EP0502605A1 - Procédé et catalyseur de fluoration - Google Patents
Procédé et catalyseur de fluoration Download PDFInfo
- Publication number
- EP0502605A1 EP0502605A1 EP92300563A EP92300563A EP0502605A1 EP 0502605 A1 EP0502605 A1 EP 0502605A1 EP 92300563 A EP92300563 A EP 92300563A EP 92300563 A EP92300563 A EP 92300563A EP 0502605 A1 EP0502605 A1 EP 0502605A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- zinc
- chromium
- chloro
- tetrafluoroethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/26—Chromium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/10—Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/206—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/21—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms with simultaneous increase of the number of halogen atoms
Definitions
- This invention relates to an improved fluorination catalyst and to a process for the production of fluorinated hydrocarbons by the catalysed reaction of hydrocarbons or halogenated hydrocarbons with hydrogen fluoride.
- the invention relates to a promoted chromium-containing catalyst, in particular to a promoted chromia, halogenated chromia or chromium oxyhalide catalyst and in a particular embodiment to a process for the production of 1,1,1,2-tetrafluoroethane by the catalysed reaction of 1-chloro-2,2,2-tetrafluoroethane with hydrogen fluoride.
- chromia or a halogenated chromia may be used in the vapour-phase reaction of trichloroethylene with hydrogen fluoride to produce 1-chloro-2,2,2-trifluoroethane as described in GB Patent 1,307,224 and in the vapour-phase reaction of 1-chloro-2,2,2-trifluoroethane with hydrogen fluoride to produce 1,1,1,2-tetrafluoroethane as described in GB Patent 1,589,924.
- the same catalyst may be used for the fluorination of chlorodifluoroethylene to 1-chloro-2,2,2-trifluoroethane, for example in a process for the removal of chlorodifluoroethylene impurity from 1,1,1,2-tetrafluoroethane as also described in GB Patent 1,589,924.
- a chromium-containing fluorination catalyst which comprises an activity-promoting amount of zinc or a compound of zinc.
- a process for the production of fluorinated hydrocarbons which comprises reacting a hydrocarbon or a halogenated hydrocarbon with hydrogen fluoride in the vapour phase in the presence of a fluorination catalyst as herein defined.
- the activity promoting amount of zinc or a compound of zinc may be present in or on the chromium-containing catalyst, that is the zinc or compound of zinc may he incorporated into the chromium-containing catalyst or it may be supported upon the surface of the catalyst, depending at least to some extent upon the particular method employed for preparing the improved catalyst of the invention and the particular composition of the catalyst.
- the chromium-containing catalyst contains chromium in the form of chromia, halogenated chromia or chromium oxyfluoride.
- the chromium-containing catalyst may contain chromium itself.
- chromium in whatever form in the initial catalyst is converted to chromia, halogenated chromia or chromium oxyfluoride.
- the chromium-containing catalyst may also comprise metal oxides, halogenated metal oxides or metal oxyfluorides other than chromia, halogenated chromia or chromium oxyfluoride, which may be present in addition to, or instead of chromia, halogenated chromia or chromium oxyfluoride.
- the metal oxide may be, for example alumina, magnesia or zirconia, and in particular magnesia and alumina, which during operation of the catalyst may be converted at least in part to aluminium fluoride and magnesium fluoride respectively.
- the chromium-containing catalyst may also comprise metal fluorides, for example aluminium fluoride and magnesium fluoride.
- the chromium-containing catalyst may comprise an activity promoting amount of zinc or a compound of zinc in and/or on a mixed metal oxide support, for example chromia/magnesia or chromia/alumina or the chromium-containing catalyst may comprise an activity promoting amount of zinc or a compound of zinc in and/or on a metal oxide support which also comprises chromium, for example, zinc on chromium-containing alumina or magnesia.
- the chromium may be converted to chromia, halogenated chromia or chromium oxyfluoride during operation of the process employing the catalyst.
- the chromium-containing catalyst may comprise an activity-promoting amount of zinc in and/or on a mixed metal oxide/fluoride support, for example alumina/chromium fluoride or chromia/magnesium fluoride; or an activity promoting amount of zinc on a metal fluoride, for example chromium fluoride, magnesium fluoride or aluminium fluoride, or mixed metal fluoride support, for example chromium fluoride/aluminium fluoride or chromium fluoride/magnesium fluoride, providing that in all these cases, the catalyst comprises chromium in one form or another.
- a mixed metal oxide/fluoride support for example alumina/chromium fluoride or chromia/magnesium fluoride
- an activity promoting amount of zinc on a metal fluoride for example chromium fluoride, magnesium fluoride or aluminium fluoride, or mixed metal fluoride support, for example chromium fluoride/aluminium flu
- the chromium-containing catalyst may comprise an activated carbon support.
- the amount of zinc present in the catalyst is such as to result in promotion of the activity of the chromium-containing catalyst to which the zinc or compound of zinc is introduced.
- the amount is important since the introduction of too much zinc may result in a decrease rather than an increase in catalyst activity and it is only when zinc is present in the optimum amount that substantial activity promotion occurs.
- the amount of zinc depends, at least to some extent on the surface area of the catalyst which depends itself on the composition of the catalyst, and the method of preparation of the catalyst. Generally, the larger the working surface area of the catalyst, the greater is the preferred amount of zinc which is present in and/or on the catalyst.
- optimum activity promotion results when the amount of zinc is within the range of about 0.5% by weight to about 6% by weight of the catalyst, preferably in the range from about 1% by weight to about 5% by weight and especially in the range from about 2% by weight to about 4% by weight; less than 0.5% by weight of zinc may be insufficient to result in significant promotion of catalyst activity whilst more than about 6% by weight of zinc may result in a decrease in catalyst activity suggesting poisoning of the basic catalyst.
- the amount of zinc may be as high as 15% to 25% by weight, whereas for catalysts having smaller working area, i.e. less than 20 m2/g, for example about 5 m2/g, the amount of zinc may be as low as 0.5% to 1% by weight.
- the amount of zinc may be in the range from about 0.5% by weight to about 25% by weight, the preferred amount within this range depending upon the nature of the chromium-containing catalyst.
- the amounts of zinc given above refer to the amount of zinc, whether present as elemental zinc or a compound of zinc, but that where the zinc is present as a compound of zinc, the amount refers only to the amount of zinc, and not to the amount of the compound of zinc.
- the amount of zinc introduced to the catalyst to achieve significant activity promotion will depend upon the particular basic catalyst employed and upon the method used to prepare the improved catalyst. However, for any particular basic catalyst and catalyst preparation method, the optimum amount of promoter is readily determined by simple routine experimentation.
- the zinc promoter may be introduced into and/or onto the catalyst in the form of a compound, for example a halide, oxyhalide, oxide or hydroxide depending at least to some extent upon the catalyst preparation technique employed.
- a compound for example a halide, oxyhalide, oxide or hydroxide depending at least to some extent upon the catalyst preparation technique employed.
- the compound is preferably a water-soluble salt, for example a halide, nitrate or carbonate, and is employed as an aqueous solution or slurry.
- the hydroxides of the promoter and chromium may be co-precipitated and then converted to the oxides to prepare the catalyst, for example a catalyst comprising a mixed oxide of zinc and chromium.
- a method for making catalysts based on chromium oxyhalide comprises adding a compound of the promoter to hydrated chromium halide and calcining the mixture.
- Further methods for preparing the catalyst include, for example, reduction of a chromium (VI) compound, for example a chromate, dichromate, in particular ammonium dichromate, to chromium (III), by zinc metal, followed by co-precipitation, washing and calcining; or mixing as solids, a chromium (VI) compound and an oxidisable zinc compound, for example zinc acetate or zinc oxalate, and heating the mixture to high temperature in order to effect reduction of the chromium (VI) compound to chromium (III) oxide and the zinc salt to zinc oxide.
- any of the aforementioned methods, or other methods, may be employed for the preparation of the chromium-containing zinc promoted catalysts of the present invention.
- the amount of promoter introduced to the catalyst depends upon the catalyst preparation employed. It is believed that the working catalyst has a surface containing the promoter cations located in a chromium-containing, for example chromium oxide, oxyhalide, or halide lattice and it is the amount of such surface promoter which determines the activity of the catalyst. Thus the amount of the promoter which is required is generally lower for catalysts made by impregnation than for catalysts made by other methods and containing the promoter in non-surface locations.
- the fluorination catalyst will usually be subjected to a prefluorination treatment with hydrogen fluoride, and optionally an inert diluent, prior to use in the catalysis of fluorination reactions.
- a typical pretreatment comprises heating the catalyst at 250°C to 450°C in contact with hydrogen fluoride, preferably a mixture of hydrogen fluoride and air.
- the working catalyst may consequently comprise at least in part zinc fluoride in and/or on a fluorinated chromium-containing catalyst, for example fluorinated chromia or chromium oxyfluoride.
- the catalyst may be in the form of pellets or granules of appropriate size for use in a fixed bed or a fluidised bed. It may be regenerated or reactivated periodically by heating in air at a temperature of from about 300°C to about 500°C. Air may be used as a mixture with an inert gas such as nitrogen or with hydrogen fluoride which emerges hot from the catalyst treatment process and may be used directly in fluorination processes employing the reactivated catalyst.
- an inert gas such as nitrogen or with hydrogen fluoride which emerges hot from the catalyst treatment process and may be used directly in fluorination processes employing the reactivated catalyst.
- the activity of the base (unpromoted) chromium-containing catalyst for example halogenated chromia or chromium oxyhalide catalyst is enhanced by the introduction of zinc or a compound of zinc. Furthermore, and in particular, the selectivity of the reaction catalysed by the catalyst towards the production of 1,1,1,2-tetrafluoroethane from 1-chloro-2,2,2-trifluoroethane and hydrogen fluoride is at least as high as that using the corresponding unpromoted catalysts, typically in excess of 85%.
- the catalyst may contain one or more metals other than zinc, for example nickel or cobalt, or it may contain for example other divalent metals although we generally prefer that the catalyst does not comprise other metals such as nickel, cobalt of other divalent metals.
- a further feature of the invention resides in use of the promoted catalyst in fluorination processes comprising reaction of a hydrocarbon or halogenated hydrocarbon with hydrogen fluoride in the vapour-phase.
- Alkenes (unsaturated hydrocarbons) or halogenated alkanes of 1-4C atoms, preferably containing at least one chlorine atom, may be fluorinated and examples of specific fluorinations which may be effected are the production of 1,1,1,2-tetrafluoroethane from 1-chloro-2,2,2-trifluoroethane, the production of 1-chloro-2,2,2-trifluoroethane from trichloroethylene and the conversion of 1-chloro-2,2-difluoroethylene to 1-chloro-2,2,2-trifluoroethane.
- Examples of other fluorination reactions in which the catalyst is useful are the reaction of perchloroethylene with hydrogen fluoride in vapour phase to produce dichlorotrifluoroethane (123), chlorotetrafluoroethane (124) and/or pentafluoroethane (125), and the reaction of perchloroethylene with chlorine and hydrogen fluoride in vapour phase to produce trichlorotrifluoroethane (113), dichlorotetrafluoroethane (114/114a) and/or chloropentafluoroethane (115).
- the fluorination conditions employed may be those known to be useable when employing chromium-containing catalysts, for example atmospheric or superatmospheric pressure, hydrogen fluoride and temperatures in the range of 180°C to about 500°C depending upon the particular fluorination reaction being carried out.
- the increased activity of the promoted catalyst permits reactions to be carried out without loss of efficiency at somewhat lower temperatures than those required when using the unpromoted catalyst.
- a temperature of 300°C or above when using the unpromoted catalyst a lower temperature of say 280°C is sufficient to achieve the same reaction efficiency using a zinc promoted catalyst.
- the temperature is the same, say 300°C, a shorter contact time is required using the promoted catalyst.
- a preferred embodiment of the process of the invention resides in a process for the preparation of 1,1,1,2-tetrafluoroethane which comprises reacting 1-chloro-2,2,2-trifluoroethane with hydrogen fluoride in the vapour phase in the presence of the promoted catalyst of the invention.
- This process may be carried out under atmospheric or superatmospheric pressure at a temperature of from about 250°C to 500°C.
- the process may be one stage of a two or three-stage process, for example it may be the second stage of a process for the production of 1,1,1,2-tetrafluoroethane from trichloroethylene, the first stage being the vapour-phase fluorination of trichloroethylene with hydrogen fluoride in the presence of a chromium-containing catalyst.
- the promoted catalyst of the invention may be used in the first stage as well as in the second stage of this two-stage process.
- Typical reaction conditions for the the first stage are atmospheric or superatmospheric pressure and a temperature in the range of about 180°C to about 300°C.
- 1,1,1,2-tetrafluoroethane from 1-chloro-2,2,2-trifluoroethane results in a product stream containing the toxic impurity 1-chloro-2,2, -difluoroethylene.
- This impurity can be removed by reacting it with hydrogen fluoride in the vapour phase in the presence of a chromium containing catalyst at a temperature below about 270°C, for example 150°C to 270°C.
- the promoted catalyst of the invention may be employed in this reaction, thus providing a three-stage process for the preparation of 1,1,1,2-tetrafluoroethane essentially free from 1-chloro-2,2-difluoroethylene from trichloroethylene using the promoted catalyst in each of the three reaction stages.
- a particularly preferred embodiment of the above-described two-stage process for preparing 1,1,1,2-tetrafluoroethane from trichloroethylene comprises the steps of:
- At least the stoichiometric amount of hydrogen fluoride is usually employed in step A of the preferred embodiment.
- Typical amounts include from 1 to 10 moles, and preferably from 1 to 6 moles, of hydrogen fluoride per mole of 1-chloro-2,2,2-trifluoroethane.
- the product of this reaction step will usually contain unreacted hydrogen fluoride in addition to 1,1,1,2-tetrafluoroethane, hydrogen chloride and by-products.
- Preferred reaction temperatures for this stage of the process are in the range from 280°C to 350°C with contact times of from 1 to 100 and preferably from 5 to 30 seconds at 5 to 20 bars pressure.
- Step B From 10 to 100, preferably from 15 to 60, moles of hydrogen fluoride per mole of trichloroethylene are typically employed in Step B. Again, the reaction product of this stage will normally contain unreacted hydrogen fluoride. Contact times of 1 to 100 seconds, preferably 5 to 30 seconds may be used, typically at 180-300°C and 5 to 20 bars pressure.
- reaction and separation steps which make up the preferred embodiment of the method of the invention may be performed using conventional equipment and techniques.
- recovery of 1,1,1,2- tetrafluoroethane in step E may be effected by washing the gaseous mixture (containing tetrafluoroethane and hydrogen chloride) with water and aqueous sodium hydroxide solution and then drying and condensing the tetrafluoroethane.
- the process according to the invention is operated continuously.
- catalyst deactivation necessitating periodic catalyst regeneration or reactivation may interrupt continuous operation of the process.
- the feeding of air to the catalyst during operation of the process may counter catalyst deactivation arid reduce the frequency of process interruption for catalyst regeneration or reactivation.
- the fluorination activities of the zinc promoted chromias were measured using an atmospheric pressure microreactor. Catalysts (2g) were charged to the microreactor and were conditioned in a stream of HF at 300°C for 1 hour and then heated to 350°C and further conditioned in an air/HF (ratio 1:20) stream for approximately 15hrs.
- the microreactor was then fed with a 1-chloro-2,2,2-trifluoroethane (133a) and HF feed using a molar feed ratio of 1.0:3.5, which gave a 2 second contact time at 300°C.
- 133a 1-chloro-2,2,2-trifluoroethane
- HF feed a 1-chloro-2,2,2-trifluoroethane
- molar feed ratio 1.0:3.5
- the catalyst prepared in example 3 was charged to a pressure reactor and prefluorinated with HF at 250°C for 24 hours, using a pressure of 10 bar.
- the reactor was then fed with a 133a and HF feed using a molar feed ratio of 1:3.5.
- a reaction temperature of 325°C and a contact time of 10 seconds enable a 134a yield of >15% to be achieved.
- the reaction selectivity was >99%.
- a 2% w/w zinc-on-chromia catalyst was prepared by impregnating chromia (4.8g) with an aqueous solution of zinc chloride (0.21g) in distilled water (5ml). The catalyst was dried in a heated air stream at 120°C and charged to an Inconel reactor. The catalyst was dried at 310°C in nitrogen for 1 hour and prefluorinated at 310°C with hydrogen fluoride for 2 hours. Trichloroethylene and HF were then fed to the reactor at 310°C using a trichloroethylene: HF molar ratio of 1:10 and a contact time of 1 second.
- the zinc on chromia catalyst converted 40.9% of the trichloroethylene to 1-chloro-2,2,2-trifluoroethane. This compared with a trichloroethylene conversion of 26.7% achieved using the original unpromoted chromia.
- Zinc either as an aqueous solution of zinc nitrate or as an aqueous slurry of zinc carbonate (as indicated), was added to a slurry of chromium (III) hydroxide and the pH of the solution was adjusted to 7 using ammonium hydroxide.
- the resultant solids were filtered, washed, calcined at 300 o C in nitrogen for 5 hours and pelleted to a density of 2g/cms3, and the above procedure was repeated, using zinc carbonate or zinc nitrate solutions of various concentrations, to produce a number of catalysts with up to 10% zinc by weight in the finished catalyst.
- the catalysts were tested at atmospheric pressure according to the procedure of examples 1 to 5.
- 10g of the catalyst prepared in example 9 was charged to a pressure reactor and prefluorinated with HF at 300°C for 24 hours, using a pressure of 10 bar.
- the reactor was then fed with HF and a mixed organic feed comprising 0.5% by weight trichloroethylene in 133a using a molar feed ratio of organics to hydrogen fluoride of 1:3.5.
- 134a yields of 12% were achieved at a temperature of 295°C.
- the reaction selectivity was greater than 99.5%.
- alumina supplied by Harshaw Ltd, having a surface area of 180m2/g, in the form of granules of size 0.5-1.4mm was added to an aqueous solution of zinc chloride (0.21g) and chromium (III) chloride hexahydrate (0.51g) in distilled water (5ml) and stirred to ensure thorough wetting of the solid by the solution. The mixture was then dried by direct heating and the resultant solid sieved to give particles, of size 0.5 - 1.4mm, of a finished catalyst comprising 2%Cr/2%Zn by weight on alumina.
- Magnesium oxide tablets (supplied by Merck & Co), were ground to give granules of size 0.5-1.4mm. 4.44g of the ground magnesium oxide was added to an aqueous solution of zinc chloride (0.053g) and chromium (III) chloride hexahydrate (0.513g) in distilled water (5ml) and stirred to ensure thorough wetting of the solid by the solution. The mixture was dried by direct heating and the resultant solid sieved to give particles, of size 0.5 - 1.4mm, of a finished catalyst comprising 2%Cr/0.5%Zn by weight on magnesia. The catalyst was tested at atmospheric pressure according to the procedure described for examples 1 to 5.
- catalysts containing 2% and 2.4% by weight chromium prepared by impregnating magnesium oxide granules of size 0.5 - 1.4mm with an aqueous solution of chromium (III) chloride were also tested.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Glass Compositions (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP95106618A EP0666105B1 (fr) | 1991-03-07 | 1992-01-23 | Procédé de fluoration |
| EP03076853A EP1350564A1 (fr) | 1991-03-07 | 1992-01-23 | Procédé et catalyseur de fluoration |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB919104775A GB9104775D0 (en) | 1991-03-07 | 1991-03-07 | Fluorination catalyst and process |
| GB9104775 | 1991-03-07 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP95106618.2 Division-Into | 1992-01-23 | ||
| EP95106618A Division EP0666105B1 (fr) | 1991-03-07 | 1992-01-23 | Procédé de fluoration |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0502605A1 true EP0502605A1 (fr) | 1992-09-09 |
| EP0502605B1 EP0502605B1 (fr) | 1996-07-17 |
Family
ID=10691125
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP92300563A Expired - Lifetime EP0502605B1 (fr) | 1991-03-07 | 1992-01-23 | Procédé et catalyseur de fluoration |
| EP95106618A Expired - Lifetime EP0666105B1 (fr) | 1991-03-07 | 1992-01-23 | Procédé de fluoration |
| EP03076853A Withdrawn EP1350564A1 (fr) | 1991-03-07 | 1992-01-23 | Procédé et catalyseur de fluoration |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP95106618A Expired - Lifetime EP0666105B1 (fr) | 1991-03-07 | 1992-01-23 | Procédé de fluoration |
| EP03076853A Withdrawn EP1350564A1 (fr) | 1991-03-07 | 1992-01-23 | Procédé et catalyseur de fluoration |
Country Status (25)
| Country | Link |
|---|---|
| US (3) | US5281568A (fr) |
| EP (3) | EP0502605B1 (fr) |
| JP (1) | JPH05220400A (fr) |
| KR (1) | KR100217353B1 (fr) |
| CN (2) | CN1064628A (fr) |
| AT (2) | ATE140399T1 (fr) |
| AU (1) | AU658161B2 (fr) |
| CA (1) | CA2059983C (fr) |
| CS (1) | CS17192A3 (fr) |
| DE (2) | DE69212183T2 (fr) |
| DK (1) | DK0502605T3 (fr) |
| ES (2) | ES2255705T3 (fr) |
| FI (1) | FI920273A7 (fr) |
| GB (2) | GB9104775D0 (fr) |
| GR (1) | GR3020970T3 (fr) |
| HU (1) | HUT63825A (fr) |
| IE (1) | IE75727B1 (fr) |
| IN (1) | IN185352B (fr) |
| MY (1) | MY108102A (fr) |
| NO (1) | NO920299L (fr) |
| PL (1) | PL293283A1 (fr) |
| RU (1) | RU2032464C1 (fr) |
| SG (1) | SG50565A1 (fr) |
| YU (1) | YU13292A (fr) |
| ZA (1) | ZA92396B (fr) |
Cited By (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5345016A (en) * | 1989-02-03 | 1994-09-06 | E. I. Du Pont De Nemours And Company | Manufacture of 1,1,1,2-tetrafluoroethane |
| WO1994021580A1 (fr) * | 1993-03-24 | 1994-09-29 | Imperial Chemical Industries Plc | Production de difluoromethane |
| WO1995027688A1 (fr) * | 1994-04-06 | 1995-10-19 | Imperial Chemical Industries Plc | Production de pentafluoroethane |
| US5494876A (en) * | 1993-06-18 | 1996-02-27 | Showa Denko K.K. | Fluorination catalyst and fluorination process |
| US5494873A (en) * | 1993-09-07 | 1996-02-27 | Showa Denko K.K. | Chromium-based fluorination catalyst, process for producing the catalyst, and fluorination process using the catalyst |
| US5494877A (en) * | 1994-06-20 | 1996-02-27 | Showa Denko K. K. | Chromium-based fluorination catalyst containing gallium and production method thereof |
| WO1996006062A1 (fr) * | 1994-08-24 | 1996-02-29 | Imperial Chemical Industries Plc | Procede de production de pentafluoroethane |
| WO1997007084A1 (fr) * | 1995-08-18 | 1997-02-27 | Alliedsignal Inc. | Procede de fabrication de 1,1,1,2-tetrafluroethane |
| US5608125A (en) * | 1989-07-12 | 1997-03-04 | Ausimont S.P.A. | Process for preparing 1,1,1,2-tetrafluoroethane |
| EP0773061A1 (fr) | 1995-11-10 | 1997-05-14 | Elf Atochem S.A. | Catalyseurs massiques à base d'oxyde de chrome, leur procédé de préparation et leur application à la fluoration d'hydrocarbures halogénés |
| EP0660750B1 (fr) * | 1992-09-17 | 1997-08-06 | Imperial Chemical Industries Plc | Procédé pour le traitement d'un catalyseur de fluoration usé, à base de chrome. |
| WO1999006342A1 (fr) * | 1997-07-31 | 1999-02-11 | Imperial Chemical Industries Plc | Preparation de 1,1,1,2,3,3,3-heptafluoropropane en phase vapeur |
| WO2001074483A1 (fr) * | 2000-03-31 | 2001-10-11 | Council Of Scientific And Industrial Research | Procede de preparation de 1,1,1,2-tetrafluoroethane |
| EP1038858A4 (fr) * | 1997-12-12 | 2002-03-27 | Daikin Ind Ltd | Procede permettant de preparer du pentafluoroethane, catalyseurs de fluoration et procede de preparation associe |
| US6403524B2 (en) * | 1996-09-10 | 2002-06-11 | Imperial Chemical Industries Plc | Fluorination catalyst and process |
| WO2005037743A1 (fr) * | 2003-10-14 | 2005-04-28 | E.I. Dupont De Nemours And Company | Procede d'elaboration de 1,1,1,3,3-pentafluoropropane et de 1,1,1,2,3-pentafluoropropane |
| WO2005037744A1 (fr) * | 2003-10-14 | 2005-04-28 | E.I. Dupont De Nemours And Company | Procede d'elaboration de 1,1,1,3,3-pentafluoropropane et de 1,1,1,3,3,3-hexafluoropropane |
| WO2005037742A1 (fr) * | 2003-10-14 | 2005-04-28 | E.I. Dupont De Nemours And Company | Procede pour preparer du 1,1,1,3,3,3-hexafluoropropane, du 1,1,1,2,3,3-hexafluoropropane et/ou du 1,1,1,2,3,3,3-heptafluoropropane |
| EP0957074B2 (fr) † | 1997-04-23 | 2006-01-11 | Asahi Glass Company Ltd. | Procede de production d'hydrocarbures halogenes |
| US7053252B2 (en) | 2001-08-03 | 2006-05-30 | Atofina | Process for preparing 1,1,1-trifluoro-2,2-dichloroethane |
| WO2009060221A1 (fr) * | 2007-11-09 | 2009-05-14 | Ineos Fluor Holdings Limited | Procédé de préparation de 2 chloro 1,1,1,2,3,3,3 heptafluoropropane |
| WO2009125200A2 (fr) | 2008-04-09 | 2009-10-15 | Ineos Fluor Holdings Limited | Procédé |
| US20110224466A1 (en) * | 2008-09-05 | 2011-09-15 | Sharratt Andrew P | Catalyst and process using the catalyst |
| US8049045B2 (en) | 2005-12-17 | 2011-11-01 | Mexichem Amanco S.A. de C.V. | Process for production of dichlorotrifluoroethane |
| US8058485B2 (en) | 2005-12-17 | 2011-11-15 | Mexichem Amanco S.A. de C.V. | Process for the production of dichlorotrifluoroethane |
| US20120116131A1 (en) * | 2008-09-05 | 2012-05-10 | Mexichem Amanco Holdings S.A. De C.V. | Catalyst and process using the catalyst |
| US8236997B2 (en) | 2005-12-17 | 2012-08-07 | Mexichem Amanco Holding S.A. De C.V. | Process for the production of pentafluoroethane |
| WO2013011291A1 (fr) | 2011-07-15 | 2013-01-24 | Mexichem Amanco Holding S.A. De C.V. | Procédé de purification de tétrafluoropropène |
| US8410324B2 (en) | 2007-04-11 | 2013-04-02 | Mexichem Amanco Holding, S.A. De C.V. | Process for isomerizing a (hydro)fluoropropene |
| WO2013053800A3 (fr) * | 2011-10-12 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fluoration catalytique en phase gazeuse de 1,1,2-trichloroéthane et/ou de 1,2-dichloroéthène pour produire du 1-chloro-2,2-difluoroéthane |
| US8536388B2 (en) | 2006-10-03 | 2013-09-17 | Mexichem Amanco Holding S.A. De C.V. | Process for preparing 2,3,3,3-tetrafluoropropene (1234yf) |
| US8546623B2 (en) | 2006-10-03 | 2013-10-01 | Mexichem Amanco Holding S.A. De C.V. | Dehydrogenationhalogenation process for the production of C3 -C6-(hydro)fluoroalkenes |
| US8552228B2 (en) | 2008-04-09 | 2013-10-08 | Mexichem Amanco Holdings S.A. De C.V. | Process for the preparation of 2,3,3,3-tetrafluoropropene |
| US9162948B2 (en) | 2008-05-15 | 2015-10-20 | Mexichem Amanco Holding S.A. De C.V. | Process for the preparation of 2, 3, 3, 3-tetrafluoropropene |
| US9771309B2 (en) | 2005-04-08 | 2017-09-26 | Mexichem Amanco Holding S.A. De C.V. | Chromia based fluorination catalyst |
| EP2665692B1 (fr) * | 2011-01-21 | 2018-12-05 | Arkema France | Fluoration catalytique en phase gazeuse |
| EP3567022A1 (fr) | 2015-07-17 | 2019-11-13 | Mexichem Fluor S.A. de C.V. | Procédé de préparation de 1, 1, 1,2,2-pentafluoropropane et de 2,3,3,3-tetrafluoropropène |
| US10689316B2 (en) | 2015-07-17 | 2020-06-23 | Mexican Fluor S.A. De C.V. | Process for the preparation of 3,3,3-trifluoropropene |
| US10899686B2 (en) | 2015-07-17 | 2021-01-26 | Mexichem Fluor S.A. De C.V. | Process for the preparation of 2,3,3,3-tetrafluoropropene (1234yf) |
| US10919824B2 (en) | 2016-08-29 | 2021-02-16 | Arkema France | Compositions of chromium oxyfluoride or fluoride catalysts, their preparation and their use in gas-phase processes |
| US11406965B2 (en) | 2016-09-07 | 2022-08-09 | Mexichem Fluor S.A. De C.V. | Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons |
| US11452990B2 (en) | 2016-09-07 | 2022-09-27 | Mexichem Fluor S.A. De C.V. | Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons |
| US12357968B2 (en) | 2019-01-17 | 2025-07-15 | Mexichem Fluor S.A. De C.V. | Catalyst activation method |
Families Citing this family (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9104775D0 (en) * | 1991-03-07 | 1991-04-17 | Ici Plc | Fluorination catalyst and process |
| US5849658A (en) * | 1991-05-24 | 1998-12-15 | Daikin Industries Ltd. | Method for preparing fluorination catalyst used to fluorinate halogenated hydrocarbons |
| KR960010775B1 (ko) * | 1993-12-01 | 1996-08-08 | 한국과학기술연구원 | 염화수소의 산화에 의한 염소제조용 염화세륨-삼산화이크롬 촉매 및 이의 제조방법 |
| KR960016683B1 (en) * | 1993-12-09 | 1996-12-20 | Korea Inst Sci & Tech | Method of producing fluorization catalyst for preparing 1,1,1,2-tetrafluoroethane |
| JP3558385B2 (ja) * | 1994-10-13 | 2004-08-25 | 昭和電工株式会社 | クロム系フッ素化触媒、及びフッ素化方法 |
| KR0125143B1 (ko) * | 1994-12-02 | 1997-11-27 | 김은영 | 1,1,1-트리플루오로-2,2-디클로로에탄의 불소화 촉매 및 그것의 제조방법 |
| JP3853397B2 (ja) * | 1995-05-11 | 2006-12-06 | イネオス フラウアー ホールデイングス リミテッド | ペンタフルオロエタンの製造方法及びペンタフルオロエタンに転化するのに適当な組成物 |
| KR0152580B1 (ko) * | 1995-08-23 | 1998-10-15 | 김은영 | 1,1,1,2-테트라플루오로에탄, 펜타플루오로에탄 및 1,1,1-트리플루오로에탄의 병산 방법 |
| US5864859A (en) * | 1996-02-20 | 1999-01-26 | International Business Machines Corporation | System and method of compression and decompression using store addressing |
| JP3552887B2 (ja) * | 1997-10-09 | 2004-08-11 | ダイキン工業株式会社 | 1,1,1,2,2−ペンタフルオロエタンの製造方法 |
| RU2177827C1 (ru) * | 2000-11-13 | 2002-01-10 | Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" | Катализатор для дегидрирования парафиновых углеводородов |
| US7485598B2 (en) * | 2006-06-21 | 2009-02-03 | Arkema Inc. | High pressure catalyst activation method and catalyst produced thereby |
| RU2179885C1 (ru) * | 2001-04-24 | 2002-02-27 | Открытое акционерное общество "Галоген" | Катализатор для синтеза хладонов |
| EP1404443A4 (fr) * | 2001-06-28 | 2009-09-23 | Honeywell Int Inc | Procede de preparation d'un catalyseur de fluoration |
| RU2248844C1 (ru) * | 2003-06-25 | 2005-03-27 | Институт элементоорганических соединений им. А.Н. Несмеянова РАН | Композиция в качестве катализатора деиодирования для получения гексафтор-1,2,3,4-тетрахлорбутана и способ получения гексафтор-1,2,3,4-тетрахлорбутана |
| CN1867402B (zh) * | 2003-10-14 | 2010-04-28 | 纳幕尔杜邦公司 | 含锌的氧化铬组合物、它们的制备以及它们作为催化剂和催化剂前体的用途 |
| WO2005058489A1 (fr) * | 2003-12-16 | 2005-06-30 | E.I. Dupont De Nemours And Company | Compositions catalytiques selectives, leur elaboration et leur utilisation pour la production de 1,1,2-trichloropentafluoropropane |
| CN100372607C (zh) * | 2004-12-23 | 2008-03-05 | 西安近代化学研究所 | 氟化催化剂及其制造方法和用途 |
| DE102005012632A1 (de) * | 2005-03-18 | 2006-09-21 | Infineon Technologies Ag | Verfahren und Schaltungsanordnung zur geschützten Übertragung von Datenworten |
| CN1911512B (zh) * | 2005-07-07 | 2011-12-07 | 独立行政法人产业技术综合研究所 | 氟化催化剂及其制备方法、以及使用了该催化剂的氟化合物的制备方法 |
| CN100434166C (zh) * | 2005-09-09 | 2008-11-19 | 北京宇极科技发展有限公司 | 氢氟烃的制备工艺及其专用催化剂的制备方法 |
| CN100427207C (zh) * | 2005-09-12 | 2008-10-22 | 山东东岳化工有限公司 | 用于气相法生产1,1一二氟乙烷的催化剂 |
| CN1308072C (zh) * | 2005-09-30 | 2007-04-04 | 山东东岳化工有限公司 | 一种用于1,1,1,2-四氟乙烷的铁系铬基催化剂 |
| GB0625214D0 (en) | 2006-12-19 | 2007-01-24 | Ineos Fluor Holdings Ltd | Process |
| GB0906191D0 (en) | 2009-04-09 | 2009-05-20 | Ineos Fluor Holdings Ltd | Process |
| US8158549B2 (en) * | 2009-09-04 | 2012-04-17 | Honeywell International Inc. | Catalysts for fluoroolefins hydrogenation |
| CN103313960B (zh) * | 2011-01-21 | 2016-06-08 | 阿克马法国公司 | 催化气相氟化 |
| CN105688890B (zh) * | 2016-02-01 | 2019-03-01 | 乳源东阳光氟有限公司 | 一种氟化催化剂及其制备方法 |
| JP6753434B2 (ja) * | 2018-06-13 | 2020-09-09 | ダイキン工業株式会社 | ジフルオロエチレンの製造方法 |
| WO2020098292A1 (fr) * | 2018-11-08 | 2020-05-22 | Fujian Yongjing Technology Co., Ltd | Procédé de production de 1,1,1-trifluoro-2-chloroéthane (hcfc 133a) et/ou de trifluoroéthylamine (tfea) |
| WO2020164217A1 (fr) * | 2019-02-15 | 2020-08-20 | Fujian Yongjing Technology Co., Ltd | Nouveau procédé de fabrication de composés fluoroaryles et de dérivés |
| JP7353013B2 (ja) | 2019-08-29 | 2023-09-29 | フジアン ヨンジン テクノロジー カンパニー リミテッド | フルオロベンゼンおよびその触媒の製造プロセス |
| CN111604092B (zh) * | 2020-06-16 | 2022-12-06 | 中国民航大学 | 一种铬单原子氟化催化剂的制备方法及其应用 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1307224A (en) * | 1969-06-27 | 1973-02-14 | Ici Ltd | Chromium oxide catalyst |
| US3878257A (en) * | 1973-08-10 | 1975-04-15 | Du Pont | Catalytic conversion of 1,1,2-trichlorotrifluoropropene-1 to 2-chloropentafluoropropene |
| US4180516A (en) * | 1977-08-18 | 1979-12-25 | Mobil Oil Corporation | Conversion of synthesis gas to aromatic hydrocarbons |
| GB1589924A (en) * | 1977-02-17 | 1981-05-20 | Ici Ltd | Manufacture of 1,1,1,2-tetrafluoroethane halogenated compounds |
| EP0048409A1 (fr) * | 1980-09-15 | 1982-03-31 | Air Products And Chemicals, Inc. | Réactivation d'un catalyseur d'alumine et d'oxyde de chrome par l'addition d'oxyde de zinc |
| WO1990008755A1 (fr) * | 1989-02-03 | 1990-08-09 | E.I. Du Pont De Nemours And Company | Fabrication de 1,1,1,2-tetrafluoroethane |
| EP0408005B1 (fr) * | 1989-07-12 | 1994-03-02 | AUSIMONT S.p.A. | Procédé pour préparer du 1,1,1,2-tétrafluoroéthane |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2876265A (en) * | 1959-03-03 | Process of preparation of unsaturated | ||
| US1668838A (en) * | 1926-06-21 | 1928-05-08 | Commercial Solvents Corp | Zinc oxide catalysts |
| US1996115A (en) * | 1931-05-29 | 1935-04-02 | Du Pont | Alkyl halide synthesis |
| US2436143A (en) * | 1946-07-16 | 1948-02-17 | Du Pont | Preparation of fluoroalkanes |
| GB1017647A (en) * | 1963-05-22 | 1966-01-19 | British Petroleum Co | Mixtures of carbon dioxide and hydrogen |
| NL148035B (nl) * | 1965-09-14 | 1975-12-15 | Montedison Spa | Werkwijze voor de bereiding van gefluoreerde en/of gechlorofluoreerde organische verbindingen. |
| NL171235C (nl) * | 1970-06-10 | 1983-03-01 | Montedison Spa | Werkwijze voor het bereiden van katalysatoren die in hoofdzaak uit aluminiumfluoride bestaan en werkwijze voor het bereiden van gefluoreerde of gechloorfluoreerde koolwaterstoffen met behulp van een dergelijke katalysator. |
| JPS557414B2 (fr) * | 1972-08-31 | 1980-02-25 | ||
| JPS5434712A (en) * | 1977-08-24 | 1979-03-14 | Hitachi Ltd | Deflection yoke |
| DE3036044A1 (de) * | 1980-09-24 | 1982-05-06 | Siemens AG, 1000 Berlin und 8000 München | Optischer stern-koppler mit planarem mischerelement |
| EP0109703B1 (fr) * | 1982-11-22 | 1986-03-19 | Shell Internationale Researchmaatschappij B.V. | Préparation d'un catalyseur |
| JP2751401B2 (ja) * | 1989-05-24 | 1998-05-18 | 旭硝子株式会社 | 1,1‐ジクロロ‐1,2,2,2―テトラフルオロエタンの製造方法 |
| US5243107A (en) * | 1990-03-29 | 1993-09-07 | Imperial Chemical Industries Plc | Chemical process |
| GB9104775D0 (en) * | 1991-03-07 | 1991-04-17 | Ici Plc | Fluorination catalyst and process |
| JPH1180838A (ja) * | 1997-09-10 | 1999-03-26 | Nippon Seiko Kk | 転がり軸受 |
-
1991
- 1991-03-07 GB GB919104775A patent/GB9104775D0/en active Pending
-
1992
- 1992-01-15 GB GB929200841A patent/GB9200841D0/en active Pending
- 1992-01-20 IE IE920163A patent/IE75727B1/en not_active IP Right Cessation
- 1992-01-20 ZA ZA92396A patent/ZA92396B/xx unknown
- 1992-01-21 US US07/822,279 patent/US5281568A/en not_active Expired - Lifetime
- 1992-01-21 MY MYPI92000087A patent/MY108102A/en unknown
- 1992-01-21 CS CS92171A patent/CS17192A3/cs unknown
- 1992-01-21 AU AU10324/92A patent/AU658161B2/en not_active Ceased
- 1992-01-21 IN IN47DE1992 patent/IN185352B/en unknown
- 1992-01-22 NO NO92920299A patent/NO920299L/no unknown
- 1992-01-22 FI FI920273A patent/FI920273A7/fi not_active Application Discontinuation
- 1992-01-23 EP EP92300563A patent/EP0502605B1/fr not_active Expired - Lifetime
- 1992-01-23 DE DE69212183T patent/DE69212183T2/de not_active Expired - Lifetime
- 1992-01-23 SG SG1996005039A patent/SG50565A1/en unknown
- 1992-01-23 ES ES95106618T patent/ES2255705T3/es not_active Expired - Lifetime
- 1992-01-23 DK DK92300563.1T patent/DK0502605T3/da active
- 1992-01-23 AT AT92300563T patent/ATE140399T1/de active
- 1992-01-23 ES ES92300563T patent/ES2089381T3/es not_active Expired - Lifetime
- 1992-01-23 EP EP95106618A patent/EP0666105B1/fr not_active Expired - Lifetime
- 1992-01-23 EP EP03076853A patent/EP1350564A1/fr not_active Withdrawn
- 1992-01-23 DE DE69233583T patent/DE69233583T2/de not_active Expired - Lifetime
- 1992-01-23 AT AT95106618T patent/ATE313377T1/de not_active IP Right Cessation
- 1992-01-24 HU HU9200220A patent/HUT63825A/hu unknown
- 1992-01-24 CA CA002059983A patent/CA2059983C/fr not_active Expired - Fee Related
- 1992-01-24 PL PL29328392A patent/PL293283A1/xx unknown
- 1992-01-24 CN CN92101187A patent/CN1064628A/zh active Pending
- 1992-01-28 JP JP4013203A patent/JPH05220400A/ja active Pending
- 1992-02-10 YU YU13292A patent/YU13292A/sh unknown
- 1992-02-13 RU SU925010862A patent/RU2032464C1/ru active
- 1992-03-07 KR KR1019920003791A patent/KR100217353B1/ko not_active Expired - Lifetime
-
1993
- 1993-07-08 US US08/087,379 patent/US5449656A/en not_active Expired - Lifetime
-
1995
- 1995-01-25 US US08/377,707 patent/US5623092A/en not_active Expired - Lifetime
- 1995-11-14 CN CN95119833A patent/CN1049647C/zh not_active Expired - Lifetime
-
1996
- 1996-09-06 GR GR960402328T patent/GR3020970T3/el unknown
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1307224A (en) * | 1969-06-27 | 1973-02-14 | Ici Ltd | Chromium oxide catalyst |
| US3878257A (en) * | 1973-08-10 | 1975-04-15 | Du Pont | Catalytic conversion of 1,1,2-trichlorotrifluoropropene-1 to 2-chloropentafluoropropene |
| GB1589924A (en) * | 1977-02-17 | 1981-05-20 | Ici Ltd | Manufacture of 1,1,1,2-tetrafluoroethane halogenated compounds |
| US4180516A (en) * | 1977-08-18 | 1979-12-25 | Mobil Oil Corporation | Conversion of synthesis gas to aromatic hydrocarbons |
| EP0048409A1 (fr) * | 1980-09-15 | 1982-03-31 | Air Products And Chemicals, Inc. | Réactivation d'un catalyseur d'alumine et d'oxyde de chrome par l'addition d'oxyde de zinc |
| WO1990008755A1 (fr) * | 1989-02-03 | 1990-08-09 | E.I. Du Pont De Nemours And Company | Fabrication de 1,1,1,2-tetrafluoroethane |
| EP0408005B1 (fr) * | 1989-07-12 | 1994-03-02 | AUSIMONT S.p.A. | Procédé pour préparer du 1,1,1,2-tétrafluoroéthane |
Cited By (97)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5345016A (en) * | 1989-02-03 | 1994-09-06 | E. I. Du Pont De Nemours And Company | Manufacture of 1,1,1,2-tetrafluoroethane |
| US5608125A (en) * | 1989-07-12 | 1997-03-04 | Ausimont S.P.A. | Process for preparing 1,1,1,2-tetrafluoroethane |
| US6037508A (en) * | 1989-07-12 | 2000-03-14 | Ausimont S.P.A. | Process for preparing 1,1,1,2-tetrafluoroethane |
| US5880316A (en) * | 1989-07-12 | 1999-03-09 | Ausimont S.P.A. | Process for preparing 1,1,1,2-tetrafluoroethane |
| EP0660750B1 (fr) * | 1992-09-17 | 1997-08-06 | Imperial Chemical Industries Plc | Procédé pour le traitement d'un catalyseur de fluoration usé, à base de chrome. |
| CN1051252C (zh) * | 1992-09-17 | 2000-04-12 | 帝国化学工业公司 | 废铬基氟化催化剂的处理方法 |
| AU691487B2 (en) * | 1993-03-24 | 1998-05-21 | Ineos Fluor Holdings Limited | Production of difluoromethane |
| WO1994021580A1 (fr) * | 1993-03-24 | 1994-09-29 | Imperial Chemical Industries Plc | Production de difluoromethane |
| CN1057750C (zh) * | 1993-03-24 | 2000-10-25 | 帝国化学工业公司 | 二氟甲烷的生产 |
| US5763704A (en) * | 1993-03-24 | 1998-06-09 | Imperial Chemical Industries Plc | Production of difluoromethane |
| AU691486B2 (en) * | 1993-03-24 | 1998-05-21 | Ineos Fluor Holdings Limited | Production of difluoromethane |
| US5569795A (en) * | 1993-06-18 | 1996-10-29 | Showa Denko K. K. | Fluorination catalyst and fluorination process |
| US5494876A (en) * | 1993-06-18 | 1996-02-27 | Showa Denko K.K. | Fluorination catalyst and fluorination process |
| US5494873A (en) * | 1993-09-07 | 1996-02-27 | Showa Denko K.K. | Chromium-based fluorination catalyst, process for producing the catalyst, and fluorination process using the catalyst |
| WO1995027688A1 (fr) * | 1994-04-06 | 1995-10-19 | Imperial Chemical Industries Plc | Production de pentafluoroethane |
| US5763707A (en) * | 1994-04-06 | 1998-06-09 | Imperial Chemical Industries Plc | Production of pentafluoroethane |
| US5494877A (en) * | 1994-06-20 | 1996-02-27 | Showa Denko K. K. | Chromium-based fluorination catalyst containing gallium and production method thereof |
| US5962753A (en) * | 1994-08-24 | 1999-10-05 | Imperial Chemical Industries Plc | Process for the manufacture of pentafluoroethane |
| CN1057516C (zh) * | 1994-08-24 | 2000-10-18 | 帝国化学工业公司 | 五氟乙烷的制备方法 |
| WO1996006062A1 (fr) * | 1994-08-24 | 1996-02-29 | Imperial Chemical Industries Plc | Procede de production de pentafluoroethane |
| US5654494A (en) * | 1995-08-18 | 1997-08-05 | Alliedsignal Inc. | Process for the manufacture of 1,1,1,2-tetrafluoroethane |
| WO1997007084A1 (fr) * | 1995-08-18 | 1997-02-27 | Alliedsignal Inc. | Procede de fabrication de 1,1,1,2-tetrafluroethane |
| EP0773061A1 (fr) | 1995-11-10 | 1997-05-14 | Elf Atochem S.A. | Catalyseurs massiques à base d'oxyde de chrome, leur procédé de préparation et leur application à la fluoration d'hydrocarbures halogénés |
| US6403524B2 (en) * | 1996-09-10 | 2002-06-11 | Imperial Chemical Industries Plc | Fluorination catalyst and process |
| EP0957074B2 (fr) † | 1997-04-23 | 2006-01-11 | Asahi Glass Company Ltd. | Procede de production d'hydrocarbures halogenes |
| WO1999006342A1 (fr) * | 1997-07-31 | 1999-02-11 | Imperial Chemical Industries Plc | Preparation de 1,1,1,2,3,3,3-heptafluoropropane en phase vapeur |
| EP1038858A4 (fr) * | 1997-12-12 | 2002-03-27 | Daikin Ind Ltd | Procede permettant de preparer du pentafluoroethane, catalyseurs de fluoration et procede de preparation associe |
| GB2375974A (en) * | 2000-03-31 | 2002-12-04 | Council Scient Ind Res | A process for the preparation of 1, 1, 1, 2-tetrafluoroethane |
| GB2375974B (en) * | 2000-03-31 | 2004-08-11 | Council Scient Ind Res | A process for the preparation of 1, 1, 1, 2-tetrafluoroethane |
| WO2001074483A1 (fr) * | 2000-03-31 | 2001-10-11 | Council Of Scientific And Industrial Research | Procede de preparation de 1,1,1,2-tetrafluoroethane |
| US7176338B2 (en) | 2001-08-03 | 2007-02-13 | Atofina | Process for preparing 1,1,1-trifluoro-2, 2-dichloroethane |
| US7053252B2 (en) | 2001-08-03 | 2006-05-30 | Atofina | Process for preparing 1,1,1-trifluoro-2,2-dichloroethane |
| WO2005037744A1 (fr) * | 2003-10-14 | 2005-04-28 | E.I. Dupont De Nemours And Company | Procede d'elaboration de 1,1,1,3,3-pentafluoropropane et de 1,1,1,3,3,3-hexafluoropropane |
| WO2005037742A1 (fr) * | 2003-10-14 | 2005-04-28 | E.I. Dupont De Nemours And Company | Procede pour preparer du 1,1,1,3,3,3-hexafluoropropane, du 1,1,1,2,3,3-hexafluoropropane et/ou du 1,1,1,2,3,3,3-heptafluoropropane |
| US7285691B2 (en) | 2003-10-14 | 2007-10-23 | E.I. Du Pont De Nemours And Company | Process for the preparation of 1,1,1,3,3,3-hexafluoropropane and at least one of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2,3,3,3-heptafluoropropane |
| US7285690B2 (en) | 2003-10-14 | 2007-10-23 | E.I. Du Pont De Nemours And Company | Process for the preparation of 1,1,1,3,3-pentafluoropropane and 1,1,1,3,3,3-hexafluoropropane |
| US7285692B2 (en) | 2003-10-14 | 2007-10-23 | E.I. Du Pont De Nemours And Company | Process for the preparation of 1,1,1,3,3-pentafluoropropane and 1,1,1,2,3-pentafluoropropane |
| WO2005037743A1 (fr) * | 2003-10-14 | 2005-04-28 | E.I. Dupont De Nemours And Company | Procede d'elaboration de 1,1,1,3,3-pentafluoropropane et de 1,1,1,2,3-pentafluoropropane |
| US10189757B2 (en) | 2005-04-08 | 2019-01-29 | Mexichem Amanco Holding S.A. De C.V. | Chromia based fluorination catalyst |
| US9771309B2 (en) | 2005-04-08 | 2017-09-26 | Mexichem Amanco Holding S.A. De C.V. | Chromia based fluorination catalyst |
| US8236997B2 (en) | 2005-12-17 | 2012-08-07 | Mexichem Amanco Holding S.A. De C.V. | Process for the production of pentafluoroethane |
| US8049045B2 (en) | 2005-12-17 | 2011-11-01 | Mexichem Amanco S.A. de C.V. | Process for production of dichlorotrifluoroethane |
| US8058485B2 (en) | 2005-12-17 | 2011-11-15 | Mexichem Amanco S.A. de C.V. | Process for the production of dichlorotrifluoroethane |
| US8415515B2 (en) | 2005-12-17 | 2013-04-09 | Mexichem Amanco Holding S.A. De C.V. | Process for the production of pentafluroethane |
| US8546623B2 (en) | 2006-10-03 | 2013-10-01 | Mexichem Amanco Holding S.A. De C.V. | Dehydrogenationhalogenation process for the production of C3 -C6-(hydro)fluoroalkenes |
| EP2129644B1 (fr) | 2006-10-03 | 2020-07-01 | Mexichem Fluor S.A. de C.V. | Procede de deshydrohalogenation pour la production de c3-c6-(hydro)fluoroalcines |
| US9567275B2 (en) | 2006-10-03 | 2017-02-14 | Mexichem Amanco Holding S.A. De C.V. | Process for preparing C3-6(hydro)fluoroalkenes by dehydrohalogenating C3-6 halo(hydro)fluoroalkanes in the presence of a zinc/chromia catalyst |
| US9790149B2 (en) | 2006-10-03 | 2017-10-17 | Mexichem Amanco Holding S.A. De C.V. | Process for preparing C3-6(hydro)fluoroalkenes by dehydrohalogenating C3-6 halo(hydro) fluoroalkanes in the presence of a zinc chromia catalyst |
| US8536388B2 (en) | 2006-10-03 | 2013-09-17 | Mexichem Amanco Holding S.A. De C.V. | Process for preparing 2,3,3,3-tetrafluoropropene (1234yf) |
| US9162946B2 (en) | 2006-10-03 | 2015-10-20 | Mexichem Amanco Holding S.A. De C.V. | Process for preparing C3-6 (hydro)fluoroalkenes by dehydrohalogenating C3-6 halo(hydro)fluoroalkanes in the presence of a zinc/chromia catalyst |
| US8410324B2 (en) | 2007-04-11 | 2013-04-02 | Mexichem Amanco Holding, S.A. De C.V. | Process for isomerizing a (hydro)fluoropropene |
| US8742181B2 (en) | 2007-04-11 | 2014-06-03 | Mexichem Amanco Holding S.A. De C.V. | Process for isomerizing A (hydro)fluoroalkene |
| WO2009060221A1 (fr) * | 2007-11-09 | 2009-05-14 | Ineos Fluor Holdings Limited | Procédé de préparation de 2 chloro 1,1,1,2,3,3,3 heptafluoropropane |
| US8367879B2 (en) | 2007-11-09 | 2013-02-05 | Mexichem Amanco Holding S.A. De C.V. | Method for the preparation of 2 chloro 1,1,1,2,3,3,3 heptafluoropropane |
| AU2008326215B2 (en) * | 2007-11-09 | 2011-05-12 | Mexichem Amanco Holding S.A. De C.V. | Method for the preparation of 2 chloro 1,1,1,2,3,3,3 heptafluoropropane |
| EP2481720A2 (fr) | 2008-04-09 | 2012-08-01 | Mexichem Amanco Holdings S.A. de C.V. | Procédé pour la préparation de 3,3,3-trifluoropropèn |
| WO2009125200A2 (fr) | 2008-04-09 | 2009-10-15 | Ineos Fluor Holdings Limited | Procédé |
| US8552228B2 (en) | 2008-04-09 | 2013-10-08 | Mexichem Amanco Holdings S.A. De C.V. | Process for the preparation of 2,3,3,3-tetrafluoropropene |
| US8629307B2 (en) | 2008-04-09 | 2014-01-14 | Mexichem Amanco S.A. de C.V. | Process for preparing a compound of formula CF3CHFCH2X, wherin X is Cl or F, from 1243zf |
| US8633340B2 (en) | 2008-04-09 | 2014-01-21 | Mexichem Amanco Holding S.A. De C.V. | Process for the production of chlorinated and fluorinated alkanes and alkenes in the presence of a catalyst |
| US8697923B2 (en) | 2008-04-09 | 2014-04-15 | Mexichem Amanco Holding S.A. De C.V. | Process for the preparation of 2,3,3,3,-tetrafluoropropene (R-1234yf) |
| RU2476413C2 (ru) * | 2008-04-09 | 2013-02-27 | Мексичем Аманко Холдинг С.А. Де С.В. | Способ получения 1,1,1-трифтор-2,3-дихлорпропана |
| WO2009125200A3 (fr) * | 2008-04-09 | 2009-12-17 | Ineos Fluor Holdings Limited | Procédé |
| CN102056875A (zh) * | 2008-04-09 | 2011-05-11 | 墨西哥化学阿玛科股份有限公司 | 制备1,1,1-三氟-2,3-二氯丙烷的方法 |
| US10906853B2 (en) | 2008-05-09 | 2021-02-02 | Mexichem Amanco Holding S.A. De C.V. | Catalyst and process using the catalyst |
| US9957210B2 (en) | 2008-05-15 | 2018-05-01 | Mexichem Amanco Holdings S.A. De C.V. | Process for the preparation of 2,3,3,3-tetrafluoropropene |
| EP2995602A1 (fr) | 2008-05-15 | 2016-03-16 | Mexichem Fluor S.A. de C.V. | Procédé pour la préparation de 2,3,3,3-tétrafluoropropène |
| EP2995603A1 (fr) | 2008-05-15 | 2016-03-16 | Mexichem Fluor S.A. de C.V. | Procédé pour la préparation de 2,3,3,3-tétrafluoropropène |
| US10683248B2 (en) | 2008-05-15 | 2020-06-16 | Mexichem Amanco Holding S.A. De C.V. | Process for the preparation of 2,3,3,3-tetrafluoropropene |
| US12157711B2 (en) | 2008-05-15 | 2024-12-03 | Mexichem Amanco Holdings S.A. De C.V. | Process for the preparation of 2,3,3,3-tetrafluoropropene |
| US9162948B2 (en) | 2008-05-15 | 2015-10-20 | Mexichem Amanco Holding S.A. De C.V. | Process for the preparation of 2, 3, 3, 3-tetrafluoropropene |
| US11267772B2 (en) | 2008-05-15 | 2022-03-08 | Mexichem Amanco Holding S.A. De C.V. | Process for the preparation of 2,3,3,3-tetrafluoropropene |
| US20120116131A1 (en) * | 2008-09-05 | 2012-05-10 | Mexichem Amanco Holdings S.A. De C.V. | Catalyst and process using the catalyst |
| US9862659B2 (en) | 2008-09-05 | 2018-01-09 | Mexichem Amanco Holding S.A. De C.V. | Catalyst and process using the catalyst |
| US20110224466A1 (en) * | 2008-09-05 | 2011-09-15 | Sharratt Andrew P | Catalyst and process using the catalyst |
| US9556079B2 (en) | 2008-09-05 | 2017-01-31 | Mexichem Amanco Holding S.A. De C.V. | Catalyst and process using the catalyst |
| US12024478B2 (en) | 2008-09-05 | 2024-07-02 | Mexichem Amanco Holding S.A. De C.V. | Catalyst and process using the catalyst |
| US10974227B2 (en) | 2008-09-05 | 2021-04-13 | Mexichem Amanco Holding S.A. De C.V. | Catalyst and process using the catalyst |
| EP2665692B1 (fr) * | 2011-01-21 | 2018-12-05 | Arkema France | Fluoration catalytique en phase gazeuse |
| WO2013011291A1 (fr) | 2011-07-15 | 2013-01-24 | Mexichem Amanco Holding S.A. De C.V. | Procédé de purification de tétrafluoropropène |
| WO2013053800A3 (fr) * | 2011-10-12 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fluoration catalytique en phase gazeuse de 1,1,2-trichloroéthane et/ou de 1,2-dichloroéthène pour produire du 1-chloro-2,2-difluoroéthane |
| US9000242B2 (en) | 2011-10-12 | 2015-04-07 | Bayer Intellectual Property | Catalytic gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene to produce 1-chloro-2,2-difluoroethane |
| US10669219B2 (en) | 2015-07-17 | 2020-06-02 | Mexichem Fluor S.A. De C.V. | Process for the preparation of 1,1,2,2-pentafluoropropane |
| EP4223734A1 (fr) | 2015-07-17 | 2023-08-09 | Mexichem Fluor S.A. de C.V. | Procédé de préparation de 1,1,1,2,2-pentafluoropropane |
| US10899686B2 (en) | 2015-07-17 | 2021-01-26 | Mexichem Fluor S.A. De C.V. | Process for the preparation of 2,3,3,3-tetrafluoropropene (1234yf) |
| US11021423B2 (en) | 2015-07-17 | 2021-06-01 | Mexichem Fluor S.A. De C.V. | Process for the preparation of 3,3,3-trifluoropropene |
| US11155506B2 (en) | 2015-07-17 | 2021-10-26 | Mexichem Fluor S.A. De C.V. | Process for the preparation of 1,1,1,2,2-pentafluoropropane |
| EP3705468A1 (fr) | 2015-07-17 | 2020-09-09 | Mexichem Fluor S.A. de C.V. | Compositions azéotropiques ou quasi-azéotropiques de hf et 253fb |
| EP3567022A1 (fr) | 2015-07-17 | 2019-11-13 | Mexichem Fluor S.A. de C.V. | Procédé de préparation de 1, 1, 1,2,2-pentafluoropropane et de 2,3,3,3-tetrafluoropropène |
| US10689316B2 (en) | 2015-07-17 | 2020-06-23 | Mexican Fluor S.A. De C.V. | Process for the preparation of 3,3,3-trifluoropropene |
| US11767277B2 (en) | 2015-07-17 | 2023-09-26 | Mexichem Fluor S.A. De C.V. | Process for the preparation of 3,3,3-trifluoropropene |
| US11572327B2 (en) | 2015-07-17 | 2023-02-07 | Mexichem Fluor S.A. De C.V. | Process for the preparation of 1,1,1,2,2-pentafluoropropane |
| US10919824B2 (en) | 2016-08-29 | 2021-02-16 | Arkema France | Compositions of chromium oxyfluoride or fluoride catalysts, their preparation and their use in gas-phase processes |
| EP3504001B1 (fr) * | 2016-08-29 | 2022-10-19 | Arkema France | Procédé de modification de la distribution en fluor dans un composé hydrocarbure à l'aide d'une composition de catalyseur comprenant un oxyfluorure ou fluorure de chrome |
| US11452990B2 (en) | 2016-09-07 | 2022-09-27 | Mexichem Fluor S.A. De C.V. | Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons |
| US11406965B2 (en) | 2016-09-07 | 2022-08-09 | Mexichem Fluor S.A. De C.V. | Catalyst and process using the catalyst for manufacturing fluorinated hydrocarbons |
| US12357968B2 (en) | 2019-01-17 | 2025-07-15 | Mexichem Fluor S.A. De C.V. | Catalyst activation method |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0502605B1 (fr) | Procédé et catalyseur de fluoration | |
| US6403524B2 (en) | Fluorination catalyst and process | |
| US5155082A (en) | Catalyst for the manufacture of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons | |
| US20240360056A1 (en) | Catalyst and process using the catalyst | |
| EP0455748B2 (fr) | Fabrication de 1,1,1,2-tetrafluoroethane | |
| KR100255872B1 (ko) | 플루오르화 촉매 및 플루오르화 방법 | |
| KR101343471B1 (ko) | 불소화 촉매 및 불소화된 탄화수소의 제조방법 | |
| AU663816B2 (en) | Process for the manufacture of 1,1,1,2-tetrafluoro-2- chloroethane and of pentafluoroethane | |
| JP3300120B2 (ja) | 1,1,1−トリフルオロ−2−クロロエタンの製造方法 | |
| JP3413198B2 (ja) | 触媒処理方法 | |
| KR100377125B1 (ko) | 크롬-기재불화촉매,그제조방법,및불화방법 | |
| KR0171414B1 (ko) | 1,1,1,2-테트라플루오로에탄의 제조방법 | |
| KR20030003243A (ko) | 1,1,1,2-테트라플루오로에탄의 제조방법 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
| 17P | Request for examination filed |
Effective date: 19930120 |
|
| 17Q | First examination report despatched |
Effective date: 19930823 |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
| REF | Corresponds to: |
Ref document number: 140399 Country of ref document: AT Date of ref document: 19960815 Kind code of ref document: T |
|
| XX | Miscellaneous (additional remarks) |
Free format text: TEILANMELDUNG 95106618.2 EINGEREICHT AM 23/01/92. |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG PATENTANWAELTE |
|
| REF | Corresponds to: |
Ref document number: 69212183 Country of ref document: DE Date of ref document: 19960822 |
|
| ET | Fr: translation filed | ||
| ITF | It: translation for a ep patent filed | ||
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2089381 Country of ref document: ES Kind code of ref document: T3 |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2089381 Country of ref document: ES Kind code of ref document: T3 |
|
| REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3020970 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19991215 Year of fee payment: 9 Ref country code: DK Payment date: 19991215 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19991220 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20000218 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010105 Year of fee payment: 10 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010123 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010123 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010123 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010131 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020124 |
|
| NLS | Nl: assignments of ep-patents |
Owner name: INEOS FLUOR HOLDINGS LIMITED |
|
| EUG | Se: european patent has lapsed |
Ref document number: 92300563.1 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20041216 Year of fee payment: 14 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060802 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090723 AND 20090729 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110128 Year of fee payment: 20 Ref country code: NL Payment date: 20110117 Year of fee payment: 20 Ref country code: DE Payment date: 20110119 Year of fee payment: 20 Ref country code: IT Payment date: 20110115 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20110216 Year of fee payment: 20 Ref country code: BE Payment date: 20110225 Year of fee payment: 20 Ref country code: GB Payment date: 20110119 Year of fee payment: 20 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69212183 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69212183 Country of ref document: DE |
|
| BE20 | Be: patent expired |
Owner name: *INEOS FLUOR HOLDINGS LTD Effective date: 20120123 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20120123 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20120122 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120411 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120124 Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120124 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120122 |