EP0643996B1 - Coating process - Google Patents
Coating process Download PDFInfo
- Publication number
- EP0643996B1 EP0643996B1 EP19940114613 EP94114613A EP0643996B1 EP 0643996 B1 EP0643996 B1 EP 0643996B1 EP 19940114613 EP19940114613 EP 19940114613 EP 94114613 A EP94114613 A EP 94114613A EP 0643996 B1 EP0643996 B1 EP 0643996B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- coating layer
- temperature
- plastics
- powder coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims description 72
- 239000000758 substrate Substances 0.000 claims description 72
- 239000000843 powder Substances 0.000 claims description 61
- 239000011247 coating layer Substances 0.000 claims description 57
- 239000011248 coating agent Substances 0.000 claims description 50
- 239000000463 material Substances 0.000 claims description 45
- 239000004033 plastic Substances 0.000 claims description 42
- 229920003023 plastic Polymers 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 17
- 230000009477 glass transition Effects 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- -1 amine compound Chemical class 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000009503 electrostatic coating Methods 0.000 claims description 6
- 238000004070 electrodeposition Methods 0.000 claims description 4
- 239000008199 coating composition Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 239000002245 particle Substances 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 229910000398 iron phosphate Inorganic materials 0.000 description 3
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 2
- 229910000165 zinc phosphate Inorganic materials 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920003270 Cymel® Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical class NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007590 electrostatic spraying Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
- B05D1/04—Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
- B05D1/045—Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field on non-conductive substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
- B05D1/04—Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
- B05D1/06—Applying particulate materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/02—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
Definitions
- the present invention relates to a method of manufacturing a coated article according to the preamble clause of claim 1.
- Said coated article may include surface-coated metal or surface-coated plastics products such as for example automotive parts, building materials, constructional members, household appliance parts, and similar coated articles.
- a method of said type is known from document EP-A-0 372 740.
- said document discloses a method of coating a plastic substrate comprising the steps of:
- the times and temperatures for this known preheating step will vary somewhat depending on the identity of the substrate and the powder coating composition. Typically, the temperature will be at least 149° C, and preferably 163 to 204° C, and the preheating time typically will be at least 15 minutes, usually from 15 to 60 minutes.
- the powder coating composition is immediately (i.e., before the substrate cools below the curing temperature of the powder coating composition) applied to the preheated substrate.
- the powder coating composition may be applied by electrostatic spraying.
- the coated substrate is then heated immediately (i.e., before the substrate cools below the curing temperature of the powder coating composition) at a temperature and for a time sufficient to cure the powder coating composition. At no time during the coating process should the temperature of the substrate be allowed to drop below the curing temperature of the powder coating composition.
- the fore-mentioned coating method (which is also disclosed in Japanese Kokai Publication Hei-2-194878) seeks to avoid said popping by heating the substrate to a temperature sufficient for degassing prior to the application of the coating layer(s).
- the proposed heating temperature of the plastics substrate is too high, because the powder coating composition will inevitably tend to undergo partial curing, which may deteriorate the appearance of products.
- Japanese Kokoku Publication Sho-51-43152 discloses a method for applying a top coating layer by means of a powder coating step subsequently to the formation of a base coating layer comprising a thermosetting resin coating layer. Said method includes a step of heating the substrate to reduce the content of volatile components of the base coating layer to an amount not more than 6 % by weight to thereby improve the metallic tone and durability of the coating layer(s) as well as the transfer efficiency of the powder coating process.
- the above mentioned methods intend to improve the coating processes employing powder coating steps, but, while the content of the volatile component of the base coating layer is limited to, say, 6 % by weight or less on the one hand, an improvement of the transfer efficiency is limited by the remaining content of volatile matters. On the other hand, an excessive heating of the substrate in order to decrease the content of volatile matter may impair the powder coating process and may lead to a deterioration of the appearance of the coated articles. Therefore, the transfer efficiency is not actually improved in an extent as desired. The above-mentioned problem of improving the transfer efficiency remains virtually unsolved.
- the technical problem (object) of the present invention is to improve the transfer efficiency of the powder coating composition in a method of manufacturing a coated article of the above-stated generic kind, without an undue deterioration of the appearance of the coated article.
- the article may comprise a substrate made of plastics or metal, and said substrate comprises a base coating layer containing less than 10 % by weight volatile components.
- said base coating layer may be obtained by an electrodeposition coating process or by an aqueous coating process, and it is preferred that said base coating layer containing less than 2 % by weight of vola-tile amine compound based on the total weight of volatile matter.
- the coating process according to the present invention may be applied to the surface of plastics substrates. Moreover, the coating process according to the present invention may be applied to the surface of a metal or of plastics substrate subsequently to the deposition of a coating layer forming a base coating layer on said substrate surface.
- the forming of said base coating layer may be effected by known processes, such as electrodeposition coating process, applying an aqueous coating mixture, solvent type coating process or powder coating process.
- said metal may be selected for example from a group comprising iron materials and other electrically conductive metallic materials; an especially preferred metallic stubstrate is an iron phosphate-treated steel sheet or a zinc phosphate-treated steel sheet.
- the surface of a plastics substrate and/or the surface of a base coating layer applied on the surface of said substrate made of metal or plastics forms the surface of the substrate for the application of the coating process according to the present invention. Therefore, and within the present specification said surfaces are collectively referred to as "the surface of the substrate made of plastics or the surface of a base coating layer”.
- the powder coating material comprises a base material or vehicle and pigments.
- vehicle for example, may be selected from a group comprising polyester resins, acrylic resins, epoxy resins and other resins.
- pigments and additives are incorporated in such a manner as to provide a powder comprising a content of 100 % of non-volatile components.
- the particle size of the powder forming the powder coating material in terms of a bulk average particle diameter may range of from 5 ⁇ m to 50 ⁇ m and may preferably range of from 8 ⁇ m to 40 ⁇ m. In case where the average particle diameter ranges of from 5 ⁇ m to 20 ⁇ m, the amount of particles having a particle diameter less than 5 ⁇ m is preferably less than 25 % by weight. In case where the average particle diameter ranges of from 20 ⁇ m to 50 ⁇ m, the standard deviation of the particle size distribution is preferably not larger than 20 ⁇ m.
- the standard deviation of a particle size distribution is expressed by the following term: [ ⁇ ⁇ (D - X) 2 F ⁇ / ⁇ F] 1/2 , wherein:
- the type of plastics material forming the substrate is not critical.
- the substrate may comprise thermoplastic or a thermosetting plastics material; said plastics material may be reinforced, but there is no need of reinforcement.
- the plastics material forming the substrate may be selected, for example, from a group of plastics, including phenolic resins inclusive phenol-cellulose versions, silicone resins, amino resins, polyurethanes, polystyrenes, polypropylenes, thermoplastic acrylic resins, polyvinyl chlorides, polyacrylonitriles, polybutadienes and acrylonitrile-butadiene copolymers.
- said fibers may comprise boron fibers and other fibers, however with the exception of glass fibers.
- the temperature of the substrate is increased to a temperature of from 40° C to 140° C, but within said temperature range to a temperature
- the transfer efficiency is poor; a substrate temperature higher than 140° C may cause an advanced partial curing of the powder particles forming the powder coating material, which may deteriorate the appearance of the finished coated product.
- the substrate can be preheated prior to applying the powder coating material.
- the subsequent powder coating step may be performed before a renewed cooling step following the baking step in course of a substrate base coating process.
- the above-mentioned temperature of the heated substrate is preferably not higher than the upper limit of the baking temperature of the powder coating process.
- the upper limit of said temperature is preferably not higher than the upper limit of a baking temperature of a process for preparing said base coating layer and not higher than the upper limit of the baking temperature for the powder coating process.
- the upper limit of the fore-mentioned temperature is preferably lower than the deformation temperature of said plastics material.
- the content of volatile components of said base coating layer is controlled such that said base coating layer does not contain more than 10 % by weight volatile components based on the weight of said base coating layer. If this limit of 10 % by weight volatile components is exceeded, foaming, surface roughness and yellowing may occur, which may deteriorate the appearance of the final product.
- the preferred limit of volatile components is 5 % by weight or less.
- said base coating layer may contain a volatile amine compound.
- the content of said volatile amine compound is controlled such that said base coating layer does not contain more than 2.0 % by weight of said volatile amine compound based on the weight of the non-volatile matters contained within said base coating layer. If this limit of 2.0 % by weight volatile amine compound is exceeded, the appearance of the final product will not be as good as desired.
- the preferred limit of said volatile amine compound is 1.5 % by weight, and still more preferred is an upper limit of 1.2 % by weight.
- the surface of the substrate being made of a plastics material and/or comprising a base coating layer containing at least one resin component
- said surface is first heated to the above-mentioned temperature, and then an electrostatic coating process is performed in order to deposit a powder coating layer.
- the electrostatic coating process as such can be carried out in a conventional manner.
- an electrically conductive particulate substance such as graphite powder
- the plastics material may be incorporated in the plastics material forming the substrate in order to impart electric conductivity.
- an electrically conductive reinforcing fiber as a component of the substrate material.
- the plastics substrate may be coated with an electrically conductive primer or with an electically conductive wash solution to impart electric conductivity.
- a composition is prepared by adding 30 parts by weight of Cymel 303 (methoxylated methylolmelamine, Mitsui Toatsu Chemicals, Inc.) to 140 parts by weight of an aqueous acrylic resin having a hydroxyl value of 20 and an acid value of 58 (amine-neutralized, non-volatile matter 50%). Thereafter, 15 parts by weight of an aluminum pigment paste (AW-666, Asahi Chemical Industry Co., Ltd.) are added to this composition, in order to obtain a mixture. The mixture is stirred in order to obtain an aqueous metallic coating mixture.
- Cymel 303 methoxylated methylolmelamine, Mitsui Toatsu Chemicals, Inc.
- a composition is prepared by adding 80.5 parts by weight of decane-dicarboxylic acid, 4 parts by weight of a surface conditioner and 2 parts by weight of benzoin to 315 parts by weight of a glycidyl group-containing acrylic resin (glass transition temperature (Tg): 52° C). Following a melt-compounding step, the composition is finely divided in order to provide an acrylic powder coating material.
- a composition is prepared by adding 7.5 parts by weight of triglycidyl isocyanurate, 60 parts by weight of titanium dioxide, 0.4 parts by weight of a surface conditioner and 1.1 parts by weight of benzoin to 100 parts by weight of a carboxyl group-containing polyester resin (Tg: 63° C). Following a melt-compounding step, the composition is finely divided in order to provide a polyester powder coating material.
- An iron phosphate-treated steel sheet is electro-coated (Powertop, U Series, Nippon Paint Co., Ltd.) providing a base coating layer having a coating thickness of 20 ⁇ m.
- a further coating step (OTOH Series, Nippon Paint Co., Ltd.) an intermediate coating layer is deposited having a coating thickness of 35 ⁇ m.
- the steel sheet comprising the base coaring layer and the intermediate coating layer is then coated with the aqueous metallic coating mixture as prepared in Reference Example 1 and is baked at 80° C for 10 min., at 100° C for 10 min. and at 120° C for 10 min. Thereafter, samples of this coated and baked sheet are brought to the different temperatures as stated in Table 1.
- a plastics blank intended for the use of an automotive bumper and made of a plastics material having a glass transition temperature (Tg) of 90°C (Mitsui Petrochemical Co., Ltd.) is treated with trichloroethane and coated with a conductive primer (RB-1140 CD primer, Nippon Paint Chemical Co., Ltd.).
- This plastics blank is brought to the different temperatures as shown in Table 2.
- an electrostatical coating step is performed using the acrylic powder coating material as prepared in Reference Example 2.
- the coating conditions are the same as stated in Example 1.
- the transfer efficiency is evaluated for each sample. The results are shown in Table 2.
- Transfer efficiency 48 % 60 % 82 %
- an iron phosphate-treated steel sheet is electrocoated, then intermediate-coated and further coated with the aqueous metallic coating mixture as prepared in Reference Example 1.
- samples of the coated sheet are preheated at 80° C for 5 min., at 80° C for 10 min., at 90° C for 5 min., at 100° C for 5 min., at 130° C for 5 min., and at 140° C for 5 min.
- the sheet samples are coated with the acrylic powder coating material as prepared in Reference Example 2.
- the coating conditions are the same as stated in Example 1.
- each sample is baked at 150° C for 25 min.
- the content of the non-volatile components (% by weight) and the content of the volatile amine compound (% by weight based on the total content of non-volatile matters) of the intermediate coating layer obtained from the aqueous metallic coat are determined, following the pre-heating step.
- the appearance of the final product is rated. The appearance is indicated by the value of NSIC measured by portable measuring instrument of sharpness of the reflection (Sugai Shikenki Co.). The results are stated in Table 3.
- Non-volatile matter (% by weight) 85 90 88 90 95 99 Volatile amine compound (% by weight based on the content of total nonvolatile matter) 2.5 2.1 1.5 1.2 0.6 0.3 Appearance (NSIC) 58 70 71 73 74 75
- a final product comprising a good appearance may be obtained by controlling the content of volatile components of the intermediate coating layer to be not larger than 10 % by weight, and/or controlling the amine content of said intermediate coating layer to be not larger than 2 % by weight based on the weight of the total content of non-volatile matters forming said intermediate layer.
- a zinc phosphate-treated steel sheet having a thickness of 0.6 mm is coated with the same intermediate coating layer as used in Example 1, providing an intermediate coating layer having a coating thickness of 35 ⁇ m.
- Samples of this coated sheet are brought to the different temperatures as indicated in Table 4.
- An electrostatical coating step is performed using the polyester powder coating material as prepared in Reference Example 3. The coating conditions are the same as stated in Example 1. Thereafter, the transfer efficiency is evaluated for each sample. The results are stated in Table 4.
- the transfer efficiency of a powder coating process is enhanced and the coating powder recovery is improved by preheating the substrate to a temperature not below the glass transition temperature (Tg) of the resin component of the powder coating material.
- the invention is of value for the prevention of pollution and management of wastes.
- the present invention provides advantages inter alia in saving labor and energy.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
- providing an article comprising a substrate made of plastics material or comprising a substrate made of plastics or metal and having a base coating layer containing a plastics component,
- preheating said substrate to a given temperature,
- applying a powder coating material comprising a resin component by means of an electrostatic coating process to said preheated substrate in order to obtain a powder coating layer,
in order to increase a transfer efficiency of the powder coating material in the electrostatic coating process, the substrate is preheated to a temperature of from 40° C to 140° C, but within said temperature range to a temperature
- higher than the glass transition temperature of said plastics material forming said substrate, or
- higher than the glass transition temperature of said plastics component of said base coating layer;
- higher than the glass transition temperature of said resin component of said powder coating material; and
- lower than the curing temperature of said resin component of said powder coating material;
- lower than the curing temperature of the plastics component of the base coating layer when a substrate made of plastics or metal having a base coating layer is used.
- higher than the glass transition temperature of said plastics material forming said substrate, or
- higher than the glass transition temperature of said plastics component of said base coating layer;
- higher than the glass transition temperature of said resin component of said powder coating material; and
- lower than the curing temperature of said resin component of said powder coating material;
- lower than the curing temperature of the plastics component of the base coating layer when a substrate made of plastics or metal having a base coating layer is used.
| Substrate temperature: | 25° C | 60° C | 100° C | 120° C |
| Transfer efficiency: | 51 % | 63 % | 78 % | 81 % |
| Substrate temperature: | 25 ° C | 60° C | 100° C |
| Transfer efficiency: | 48 % | 60 % | 82 % |
| Preheating conditions | 80°C 5 min. | 80°C 10 min. | 90°C 5 min. | 100°C 5 min. | 130°C 5 min. | 140°C 5 min. |
| Non-volatile matter (% by weight) | 85 | 90 | 88 | 90 | 95 | 99 |
| Volatile amine compound (% by weight based on the content of total nonvolatile matter) | 2.5 | 2.1 | 1.5 | 1.2 | 0.6 | 0.3 |
| Appearance (NSIC) | 58 | 70 | 71 | 73 | 74 | 75 |
| Substrate temperature: | 20°C | 70°C | 120°C |
| Transfer efficiency: | 58 % | 70 % | 81 % |
- providing a steel sheet,
- applying primer,
- baking step,
- cooling step,
- applying a powder coating layer,
- applying an aqueous base coating layer,
- preheating step,
- cooling step,
- applying a powder top clear coating layer,
Claims (3)
- A method of manufacturing a coated article,
comprising the steps ofcharacterized in thatproviding an article comprising a substrate made of plastics material or comprising a substrate made of plastics or metal and having a base coating layer containing a plastics component,preheating said substrate to a given temperature,applying a powder coating material comprising a resin component by means of an electrostatic coating process to said preheated substrate in order to obtain a powder coating layer,
in order to increase a transfer efficiency of the powder coating material in the electrostatic coating process, the substrate is preheated to a temperature of from 40° C to 140° C, but within said temperature range to a temperaturehigher than the glass transition temperature of said plastics material forming said substrate, orhigher than the glass transition temperature of said plastics component of said base coating layer;higher than the glass transition temperature of said resin component of said powder coating material; andlower than the curing temperature of said resin component of said powder coating material;lower than the curing temperature of the plastics component of the base coating layer when a substrate made of plastics or metal having a base coating layer is used. - The method according to claim 1,
wherein said substrate comprising a base coating layer; and
said base coating layer containing less than 10 % by weight volatile components. - The method according to claim 1 or 2,
wherein said substrate comprising a base coating layer obtained by an electrodeposition coating process or by an aqueous coating process; and
said base coating layer containing less than 2 % by weight of a volatile amine compound based on the total weight of non volatile matter.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP255014/93 | 1993-09-17 | ||
| JP25501493 | 1993-09-17 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0643996A1 EP0643996A1 (en) | 1995-03-22 |
| EP0643996B1 true EP0643996B1 (en) | 1998-03-11 |
Family
ID=17273002
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19940114613 Expired - Lifetime EP0643996B1 (en) | 1993-09-17 | 1994-09-16 | Coating process |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP0643996B1 (en) |
| DE (1) | DE69408925T2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110577660A (en) * | 2019-08-14 | 2019-12-17 | 佛山宜可居新材料有限公司 | organic polymer material and coating method thereof |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996032529A1 (en) * | 1995-04-12 | 1996-10-17 | Alliedsignal Inc. | Polymer substrate with additives and thermally induced diffusion process for making |
| CA2458702A1 (en) * | 2001-08-28 | 2003-03-13 | Toray Industries, Inc. | Cfrp board and method for making the same |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR1265945A (en) * | 1960-05-25 | 1961-07-07 | Rhone Poulenc Sa | New coating process using plastic powders |
| DE3324726A1 (en) * | 1983-07-08 | 1985-01-17 | Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart | Process for the production of a multi-layer coating on a substrate to be coated by powder coating in an electrostatic field |
| US5021297A (en) * | 1988-12-02 | 1991-06-04 | Ppg Industries, Inc. | Process for coating plastic substrates with powder coating compositions |
-
1994
- 1994-09-16 EP EP19940114613 patent/EP0643996B1/en not_active Expired - Lifetime
- 1994-09-16 DE DE1994608925 patent/DE69408925T2/en not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110577660A (en) * | 2019-08-14 | 2019-12-17 | 佛山宜可居新材料有限公司 | organic polymer material and coating method thereof |
| CN110577660B (en) * | 2019-08-14 | 2020-07-31 | 佛山宜可居新材料有限公司 | Organic polymer material and coating method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| DE69408925T2 (en) | 1998-09-24 |
| EP0643996A1 (en) | 1995-03-22 |
| DE69408925D1 (en) | 1998-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5753316A (en) | Treatment of metal parts to provide improved sealcoat coatings | |
| US4528909A (en) | Printing members | |
| JP2003532778A (en) | Conductive organic paint | |
| US7737197B2 (en) | Bonding of powder coating compositions | |
| US5851607A (en) | Triboelectric coating powder and process for coating wood substrates | |
| US3860557A (en) | Electrostatic method of applying multilayer coating and product produced thereby | |
| GB2129807A (en) | Cationic electrocoating paint compositions | |
| CA2038151A1 (en) | Coating method of coated metal plate | |
| US4333807A (en) | Reverse coating process | |
| EP0643996B1 (en) | Coating process | |
| DE19715694A1 (en) | Process for forming a coating film | |
| US4027366A (en) | Multilayer coated substrate | |
| JP3294609B2 (en) | Method for improving the properties of painted reinforced thermoplastic articles and products obtained thereby | |
| JPS62288665A (en) | Paint composition and formation of metallized film to surface of article | |
| US3032459A (en) | Method of coating sheet material | |
| JP2000177053A (en) | Coated metallic plate | |
| US4471109A (en) | Polyester powdered paint | |
| JPH07148458A (en) | Coating method | |
| CA2360478C (en) | Thermosetting epoxy powder coatings having improved degassing properties | |
| JPH0781104B2 (en) | Aqueous cationic electrodeposition coating composition | |
| DE19713801A1 (en) | Process for forming a coating film | |
| JP2001276722A (en) | Coating film forming method | |
| EP1256640B1 (en) | Electrodeposition coating process | |
| EP4365257A1 (en) | A coating composition, a method for producing a cured coating, and an article comprising a cured coating | |
| GB2074578A (en) | Cathodic electro-deposition coating composition and process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
| 17P | Request for examination filed |
Effective date: 19950905 |
|
| 17Q | First examination report despatched |
Effective date: 19960930 |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
| REF | Corresponds to: |
Ref document number: 69408925 Country of ref document: DE Date of ref document: 19980416 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990701 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050914 Year of fee payment: 12 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060916 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060916 |