EP0661331A2 - Silicon-containing polymer, process for preparing the same and monomer thereof - Google Patents
Silicon-containing polymer, process for preparing the same and monomer thereof Download PDFInfo
- Publication number
- EP0661331A2 EP0661331A2 EP94120689A EP94120689A EP0661331A2 EP 0661331 A2 EP0661331 A2 EP 0661331A2 EP 94120689 A EP94120689 A EP 94120689A EP 94120689 A EP94120689 A EP 94120689A EP 0661331 A2 EP0661331 A2 EP 0661331A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- silicon
- same
- formula
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005573 silicon-containing polymer Polymers 0.000 title claims abstract description 20
- 239000000178 monomer Substances 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 21
- 125000001424 substituent group Chemical group 0.000 claims abstract description 13
- 125000000962 organic group Chemical group 0.000 claims abstract description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 8
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 24
- 239000002210 silicon-based material Substances 0.000 claims description 11
- 238000006459 hydrosilylation reaction Methods 0.000 claims description 7
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 59
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 32
- 150000001875 compounds Chemical class 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 19
- 125000003118 aryl group Chemical group 0.000 description 17
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 16
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- 229920003257 polycarbosilane Polymers 0.000 description 13
- 239000003054 catalyst Substances 0.000 description 12
- 238000005160 1H NMR spectroscopy Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- -1 polysiloxane Polymers 0.000 description 9
- 229910010271 silicon carbide Inorganic materials 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 150000002430 hydrocarbons Chemical group 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 239000007818 Grignard reagent Substances 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- UHXCHUWSQRLZJS-UHFFFAOYSA-N (4-dimethylsilylidenecyclohexa-2,5-dien-1-ylidene)-dimethylsilane Chemical compound C[Si](C)C1=CC=C([Si](C)C)C=C1 UHXCHUWSQRLZJS-UHFFFAOYSA-N 0.000 description 5
- JSRLURSZEMLAFO-UHFFFAOYSA-N 1,3-dibromobenzene Chemical compound BrC1=CC=CC(Br)=C1 JSRLURSZEMLAFO-UHFFFAOYSA-N 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000002411 thermogravimetry Methods 0.000 description 3
- OQJPAHYVGNJBJK-UHFFFAOYSA-N (3-dimethylsilylphenyl)-dimethylsilane Chemical compound C[SiH](C)C1=CC=CC([SiH](C)C)=C1 OQJPAHYVGNJBJK-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 101100030361 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pph-3 gene Proteins 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- JCDJGBUVIXYPDE-UHFFFAOYSA-N ethenyl-[3-[ethenyl(dimethyl)silyl]phenyl]-dimethylsilane Chemical compound C=C[Si](C)(C)C1=CC=CC([Si](C)(C)C=C)=C1 JCDJGBUVIXYPDE-UHFFFAOYSA-N 0.000 description 2
- VLNRSEGRGSDKLS-UHFFFAOYSA-N ethenyl-[4-[ethenyl(dimethyl)silyl]phenyl]-dimethylsilane Chemical compound C=C[Si](C)(C)C1=CC=C([Si](C)(C)C=C)C=C1 VLNRSEGRGSDKLS-UHFFFAOYSA-N 0.000 description 2
- IGYCKASZFZUQLN-UHFFFAOYSA-N ethoxy-[3-[ethoxy(dimethyl)silyl]phenyl]-dimethylsilane Chemical compound CCO[Si](C)(C)C1=CC=CC([Si](C)(C)OCC)=C1 IGYCKASZFZUQLN-UHFFFAOYSA-N 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 150000004795 grignard reagents Chemical class 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- HDHGICXRNDZMSB-UHFFFAOYSA-N methyl-[3-[methyl(phenyl)silyl]phenyl]-phenylsilane Chemical compound C=1C=CC([SiH](C)C=2C=CC=CC=2)=CC=1[SiH](C)C1=CC=CC=C1 HDHGICXRNDZMSB-UHFFFAOYSA-N 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910021638 Iridium(III) chloride Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920003354 Modic® Polymers 0.000 description 1
- 101100010166 Mus musculus Dok3 gene Proteins 0.000 description 1
- 229910000528 Na alloy Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- UIEXFJVOIMVETD-UHFFFAOYSA-N P([O-])([O-])[O-].[Pt+3] Chemical compound P([O-])([O-])[O-].[Pt+3] UIEXFJVOIMVETD-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910019891 RuCl3 Inorganic materials 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 229910010068 TiCl2 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- LDKSTCHEYCNPDS-UHFFFAOYSA-L carbon monoxide;dichloroplatinum Chemical compound O=C=[Pt](Cl)(Cl)=C=O LDKSTCHEYCNPDS-UHFFFAOYSA-L 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- YGHUUVGIRWMJGE-UHFFFAOYSA-N chlorodimethylsilane Chemical compound C[SiH](C)Cl YGHUUVGIRWMJGE-UHFFFAOYSA-N 0.000 description 1
- NWSBNVVOFKKFNV-UHFFFAOYSA-N chloroform;oxolane Chemical compound ClC(Cl)Cl.C1CCOC1 NWSBNVVOFKKFNV-UHFFFAOYSA-N 0.000 description 1
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- XVSBWQYHSLNOCU-UHFFFAOYSA-N ethenyl(dimethyl)silicon Chemical compound C[Si](C)C=C XVSBWQYHSLNOCU-UHFFFAOYSA-N 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- PKELYQZIUROQSI-UHFFFAOYSA-N phosphane;platinum Chemical compound P.[Pt] PKELYQZIUROQSI-UHFFFAOYSA-N 0.000 description 1
- SYKXNRFLNZUGAJ-UHFFFAOYSA-N platinum;triphenylphosphane Chemical compound [Pt].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 SYKXNRFLNZUGAJ-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 1
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- PGOLTJPQCISRTO-UHFFFAOYSA-N vinyllithium Chemical compound [Li]C=C PGOLTJPQCISRTO-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/60—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0803—Compounds with Si-C or Si-Si linkages
- C07F7/0805—Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
Definitions
- the present invention relates to a heat resistant silicon-containing polymer, a process for preparing the same, and a monomer for said polymer.
- polysiloxane As a silicon-containing polymer, polysiloxane is well known. In addition to the polysiloxane having a backbone which comprises siloxane bonds, a silicon-containing polymer having a backbone which comprises Si-C bonds is also known and called as polycarbosilane.
- polycarbosilane a polymer having a backbone comprising Si and C
- polycarbosilane a polymer having a backbone comprising alternately bonded Si and C
- polycarbosilane a polymer comprising the following structural unit is known: wherein R is a hydrocarbon group (cf. E. N. Znamenskaya et al., Neftekhimiya, 4 , 487 (1964); N. S. Nametkin et al., Dokl. Akad. Nauk. USSR, 170 , 848 (1966); and Vysokomol. Soed., 5 , 921 (1966)).
- R is a hydrocarbon group
- the polycarbosilane as such is expected to be used as a molding material.
- this polymer has a drawback that it is has a poor solubility in a solvent while it has high heat resistance since it comprises 1,4-bis(dimethysilylene)phenylene units.
- the conventional polycarbosilane has low molding processability when it is used in the form of a coating material, a film, a fiber or a bulk or when it is used as a matrix resin of a complex.
- One object of the present invention is to provide a silicon-containing polymer having good heat resistance and solubility.
- Another object of the present invention is to provide a process for preparing a silicon-containing polymer.
- a further object of the present invention is to provide a monomeric compound for a silicon-containing polymer.
- a silicon-containing polymer comprising a structural unit of the formula (1): wherein R1 and R2 are the same or different and represent a monovalent organic group having 1 to 20 carbon atoms, and the benzene ring may have a substituent.
- a process for preparing the above silicon-containing polymer of the present invention comprising hydrosilylation polymerizing at least one monomer selected from the group consisting of a silicon-containing compound having two SiH groups of the formula (3): wherein R1 and R2 are the same as defined above and the benzene ring may have a substituent, and a silicon-containing compound having two alkenylsilyl groups of the formula (4): wherein R1 and R2 are the same as defined above and the benzene ring may have a substituent.
- the organic group for the R1 and R2 groups includes straight or branched alkyl groups having 1 to 20 carbon atoms (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, tert.-butyl, isoamyl, n-octyl, n-nonyl, etc.), aryl or aralkyl groups having 6 to 20 carbon atoms (e.g. phenyl, etc.), alklysiloxy groups (e.g. trimethylsiloxy, etc.), and the like. Among them, a methyl group and a phenyl group are preferred.
- a preferred combination of R1 and R2 is a combination of a methyl group and a methyl group, or a combination of a methyl group and a phenyl group.
- the benzene ring in the structural unit (1) may have a substituent.
- substituents are unsaturated hydrocarbon groups (e.g. a vinyl group, an allyl group, an isopropenyl group, an ethynyl group, etc.), hetero atom-containing functional groups (e.g. a hydroxyl group, an alkoxy group, an amino group, an alkylamino group, an aldehyde group, a carboxyl group, a cyano group, a nitro group, a siloxy group, etc.), a halogen atom, and the like.
- unsaturated hydrocarbon groups e.g. a vinyl group, an allyl group, an isopropenyl group, an ethynyl group, etc.
- hetero atom-containing functional groups e.g. a hydroxyl group, an alkoxy group, an amino group, an alkylamino group, an aldehyde group, a carboxyl group
- the silicon-containing polymer of the present invention comprises, in its backbone, preferably at least 20 % by weight, more preferably at least at least 50 % by weight, in particular at least 60 % by weight of the structural units (1), namely, the 1,3-bis(diorganosilylene)phenylene units.
- the silicon-containing polymer of the present invention may comprise, in its backbone, at least one other structural unit.
- Examples of the other structural unit are -CH2-, -CH(CH3)-, -CH2CH2-, -CH2CH2CH2-, -CH2CH(CH3)-, -C6H4-, and the like. Among them, -CH2CH2- is preferred.
- the backbone of the silicon-containing polymer of the present invention comprises the structural unit of the formula (2): wherein R1 and R2 are the same as defined above and the benzene ring may have a substituent.
- the silicon-containing polymer of the present invention preferably has a number average molecular weight of at least 2000, more preferably at least 5000, in particular at least 8000, when it is measured by gel permeation chromatography using a polystyrene standard.
- a molecular weight distribution (M w /M n ) is preferably 5 or less, more preferably 3 or less.
- the silicon-containing polymer of the present invention may be prepared by various processes.
- Preferred preparation process comprises hydrosilylation polymerizing at least one monomer selected from the group consisting of a silicon-containing compound having two SiH groups of the formula (3): wherein R1 and R2 are the same as defined above and the benzene ring may have a substituent, and a silicon-containing compound having two alkenylsilyl groups of the formula (4): wherein R1 and R2 are the same as defined above and the benzene ring may have a substituent.
- Preferred examples of the silicon-containing compound (3) are wherein Me and Ph are the same as defined.
- Preferred examples of the silicon-containing compound having the alkenylsilyl group (4) are wherein Me represents a methyl group, and Ph represents a phenyl group.
- the silicon-containing compound (3) When the silicon-containing compound (3) is used, it is necessary to use a compound having at least two unsaturated group in combination.
- the unsaturated group are a vinyl group, an isopropenyl group, an ethynyl group, and the like. Among them, the vinyl group is preferred.
- Examples of the divalent organic group for X are o, m , p-C6H4, wherein R1 and R2 are the same as defined above, and Y is a divalent group for X except the group having Y.
- Preferred examples of the compound (6) are wherein Me and Ph are the same as defined above, since these compounds increase the content of silicon atoms in the polymer.
- Examples of the compound having at least two hydrosilyl groups are wherein R1, R2 and Y are the same as defined above.
- the compound (4) When the compound (4) is used, it is possible to use a compound having at least two unsaturated groups in a molecule in combination.
- a polymerization rate can be controlled by the use of a catalyst.
- a kind of the catalyst depends on the combination of the monomers.
- any of conventional catalysts used for a so-called hydrosilylation reaction may be used.
- Examples of the catalyst other than the platinum base catalysts are RhCl(PPh3)3, PhCl3, RhAl2O3, RuCl3, IrCl3, FeCl3, AlCl3, PdCl2.2H2O, NiCl2, TiCl2, and so on.
- the catalysts may be used independently or as a mixture of two or more of them.
- chloroplatinic acid the platinum-olefin complex, the platinum-vinylsiloxane complex and platinum-acetyl acetonate are preferred.
- an amount of the catalyst is not critical.
- the catalyst is used in an amount of 10 ⁇ 1 to 10 ⁇ 8 mol, preferably 10 ⁇ 3 to 10 ⁇ 6 mol, per one mole of the hydrosilyl group.
- the polymerization can be carried out in the presence or absence of a solvent.
- a solvent there is used a hydrocarbon solvent (e.g. benzene, toluene, hexane, heptane, etc.), an ether (e.g. tetrahydrofuran, 1,4-dioxane, diethyl ether, etc.), a ketone (e.g. acetone, methyl ethyl ketone, etc.), a halogen-containing solvent (e.g. chloroform, methylene chloride, 1,2-dichloromethane, etc.), and the like.
- a hydrocarbon solvent e.g. benzene, toluene, hexane, heptane, etc.
- an ether e.g. tetrahydrofuran, 1,4-dioxane, diethyl ether, etc.
- a ketone e.g.
- the solvent When the solvent is used, its amount is not larger than 50 liters per one mol of the monomer(s).
- a polymerization temperature is preferably from -50°C to 200°C, more preferably from 0°C to 150°C.
- the polymerization temperature is lower than -50°C, a catalytic activity of the catalyst is not sufficiently high, while when it is higher than 200°C, the catalyst is deactivated by heat.
- a compound of the formula (5) is a novel compound and preferably used as a monomer of the silicon-containing polymer of the present invention: wherein R1 and R2 are the same as defined above.
- R1 and R2 group are the same as those described above.
- the following two compounds are preferred: in view of the easiness of their synthesis, a reactivity in the synthesis of polycarbosilane, and so on.
- the compound (5) may be prepared by the following process.
- 1,3-dihalobenzene (9) Specific examples are Among them, 1,3-dibromobenzene is preferred in view of the reactivity and easy availability.
- n-Pr represents a n-propyl group
- i-Pr represents an isopropyl group
- n-Bu represents a n-butyl group
- p-Tol represents a p-tolyl group.
- CH2 CHSiMe2Cl
- CH2 CHSiPhMeCl
- the 1,3-dihalobenzene and magnesium may form a corresponding 1,3-di-Grignard reagent, and then the Grignard reagent and the silicon-containing compound may couple to form the compound (5).
- any other organic metal reagent may be used in place of the combination of the 1,3-dihalobenzene and magnesium.
- organic metal reagent it may be possible to use metal lithium, sodium, potassium, sodium/potassium alloy and so on in combination with the 1,3-dihalobenzene.
- the compound (5) can be prepared by using a dialkoxysilane of the formula (12): R1R2Si(OR3)2 (12) wherein R1, R2 and R3 are the same as defined above in place of the organic silicon-containing compound (10) in the reaction according to the reaction formula (11).
- the alkoxy group in the 1,3-bis(alkoxydiorgano)benzene (13) can be replaced by a suitable chemical replacement to obtain the 1,3-bis(diorganovinylsilyl)benzene (5).
- the 1,3-bis(alkoxydiorgano)benzene is reacted with a vinyl Grignard reagent or a vinyl lithium reagent in a solvent such as tetrahydrofuran or diethyl ether to obtain the 1,3-bis(diorganovinylsilyl)benzene according to the reaction formula (15):
- dialkoxysilane (12) are Me2Si(OMe)2, Me2Si(OEt)2, PhMeSi(OMe)2, PhMeSi(OEt)2, (Me3SiO)MeSi(OMe)2, (Me3SiO)PhSi(OMe)2, (Me3SiO)MeSi(OEt)2, (Me3SiO)PhSi(OEt)2, Ph2Si(OMe)2, Ph2Si(OEt)2, Et2Si(OMe)2, Et2Si(OMe)2, Et2Si(OEt)2, EtMeSi(OMe)2, EtMeSi(OEt)2, PhEtSi(OMe)2, PhEtSi(OMe)2, Me2Si(O-i-Pr)2, PhMeSi(O-i-Pr)2, PhEtSi(O-i-Pr)2, and the like.
- Me2Si(OMe)2, Me2Si(OEt)2, PhMeSi(OMe)2, and PhMeSi(OEt)2 are preferred in view of the selectivity of the reaction and easy availability.
- the highly heat resistant polycarbosilane of the present invention comprising the 1,3-bis(diorganosilylene)phenylene unit which is effective to the improvement of the solubility because of its flexibility is obtained.
- the heat resistant silicon-containing polymer of the present invention can be used as a heat resistant coating, a heat resistant paint, or a prepreg for the production of a heat resistant part used around an engine or a heat resistant light weight construction material.
- reaction mixture was subjected to silica gel column chromatography using toluene as an eluent, and the fractions were distilled to remove toluene to obtain a crude polymer (about 2 g).
- the crude polymer was purified by reprecipitating it using toluene (20 ml) and methanol (40 ml) to obtain a polycarbosilane having the following structure as a white sticky solid (1.40 g). Yield: 70 %.
- a number average molecular weight was 9200 and a weight average molecular weight was 22300 by the measurement of a relative molecular weight (GPC) to the polystyrene standards using a refractometer.
- GPC relative molecular weight
- Example 2 In the same manner as in Example 2 except that 1,3-bis(dimethylsilyl)benzene (0.98 g, 5 mmol) was used in place of 1,4-bis(dimethylsilyl)benzene, the hydrosilylation polymerization was carried out to obtain a polycarbosilane having the following structure as a highly viscous liquid (1.49 g). Yield: 75 %.
- the polymer had a number average molecular weight of 17000 and a weight average molecular weight of 33000 by the GPC measurement.
- the reaction mixture was distilled to remove volatile materials to obtain a white viscous liquid, which was purified and dried at 80°C for 4 hours to obtain a polycarbosilane having the following structure as a sticky solid (0.87 g). Yield: 87 %.
- the polymer had a number average molecular weight of 4800 and a weight average molecular weight of 10000 by the GPC measurement.
- the polymer had a number average molecular weight of 1300 and a weight average molecular weight of 2000 by the GPC measurement.
- the heat resistance was evaluated by the thermogravimetric analysis (TGA) under a nitrogen atmosphere at a heading rate of 20°C/min.
- TGA thermogravimetric analysis
- the solubility was expressed by a minimum amount of the solvent in which 1 g of each polymer was dissolved at room temperature.
- the polymers of Examples 2, 3 and 4 had far superior solubility in the solvents to those of Comparative Examples 1 and 2 and substantially the same heat resistance as that of the comparative polymers.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Silicon Polymers (AREA)
Abstract
Description
- The present invention relates to a heat resistant silicon-containing polymer, a process for preparing the same, and a monomer for said polymer.
- As a silicon-containing polymer, polysiloxane is well known. In addition to the polysiloxane having a backbone which comprises siloxane bonds, a silicon-containing polymer having a backbone which comprises Si-C bonds is also known and called as polycarbosilane.
- Herein, a polymer having a backbone comprising Si and C is widely named as "polycarbosilane", while a polymer having a backbone comprising alternately bonded Si and C is called as polycarbosilane in a narrow sense.
-
- The polycarbosilane as such is expected to be used as a molding material. However, this polymer has a drawback that it is has a poor solubility in a solvent while it has high heat resistance since it comprises 1,4-bis(dimethysilylene)phenylene units. Further, the conventional polycarbosilane has low molding processability when it is used in the form of a coating material, a film, a fiber or a bulk or when it is used as a matrix resin of a complex.
- One object of the present invention is to provide a silicon-containing polymer having good heat resistance and solubility.
- Another object of the present invention is to provide a process for preparing a silicon-containing polymer.
- A further object of the present invention is to provide a monomeric compound for a silicon-containing polymer.
- According to the first aspect of the present invention, there is provided a silicon-containing polymer comprising a structural unit of the formula (1):
wherein R¹ and R² are the same or different and represent a monovalent organic group having 1 to 20 carbon atoms, and the benzene ring may have a substituent. - According to a second aspect of the present invention, there is provided a process for preparing the above silicon-containing polymer of the present invention, comprising hydrosilylation polymerizing at least one monomer selected from the group consisting of a silicon-containing compound having two SiH groups of the formula (3):
wherein R¹ and R² are the same as defined above and the benzene ring may have a substituent, and a silicon-containing compound having two alkenylsilyl groups of the formula (4):
wherein R¹ and R² are the same as defined above and the benzene ring may have a substituent. -
- The organic group for the R¹ and R² groups includes straight or branched alkyl groups having 1 to 20 carbon atoms (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, tert.-butyl, isoamyl, n-octyl, n-nonyl, etc.), aryl or aralkyl groups having 6 to 20 carbon atoms (e.g. phenyl, etc.), alklysiloxy groups (e.g. trimethylsiloxy, etc.), and the like. Among them, a methyl group and a phenyl group are preferred. A preferred combination of R¹ and R² is a combination of a methyl group and a methyl group, or a combination of a methyl group and a phenyl group.
- The benzene ring in the structural unit (1) may have a substituent. Specific examples of the substituent are unsaturated hydrocarbon groups (e.g. a vinyl group, an allyl group, an isopropenyl group, an ethynyl group, etc.), hetero atom-containing functional groups (e.g. a hydroxyl group, an alkoxy group, an amino group, an alkylamino group, an aldehyde group, a carboxyl group, a cyano group, a nitro group, a siloxy group, etc.), a halogen atom, and the like.
- In view of the heat resistance and solubility, the silicon-containing polymer of the present invention comprises, in its backbone, preferably at least 20 % by weight, more preferably at least at least 50 % by weight, in particular at least 60 % by weight of the structural units (1), namely, the 1,3-bis(diorganosilylene)phenylene units.
- In a preferred embodiment of the present invention, in addition to the structural unit (1), the silicon-containing polymer of the present invention may comprise, in its backbone, at least one other structural unit.
- Examples of the other structural unit are -CH₂-, -CH(CH₃)-, -CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH(CH₃)-, -C₆H₄-, and the like. Among them, -CH₂CH₂- is preferred.
-
- The silicon-containing polymer of the present invention preferably has a number average molecular weight of at least 2000, more preferably at least 5000, in particular at least 8000, when it is measured by gel permeation chromatography using a polystyrene standard. A molecular weight distribution (Mw/Mn) is preferably 5 or less, more preferably 3 or less.
- The silicon-containing polymer of the present invention may be prepared by various processes. Preferred preparation process comprises hydrosilylation polymerizing at least one monomer selected from the group consisting of a silicon-containing compound having two SiH groups of the formula (3):
wherein R¹ and R² are the same as defined above and the benzene ring may have a substituent, and a silicon-containing compound having two alkenylsilyl groups of the formula (4):
wherein R¹ and R² are the same as defined above and the benzene ring may have a substituent. -
-
- When the silicon-containing compound (3) is used, it is necessary to use a compound having at least two unsaturated group in combination. Examples of the unsaturated group are a vinyl group, an isopropenyl group, an ethynyl group, and the like. Among them, the vinyl group is preferred. A specific example of the compound having at least two unsaturated group is a compound of the formula:
CH₂=CR'-X-CR'=CH₂ (6)
wherein R' is a hydrogen atom or a methyl group, and X is a single bond or a divalent organic group. -
-
- When the compound (3) is used, it is possible to use other compound having at least two hydrosilyl groups in a molecule in combination.
- When the compound (4) is used, it is necessary to use a compound having at least two hydrosilyl groups in combination.
-
-
- When the compound (4) is used, it is possible to use a compound having at least two unsaturated groups in a molecule in combination.
- A polymerization rate can be controlled by the use of a catalyst. A kind of the catalyst depends on the combination of the monomers. In the polymerization process of the present invention, any of conventional catalysts used for a so-called hydrosilylation reaction may be used. Examples of such catalyst are metal platinum, platinum supported on a carrier such as alumina, silica or carbon black, a complex of platinum with an alcohol, an aldehyde or a ketone, a platinum-olefin complex (e.g. Pt(CH₂=CH₂)₂(PPh₃)₂, Pt(CH₂=CH₂)₂Cl₂ (Ph = phenyl)), a platinum-vinylsiloxane complex (e.g. Ptn(ViMe₂SiOSiMe₂Vi)m, Ptn[(MeViSiO)₄]m (Me = methyl, Vi = vinyl, m = an integer, n = an integer)), a platinum-phosphine complex (e.g. Pt(PPh₃)₄, Pt(PBu)₄ (Ph = phenyl, Bu = butyl)), a platinum-phosphite complex (e.g. Pt[P(OPh)₃]₄ (Ph = phenyl)), dicarbonyldichloroplatinum, a platinum-hydrocarbon complex disclosed in U.S Patent Nos. 3,159,601 and 3,159,662 (both to Ashby) the disclosures of which are hereby incorporated by reference, and a platinum-alcholate catalyst disclosed in U.S. Patent No. 3,220,972 (to Lamoreaux) the disclosure of which is hereby incorporated by reference. Further, a platinum chloride-olefin complex disclosed in U.S. Patent No. 3,516,946 (to Modic), the disclosure of which is hereby incorporated by reference, can be used in the process of the present invention.
- Examples of the catalyst other than the platinum base catalysts are RhCl(PPh₃)₃, PhCl₃, RhAl₂O₃, RuCl₃, IrCl₃, FeCl₃, AlCl₃, PdCl₂.2H₂O, NiCl₂, TiCl₂, and so on.
- The catalysts may be used independently or as a mixture of two or more of them.
- In view of the catalytic activity, chloroplatinic acid, the platinum-olefin complex, the platinum-vinylsiloxane complex and platinum-acetyl acetonate are preferred.
- An amount of the catalyst is not critical. In general, the catalyst is used in an amount of 10⁻¹ to 10⁻⁸ mol, preferably 10⁻³ to 10⁻⁶ mol, per one mole of the hydrosilyl group.
- The polymerization can be carried out in the presence or absence of a solvent. When the solvent is used, there is used a hydrocarbon solvent (e.g. benzene, toluene, hexane, heptane, etc.), an ether (e.g. tetrahydrofuran, 1,4-dioxane, diethyl ether, etc.), a ketone (e.g. acetone, methyl ethyl ketone, etc.), a halogen-containing solvent (e.g. chloroform, methylene chloride, 1,2-dichloromethane, etc.), and the like. Among them, toluene, tetrahydrofuran and chloroform are preferred. The solvents may be used as a mixture of two or more of them.
- When the solvent is used, its amount is not larger than 50 liters per one mol of the monomer(s).
- A polymerization temperature is preferably from -50°C to 200°C, more preferably from 0°C to 150°C.
- When the polymerization temperature is lower than -50°C, a catalytic activity of the catalyst is not sufficiently high, while when it is higher than 200°C, the catalyst is deactivated by heat.
-
- Preferred examples of the R¹ and R² group are the same as those described above.
-
-
- The compound (5) may be prepared by the following process.
- That is, a 1,3-dihalobenzene of the formula (9):
wherein V is a halogen atom such as a chlorine atom, a bromine atom or an iodine atom
is reacted with a diorganovinylsilane compound of the formula (10):
CH₂=CHSiR¹R²W (10)
wherein R¹ and R² are the same as defined above, and W is Cl, Br, I; OR³ in which R³ is hydrogen atom or a monovalent hydrocarbon group having at least one carbon atom such as a methyl group, an ethyl group, an isopropyl group, a butyl group, a phenyl group or a substituted phenyl group; OCOR⁴ in which R⁴ is the same as R³; OC(CH₃)=CH₂, O-N=CR⁵R⁶ in which R⁵ and R⁶ are the same or different and represent a monovalent hydrocarbon group having at least one carbon atom; NR⁷R⁸ in which R⁷ and R⁸ are the same or different and a hydrocarbon group having at least one carbon atom; N(R⁹)COR¹⁰ in which R⁹ and R¹⁰ are the same or different and a hydrogen atom or a hydrocarbon group having at least one carbon atom, in the presence of magnesium in an ether solvent such as tetrahydrofuran or diethyl ether. This reaction proceeds according to the following reaction formula (11): -
- Specific examples of the diorganovinylsilane compound (10) are as follows:
CH₂=CHSiMe₂Cl, CH₂=CHSiPhMeCl, CH₂=CHSiPh₂Cl, CH₂=CHSiEtMeCl, CH₂=CHSiEt₂Cl, CH₂=CHSi(n-Pr)₂Cl, CH₂=CH-Si(i-Pr)₂Cl, CH₂=CHSi(n-Bu)₂Cl, CH₂=CHSi(p-Tol)MeCl, CH₂=CHSiMe(OSiMe₃)Cl, CH₂=CHSi(OSiMe₃)₂Cl, CH₂=CHSiPh(OSiMe₃)Cl, CH₂=CHSiMe₂Br, CH₂=CHSiPhMeBr, CH₂=CHSiMe₂I, CH₂=CHSiMe₂OR³, CH₂=CHSiPhMeOR³, CH₂=CHSiPhOR², CH₂=CHSiMe₂OCH(CH₃)=CH₂, CH₂=CHSiPhMeOCH(CH₃)=CH₂, CH₂=CHSiMe₂OCOCH₃, CH₂=CHSiPhMeOCOCH₃, CH₂=CHSiMe₂ON=CMeEt, CH₂=CHSiPhMeON=MeEt, CH₂=CHSiMe₂NMe₂, CH₂=CHSiPhMeNMe₂, CH₂=CHSiMe₂NMeCOCH₃, CH₂=CHSiPhMeNMeCOCH₃, CH₂=CHSiMe₂OH, CH₂=CHSiPhMeOH, CH₂=CHSiPh₂OH, CH₂=CHSiMe(OSiMe₃)OH, CH₂=CHSi(OSiMe₃)₂OH, CH₂=CHSi(OSiMe₃)OH, and the like, wherein R² and R³ are the same as defined above. In the above formulas, Me, Et and Ph are the same as defined above, n-Pr represents a n-propyl group, i-Pr represents an isopropyl group, n-Bu represents a n-butyl group, and p-Tol represents a p-tolyl group. - Among them, the following compounds are preferred in view of the reactivity, easy availability and storage stability:
CH₂=CHSiMe₂Cl, CH₂=CHSiPhMeCl, CH₂=CHSiPh₂Cl, CH₂=CHSiEtMeCl, CH₂=CHSiEt₂Cl, CH₂=CHSiMe(OSiMe₃)Cl, CH₂=CHSiPh(OSiMe₃)Cl, CH₂=CHSiMe₂OMe, CH₂=CHSiPhMeOMe, CH₂=CHSiMe₂OEt, CH₂=CHSiPhMeOEt, CH₂=CHSiMe₂OCH(CH₃)=CH₂, CH₂=CHSiPhMeOCH(CH₃)=CH₂, CH₂=CHSiMe₂Cl, CH₂=CHSiPhMeOH, CH₂=CHSiPh₂OH, CH₂=CHSiMe(OSiMe₃)OH, and CH₂=CHSiPh(OSiMe₃)OH. - Further, CH₂=CHSiMe₂Cl, CH₂=CHSiPhMeCl, and CH₂=CHSiPh₂Cl are more preferred.
- In the reaction represented by the reaction formula (11), the 1,3-dihalobenzene and magnesium may form a corresponding 1,3-di-Grignard reagent, and then the Grignard reagent and the silicon-containing compound may couple to form the compound (5).
- Then, if an organic metal reagent having substantially the same reactivity as the 1,3-di-Grignard reagent is formed previously or in the reaction system, any other organic metal reagent may be used in place of the combination of the 1,3-dihalobenzene and magnesium. To form such organic metal reagent, it may be possible to use metal lithium, sodium, potassium, sodium/potassium alloy and so on in combination with the 1,3-dihalobenzene.
- Alternatively, the compound (5) can be prepared by using a dialkoxysilane of the formula (12):
R¹R²Si(OR³)₂ (12)
wherein R¹, R² and R³ are the same as defined above in place of the organic silicon-containing compound (10) in the reaction according to the reaction formula (11). - In this reaction, since the dialkoxysilane (12) has a suitable reactivity with the 1,3-di-Grignard reagent which is formed form the 1,3-dihalobenzene and magnesium, a 1,3-bis(alkoxydiorgano)benzene of the formula (13):
wherein R¹, R² and R³ are the same as defined above is obtained with a high selectivity. This reaction proceeds as follows: - Then the alkoxy group in the 1,3-bis(alkoxydiorgano)benzene (13) can be replaced by a suitable chemical replacement to obtain the 1,3-bis(diorganovinylsilyl)benzene (5). For example, the 1,3-bis(alkoxydiorgano)benzene is reacted with a vinyl Grignard reagent or a vinyl lithium reagent in a solvent such as tetrahydrofuran or diethyl ether to obtain the 1,3-bis(diorganovinylsilyl)benzene according to the reaction formula (15):
- Specific examples of the dialkoxysilane (12) are Me₂Si(OMe)₂, Me₂Si(OEt)₂, PhMeSi(OMe)₂, PhMeSi(OEt)₂, (Me₃SiO)MeSi(OMe)₂, (Me₃SiO)PhSi(OMe)₂, (Me₃SiO)MeSi(OEt)₂, (Me₃SiO)PhSi(OEt)₂, Ph₂Si(OMe)₂, Ph₂Si(OEt)₂, Et₂Si(OMe)₂, Et₂Si(OMe)₂, Et₂Si(OEt)₂, EtMeSi(OMe)₂, EtMeSi(OEt)₂, PhEtSi(OMe)₂, PhEtSi(OEt)₂, Me₂Si(O-i-Pr)₂, PhMeSi(O-i-Pr)₂, PhEtSi(O-i-Pr)₂, and the like.
- Among them, Me₂Si(OMe)₂, Me₂Si(OEt)₂, PhMeSi(OMe)₂, and PhMeSi(OEt)₂ are preferred in view of the selectivity of the reaction and easy availability.
-
- When the compound (5) is hydrosilylation polymerized, the highly heat resistant polycarbosilane of the present invention comprising the 1,3-bis(diorganosilylene)phenylene unit which is effective to the improvement of the solubility because of its flexibility is obtained.
- The heat resistant silicon-containing polymer of the present invention can be used as a heat resistant coating, a heat resistant paint, or a prepreg for the production of a heat resistant part used around an engine or a heat resistant light weight construction material.
- The present invention will be illustrated by the following examples, which do not limit the scope of the present invention in any way.
- In a flask containing dried magnesium (4.81 g, 0.198 mol), Me₂Si(OEt)₂ (26.81 g, 0.181 mol) and tetrahydrofuran (THF) (10 ml) were charged. Then, about 1 ml of a solution of 1,3-dibromobenzene (20.31 g, 0.0861 mol) dissolved in THF (25 ml) was added under a nitrogen atmosphere, and the mixture was heated to start the reaction. Another 1 ml of the solution was added after 20 minutes. While maintaining the heat generation, the rest of the solution of 1,3-dibromobenzene was dropwise added over about 45 minutes. After the addition of the solution, the mixture was heated while refluxing THF.
- After consumption of the starting material was confirmed by gas chromatography (GC), THF and formed salt were removed. By distillation under reduced pressure, a desired product was obtained as a colorless transparent liquid. Yielded amount: 3.81 g (0.048 mol). Yield: 57 %. Boiling point: 84-86°C/0.82-0.9 Torr.
- ¹H-NMR (δ, CDCl₃): 0.40 (s, SiCH₃, 12H), 1.20 (t, OCH₂CH₃, J = 7.3 Hz, 6H), 3.69 (q, OCH₂CH₃, J = 7.3 Hz, 4H), 7.40 (t, aromatic J = 7.4 Hz, 1H), 7.62 (d, aromatic, J = 7.4 Hz, 2H), 7.81 (s, aromatic, 1H).
-
- In a flask, 1,3-bis(ethoxydimethylsilyl)benzene prepared in Synthesis Example 1 (13.81 g, 49 mmol) and THF (10 ml) were charged. Under a nitrogen atmosphere, a 1.0 M solution of CH₂=CHMgBr in THF (108 ml, 108 mmol) was dropwise added to the mixture in the flask at room temperature over about 30 minutes. After the addition of the Grignard reagent, THF was refluxed for 5 hours. After keeping the mixture at room temperature overnight, the consumption of the starting compounds and the formation of the desired produced were confirmed by GC.
- To the reaction mixture, methanol (10 ml) was added to decompose excessive CH₂=CHMgBr, and THF and the formed salt were removed. By distillation under reduced pressure, the above entitled compound was isolated as a colorless transparent liquid. Yield: about 30-50 %. Boiling point: 75-78°C/1.8 Torr.
- ¹H-NMR (δ, CDCl₃): 0.36 (s, Si(CH₃)₂, 12H), 5.87 (dd, CH₂=CH-, trans, J = 20.3 and 4.0 Hz, 2H), 6.07 (dd, CH₂=CH-, cis, J = 14.6 and 4.0 Hz, 2H), 6.31 (dd, CN₂=CH-, J = 20.3 and 14.6 Hz, 2H), 7.35 (t, aromatic J = 7.3 Hz, 2H), 7.54 (d, aromatic, J = 7.3 Hz, 2H), 7.68 (s, aromatic, 1H).
- In a flask containing dried magnesium (5.81 g, 0.239 mol), Me₂SiHCl (19.39 g, 0.205 mol) and THF (25 ml) were charged. Then, a solution of 1,3-dibromobenzene (23.03 g, 0.0976 mol) dissolved in THF (30 ml) was dropwise added at room temperature under a nitrogen atmosphere. As soon as the addition of the solution, heat was vigorously generated. Therefore, the solution was dropwise added over 1.5 hours while cooling the flask in a water bath to keep the mild heat generation. In the course of the addition of the solution, since a salt was formed, THE was added (20 ml x 3).
- After stirring the mixture at room temperature for 1.5 hours, the consumption of the starting compounds and the formation of the desired produced were confirmed by GC. The reaction mixture was suction filtrated through zeolite. To the residue (the liquid + salt), hexane was added and well stirred and the mixture was filtrated through a crimped filter paper. The filtrate was distilled to remove the solvent and obtain a crude product (14.9 g).
- By the distillation under reduced pressure, the above entitled compound was isolated as a colorless transparent liquid. Yielded amount: 7.2 g. Yield: 38 %. Boiling point: 100-102°C/20 Torr.
- ¹H-NMR (δ, CDCl₃): 0.36 (d, SiH(CH₃)₂, J = 3.9 Hz, J(¹³C-¹H) = 119 Hz, 12H), 4.44 (septet, SiH(CH₃)₂, J = 3.9 Hz, J(¹³C-¹H) = 188 Hz, 1H), 7.37 (t, aromatic, J = 7.0 Hz, 1H), 7.56 (d, aromatic, J = 7.0 Hz, 2H), 7.73 (s, aromatic, 1H).
- In the same manner as in Synthesis Example 2 except that Mg (5.92 g, 0.24 mol), PhMeSiHCl (135.80 g, 0.223 mol) and 1,3-dibromobenzene (26.37 g, 0.112 mol) were used, the reaction was carried out in THF to obtain the above entitled compound as a colorless transparent liquid. Yielded amount: 17.36 g. Yield: 53 %. Boiling point: 150-170°C (bath temperature)/0.60 Torr.
- ¹H-NMR (δ, CDCl₃): 0.62 (d, SiHPhCH₃, J = 3.8 Hz, J(¹³C-¹H) = 121 Hz, 12H), 4.94 (q, SiHPhCH₃, J = 3.8 Hz, J(²⁹C-¹H) = 195 Hz, 2H), 7.29-7.44 (m, aromatic, 7H), 7.48-7.63 (m, aromatic, 6H), 7.80 (s, aromatic, 1H).
- In a solution of 1,3-bis(vinyldimethylsilyl)benzene prepared in Example 1 (1.27 g, 5 mmol) and a 1 wt. % solution of platinum-vinylsiloxane complex (5 x 10⁻⁴ mmol) in toluene (6.0 µl), which were dissolved in absolute toluene (3 ml), a solution of 1,4-bis(dimethylsilyl)benzene (LS-7310 manufactured by Shin-etsu Chemical Co., Ltd.) (0.98 g, 5 mmol) dissolved in absolute toluene (3 ml) was slowly dropwise added at room temperature under a nitrogen atmosphere. The heat generation was observed for 3 to 10 minutes after the start of the heat generation, and the reaction mixture was turned pale yellow. The dropwise addition was finished in about 15 minutes. Thereafter, the mixture was stirred at room temperature for 5.5 hours following by being kept standing overnight. According to ¹H-NMR of the reaction mixture, the disappearance of the SiH group was confirmed.
- The reaction mixture was subjected to silica gel column chromatography using toluene as an eluent, and the fractions were distilled to remove toluene to obtain a crude polymer (about 2 g).
-
- When the polymer was kept standing for several days, it was changed to a white solid. Boiling point: 64-67°C.
- A number average molecular weight was 9200 and a weight average molecular weight was 22300 by the measurement of a relative molecular weight (GPC) to the polystyrene standards using a refractometer.
- ¹H-NMR (δ, CDCl₃): 0.23 (s, SiCH₃, 12H), 0.24 (s SiCH₃, 12H), 0.67 (s, SiCH₂CH₂Si, 8H), 7.27-7.66 (m, aromatic, 8H).
- In the same manner as in Example 2 except that 1,3-bis(dimethylsilyl)benzene (0.98 g, 5 mmol) was used in place of 1,4-bis(dimethylsilyl)benzene, the hydrosilylation polymerization was carried out to obtain a polycarbosilane having the following structure as a highly viscous liquid (1.49 g). Yield: 75 %. The polymer had a number average molecular weight of 17000 and a weight average molecular weight of 33000 by the GPC measurement.
- ¹H-NMR (δ, CDCl₃): 0.24 (s, SiCH₃, 12H), 0.68 (s, SiCH₂CH₂Si, 4H), 7.24-7.65 (m, aromatic, 4H).
- In a solution of dimethylvinylsilane (LS-975 manufactured by Shin-etsu Chemical Co., Ltd.) (0.28 g, 2 mmol) and a 1 wt. % solution of platinum-vinylsiloxane complex (2.5 x 10⁻⁴ mmol) in toluene (3.0 µl), which were dissolved in absolute toluene (1 ml), a solution of 1,3-bis(methylphenylsilyl)benzene prepared in Synthesis Example 3 (0.725 g, 2.5 mmol) dissolved in absolute toluene (2 ml) was dropwise added at room temperature over 10 minutes under a nitrogen atmosphere. Then, the mixture was stirred at room temperature for 6 hours and kept standing overnight. According to ¹H-NMR of the reaction mixture, the disappearance of the functional group of the monomer was confirmed.
- The reaction mixture was distilled to remove volatile materials to obtain a white viscous liquid, which was purified and dried at 80°C for 4 hours to obtain a polycarbosilane having the following structure as a sticky solid (0.87 g). Yield: 87 %. The polymer had a number average molecular weight of 4800 and a weight average molecular weight of 10000 by the GPC measurement.
- ¹H-NMR (δ, CDCl₃): -0.10 (s, Si(CH₃)₂, 6H), 0.35-0.58 (m, -CH₂CH₂Si(CH₃)₂CH₂CH₂- and SiPh(CH₃), 10H including a pair of singlets of [SiPh(CH₃)] at 0.479 (3H)), 0.72-0.93 (m, -CH₂CH₂SiPh(CH₃)m-C₆H₄-SiPh(CH₃)CH₂CH₂-, 4H), 7.14-7.77 (m, aromatic, 14H).
- In a solution of 1,4-bis(vinyldimethylsilyl)benzene (18.49 g, 75 mmol) and a 1 wt. % solution of platinum-vinylsiloxane complex (1 x 10⁻² mmol) in toluene (120 µl), which were dissolved in toluene (50 ml), a solution of 1,4-bis(dimethylsilyl)benzene (LS-7301 manufactured by Shin-etsu Chemical Co., Ltd.) (9.72 g, 50 mmol) dissolved in toluene (50 ml) was slowly dropwise added at room temperature under a nitrogen atmosphere. When 30 ml of the latter toluene solution was added, the viscosity of the reaction mixture increased and the stirring became insufficient. Then, 25 ml of toluene was added. The dropwise addition of the latter toluene solution was finished in about 2 hours. After evaporating the solvent off, the residue was dried at 80°C for 4 hours under reduced pressure to obtain a polycarbosilane having the following structure as a white solid (26.5 g). Yield: 94 %. The polymer had a number average molecular weight of 1300 and a weight average molecular weight of 2000 by the GPC measurement.
- In the same manner as in Comparative Example 1 except that 1,4-bis(vinyldimethylsilyl)benzene (615 mg, 2.5 mmol), a 1 wt. % solution of platinum-vinylsiloxane complex (5 x 10⁻⁴ mmol) in toluene (6 µl), 1,4-bis(dimethylsilyl)benzene (486 mg, 2.5 mmol) and toluene (5 ml) were used, the hydrosilylation polymerization was carried out to obtain a crude polycarbosilane having the following formula (300 mg). Yield: 85 %. The polymer had a number average molecular weight of 15000 and a weight average molecular weight of 32000 by the GPC measurement.
- ¹H-NMR (δ, CDCl₃): 0.23 (s, SiCH₃, 12H), 0.68 (s, SiCH₂CH₂Si, 4H), 7.46 (m, aromatic, 4H).
- With the polymers obtained in Examples 2-4 and Comparative Examples 1 and 2, heat resistance and solubility in a solvent were measured.
- The heat resistance was evaluated by the thermogravimetric analysis (TGA) under a nitrogen atmosphere at a heading rate of 20°C/min. The solubility was expressed by a minimum amount of the solvent in which 1 g of each polymer was dissolved at room temperature.
- The results are shown in the Table.
Table Polymer Molecular weight TGA wt. loss (%) Solubility (ml/g) in Mn Mw 400°C 500°C CHCl₃ THF Toluene Ex. 2 9200 22300 3 26 2 2 2 Ex. 3 17000 33000 6 36 2 2 2 Ex. 4 4300 10000 5 17 6 -- -- C. Ex. 1 1300 2000 12 39 33 170 170 C. Ex. 2 15000 32000 1 27 >40 >200 >200 - As seen from the results in the Table, the polymers of Examples 2, 3 and 4 had far superior solubility in the solvents to those of Comparative Examples 1 and 2 and substantially the same heat resistance as that of the comparative polymers.
Claims (4)
- A process for preparing a silicon-containing polymer comprising hydrosilylation polymerizing at least one monomer selected from the group consisting of a silicon-containing compound having two SiH groups of the formula (3):
wherein R¹ and R² are the same or different and represent a monovalent organic group having 1 to 20 carbon atoms, and the benzene ring may have a substituent, and a silicon-containing compound having two alkenylsilyl groups of the formula (4): wherein R¹ and R² are the same as defined above and the benzene ring may have a substituent.
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP355128/93 | 1993-12-28 | ||
| JP35512893 | 1993-12-28 | ||
| JP35512893 | 1993-12-28 | ||
| JP5377594 | 1994-03-24 | ||
| JP5377594 | 1994-03-24 | ||
| JP53775/94 | 1994-03-24 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0661331A2 true EP0661331A2 (en) | 1995-07-05 |
| EP0661331A3 EP0661331A3 (en) | 1996-10-09 |
| EP0661331B1 EP0661331B1 (en) | 2001-05-23 |
Family
ID=26394486
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP94120689A Expired - Lifetime EP0661331B1 (en) | 1993-12-28 | 1994-12-27 | Silicon-containing polymer, process for preparing the same and monomer thereof |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US5691433A (en) |
| EP (1) | EP0661331B1 (en) |
| DE (1) | DE69427275T2 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0913420A3 (en) * | 1997-10-31 | 1999-05-26 | Dow Corning Toray Silicone Company, Ltd. | Silphenylenesilalkylene polymer, methods for preparing same, and coating composition |
| EP0927736A1 (en) * | 1997-12-29 | 1999-07-07 | Dow Corning Toray Silicone Company, Ltd. | Silphenylene polymer and composition containing same |
| WO2006019796A1 (en) * | 2004-07-14 | 2006-02-23 | 3M Innovative Properties Company | Dental compositions conataining carbosilane polymers |
| US7576144B2 (en) | 2004-07-14 | 2009-08-18 | 3M Innovative Properties Company | Dental compositions containing carbosilane monomers |
| EP2880082A4 (en) * | 2012-08-02 | 2016-03-02 | Henkel China Co Ltd | POLYCARBOSILANE AND CURABLE COMPOSITIONS FOR LED ENCAPSULANTS COMPRISING SAME |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5563212A (en) * | 1994-05-24 | 1996-10-08 | Exxon Research And Engineering Company | Synthesis of microporous ceramics |
| KR100254536B1 (en) * | 1997-09-29 | 2000-05-01 | 정선종 | A EL device using a synthesis of silyl disubstituted PPV derivatives and a method of manufacturing the same |
| WO2001081475A1 (en) * | 2000-04-21 | 2001-11-01 | Kaneka Corporation | Curable composition, composition for optical material, optical material, liquid-crystal display, transparent conductive film, and process for producing the same |
| DE60221679D1 (en) * | 2001-08-27 | 2007-09-20 | Wiley Organics Inc | ALKYNYLSILANE AS A FUEL AND FUEL FOR ROCKETS |
| CN1988874A (en) * | 2004-07-14 | 2007-06-27 | 3M埃斯佩股份公司 | Dental compositions containing unsaturated carbosilane-containing components |
| CN1988875B (en) * | 2004-07-14 | 2012-05-02 | 3M埃斯佩股份公司 | Dental compositions containing unsaturated carbosilane-containing components |
| AU2004321432A1 (en) * | 2004-07-14 | 2006-01-19 | 3M Espe Ag | Dental composition containing Si-H functional carbosilane components |
| US8273842B2 (en) | 2007-11-09 | 2012-09-25 | Kaneka Corporation | Process for production of cyclic polyorganosiloxane, curing agent, curable composition, and cured product of the curable composition |
| US8288083B2 (en) | 2010-11-05 | 2012-10-16 | Micron Technology, Inc. | Methods of forming patterned masks |
| KR20150037952A (en) * | 2012-08-02 | 2015-04-08 | 헨켈 차이나 컴퍼니 리미티드 | Curable compositions for LED encapsulants comprising a polycarbosilane and a hydrosilicone |
| TWI742160B (en) | 2016-09-30 | 2021-10-11 | 美商道康寧公司 | Bridged silicone resin, film, electronic device and related methods |
| TWI747956B (en) | 2016-09-30 | 2021-12-01 | 美商道康寧公司 | Bridged silicone resin, film, electronic device and related methods |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3159601A (en) | 1962-07-02 | 1964-12-01 | Gen Electric | Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes |
| US3159662A (en) | 1962-07-02 | 1964-12-01 | Gen Electric | Addition reaction |
| US3220972A (en) | 1962-07-02 | 1965-11-30 | Gen Electric | Organosilicon process using a chloroplatinic acid reaction product as the catalyst |
| US3516946A (en) | 1967-09-29 | 1970-06-23 | Gen Electric | Platinum catalyst composition for hydrosilation reactions |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3050542A (en) * | 1959-08-14 | 1962-08-21 | Dow Corning | Ortho-disilyl benzenes |
| US3209018A (en) * | 1960-07-22 | 1965-09-28 | Dow Corning | Silarylenesilanes, cyclotrisiloxanes, and the preparation of silanols |
| US3318935A (en) * | 1961-12-18 | 1967-05-09 | Gen Electric | Organosilicon material |
| US3576020A (en) * | 1969-02-20 | 1971-04-20 | Dow Corning | Fluoroaromatic silicone compounds |
| FR2414519A1 (en) * | 1978-01-16 | 1979-08-10 | Rhone Poulenc Ind | ORGANOPOLYSILOXANIC COPOLYMERS POLYSEQUENCES CRYSTALLINE AND THEIR PREPARATION METHODS |
| JP2778283B2 (en) * | 1991-04-24 | 1998-07-23 | 信越化学工業株式会社 | Core material for optical fiber and optical fiber |
| US5378790A (en) * | 1992-09-16 | 1995-01-03 | E. I. Du Pont De Nemours & Co. | Single component inorganic/organic network materials and precursors thereof |
-
1994
- 1994-12-27 EP EP94120689A patent/EP0661331B1/en not_active Expired - Lifetime
- 1994-12-27 DE DE69427275T patent/DE69427275T2/en not_active Expired - Fee Related
-
1996
- 1996-03-28 US US08/623,515 patent/US5691433A/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3159601A (en) | 1962-07-02 | 1964-12-01 | Gen Electric | Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes |
| US3159662A (en) | 1962-07-02 | 1964-12-01 | Gen Electric | Addition reaction |
| US3220972A (en) | 1962-07-02 | 1965-11-30 | Gen Electric | Organosilicon process using a chloroplatinic acid reaction product as the catalyst |
| US3516946A (en) | 1967-09-29 | 1970-06-23 | Gen Electric | Platinum catalyst composition for hydrosilation reactions |
Non-Patent Citations (3)
| Title |
|---|
| E. N. ZNAMENSKAYA ET AL., NEFTEKHIMIYA, vol. 4, 1964, pages 487 |
| N. S. NAMETKIN ET AL., DOKL. AKAD. NAUK. USSR, vol. 170, 1966, pages 848 |
| VYSOKOMOL. SOED., vol. 5, 1966, pages 921 |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0913420A3 (en) * | 1997-10-31 | 1999-05-26 | Dow Corning Toray Silicone Company, Ltd. | Silphenylenesilalkylene polymer, methods for preparing same, and coating composition |
| EP0927736A1 (en) * | 1997-12-29 | 1999-07-07 | Dow Corning Toray Silicone Company, Ltd. | Silphenylene polymer and composition containing same |
| WO2006019796A1 (en) * | 2004-07-14 | 2006-02-23 | 3M Innovative Properties Company | Dental compositions conataining carbosilane polymers |
| US7576144B2 (en) | 2004-07-14 | 2009-08-18 | 3M Innovative Properties Company | Dental compositions containing carbosilane monomers |
| US8084515B2 (en) | 2004-07-14 | 2011-12-27 | 3M Innovative Properties Company | Dental compositions containing carbosilane polymers |
| CN101018818B (en) * | 2004-07-14 | 2012-11-14 | 3M创新有限公司 | Dental compositions conataining carbosilane polymers |
| EP2880082A4 (en) * | 2012-08-02 | 2016-03-02 | Henkel China Co Ltd | POLYCARBOSILANE AND CURABLE COMPOSITIONS FOR LED ENCAPSULANTS COMPRISING SAME |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0661331A3 (en) | 1996-10-09 |
| EP0661331B1 (en) | 2001-05-23 |
| US5691433A (en) | 1997-11-25 |
| DE69427275D1 (en) | 2001-06-28 |
| DE69427275T2 (en) | 2001-10-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0661331A2 (en) | Silicon-containing polymer, process for preparing the same and monomer thereof | |
| US5589562A (en) | Polymers containing alternating silsesquioxane and bridging group segments and process for their preparation | |
| US4719273A (en) | Method for forming new preceramic polymers containing silicon | |
| JP3086259B2 (en) | Functionalized polyorganosiloxanes and one method of making them | |
| JP2017105753A (en) | Linear organopolysiloxane having different functional groups at both ends, and method for producing the same | |
| JP2739211B2 (en) | Organosiloxane compounds | |
| US3661847A (en) | Carborane-siloxane polymers | |
| US5786493A (en) | Cyclic silane esters and solvolysis products thereof, and processes for the preparation of the cyclic silane esters and the solvolysis products | |
| JPH1180362A (en) | Production of silphenylenealkylene polymer | |
| US7569652B2 (en) | Synthesis and characterization of novel cyclosiloxanes and their self- and co-condensation with silanol-terminated polydimethylsiloxane | |
| EP0578462A2 (en) | Polyepoxysilanes | |
| JPH05140318A (en) | Siloxane copolymer | |
| US5420238A (en) | Poly(silyleneethynylene phenyleneethynylenes), method for preparing same and hardened product thereof | |
| US5489662A (en) | Process for the preparation of organosilicon polymer | |
| HUP0203324A2 (en) | Novel fluoroalkylsubstituted cyclotrisiloxanes, their use for preparation of new polymers and novel block or random polymers | |
| JP2680284B2 (en) | Organosilicon compounds having a furanyl group, methods of making the compounds, compositions crosslinkable by light, and methods of making coatings | |
| EP0661332B1 (en) | Silicon-containing reactive polymer and curable resin composition comprising the same | |
| US3595974A (en) | Bis-silylphenyl carbonates | |
| US3187032A (en) | Preparation of novel silalkylene compositions | |
| JP3537204B2 (en) | Reactive silicon-based polymer and curable composition using the same | |
| JP3408277B2 (en) | Curable composition | |
| US3576020A (en) | Fluoroaromatic silicone compounds | |
| JPH07309879A (en) | Heat-resistant silicon-based polymer, its production and organic silicon compound to be used in the production of the polymer | |
| EP0913420A2 (en) | Silphenylenesilalkylene polymer, methods for preparing same, and coating composition | |
| EP0586241A1 (en) | Azasilacycloalkyl functional alkoxysilanes and azasilacycloalkyl functional tetramethyldisiloxanes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HIROSE, TOSHIFUMI Inventor name: IWAHARA, TAKAHISA Inventor name: TSUMURA, MANABU, C/O SANSEI-SO Inventor name: KOTANI, JUN, C/O SANSEI-SO |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
| 17P | Request for examination filed |
Effective date: 19970408 |
|
| 17Q | First examination report despatched |
Effective date: 19990628 |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
| REF | Corresponds to: |
Ref document number: 69427275 Country of ref document: DE Date of ref document: 20010628 |
|
| ET | Fr: translation filed | ||
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20041208 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20041222 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20041223 Year of fee payment: 11 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051227 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060701 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20051227 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060831 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060831 |