation based on the infor- mation provided herein.
The term "pharmaceutically acceptable" refers to compounds and compositions which may be administered to mammals without undue toxicity. Exemplary pharmaceutic¬ ally acceptable salts include mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as ace¬ tates, propionates, malonates, benzoates, and the like.
The term "amino acid" refers generally to those nat¬ urally-occurring amino acids commonly found as constit- uents of proteins and peptides: L-alanine (A), L-cys- teine (C) , L-aspartic acid (D) , -glutamic acid (E) , L- phenylalanine (F) , glycine (G) , -histidine (H) , L-iso- leucine (I) , L-lysine (K) , -leucine (L) , L-methionine (M) , -asparagine (N) , -proline (P) , L-glutamine (Q) , -
arginine (R) , -serine (S) , L-threonine (T) , L-valine (V) , L-tryptophan (W) , and L-tyrosine (Y) . However, other analogous compounds may be substituted if they do not adversely affect recognition of the inhibitor by the selected protease. Exemplary analogs include D- isomers of the above-listed amino acids, homologs such as norleu- cine, phenylglycine, N,N'-dimethyl-D-arginine, and the like. Preferred amino acids are common, naturally-occur¬ ring amino acids. The phrases "specific inhibition" and "specifically inhibiting" refer to the reduction or blockage of the proteolytic activity of a selected protease, without sub¬ stantial effect on proteolytic enzymes having a different substrate specificity. Thus, protease inhibitors of the invention preferably include enough of the specifying sequence (typically 4-7 amino acids upstream from the cleavage site) so that only the selected picornaviral protease recognizes and is inhibited by the compound. In this regard, "recognize" refers to the fact that the pro- tease will bind and cleave only peptides having a partic¬ ular amino acid sequence: peptides having such a sequence are "recognized" by the protease.
B. General Method The practice of the present invention generally employs conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See for example J. Sambrook et al, "Molecular Cloning; A Laboratory Manual (1989); "DNA Cloning", Vol. I and II (D.N Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed, 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds. 1984); "Transcription And Translation" (B.D. Hames
& S.J. Higgins eds. 1984); "Animal Cell Culture" (R.I. Freshney ed. 1986); "Immobilized Cells And Enzymes" (IRL Press, 1986); B. Perbal, "A Practical Guide To Molec¬ ular Cloning" (1984) ; the series, "Methods In Enzymol- ogy" (Academic Press, Inc.); "Gene Transfer Vectors For Mammalian Cells" (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Meth Enzvmol (1987) 154 and 155 (Wu and Grossman, and Wu, eds., respectively); Mayer & Walker, eds. (1987), "I munochemical Methods In Cell And Molecular Biology" (Academic Press, London) ;
Scopes, "Protein Purification: Principles And Practice", 2nd Ed (Springer-Verlag, N.Y., 1987); and "Handbook Of Experimental Immunology", volumes I-IV (Weir and Black- well, eds, 1986) . The amino acid sequences of picornaviral substra es may be determined by examination of the viral genome and comparison to the termini of viral proteins. By aligning the viral proteins with the genomic nucleic acid sequence, one can ascertain the putative cleavage sites, which may be confirmed by synthesis of a peptide contain¬ ing the cleavage site and incubation with the viral pro¬ tease. Once the native recognition site has been estab¬ lished, the inhibitor is- prepared by the methods des¬ cribed herein. The (aa)n portion of the inhibitor may be altered systematically to optimize activity. The most effective inhibitor will not necessarily exhibit a sequence identical to the native substrate, although it is expected that any variation will be minor (less than three amino acids difference) . We have found that the picornaviral proteases share similar substrate sequence requirements. In general, Pj should be Gin, and P4 should be aliphatic ( e . g. , Leu, lie, Val, and the like) . In HAV 3C protease, P2 should bear a hydroxyl side chain (e.g., Ser, Thr, hydroxypro-
line, and the like) . The P3 and P5 residues do not appear to contribute to protease specificity. The mini¬ mal substrate recognitions sites for picornaviral pro¬ teases are currently believed to be polio: ALFQ(GPL) ; HRV 14: PVWQ(GP); HAV: LRTQ(SFS); where Pn' residues are in parentheses.
Alternatively, a "library" of inhibitors may be syn¬ thesized following the methods disclosed in U.S. Pat. No. 5,010,175, and copending application USSN 07/652,194 filed 16 February 1991, both incorporated herein by ref¬ erence in full. Briefly, one prepares a mixture of pep¬ tides, which is then screened to determine the peptides exhibiting the desired activity. In the '175 method, a suitable peptide synthesis support { e. g. , a resin) is coupled to a mixture of appropriately protected, acti¬ vated amino acids. The concentration of each amino acid in the reaction mixture is balanced or adjusted in inverse proportion to its coupling reaction rate so that the product is an equimolar mixture of amino acids coup- led to the starting resin. The bound amino acids are then deprotected, and reacted with another balanced amino acid mixture to form an equimolar mixture of all possible dipeptides. This process is repeated until a mixture of peptides of the desired length (e.g., hexamers) is formed. Note that one need not include all amino acids in each step: one may include only one or two amino acids in some steps (e.g., where it is known that a par¬ ticular amino acid is essential in a given position) , thus reducing the complexity of the mixture. In the present case, the final amino acid added would be a
Gln(X) thioester derivative such as Glu(OMe)-thioester. After deprotection and conversion of the thioester to an aldehyde, the mixture of inhibitors is screened for bind¬ ing to (or inhibition of) the selected picornaviral pro-
tease. Inhibitors exhibiting satisfactory activity are then isolated and sequenced.
The method described in '194 is similar. However, instead of reacting the synthesis resin with a mixture of activated amino acids, the resin is divided into twenty equal portions (or into a number of portions correspond¬ ing to the number of different amino acids to be added in that step) , and each amino acid is coupled individually to its portion of resin. The resin portions are then combined, mixed, and again divided into a number of equal portions for reaction with the second amino acid. In this manner, each reaction may be easily driven to com¬ pletion. Additionally, one may maintain separate "sub- pools" by treating portions in parallel, rather than co - bining all resins at each step. This simplifies the pro¬ cess of determining which inhibitors are responsible for any observed activity.
The '175 and '194 methods may be used even in instances where the natural substrate for the protease is unknown or undetermined. The mixtures of candidate inhibitors may be assayed for binding to protease in the absence of the natural substrate. Alternatively, one may determine the substrates by using the '175 and '194 methods (i.e., by preparing a mixture of all possible oligomers, contacting the mixture with the enzyme, and assaying the reaction products to determine which oligo¬ mers were cleaved) . One may, in fact, employ the '194 method to determine inhibitors of particular viruses even in cases where the viral proteases have not been identi- fied or isolated. In such cases, the virus is cultured on host cells in a number of wells, and is treated with subpools containing, e.g., 1-2,000 candidates each. Each subpool that produces a positive result is then resynthe- sized as a group of smaller subpools (sub-subpools) con-
taining, e.g., 20-100 candidates, and reassayed. Posi¬ tive sub-subpools may be resynthesized as individual com¬ pounds, and assayed finally to determine the active inhibitors. The methods described in '194 enable the preparation of such pools and subpools by automated tech¬ niques in parallel, such that all synthesis and resynthe- sis may be performed in a matter of days. In general, it is preferred to employ viral proteases in purified form. Such proteases may usually be found reported in the rel- evant literature.
Protease inhibitors are screened using any available method. The methods described herein are presently pre¬ ferred. In general, a substrate is employed which mimics the enzyme's natural substrate, but which provides a quantifiable signal when cleaved. The signal is prefer¬ ably detectable by colorimetric or fluorometric means: however, other methods such as HPLC or silica gel chroma- tography, GC-MS, nuclear magnetic resonance, and the like may also be useful. After optimum substrate and enzyme concentrations are determined, a candidate protease inhibitor is added to the reaction mixture at a range of concentrations. The assay conditions ideally should resemble the conditions under which the protease is to be inhibited in vivo, i.e., under physiologic pH, tempera- ture, ionic strength, etc. Suitable inhibitors will exhibit strong protease inhibition at concentrations which do not raise toxic side effects in the subject. Inhibitors which compete for binding to the protease active site may require concentrations equal to or greater than the substrate concentration, while inhib¬ itors capable of binding irreversibly to the protease active site may be added in concentrations on the order of the enzyme concentration.
It is presently preferred to mix the substrate with the candidate inhibitors in varying concentrations, fol¬ lowed by addition of the protease. Aliquots of the reac¬ tion mixture are quenched at periodic time points, and assayed for extent of substrate cleavage. The presently preferred technique is to add TNBS (trinitrobenzene sul- fonate) to the quenched solution, which reacts with the free amine generated by cleavage to provide a quantifi¬ able yellow color. The protease inhibitors of the invention may be administered by a variety of methods, such as intraven¬ ously, orally, intramuscularly, intraperitoneally, bron- chially, intranasally, and so forth. The preferred route of administration will depend upon the nature of the inhibitor and the pathogen to be treated. For example, inhibitors administered for the treatment of rhinovirus infection will most preferably be administered intranas¬ ally. Inhibitors may sometimes be administered orally if well absorbed and not substantially degraded upon inges- tion. However, most inhibitors are expected to be sensi¬ tive to digestion, and must generally be administered by parenteral routes. The inhibitors may be administered as pharmaceutical compositions in combination with a pharma¬ ceutically acceptable excipient. Such compositions may be aqueous solutions, emulsions, creams, ointments, sus¬ pensions, gels, liposomal suspensions, and the like. Thus, suitable excipients include water, saline, Ringer's solution, dextrose solution, and solutions of ethanol, glucose, sucrose, dextran, mannose, mannitol, sorbitol, polyethylene glycol (PEG) , phosphate, acetate, gelatin, collagen, Carbopol®, vegetable oils, and the like. One may additionally include suitable preservatives, stabi¬ lizers, antioxidants, antimicrobials, and buffering agents, for example, BHA, BHT, citric acid, ascorbic
acid, tetracycline, and the like. Cream or ointment bases useful in formulation include lanolin, Silvadene® (Marion), Aquaphor® (Duke Laboratories), and the like. Other topical formulations include aerosols, bandages, sustained-release patches, and the like. Alternatively, one may incorporate or encapsulate the inhibitor in a suitable polymer matrix or membrane, thus providing a sustained-release delivery device suitable for implanta¬ tion near the site to be treated locally. Other devices include indwelling catheters and devices such as the
Alzet® minipump. Further, one may provide the inhibitor in solid form, especially as a lyophilized powder. Lyo- philized formulations typically contain stabilizing and bulking agents, for example human serum albumin, sucrose, mannitol, and the like. A thorough discussion of pharma¬ ceutically acceptable excipients is available in Reming¬ ton's Pharmaceutical Sciences (Mack Pub. Co. ) .
C. Examples The examples presented below are provided as a fur¬ ther guide to the practitioner of ordinary skill in the art, and are not to be construed as limiting the inven¬ tion in any way.
Example 1
(Synthesis of Glutamate Ester Aldehyde Inhibitors) A. Ac-TPLSTE(OMe)-CHO
A protected peptide having the sequence Ac-T(t-Bu)- P-L-S(t-Bu) -T(t-Bu)-OH was synthesized by the standard solid-phase Fmoc method using Rink resin as support (H. Rink, Tetrahedron Lett (1987) 2j3:3787) . The peptide was cleaved from the resin using 10% HOAc in CH2C12 for two hours.
Commercially available t-Boc-glutamate methyl ester (2.5 g) was reacted with ethane thiol (10 eq, 7.16 g) and ethyl chloroformate (3.6 eq, 4.5 g) in the presence of triethylamine (7.1 eq, 8.39 g) and DMAP (0.1 eq, 0.14 g) at 0°C for one hour. The fc-Boc protecting groups were removed by reaction with 100 mL of 25% trifluoroacetic acid ("TFA") in CH2C12 for 30 minutes at room temperature to provide ethyl glutamate thioester.
The protected peptide (41.5 mg) was coupled to the ethyl glutamate thioester (117.5 mg, 3 eq) using HOBt (3 eq, 77 mg) and BOP (3 eq, 252 mg) in DMF (1.14 mL) . The fc-butyl protecting groups were then removed by treating the peptide (20 mg) with 50% TFA in CH2C12 for two hours at room temperature to provide the peptide thioester. The peptide (Ac-TPLSTE(OMe)-SEt) was then reduced by treating the peptide (2 mg) with triethylsilane (40 eq, 70 mg) and palladium (1.4 eq, 13.9 mg) in CH2C12 (1 mL) for one hour at room temperature. The product, Ac-TPLST- E(OMe)-CHO, was filtered through Celite, concentrated by rotary evaporation under high vacuum to remove volatile material, and purified by C18-HPLC. Structure of the peptide was confirmed by H-NMR and mass spectrometry (calculated M+H = 687.3; observed = 687.4). B. Ac-LRTE(OMe)-CHO The compound Ac-LRTE(OMe) -CHO was prepared analog¬ ously to the compound of part A above, substituting Ac- LR(Pmc)T(t-Bu)-OH for Ac-T(t-Bu)PLS(t-Bu)T(t-Bu) -OH. The structure of the product was confirmed by ^- MR and mass spectrometry (calculated M+H = 558.3; observed = 558.5). C. Other Anchors
Inhibitors having other anchoring groups are pre¬ pared as described above, with modification of the alde¬ hyde by standard chemical techniques. For example, the -CHO group may be converted to an amide, followed by
dehydration (e.g., using SOCl2) to provide the nitrile. Alpha-keto esters are prepared by treating the aldehyde with KCN to form an α-hydroxy acid, followed by esterif- ication. Diazomethylketo analogs are prepared by con¬ verting the aldehyde to an acyl halide, followed by reac¬ tion with diazomethane. Thiosemicarbazones are prepared from the aldehyde by simple addition. Halomethylketo groups are prepared following the method described in J, Med Chem (1990) 23:394-407.
Example 2 (Synthesis of Glutamate Dialkylamine Aldehyde Inhibitors) A. Ac-LRTE(NMe,)-CHO
Commercially available t-Boc-glutamate α-O-benzyl ester (3 g) was mixed with dimethylamine-ΗC1 (2 eq, 1.46 g) and BOP (1.1 eq, 4.33 g) in the presence of triethyl- amine (1.1 eq, 1 g) for two hours at room temperature to provide t-Boc-glutamate-α-O-benzyl-χ-dimethylamide. The benzyl group was removed by hydrogenolysis over Pd (0.69 g) in MeOH (19 mL) and HOAc (1 mL) to yield t-Boc-gluta- ate γ-dimethylamide.
One equivalent of .t-Boc-glutamate γ-dimethylamide (200 mg) was treated with EtSH (10 eq, 440 mg) and ethyl chloroformate (3.6 eq, 285 mg) in the presence of tri- ethylamine (3.6 eq, 266 mg) and DMAP (0.1 eq, 9 mg) for one hour at 0°C, followed by removal of the t-Boc group using TFA in CH2C12 (25%, 100 mL) for 30 minutes at room temperature to provide t-Boc-glutamate γ-dimethylamide thioester. Ac-LR(Pmc)T(t-Bu)-OH (170 mg) was coupled with t-
Boc-glutamate γ-dimethylamide thioester (3 eq, 137 mg) using HOBt (3 eq, 85 mg) and BOP (3 eq, 278 mg) . Pmc and fc-butyl protecting groups were removed by treating the peptide (50 mg) with 50% TFA in CH2C12 (100 mL) for two
hours at room temperature to afford the peptide thio¬ ester, which was then reduced to the aldehyde by treating 2 mg with triethylsilane (20 eq, 70 mg) and Pd (0.6 eq, 16 mg) in anhydrous acetone (1 mL) for one hour at room temperature. The crude product was filtered through Celite, concentrated by rotary evaporation, and purified by C18-HPLC. The structure of the product, Ac-LRTE(NMe2) - CHO, was verified by αH-NMR and mass spectrometry (calcu¬ lated M+H = 571.3; observed = 571.3) .
Example 3 (Demonstration of Protease Inhibition) The inhibitors prepared in Examples 1 and 2 were assayed for inhibition of HAV 3C protease on 96-well microtiter plates.
An aliquot of 0.6 mM inhibitor was added to eight 63 μL solutions of reaction buffer (6 mM Na citrate, 94 mM Na phosphate, 2 mM EDTA, 3.5 mM substrate LRTESFS, pH 7.6) to provide a final reaction volume of 80 μL having inhibitor at a concentration of 60, 20, 6.0, 2.0, 0.6, 0.2, 0.06, and 0.02 μM. The reaction was initiated by adding 8 μL of purified HAV 3C protease (3.7 μM) , and was incubated at room temperature. Cleavage of the substrate was halted by transferring 8 μL aliquots from each reac- tion vial into 50 μL of quench solution (0.24 M borate, 0.125 M NaOH) in a microtiter plate well at five minute intervals.
The degree of substrate cleavage is determined by reaction of the resulting free amine with TNBS (trinitro- benzene sulfonate) . TNBS (10 μL, 35 mg/mL) in borate
(0.25 M) was added to each well and incubated for 20 min¬ utes. The resulting yellow color was stabilized by add¬ ing 225 μL sodium sulfite (19 mg/50 mL, 0.4 M KH2P04) ,
and the optical density of the resulting solution recorded at 405 nm.
The results are depicted in Figure 1 and Table 1 below:
TABLE 1;
Compound ICCn ( UM)
Ac -LRTE ( OMe ) -CHO 0 .3
Ac-TPLSTE ( OMe ) -CHO 0 .3
Ac -LRTQ ( NMe2 ) -CHO 0 .3
Claims
1. A compound of Formula I useful for spe¬ cifically inhibiting the proteolytic activity of a sel¬ ected protease:
Formula I
wherein Rj is -OR3 or -NR3R4, where R3 is lower alkyl, hydroxy, lower alkoxy, or aryl-lower alkyl, and R4 is H or lower alkyl;
R2 is H or lower acyl; n is an integer from 2 to 40 inclusive; X is an anchor group selected from the group con¬ sisting of -CHO, -C≡N, -COCH2F, -COCH2Cl, -COCH2N2, -CH=N-NHC(=S)NH2, or -COCOR5 where R5 is lower alkyl, lower alkoxy, lower aryl, aryl-lower alkyl or aryl-lower alkoxy; and aa indicates an amino acid; wherein (aa)n is an amino acid sequence recognized by said selected protease.
2. The compound of claim 1 wherein R: is -OR3.
3. The compound of claim 2 wherein R3 is methyl.
4. The compound of claim 2 wherein R3 is ethyl.
5. The compound of claim 1 wherein R2 is acetyl
6. The compound of claim 1 wherein (aa)n comprises Leu-Arg-Thr.
7. The compound of claim 1 wherein (aa)n comprises Thr-Pro-Leu-Ser-Thr.
8. A composition for treating viral infec¬ tion, comprising: an effective amount of a compound of Formula I:
R Formula I
wherein Rx is -OR3 or -NR3R4, where R3 is lower alkyl, hydroxy, lower alkoxy, or aryl-lower alkyl, and R4 is H or lower alkyl;
R2 is H or lower acyl; n is an integer from 2 to 40 inclusive;
X is an anchor group selected from the group consisting of -CHO, -C≡N, -COCH2F, -COCH2Cl,
-COCH2N2, -CH=N-NHC(=S)NH2 or -COCOR5 where R5 is lower alkyl, lower alkoxy, lower aryl, aryl-lower alkyl or aryl-lower alkoxy; and aa indicates an amino acid; wherein (aa). is an amino acid sequence recognized specif¬ ically by said selected protease; and a pharmaceutically acceptable excipient.
9. A method for treating a subject for a viral infection wherein said virus includes a cysteine protease, comprising: administering to said subject an effective amount of a compound of Formula I:
R2-(aa) Formula I
wherein Rj is -OR3 or -NR3R4, where R3 is lower alkyl, hydroxy, lower alkoxy, or aryl-lower alkyl, and R4 is H or lower alkyl;
R2 is H or lower acyl; n is an integer from 2 to 40 inclusive;
X is an anchor group selected from the group con¬ sisting of -CHO, -C≡N, -COCH2F, -COCH2Cl, -COCH2N2, -CH=N-NHC(=S)NH2 or -COCOR5 where R5 is lower alkyl, lower alkoxy, lower aryl, aryl-lower alkyl or aryl-lower alkoxy; and aa indicates an amino acid; wherein (aa)n is an amino acid sequence recognized specifically by said sel¬ ected protease.
10. The method of claim 9 wherein said virus is hepatitis A virus.
11. The method of claim 9 wherein said virus is poliovirus.
12. The method of claim 9 wherein said virus is rhinovirus .
13. The method of claim 9 wherein said virus is selected from the group consisting of coxsackie- viruses, echoviruses, enteroviruses, encephalomyocarditis viruses, and foot-and-mouth disease viruses.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US71490891A | 1991-06-14 | 1991-06-14 | |
| PCT/US1992/005167 WO1992022570A1 (en) | 1991-06-14 | 1992-06-12 | Inhibitors of picornavirus proteases |
| US714908 | 1996-09-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0668870A1 true EP0668870A1 (en) | 1995-08-30 |
Family
ID=24871944
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP92914531A Ceased EP0668870A1 (en) | 1991-06-14 | 1992-06-12 | Inhibitors of picornavirus proteases |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP0668870A1 (en) |
| JP (1) | JPH06510986A (en) |
| AU (1) | AU2251892A (en) |
| CA (1) | CA2111471A1 (en) |
| IE (1) | IE921941A1 (en) |
| WO (1) | WO1992022570A1 (en) |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5514778A (en) * | 1993-07-01 | 1996-05-07 | Eli Lilly And Company | Anti-picornaviral agents |
| DE4331134A1 (en) * | 1993-09-14 | 1995-03-16 | Bayer Ag | New antiviral pseudopeptides |
| CA2215211A1 (en) * | 1995-03-31 | 1996-10-03 | Takeda Chemical Industries, Ltd. | Cysteine protease inhibitor |
| US5744451A (en) * | 1995-09-12 | 1998-04-28 | Warner-Lambert Company | N-substituted glutamic acid derivatives with interleukin-1 β converting enzyme inhibitory activity |
| US6214799B1 (en) | 1996-05-14 | 2001-04-10 | Agouron Pharmaceuticals, Inc. | Antipicornaviral compounds and methods for their use and preparation |
| US5856530A (en) * | 1996-05-14 | 1999-01-05 | Agouron Pharmaceuticals, Inc. | Antipicornaviral compounds and methods for their use and preparation |
| GB9623908D0 (en) * | 1996-11-18 | 1997-01-08 | Hoffmann La Roche | Amino acid derivatives |
| US6331554B1 (en) | 1997-03-28 | 2001-12-18 | Agouron Pharmaceuticals, Inc. | Antipicornaviral compounds, compositions containing them, and methods for their use |
| US6020371A (en) * | 1997-03-28 | 2000-02-01 | Agouron Pharmaceuticals, Inc. | Antipicornaviral compounds compositions containing them and methods for their use |
| US5962487A (en) * | 1997-12-16 | 1999-10-05 | Agouron Pharmaceuticals, Inc. | Antipicornaviral compounds and methods for their use and preparation |
| SK284714B6 (en) | 1998-04-30 | 2005-09-08 | Agouron Pharmaceuticals, Inc. | Antipicornaviral compounds, their use and pharmaceutical composition |
| JP2002538151A (en) | 1999-03-02 | 2002-11-12 | ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド | Compounds useful as reversible inhibitors of cathepsin |
| AU779321B2 (en) | 1999-08-04 | 2005-01-20 | Agouron Pharmaceuticals, Inc. | Antipicornaviral compounds and compositions, their pharmaceutical uses, and materials for their synthesis |
| US6420364B1 (en) | 1999-09-13 | 2002-07-16 | Boehringer Ingelheim Pharmaceuticals, Inc. | Compound useful as reversible inhibitors of cysteine proteases |
| CN1525957A (en) | 2000-06-14 | 2004-09-01 | ������ҩ������˾ | Compounds and compositions against picornaviruses, their medicinal uses, and substances used in their synthesis |
| US6982263B2 (en) | 2001-06-08 | 2006-01-03 | Boehringer Ingelheim Pharmaceuticals, Inc. | Nitriles useful as reversible inhibitors of cysteine proteases |
| CA2543884A1 (en) | 2003-10-30 | 2005-05-19 | Boehringer Ingelheim Pharmaceuticals, Inc. | Dipeptide-analogue synthesis |
| FR2959992A1 (en) * | 2010-05-11 | 2011-11-18 | Univ Claude Bernard Lyon | PEPTIDES WITH ANTIPROTEASE ACTIVITY |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4636492A (en) * | 1984-08-29 | 1987-01-13 | E. I. Du Pont De Nemours And Company | Inhibition of viral protease activity by peptide halomethyl ketones |
-
1992
- 1992-06-12 EP EP92914531A patent/EP0668870A1/en not_active Ceased
- 1992-06-12 JP JP5501114A patent/JPH06510986A/en active Pending
- 1992-06-12 CA CA002111471A patent/CA2111471A1/en not_active Abandoned
- 1992-06-12 AU AU22518/92A patent/AU2251892A/en not_active Abandoned
- 1992-06-12 WO PCT/US1992/005167 patent/WO1992022570A1/en not_active Ceased
- 1992-07-01 IE IE194192A patent/IE921941A1/en not_active Application Discontinuation
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9222570A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2111471A1 (en) | 1992-12-23 |
| AU2251892A (en) | 1993-01-12 |
| IE921941A1 (en) | 1992-12-16 |
| JPH06510986A (en) | 1994-12-08 |
| WO1992022570A1 (en) | 1992-12-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO1992022570A1 (en) | Inhibitors of picornavirus proteases | |
| US4644055A (en) | Method for preparing specific inhibitors of virus-specified proteases | |
| US4652552A (en) | Tetrapeptide methyl ketone inhibitors of viral proteases | |
| JP4682140B2 (en) | Hepatitis C inhibitor peptide analogues | |
| EP1012180B1 (en) | Hepatitis c inhibitor peptide analogues | |
| US4636492A (en) | Inhibition of viral protease activity by peptide halomethyl ketones | |
| US6268207B1 (en) | Enzymatic resolution of 1-amino-2-vinylcyclopropyl caboxylic acid methyl ester | |
| RU2060998C1 (en) | Method of synthesis of peptides, peptides, immunomodulating composition and a method of regulation of insufficient or excessive function of t-cells in patient | |
| US6004933A (en) | Cysteine protease inhibitors | |
| EA007742B1 (en) | Tripeptides having a hydroxyproline ether of a substituted quinoline for the inhibition of ns3 (hepatitis c) | |
| JP2001512743A (en) | Hepatitis C inhibitor peptide | |
| JP2002517508A (en) | Peptide inhibitor of hepatitis C virus NS3 protease | |
| US4952493A (en) | Peptide substrates for detecting virus-specified protease activity | |
| JPH0832720B2 (en) | Tuftsin analogs, process for their preparation and pharmaceutical compositions | |
| JPH0770028A (en) | Anti-picornavirus | |
| JPH10182613A (en) | Tetrahydroisoquinoline derivative | |
| JPH0565230A (en) | Retrovirus protease inhibitor | |
| EP0383190B1 (en) | Ribonucleotide reductase inhibitors | |
| JP2877909B2 (en) | Anti-herpes pentapeptide derivatives having substituted aspartic acid side chains | |
| US5198425A (en) | Inhibitors of bacterial ribonucleotide reductase | |
| US5844078A (en) | Phenyl peptides, method for preparing same, and pharmaceutical compositions containing said peptides | |
| EP0263202A1 (en) | Inhibition of viral protease activity by peptide halomethyl ketones | |
| EP0263214A1 (en) | Tetrapeptide methyl ketone inhibitors of viral proteases | |
| EP0263903A1 (en) | Method for preparing specific inhibitors of virus-specified proteases | |
| CA1337372C (en) | Inhibition of bacterial ribonucleotide reductase |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19940113 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE |
|
| 17Q | First examination report despatched |
Effective date: 19960221 |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
| 18R | Application refused |
Effective date: 20000129 |