EP0578669A1 - Dispositifs analytiques - Google Patents
Dispositifs analytiquesInfo
- Publication number
- EP0578669A1 EP0578669A1 EP19920907175 EP92907175A EP0578669A1 EP 0578669 A1 EP0578669 A1 EP 0578669A1 EP 19920907175 EP19920907175 EP 19920907175 EP 92907175 A EP92907175 A EP 92907175A EP 0578669 A1 EP0578669 A1 EP 0578669A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- enclosure
- electrode assembly
- reactor
- reactor according
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5023—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
- G01N27/3272—Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0645—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0825—Test strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
Definitions
- These devices are preferably of a self-contained form, typically requiring only the application of a sample of a body fluid such as urine or blood, for example.
- the devices are mostly of a qualitative or semi-qualitative form requiring some ability on the part of the user to interpret the analytical result. Because the user is commonly not skilled for this last purpose, and in fact is often a lay individual, the user-dependent nature of the devices makes them less than completely satisfactory.
- the present invention particularly concerns quantitative devices of a two-part form involving a reusable instrument co-operable with disposable analytical reactors. More particularly, the invention concerns such two-part devices in which the reactor involves a body of capillary material carrying at least one immobilised reagent and engaging an electrode assembly connectable with an associated instrument.
- the reactor involves a body of capillary material carrying at least one immobilised reagent and engaging an electrode assembly connectable with an associated instrument.
- a sample for analysis, and liquid to mobilise the reagent or reagents are applied to the capillary body and the resultant reaction influences the electrode assembly in a manner dependent on the sample to provide a related quantitative output from the instrument.
- Such a device and use offers several advantages but, as so far proposed, also suffers from some disadvantages associated with the capillary body.
- reagent can be mobilised in an undesirable manner to create areas of significantly different reagent concentrations.
- Another disadvantage is that, if the mobilising liquid is applied by dipping the body into a liquid reservoir, which is attractive for its simplicity, reagent can be leached from the body into the reservoir and impair the desired reaction.
- a further disadvantage is that the liquid contents of the body can be adversely affected by movement of the body such as occur, for example, with dipping.
- An object of the present invention is to reduce these disadvantages and, to this end, the invention provides a disposable reactor for use with a co-operable instrument to form a quantitative analytical device, the reactor comprising a body of capillary material, a liquid-impermeable enclosure housing the capillary body and having an opening for application of liquid to the body, at least one reagent immobilised within the enclosure, and an electrode assembly passing through the enclosure, with one portion of the assembly extending within the enclosure to engage the capillary body and another portion of the assembly extending outside the enclosure, remotely from the enclosure opening, for connection with the associated instrument.
- a reagent can be immobilised in the enclosure by impregnation or other incorporation in the capillary body and/or by deposition on or other incorporation in the interior of the enclosure.
- the enclosure and the housed capillary body are of an elongate form with the opening at one end of the enclosure and the electrode assembly passing through the opposite end.
- a form suitably involves a strip base for the enclosure, an electrode assembly extending longitudinally along one side face of the base, a capillary body also of strip form and located on the base as well as one end portion, but not the other, of the electrode assembly, and an enclosure cover extending transversely over the body and connected with the base while leaving the electrode assembly other end portion exposed.
- the electrode assembly can in fact be directly covered with a layer of electrically insulating material over much of its length provided that it is exposed towards its ends respectively for operable engagement with the capillary body and an associated instrument.
- Figure 1 schematically illustrates in exploded manner one form of a reactor according to the invention together with an associated instrument.
- Figure 2 illustrates the results obtained for one form of ana tical assay effected with a particular embodiment of the reactor of Figure 1 ,
- FIG. 3 illustrates the reactions involved in another form of assay
- Figure 4 illustrates results obtained for the assay of Figure 3 with another reactor embodiment
- Figures 5 and 6 respectively illustrate yet another assay and results associated with a further reactor embodiment.
- FIG. 1 the reactor and associated instrument are denoted general ly at 10 and 20.
- the reactor 10 has a base 11 of strip form made of material which is liquid impermeable and electrically insulating.
- An electrode assembly consisting of two mutually spaced parallel electrodes 12 are mounted longitudinally on one face of the base and have an intermediate portion of their length covered by a layer 13 of further impermeable insulating material to leave the electrodes exposed at their extremities.
- a body 14 of capillary material is, in turn, located to cover the exposed electrodes at one extremity.
- the body 14 is itself covered by a further layer 15 of impermeable insulating material which extends transversely round the body to connect with the base, while leaving exposed the end of the body remote from layer 13.
- at least one reagent 16 is deposited on part of the base covered by the body.
- the base was made of polyvinylchloride (PVC).
- the electrodes were applied by screen coating with one, the working electrode, being of carbon and the other, the reference or counter electrode, being of silver, surface treated to provide a coating of silver chloride.
- the capillary body was made of 0.5 mm thick PVA foam (Grade PRO/800; Prosthex Ltd., Surrey, England).
- the layers 13 and 15 were made of adhesive electrical insulating (PVC) tape and polymethylmethacr late (Perspex), respectively. Reagent compositions differed between the embodiments for the purposes of respectively different analyses.
- the instrument 20 can be of any suitable form adapted for cooperation with the reactor. Clearly it will have a socket 21 or other connector for mutual engagement or other working cooperation with the exposed electrode assembly portion of the reactor.
- the instrument includes electronic components operable to respond to a representative potential difference set up between the reactor electrodes under the influence of the analytical reaction and to indicate that difference, or a resultant current flow, as a quantified output at a visual display 22.
- the instrument can also include components operable to render the former fully operable in response to use of a reactor connected therewith, such as by reaction to liquid application.
- other components can effect temperature compensation, switch between a range of operational modes in response to differential coding incorporated in reactors of different analytical type, and effect other useful functions.
- Assay 1 This assay was carried out for glucose.
- the carbon working electrode of the reactor was doped with 1 ,1 '-dimethyl- ferrocene and had the enzyme glucose oxidase immobilised on to it.
- Glucose solutions were made up in phosphate buffered saline and allowed to stand overnight.
- Assays were carried out by touching the surface of the glucose solution with the opening end of the reactor. This caused the solution to wick up the capillary body and come into contact with the electrodes to provide a response which was almost instantaneous.
- This response was in the form of a potential difference across the reactor and this was applied to an instrument in the form of a 4700 ⁇ F capacitor deployed to integrate the relevant voltage for two minutes.
- Such an embodiment can be useful to carry out glucose and other determinations in physiological fluids like blood.
- a filter in the reactor enclosure, between the capillary body and opening, as indicated at 17 in Figure 1.
- This filter is effective to remove unwanted materials such as red blood cells from the incoming sample.
- Such an embodiment may usefully be integrated with a lance or other implement useful in providing a blood or other sample. Similar considerations might also apply to other materials for analysis, such as certain foods. These, for example jam, are often viscous and not amenable to normal analytical techniques.
- a filter into the reactor, it is possible selectively to isolate the free-flowing component and carry out an assay on this.
- Assay 2 This assay was carried out for ethanol . It is described here as an example of an analytical reaction that involves a soluble co-enzyme (NAD).
- the reactor embodiment involved the enzymes alcohol dehydrogenase (10 mg ml -1 ) and diaphorase (2 mg ml -1 ), the co-enzyme NAD (10 mg ml -1 ), and the electron acceptor potassium ferricyanide (40 mg m1 -1 ), immobilised in 1:1 polyvinyl- pyrrolidone (made up with 0.2 M pyrophosphate buffer, pH 9.0) on the reactor base. When an aqueous solution of ethanol was drawn into the reactor, the reagents were dissolved.
- Ferricyanide is reduced to ferrocyanide as shown in Figure 3. This was detected electrochemical ly at the working electrode. Again, the voltage resulting from the analytical reaction was used to charge up a capacitor, the voltage across the capacitor after two minutes was plotted against the concentration of ethanol, and the resultant operational characteristic is shown in Figure 4. Assay 3. This assay was carried out for aluminium and it is described here as an example of an analytical reaction that involves enzyme inhibition.
- the reactor embodiment involved the enzymes hexokinase (40 ⁇ g ml " , diaphorase (2 mg ml -1 ), and glucose 6-phosphate-dehydrogenase ( 20 ⁇ l ml -1 ) and the co-enzyme NADP (lO g ml -1 ), immobilised in 1:1 polyvinylpyrrol idone (made up in 1.25 M imidazole buffer, pH 6.9, containing 1 mM magnesium chloride), on the reactor base.
- hexokinase 40 ⁇ g ml "
- diaphorase 2 mg ml -1
- glucose 6-phosphate-dehydrogenase 20 ⁇ l ml -1
- NADP co-enzyme NADP
- the substrates adenosine triphosphate (15 mg ml -1 ) and glucose (50 mg ml -1 ) and the electron acceptor ferricyanide (80 mg ml -1) were immobilised in 1:1 polyvinylpyrrolidone ( made up in 1.25 M imidazole buffer, pH 6.9, that contained 1 mM magnesium chloride) on the inner face of the enclosure.
- polyvinylpyrrolidone made up in 1.25 M imidazole buffer, pH 6.9, that contained 1 mM magnesium chloride
- the reagents dissolve in it and ferricyanide is reduced to ferrocyanide as shown in Figure 5.
- the reaction was allowed to proceed for five minutes.
- Ferrocyanide was detected electrochemical ly with the resultant voltage being applied to charge up a capacitor.
- the integrated capacitor voltage after one minute was plotted against the concentration of aluminium to give a characteristic as shown in Figure 6.
- the reactor can accommodate a sequence of reactions involving the same sample, with an associated instrument giving individual and/or, if appropriate, composite quantitative results for the respective analytical reactions.
- the reactor base can have the appropriate reagents applied thereto as respective transverse bands in a successively spaced assay along the base so that the reagents are mobilised in sequence as liquid is drawn into the capillary body.
- plural capillary body channels leading to a common site can be provided, as proposed in Patent Specification WO 90/11519.
- an alternative reactor form involves a compressed or otherwise liquid-expansible capillary body.
- a compressed or otherwise liquid-expansible capillary body can expand when activated by the application of liquid to trap a thin film of the liquid against the associated electrodes.
- such an expansion can be used to close off the enclosure adjacent the opening to prevent, or at least reduce, outward leaching.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Clinical Laboratory Science (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Devices For Use In Laboratory Experiments (AREA)
Abstract
Réacteur jetable (10) utilisé avec un instrument associé (20) de manière à former un dispositif analytique. Il comprend un corps de matière capillaire (14) placé dans une chambre (11, 15) dotée d'une ouverture permettant l'application d'un liquide sur le corps. Au moins un réactif (16) est immobilisé dans la chambre. En outre, un ensemble électrode (12, 12) traverse ladite chambre de sorte qu'une première partie de l'ensemble s'étende à l'intérieur de la chambre de manière qu'elle entre en contact avec le corps capillaire, et qu'une seconde partie s'étende à l'extérieur de la chambre à une certaine distance de l'ouverture de celle-ci, de manière qu'elle soit raccordée audit instrument associé.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB9107193A GB9107193D0 (en) | 1991-04-05 | 1991-04-05 | Analytical devices |
| GB9107193 | 1991-04-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0578669A1 true EP0578669A1 (fr) | 1994-01-19 |
Family
ID=10692707
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19920907175 Withdrawn EP0578669A1 (fr) | 1991-04-05 | 1992-04-01 | Dispositifs analytiques |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP0578669A1 (fr) |
| JP (1) | JPH06506144A (fr) |
| GB (2) | GB9107193D0 (fr) |
| IE (1) | IE921071A1 (fr) |
| WO (1) | WO1992017778A1 (fr) |
Families Citing this family (58)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5593852A (en) | 1993-12-02 | 1997-01-14 | Heller; Adam | Subcutaneous glucose electrode |
| US5628890A (en) * | 1995-09-27 | 1997-05-13 | Medisense, Inc. | Electrochemical sensor |
| AU6157898A (en) | 1997-02-06 | 1998-08-26 | E. Heller & Company | Small volume (in vitro) analyte sensor |
| AU737787B2 (en) * | 1997-12-04 | 2001-08-30 | Roche Diagnostics Operations Inc. | Instrument |
| US6103033A (en) | 1998-03-04 | 2000-08-15 | Therasense, Inc. | Process for producing an electrochemical biosensor |
| US6134461A (en) | 1998-03-04 | 2000-10-17 | E. Heller & Company | Electrochemical analyte |
| US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US6949816B2 (en) | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
| US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
| US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
| JP3389106B2 (ja) * | 1998-06-11 | 2003-03-24 | 松下電器産業株式会社 | 電気化学分析素子 |
| FR2780317B1 (fr) * | 1998-06-30 | 2000-08-11 | Vedalab | Dispositif de determination d'un analyte dans un echantillon liquide |
| US7416699B2 (en) | 1998-08-14 | 2008-08-26 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube devices |
| US6338790B1 (en) | 1998-10-08 | 2002-01-15 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
| US6773671B1 (en) | 1998-11-30 | 2004-08-10 | Abbott Laboratories | Multichemistry measuring device and test strips |
| EP2228653B1 (fr) * | 1998-11-30 | 2016-04-13 | Abbott Laboratories | Dispositif de mesure multiproduits et bandelettes réactives |
| GB2365123A (en) * | 2000-07-20 | 2002-02-13 | Hypoguard Ltd | Test strip |
| US7138089B2 (en) | 2000-07-20 | 2006-11-21 | Hypoguard Limited | Test device for analyzing blood glucose or other analytes in bodily fluids |
| US6827899B2 (en) | 2000-08-30 | 2004-12-07 | Hypoguard Limited | Test device |
| US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
| US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
| EP1578262A4 (fr) | 2002-12-31 | 2007-12-05 | Therasense Inc | Systeme de controle du glucose en continu, et procedes d'utilisation correspondants |
| US8066639B2 (en) | 2003-06-10 | 2011-11-29 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
| US6942769B2 (en) | 2003-08-05 | 2005-09-13 | Bt Medical Corp. | Electrochemical sensor strip with low porosity screen |
| USD914881S1 (en) | 2003-11-05 | 2021-03-30 | Abbott Diabetes Care Inc. | Analyte sensor electronic mount |
| US7780828B2 (en) * | 2004-01-07 | 2010-08-24 | Arkray, Inc. | Analytical instrument having improved arrangement of reagent section and analytical method |
| WO2005089103A2 (fr) | 2004-02-17 | 2005-09-29 | Therasense, Inc. | Procede et systeme de communication de donnees dans un systeme de controle et de gestion de glucose en continu |
| US9788771B2 (en) | 2006-10-23 | 2017-10-17 | Abbott Diabetes Care Inc. | Variable speed sensor insertion devices and methods of use |
| US8112240B2 (en) | 2005-04-29 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing leak detection in data monitoring and management systems |
| US7766829B2 (en) | 2005-11-04 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
| US7955558B2 (en) | 2005-11-09 | 2011-06-07 | Koninklijke Philips Electronics N.V. | Device for testing a fluid |
| US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
| US8226891B2 (en) | 2006-03-31 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
| US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
| US8732188B2 (en) | 2007-02-18 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
| US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
| US8456301B2 (en) | 2007-05-08 | 2013-06-04 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
| US7928850B2 (en) | 2007-05-08 | 2011-04-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
| US8461985B2 (en) | 2007-05-08 | 2013-06-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
| US8665091B2 (en) | 2007-05-08 | 2014-03-04 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
| WO2009027935A2 (fr) * | 2007-08-31 | 2009-03-05 | Koninklijke Philips Electronics N. V. | Cartouche de capteur biochimique |
| US8103456B2 (en) | 2009-01-29 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
| WO2010127050A1 (fr) | 2009-04-28 | 2010-11-04 | Abbott Diabetes Care Inc. | Détection d'erreur dans des données de répétition critiques dans un système de capteur sans fil |
| WO2010138856A1 (fr) | 2009-05-29 | 2010-12-02 | Abbott Diabetes Care Inc. | Systèmes d'antenne de dispositif médical comportant des configurations d'antenne externe |
| US8993331B2 (en) | 2009-08-31 | 2015-03-31 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
| EP2473098A4 (fr) | 2009-08-31 | 2014-04-09 | Abbott Diabetes Care Inc | Dispositif et procédés de traitement de signal d'analyte |
| EP2482720A4 (fr) | 2009-09-29 | 2014-04-23 | Abbott Diabetes Care Inc | Procédé et appareil de fourniture de fonction de notification dans des systèmes de surveillance de substance à analyser |
| US8550295B2 (en) | 2010-02-22 | 2013-10-08 | Roche Diagnostics Operations, Inc. | Container for dispensing a single test strip |
| WO2012105165A1 (fr) | 2011-02-02 | 2012-08-09 | パナソニック株式会社 | Dispositif de mesure pour échantillon biologique |
| CA2840640C (fr) | 2011-11-07 | 2020-03-24 | Abbott Diabetes Care Inc. | Dispositif et procedes de controle de substance a analyser |
| US9968306B2 (en) | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
| WO2015136154A1 (fr) * | 2014-03-13 | 2015-09-17 | Kari Kolehmainen | Bandelette d'essai et appareil de mesure du taux d'alcool ou d'une quelconque autre substance dans le sang et procédé de mesure du taux d'alcool dans le sang |
| US11071478B2 (en) | 2017-01-23 | 2021-07-27 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
| JP2023540275A (ja) | 2020-08-31 | 2023-09-22 | アボット ダイアベティス ケア インコーポレイテッド | 検体センサー挿入のためのシステム、装置、及び方法 |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH524142A (de) * | 1970-06-08 | 1972-06-15 | Miles Lab | Elektrochemische Prüfanordnung und Verfahren zu ihrer Herstellung |
| US4273639A (en) * | 1979-06-20 | 1981-06-16 | Eastman Kodak Company | Capillary bridge in apparatus for determining ionic activity |
| US4549952A (en) * | 1982-11-22 | 1985-10-29 | Eastman Kodak Company | Capillary transport device having means for increasing the viscosity of the transported liquid |
| EP0136362B1 (fr) * | 1983-03-11 | 1990-12-19 | Matsushita Electric Industrial Co., Ltd. | Biocapteur |
| GB8308389D0 (en) * | 1983-03-26 | 1983-05-05 | Cambridge Life Sciences | Assay technique |
| CA1226036A (fr) * | 1983-05-05 | 1987-08-25 | Irving J. Higgins | Materiel d'analyse et ses electrodes-sondes |
| DE3568874D1 (en) * | 1984-06-13 | 1989-04-20 | Ares Serono Inc | Photometric instruments, their use in methods of optical analysis, and ancillary devices therefor |
| US4897173A (en) * | 1985-06-21 | 1990-01-30 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method for making the same |
| US4783251A (en) * | 1985-12-28 | 1988-11-08 | Fuji Photo Film Co., Ltd. | Ionic activity measuring device |
| WO1988004048A1 (fr) * | 1986-11-28 | 1988-06-02 | Unilever N.V. | Dispositifs et procedes de mesure electrochimique |
-
1991
- 1991-04-05 GB GB9107193A patent/GB9107193D0/en active Pending
-
1992
- 1992-04-01 GB GB9207169A patent/GB2254436B/en not_active Expired - Fee Related
- 1992-04-01 EP EP19920907175 patent/EP0578669A1/fr not_active Withdrawn
- 1992-04-01 WO PCT/GB1992/000576 patent/WO1992017778A1/fr not_active Ceased
- 1992-04-01 JP JP4506950A patent/JPH06506144A/ja active Pending
- 1992-04-03 IE IE107192A patent/IE921071A1/en unknown
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9217778A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| GB9107193D0 (en) | 1991-05-22 |
| GB9207169D0 (en) | 1992-05-13 |
| WO1992017778A1 (fr) | 1992-10-15 |
| IE921071A1 (en) | 1992-10-07 |
| JPH06506144A (ja) | 1994-07-14 |
| GB2254436B (en) | 1994-08-17 |
| GB2254436A (en) | 1992-10-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0578669A1 (fr) | Dispositifs analytiques | |
| EP1036320B1 (fr) | Bandelettes reactives de biodetection electrochimique ameliorees | |
| US6942770B2 (en) | Disposable sub-microliter volume biosensor with enhanced sample inlet | |
| US4356074A (en) | Substrate specific galactose oxidase enzyme electrodes | |
| JP2838484B2 (ja) | ガス測定用バイオセンサー及びその製造方法 | |
| JP2001208716A (ja) | 微小球含有センサー | |
| WO2002010734A1 (fr) | Biocapteur | |
| JP2002514744A5 (fr) | ||
| EP1288654A1 (fr) | Biodetecteur | |
| ES2141518T3 (es) | Biosensores electroquimicos y procedimientos para su preparacion. | |
| EP0964245A3 (fr) | Elément d'analyse électrochimique | |
| ATE233897T1 (de) | Biosensor mit ionendurchlässige kanäle aufweisender lipidmembran | |
| JPH08511942A (ja) | 診断用試薬安定剤 | |
| Urban et al. | Performance of integrated glucose and lactate thin-film microbiosensors for clinical analysers | |
| Wieck et al. | Chemically modified reticulated vitreous carbon electrode with immobilized enzyme as a detector in flow-injection determination of glucose | |
| US4859306A (en) | Selectively ion-permeable dry electrodes for analyzing selected ions in aqueous solution | |
| Hsu et al. | An electrochemical cell coupled with disposable screen-printed electrodes for use in flow injection analysis | |
| JPH0750059B2 (ja) | ラミネ−ト電極の製造方法 | |
| JPH0810207B2 (ja) | バイオセンサ | |
| AU2006202499B2 (en) | Improved electrochemical biosensor test strip | |
| AU2005202280B2 (en) | Improved electrochemical biosensor test strip | |
| AU755187B2 (en) | Improved electrochemical biosensor test strip | |
| TH52385A (th) | แถบทดสอบเชิงเคมีไฟฟ้าสำหรับใช้ในการกำหนดแอนาไลท์ |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19931027 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE |
|
| 18D | Application deemed to be withdrawn |
Effective date: 19951031 |