EP0567807B1 - Poste de traitement actif pour un courant de produits imprimés en formation imbriquée - Google Patents
Poste de traitement actif pour un courant de produits imprimés en formation imbriquée Download PDFInfo
- Publication number
- EP0567807B1 EP0567807B1 EP93105576A EP93105576A EP0567807B1 EP 0567807 B1 EP0567807 B1 EP 0567807B1 EP 93105576 A EP93105576 A EP 93105576A EP 93105576 A EP93105576 A EP 93105576A EP 0567807 B1 EP0567807 B1 EP 0567807B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- work station
- deflection
- station according
- conveyor belt
- stream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H29/00—Delivering or advancing articles from machines; Advancing articles to or into piles
- B65H29/66—Advancing articles in overlapping streams
- B65H29/6645—Advancing articles in overlapping streams buffering an overlapping stream of articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H29/00—Delivering or advancing articles from machines; Advancing articles to or into piles
- B65H29/66—Advancing articles in overlapping streams
- B65H29/6654—Advancing articles in overlapping streams changing the overlapping figure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H29/00—Delivering or advancing articles from machines; Advancing articles to or into piles
- B65H29/66—Advancing articles in overlapping streams
- B65H29/6654—Advancing articles in overlapping streams changing the overlapping figure
- B65H29/6663—Advancing articles in overlapping streams changing the overlapping figure reversing the overlapping figure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/20—Location in space
- B65H2511/22—Distance
Definitions
- the invention relates to an interface for scale formations of printed products according to the preamble of claim 1 and a method for operating such an interface.
- the interface according to the invention is active, it processes a shingled stream of printed products and can be used between a device that designs a shingled stream and a device that processes a shingled stream further.
- Scale flows of printed products are laid out, for example, by rotary presses, from unwinding stations from winding or from investors from stacks.
- a shingled stream is either further processed as such in a process station or it is first converted into another transport formation for further processing, for example into a transport stream in which each printed product is transported suspended by means of a clamp.
- a designed stream of shingles has certain properties depending on the printed product and the device from which it is laid out.
- Each device that processes a shingled stream or converts it into another transport formation places certain demands on the properties of the shingled stream supplied.
- scale-shedding and shingling-absorbing devices can be combined as freely as possible, they must be configured or configurable in such a way that the laid-out stream corresponds to the requirements of further processing in any case, or further devices for adapting the shingled stream between the shingled stream-laying and shingled stream must be used - Receiving device can be switched on.
- the required configuration or configurability of the shingled stream designing and shingled stream processing devices either increases the number of necessary device variants or makes the devices more complex and therefore more expensive. Interposition of additional devices takes up a lot of space, especially if more than one additional device is required.
- EP-A-0 281 887 describes a conveying device for paper products accumulating in a scale formation, which can be produced particularly economically, can be used depending on the space conditions or the need to bridge changes in direction and, if appropriate, also for turning, and is easy to set up .
- the transport device is assembled from individual standardized, self-contained, prefabricated components. By combining such structural units, conveying devices, the individual structural units of which have been prefabricated, can be put together in accordance with the transport requirements for the product flow and the spatial conditions.
- One of these various standardized units is a deflection element for deflecting the product flow by 90 °.
- the device disclosed in FR-A-2 343 675 serves to even out the distance between successive, flat, rigid objects which occur at irregular mutual distances in a scale formation.
- the incoming objects are pushed onto an intermediate stack from above.
- the objects are then removed from this intermediate stack again from below in a regular sequence and taken away in a uniform scale formation.
- the object of the present invention to provide an interface of the type mentioned at the outset, which is to be designed and active in such a way that the scale flow that flows out of the interface differs from the scale flow that flows into the interface with regard to properties and / or differentiates in terms of quality, which means that the Scale flow is adapted through the interface for the scale flow-absorbing device.
- the interface should be space-saving, simple and can be used for as many applications as possible, ie it should be able to change as many properties of a shingled stream as possible within the broadest possible range.
- the interface according to the invention is preferably operated by the method according to claims 20-22.
- Figures 1a to 1c show two exemplary scale streams of printed products as a top view ( Figure 1a) and a side view ( Figures 1b and 1c).
- One of the printed products (P) is highlighted as an example by hatching.
- the shingled stream S is conveyed in the conveying direction F on a moving conveying means FM, for example on a conveyor belt on which the products lie freely or pressed against one another in an overlapping manner.
- the shingled stream S is characterized by parameters that relate to each individual product (product parameters) and by parameters that relate to the movement of the products and their relative arrangement in the stream (stream parameters).
- product parameters are mainly length L, width B and thickness D of the products.
- the current parameters which relate to the movement of the products, are the current speed v and the distance a between the same product edges lying transversely to the conveying direction F of successive products, the quotient v / a representing the current output l in products per unit of time.
- the flow parameters which relate to the relative position of the products in the flow, are the position p of the products on the conveyor (center, left or right, or otherwise), the type of overlap u (front edge above, as shown in FIG. 1b) , or leading edge at the bottom, as shown in FIG. 1c) and the orientation o of the products relative to the conveying direction (for example fold at the front or fold at the rear).
- FIG. 2 shows very schematically an interface 1 according to the invention, which between a device 2, which interprets a shingled stream, and a Device 3, which processes a shingled stream or converts it into another transport formation, is arranged.
- a device 2 which interprets a shingled stream
- a Device 3 which processes a shingled stream or converts it into another transport formation.
- the active interface converts the input current S i into the output current S o by changing current parameters, that is to say by changing (a, p, u), comparing ( ⁇ a, ⁇ p), correcting (f) and / or decoupling ( ⁇ l) acts.
- the only change to the products that the interface can bring about is a pressing, by means of which, for example, folded products in the area of the fold are easily changed.
- the active interface differs from a processing point in that it essentially changes only the current parameters, not the product parameters.
- FIGS. 3a to 3d now schematically show functional elements which the interface according to the invention can contain with the current parameters which can be changed as a result.
- the basic functional element GE transfer element
- Figure 3b illustrates a deflection UE.
- a deflection UE Caused by the deflection of an incoming imbricated stream S i a leaking imbricated stream S o, with the two streams with respect to u distinguish the current parameter by a stream with overhead leading edge, a stream with underlying leading edge (or vice versa ) arises.
- a deflection element UE consists, in a known manner, for example of a deflection roller 31 and a deflection belt 32 which runs around the deflection roller.
- the printed products are guided between the deflection roller and the deflection belt during the deflection.
- there are two conveyor belts the incoming shingled stream S i resting in the original position on one, the outgoing shingled stream S o resting in the upside-down position on the other. It is also conceivable that the deflection element has only one conveyor belt, while the deflection belt takes over the function of the other conveyor belt.
- the deflection element can also always take on the function of a transfer element, that is to say it can also refer to the current parameters v, a and p act.
- the operation of a deflection element can be reversed as desired.
- FIGS. 5a and b An advantageous embodiment of a deflection element UE for the interface according to the invention is described in connection with FIGS. 5a and b.
- Figure 3c shows a buffer element PE.
- This essentially consists of two conveyor belts and a buffering means 37. Shifting means can be used as buffering means 37, with which the transfer point between the two conveyor belts, which have different speeds, is locally shifted (extension of the transport route at a lower speed when filling the buffer), or stacking means with which a stack of products is formed between the two conveyor belts.
- a buffer element PE acts on the current parameter f by closing gaps and can act on the current parameter ⁇ a if the printed products are re-clocked in the buffer element.
- the buffer element PE acts as a decoupling with regard to power fluctuations ( ⁇ l) between the input side and the output side.
- the buffer element can also take over the functions of a transfer element.
- the operation of a buffer element is not reversible.
- Buffer elements which can be used in an interface according to the invention are known, for example, from the two patent specifications No. EP-0259650 and CH-667258 from the same applicant. In both cases, buffer elements with a locally movable takeover point are involved. A buffer element with stacking means is described in connection with FIG. 6.
- Figure 3d shows a directional element RE.
- a straightening element RE the printed products are aligned transversely to the conveying direction with the aid of stops.
- the directional element has a comparative effect on the current parameter p, that is, it reduces the irregularities ⁇ p.
- the current parameter p is changed.
- the directional element RE can simultaneously serve as a takeover element GE for changing the current parameters v, a and p.
- the current parameter p can be changed or maintained.
- the interface according to the invention now represents a serial arrangement of functional elements according to FIGS. 3b to 3d (UE, PE, RE), which is designed according to the following construction principle:
- the number of conveyor belts is as possible small, in that each conveyor belt serves two elements, its start as an interface input or exit from a functional element, its end as an entry into a subsequent functional element or as an interface output.
- the functional elements are arranged one above the other as possible and thus save space.
- Functional elements that only have a comparative effect for example a straightening element
- the interface can be configured for various applications by setting or simple assembly.
- the shingled stream can be set up in each functional element with respect to the current parameters v, a and p for the following functional element.
- this setting is generated at the input of the interface, which forms a transfer element between the feeding conveyor belt of the upstream device and the first conveyor belt of the interface.
- the parameters v, a and p required at the output of the interface are set in the last functional unit, which contains a transfer, so that the current no longer has to be changed at the output of the interface, which in turn is a transfer element.
- the quality of the current especially if it has been improved by straightening in a last functional element, is no longer impaired at the output.
- the arrangement of the functional elements one above the other is achieved by a corresponding arrangement of deflection elements.
- the interface according to the invention has at least one deflection element.
- the order of the functional elements is such that deflecting elements (UE) alternate with other functional elements (PE, RE).
- Configurability is realized through several inputs and outputs.
- the interface according to the invention is further distinguished by the fact that different embodiments of the same functional elements can be used in accordance with the requirements of a specific application of the scale flow, which is equivalent to a further, rather qualitative configuration.
- Figures 4a to 4c show, in the schematic representation of Figures 3a to 3d, some exemplary embodiments of the interface according to the invention.
- FIG. 4a shows an interface with two deflection elements UE.1 and UE.2, a buffer element PE and a directional element RE, which can be designed with or without a transfer function.
- the serial order of the functional units is according to the construction principle: input I, UE.1, PE, UE.2, RE, output O.
- the interface works with four (or five) conveyor belts, of which a first (input belt 41) the print products Input I to the interface takes over from a means of transport of the upstream shingled stream-laying device, and a last one (output belt 42) transfers the printed products to a means of transportation of the downstream shingled stream-picking device.
- Both input band 41 and output band 42 take on additional functions.
- the input band 41 guides the print products, for example, into the first deflection element UE.1
- the output band 42 guides the print products from the second deflection element UE.2 through the directional element RE if this works without transfer.
- Two further conveyor belts 45 and 46 are arranged between input belt 41 and output belt 42, both of which likewise each have two different functions.
- the conveyor belt 46 is at the same time a discharging conveyor belt of the buffer element PE and a feeding conveyor belt of the second deflection element UE.2.
- the straightening element RE is also a transfer element, an additional conveyor belt is necessary.
- the straightening element is advantageously arranged directly in front of the outlet O as the last functional element in front of the outlet, so that the printed products cannot be moved out of their aligned position in any functional element following the straightening element RE. For the same reason, it is advantageously also dispensed with that the transfer element of the interface output O is used to change the current parameters v, a or p.
- the output current S o flowing out of the interface according to FIG. 4a is more uniform than ⁇ p compared to the input current S i .
- the two currents are decoupled with regard to power fluctuations ⁇ l.
- the type of overlap u is the same (two redirections).
- the output current S o has no gaps and can (depending on the design of the buffer element PE) be even with respect to ⁇ a.
- the current parameters v and a can be changed, essentially depending on the relative speeds of the conveyor belt of the upstream device and the conveyor belt 42.
- the current parameter p can be changed depending on the arrangement of the conveyor belts.
- the interface has a buffer element PE, which processes a shingled stream whose stream parameter u (type of overlap) is different from u of the incoming and outgoing shingled stream.
- FIG. 4b shows a further exemplary embodiment of the interface according to the invention. It has a deflection element UE.1, a buffer element PE and three conveyor belts (41, 45, 46), each conveyor belt forming the output of a functional element and the input of a subsequent functional element.
- the scale flow is decoupled in this interface with regard to power fluctuations ⁇ l.
- the type of overlap u changes.
- the interface does not affect the current parameter ⁇ p. It may or may not act on the current parameters v, a, p and ⁇ a.
- the buffer element PE used processes a scale stream with the same type of overlap u, which also has the output stream S o .
- the interface according to FIG. 4b is also conceivable as a configuration of the interface according to FIG. 4a, in that the conveyor belt 46 leads to a second output O 'which can be activated by configuration.
- FIG. 4c shows a further embodiment of the interface according to the invention, which differs from that according to FIG. 4b by a directional element RE and thus has a comparative effect with respect to ⁇ p.
- the buffer element PE used processes a scale stream with the same type of overlap u as the input stream S i .
- This embodiment is also conceivable as a configuration of the embodiment according to FIG. 4a with two inputs I and I '.
- FIG. 4d shows a very simple embodiment of the interface according to the invention, which is also conceivable as a configuration of one of the embodiments shown above, in that its buffer element is not active or replaced by a conveyor belt 45 'and the second output O' is used. Only the current parameter u is changed in this interface. It cannot act on the current parameters ⁇ a, ⁇ p, f, ⁇ l.
- Figures 4a to 4d each show a scale flow pattern in the interface, which is directed from the bottom up. It is also possible to operate the interfaces with a general conveying direction from top to bottom if the functional elements are set up accordingly.
- the function of pressing the printed products mentioned at the outset can be carried out, for example, by a press roller arranged opposite one of the conveyor belts of the interface, by the transverse conveying means of the straightening element or by one of the deflecting elements.
- FIGS. 5a and b show an embodiment of the deflection element UE which is advantageous for the interface according to the invention, as a side view with viewing direction parallel to the deflection axis (FIG. 5a) and as a top view (FIG. 5b, without return of the belts).
- the deflection element has a deflection roller 51, a deflection belt 52 and two conveyor belts (53 and 54).
- the deflection roller 51 and the deflection belt 52 are significantly narrower than the printed products. This can be clearly seen in the top view (FIG. 5b), in which the printed products running out around the deflection roller 51 and out of the deflection point are indicated by dash-dotted lines.
- the two conveyor belts 53 and 54 are designed as double belts and are arranged on both sides of the deflection roller in the area of the transfer between the deflection roller 51 or deflection belt 52 and the conveyor belt (54 or 53). This is clearly visible in Figure 5b for the conveyor belt 54, which has two sub-belts 54.1 and 54.2.
- the printed products are sufficiently stable in the area of the deflection, despite the small width of the deflection roller 51 and deflection belt 52, since the deflection radius is chosen to be so small that the printed products stabilize due to their curvature, and thus a good hold between the deflection roller 51 and the deflection belt 52 over their entire width take defined position.
- the operation of the deflecting element can be reversed as desired.
- the deflection belt 52 is usually driven and the deflection roller 51 is towed.
- the drive of the deflection belt 52 which runs around the deflection roller 51, is arranged in such a way that the belt is pulled around the deflection roller in the conveying direction, that is to say that in the conveying direction shown, for example a roller 55 is driven, in the opposite conveying direction a roller 56 is driven.
- the speed of the deflection belt 52 is greater than the speed of the conveyor belt 54.
- deflection elements can also be used in the interface unit according to the invention, which have a wider deflection roller and a wider deflection belt, which can then also take over the function of one conveyor belt. In this case, it is also possible to use the deflection point to press the printed products. Additional belts arranged parallel to the deflection belt are also conceivable, for example, for pressing a laterally folded product.
- FIG. 6 shows an embodiment of a buffer element PE, which is advantageous for the interface according to the invention, looking in the direction transverse to the conveying direction F. It is a buffer element with a stack between the two conveyor belts.
- the buffer element shown is special advantageous for the device according to the invention because it is very simple and compact to implement.
- the buffer element has an infeed conveyor belt 61 (only shown as a section) and an outflow conveyor belt 62. In between there is a stationary support 63. Inlet conveyor belt 61, support 63 and outlet conveyor belt 62 are arranged in such a way that the support surface for the printed products increases step-by-step during the transition from one to the other. A transport roller 64 is arranged and driven between the infeed conveyor belt 61 and the support 63 in such a way that it accepts the printed products from the infeed conveyor belt 61 and lifts them slightly.
- a deflection roller 65 for an auxiliary belt 66 is arranged and driven above the takeover point between the infeed conveyor belt 61 and the transport roller 64 in such a way that the auxiliary belt 66 together with the infeed conveyor belt 61 forms a conveyor channel 67.1 which narrows against the transport roller 64 and which in the region of Transfer from the infeed conveyor belt 61 to the transport roller 64 opens into a conveying gap 67.2, which essentially has a width corresponding to the thickness of the incoming stream of shingles.
- the printed products conveyed through the conveying gap 67.2 are lifted onto the support 63 and pushed under printed products already lying thereon until they strike a stop 68.
- the stop 68 is arranged in such a way that a product hits it when its rear edge is being conveyed through the conveying gap 67.2.
- the auxiliary band 66 equipped with an adhesive surface lifts this rear edge of a printed product in contact with the stop 68 along the circumference of the deflection roller 65 up to a second stop 69, whereby rear edges of printed products already resting on the support 63 are further lifted along the stop 69.
- a continuous stack of printed products is inserted through the conveyor gap 67.2 between the stops 68 and 69. Gaps in the incoming stream of shingles are closed and its cycle stopped.
- auxiliary belt 66 provided with an adhesive surface
- this can also be equipped like a normal conveyor belt, but narrower than the printed products and narrower than the deflecting roller 65. Those parts of the deflecting roller 65 that are not covered by the auxiliary belt 66 and thus come into contact with the printed products come, in this case have an adhesive surface. The printed products are then conveyed from the roll 65 to the stop 69.
- a removal roller 70 is arranged and driven in such a way that it rests on the stack and conveys the uppermost printed product of the stack from the stack onto the outlet conveyor belt 62, which produces the one produced by the removal roller 70 Shed stream S o promoted.
- the removal roller 70 can only convey away printed products whose front edges lie above the level of the stop 68.
- the stop 68 essentially has the task of stopping printed products pushed under the stack and of preventing the stack from being displaced in the conveying direction F by pushing new printed products underneath. In order to be able to perform this task, it must have a height that is greater than the thickness of a printed product. In other words, the stack must have a minimum of printed products at all times, namely as many as it takes to achieve a stack height that is greater than the height of the stop 68.
- the removal roller 70 can be provided with an adhesive surface to prevent slippage between the roller and the printed product to be pushed away, or with openings through which air is sucked off, such that the printed product to be pushed is sucked onto the removal roller and thereby held.
- the shingled stream S i entering the buffer element described must have underlying front edges.
- the stack is created from below and removed from above.
- the shingled stream S o running out of the buffer element also has lower front edges.
- the quality of the scale stream S o generated with respect to clock regularity is independent of the quality of the incoming stream S i .
- At least two vertically arranged, driven worm screws can be provided, which have a corresponding height as specified for the stop 68.
- the front edge of a printed product pushed under the stack is then pushed into one turn of the worm screws and raised by their rotary movement until it reaches the upper end of the worm screws and the printed product thereby becomes part of the stack, which can be removed from the removal roller.
- the stack of the buffer element described can also be removed with an investor function.
- Devices that perform a feeder function are known and, for example, in the American Patent No. US-5042792 or the European patent application EP-OS-0368009 from the same applicant. With a feed function, the shingle spacing a of the shingle stream produced becomes so uniform, that is, ⁇ a so small that the shingle stream meets all requirements. However, the buffer element is then no longer very simple.
- a further possibility of generating scale streams for higher requirements with regard to uniformity of the scale distance ( ⁇ a) is to use buffer elements which have shifting means for shifting the transfer point between the infeed conveyor belt and the outfeed conveyor belt. As already heated, such buffer elements are known. The advantage of such buffer elements is that the cycle of the incoming shingled stream is not canceled, but only changed. A regular shingled stream emerges from a regular shingled stream. Buffer elements of this type process shingled streams with leading edges lying at the top.
- FIGS. 7a and b show an embodiment of a straightening element RE, which is advantageous for the interface according to the invention, as a top view (FIG. 7a) and as a side view with a viewing direction transverse to the conveying direction (FIG. 7b).
- the straightening element essentially consists of a conveyor belt 71 which guides a shingled stream in the conveying direction F through the straightening element, a transverse conveying means (not shown) for displacing the printed products transversely to the conveying direction F and a stop unit 72. It is a one-sided straightening element by moving the printed products transversely to be moved to the conveying direction in only one direction against only one stop unit.
- the printed products are conveyed into the straightening element with a conveying direction F i , are conveyed there transversely to the main conveying direction F so that a conveying direction F r arises and are finally conveyed out of the straightening element with a conveying direction F o which is parallel to the conveying direction F i runs.
- a stop unit 72 parallel to the incoming shingled stream is provided to the side of the shingled stream, at a distance x therefrom which is at least as large as a maximum expected deviation ⁇ p from the position p of the incoming shingling stream.
- transverse conveying means such as, for example, conveyor rollers or conveyor belts angled to the conveying direction or a stop arranged at an angle to the conveying direction can be used as the transverse conveying means of the straightening element.
- a series of straightening columns 73.1 to 73.6 is advantageously used as the stop unit 72.
- the straightening columns have a round floor plan and are arranged in a row in the area of the cross-conveyor in a row parallel to the conveying directions F i and F o at a distance x from the side edge of the incoming stream of shingles and are driven in such a way that their surface directed against the shingled stream moves at current speed moved in the direction of conveyance F.
- the surface of the straightening columns is advantageously rough, for example cross-knurled, so that the printed products not slide on it, but be moved along.
- the straightening columns can be driven, for example, with a drive belt 74 which is arranged below or above the conveyor belt 71 and is guided for deflection around the straightening columns 73.1 to 73.6, for example around deflection rollers 75.1 to 75.5 arranged between the straightening columns.
- a drive belt 74 which is arranged below or above the conveyor belt 71 and is guided for deflection around the straightening columns 73.1 to 73.6, for example around deflection rollers 75.1 to 75.5 arranged between the straightening columns.
- stop plates 76 are advantageously provided between the straightening columns intended. These stop plates are angled and reach under the conveyor belt 71.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Separation, Sorting, Adjustment, Or Bending Of Sheets To Be Conveyed (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Burglar Alarm Systems (AREA)
- Glass Compositions (AREA)
Claims (22)
- Interface pour formations en écailles (S) de produits imprimés (P) comprenant une entrée (I) pour un flux en écailles arrivant (Si) et une sortie (O) pour un flux en écailles sortant (So), et un élément de renvoi (UE) disposé entre l'entrée (I) et la sortie (O) pour renvoyer le flux en écailles, caractérisée en ce qu'entre l'entrée (I) recevant le flux en écailles (S) débité par un premier dispositif (2) et la sortie (O) débitant le flux en écailles (So) qui devra être travaillé dans un deuxième dispositif (3), sont agencés au moins deux éléments fonctionnels (UE, PE, RE) montés l'un à la suite de l'autre, qui sont construits pour modifier les paramètres du flux, qui caractérisent les propriétés du flux en écailles (S) comme la vitesse (v), l'écartement (a), la position (p), le mode de recouvrement (u) et l'orientation (o) des produits imprimés (P) et des zones défectueuses (f), parmi lesquels un élément fonctionnel est l'élément de renvoi (UE) qui renvoie le flux en écailles à 180° pour changer le mode de recouvrement (u) des produits imprimés (P), cependant que, dans le cas où il est prévu un élément de renvoi (UE) et deux autres éléments fonctionnels (PE, RE) tels que des éléments tampons (PE) et des éléments aligneurs (RE), l'élément de renvoi (UE) est toujours disposé entre les deux autres éléments fonctionnels (PE, RE) en vue de réaliser un agencement peu encombrant, et en ce qu'entre deux éléments fonctionnels adjacents (UE, PE, RE), est prévue une bande transporteuse (42, 45, 46) qui est en même temps la bande transporteuse qui part d'un des éléments fonctionnels et la bande transporteuse qui arrive dans l'élément fonctionnel suivant.
- Interface selon la revendication 1, caractérisée en ce qu'elle comprend, en supplément d'un élément de renvoi (UE) ou des éléments de renvoi, un élément tampon (PE) en tant qu'autre élément fonctionnel.
- Interface selon la revendication 1 ou 2, caractérisée en ce qu'en supplément d'un élément de renvoi (UE) ou de plusieurs éléments de renvoi, elle présente un élément aligneur (RE) en qualité d'élément fonctionnel supplémentaire.
- Interface selon la revendication 3, caractérisée en ce que l'élément aligneur (RE) est agencé immédiatement avant la sortie (O).
- Interface selon les revendications 1, 2 et 3, caractérisée en ce qu'elle comprend deux éléments de renvoi (UE.1, UE.2), un élément tampon (PE) disposé entre les deux éléments de renvoi (UE.1, UE.2), un élément aligneur (RE) disposé entre le deuxième élément de renvoi (UE.2) et la sortie (O) et quatre bandes transporteuses (41, 42, 45, 46) qui relient l'entrée (I) aux éléments fonctionnels (UE.1, UE.2, PE, RE) et relient ces derniers les uns aux autres et à la sortie (O).
- Interface selon la revendication 5, caractérisée en ce qu'elle comprend une deuxième sortie (O') et en ce qu'elle peut être configurée ou est configurée de manière que le flux en écailles soit guidé directement de l'élément tampon (PE) ou du premier élément de renvoi (UE.1) à la deuxième sortie (O').
- Interface selon la revendication 5, caractérisée en ce qu'elle présente une deuxième entrée (I') et en ce qu'elle configurée ou peut être configurée de telle manière que le flux en écailles soit conduit directement de la deuxième entrée (I') à l'élément tampon (PE) ou au deuxième renvoi (UE.2).
- Interface selon la revendication 1, caractérisée en ce que l'élément de renvoi (UE) présente un rouleau de renvoi (51) une bande de renvoi (52) et deux bandes transporteuses (53 et 54) qui mènent au rouleau de renvoi et qui sont composées chacune de deux bandes partielles parallèles (54.1 et 54.2) entre lesquelles le rouleau de renvoi (51) est agencé.
- Interface selon la revendication 2, caractérisée en ce que l'élément tampon (PE) présente une bande transporteuse d'arrivée (61) et une bande transporteuse de départ (62), entre lesquelles est disposé un appui fixe (63), en ce qu'entre la bande transporteuse d'arrivée (61) et l'appui fixe (63), sont disposés des moyens de transport (64, 65, 66) avec lesquels les produits imprimés (P) sont poussés de la bande transporteuse d'arrivée (61) à l'appui (63) et en ce qu'au-dessus de l'appui (63), est agencé un moyen d'extraction (70) servant à évacuer des produits (P) empilés sur l'appui.
- Interface selon la revendication 9, caractérisée en ce que l'appui (63) est limité, en avant dans la direction de transport, par une butée (68).
- Interface selon la revendication 9 ou 10, caractérisée en ce que les moyens de transport (64, 65, 66) forment une fente de transport (67.2) qui se termine sur l'appui (63), en position arrière dans la direction du transport.
- Interface selon la revendication 11, caractérisée en ce que, dans la région de l'extrémité de la fente de transport (67.2), sont prévus des moyens élévateurs (65, 66) à 'aide desquels les bords arrière des produits imprimés (P) transportés à travers la fente de transport (67.2) sont soulevés au-dessus du niveau de l'appui (63).
- Interface selon la revendication 12, caractérisée en ce que les moyens de transport (64, 65, 66) et les moyens élévateurs (65, 66) situés dans la région de la fente de transport (67.2) sont un rouleau de transport (64) et un rouleau de renvoi (65) complété d'une bande auxiliaire (66) qui l'embrasse.
- Interface selon la revendication 13, caractérisée en ce que des parties du rouleau de renvoi (65) ou de la bande auxiliaire (66) possèdent une surface adhésive.
- Interface selon la revendication 3, caractérisée en ce que l'élément aligneur (RE) présente une bande transporteuse (71) destinée à transporter un flux en écailles (S) à travers l'élément aligneur, des moyens de transport transversal servant à transporter les produits imprimés (P) du flux en écailles (S) transversalement à la direction de transport (F) de la bande transporteuse (71), et une unité de butée (72) agencée dans la région des moyens de transport transversal, parallèlement au flux en écailles arrivant (S) et disposée à distance de ce dernier.
- Interface selon la revendication 15, caractérisée en ce que l'unité de butée (72) est composée d'une série de colonnes aligneuses (73.1-73.6) possédant un contour rond.
- Interface selon la revendication 16, caractérisée en ce que les colonnes aligneuses (73.1-73.6) sont reliées fonctionnellement à un entraînement (74) de telle manière que leur surface dirigée vers le flux en écailles tourne dans la direction de transport (F) et avec la vitesse de transport du flux en écailles (S).
- Interface selon la revendication 16 ou 17, caractérisée en ce que la surface des colonnes aligneuses (73.1-73.6) est moletée en croix.
- Interface selon une des revendications 16 à 18, caractérisée en ce que des plaques de butée (76) sont prévues entre les colonnes aligneuses (73.1-73.6).
- Procédé d'utilisation d'une interface selon une des revendications 1 à 7, caractérisé en ce qu'à l'entrée (I), lors du transfert du flux en écailles arrivant (Si) dans l'interface (1), les paramètres de flux vitesse (v), écartement des produits (a) et position des produits (p) sont réglés pour le premier élément fonctionnel et en ce que, dans chaque élément fonctionnel, ces paramètres de flux (v, a, p) sont réglés pour l'élément fonctionnel suivant.
- Procédé selon la revendication 20, caractérisé en ce que les paramètres de flux vitesse (v), écartement des produits (a) et position des produits (p) sont réglés dans le dernier élément fonctionnel ou dans les deux derniers éléments fonctionnels agissant sur le flux en écailles (So) qui part de l'interface (1), de sorte qu'ils n'ont plus à être modifiés au moment du transfert à la sortie (O).
- Procédé selon la revendication 20 ou 21, caractérisé en ce que le flux en écailles (S) est régularisé sous l'aspect de l'alignement latéral dans le dernier élément fonctionnel avant la sortie (O).
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CH132592 | 1992-04-27 | ||
| CH1325/92 | 1992-04-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0567807A1 EP0567807A1 (fr) | 1993-11-03 |
| EP0567807B1 true EP0567807B1 (fr) | 1997-06-18 |
Family
ID=4207809
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP93105576A Expired - Lifetime EP0567807B1 (fr) | 1992-04-27 | 1993-04-03 | Poste de traitement actif pour un courant de produits imprimés en formation imbriquée |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US5443254A (fr) |
| EP (1) | EP0567807B1 (fr) |
| AT (1) | ATE154569T1 (fr) |
| DE (1) | DE59306763D1 (fr) |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4241885C1 (de) * | 1992-10-05 | 1993-11-25 | Ferag Ag | Regelanordnung für eine Vorrichtung zum Zubringen von Druckereierzeugnissen zu einer Weiterverarbeitungsstelle |
| CH689773A5 (de) * | 1995-02-16 | 1999-10-29 | Ferag Ag | Vorrichtung zum Vergleichmaessigen des Abstandes zwischen aufeinanderfolgenden flaechigen Produkten. |
| DE19514859C1 (de) * | 1995-04-27 | 1996-09-19 | Licentia Gmbh | Vorrichtung zum radialen Umlenken von Sendungen in Transportanlagen |
| EP0754642B1 (fr) * | 1995-07-20 | 2000-10-18 | Heidelberger Druckmaschinen Aktiengesellschaft | Méthode et dispositif de sortie de produits en forme de feuille |
| US5882006A (en) * | 1995-10-06 | 1999-03-16 | Baldwin Technology Corporation | Apparatus and method for turning and orienting articles within an article pathway |
| AU711307B2 (en) * | 1996-05-06 | 1999-10-07 | Ferag Ag | Device for feeding printed products to a further processing point |
| US6193227B1 (en) * | 1997-04-28 | 2001-02-27 | Grapha-Holding Ag | Continuously feeding sheets with coil unwind control |
| FR2763057B1 (fr) * | 1997-05-06 | 1999-07-23 | Realisations Etudes Et Commerc | Colonne modulaire autonome de montee/descente pour une nappe de cahiers |
| US6062372A (en) * | 1997-08-13 | 2000-05-16 | Heidelgerg Web Press, Inc. | Post-folder diverting apparatus using parallel drives |
| DE19839314B4 (de) * | 1998-02-18 | 2007-03-01 | Heidelberger Druckmaschinen Ag | Verfahren und Vorrichtung zum Transport von Bogen mittels mindestens eines Transportbandes, an welchem die Bogen auf dem Transportweg fixiert werden |
| DE10004533C1 (de) * | 2000-02-02 | 2001-06-07 | Agfa Gevaert Ag | Vorrichtung zum Transport von Einzelblättern durch eine Einrichtung zum Belichten oder Bedrucken der Einzelblätter |
| US6477950B1 (en) | 2000-04-12 | 2002-11-12 | Michael Alan Feilen | Apparatus and method for duplex printing of a sheet-like substrate |
| TW552233B (en) * | 2002-08-29 | 2003-09-11 | Veutron Corp | A transmission mechanism of auto document feeder |
| DE10347807A1 (de) * | 2003-10-10 | 2005-05-25 | Syspro Gmbh System Produktionstechnik | Vorrichtung zum Fördern von in Schuppenformation vorliegendem flachem Stückgut, insbesondere von Druckereierzeugnissen |
| US7206532B2 (en) | 2004-08-13 | 2007-04-17 | Xerox Corporation | Multiple object sources controlled and/or selected based on a common sensor |
| US7310108B2 (en) * | 2004-11-30 | 2007-12-18 | Xerox Corporation | Printing system |
| US7305198B2 (en) * | 2005-03-31 | 2007-12-04 | Xerox Corporation | Printing system |
| US8002689B2 (en) * | 2006-03-06 | 2011-08-23 | Goss International Americas, Inc. | Folder with signature removal and slowdown process |
| DK1944257T3 (da) | 2007-01-12 | 2010-09-27 | Ferag Ag | Indretning til sideværts orientering af trykkeriprodukter |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1883889A (en) * | 1931-01-23 | 1932-10-25 | Daniel Manson Sutherland Jr | Apparatus for feeding and aligning sheet material |
| JPS5333184B2 (fr) * | 1975-02-07 | 1978-09-12 | ||
| DE2609879C3 (de) * | 1976-03-10 | 1978-11-09 | Jagenberg-Werke Ag, 4000 Duesseldorf | Vorrichtung zum Schuppen von flachen Gegenständen, insbespndere Zuschnitten aus steifem Material |
| CH657115A5 (de) * | 1982-06-03 | 1986-08-15 | Ferag Ag | Verfahren und vorrichtung zum verarbeiten von in einer schuppenformation anfallenden druckprodukten. |
| US5054767A (en) * | 1987-03-09 | 1991-10-08 | Gaemmerler Hagen | Conveying apparatus for paper products, in particular in stream form |
| US4889333A (en) * | 1987-03-09 | 1989-12-26 | Gaemmerler Hagen | Conveying apparatus for paper products, in particular in stream form |
| JPH085582B2 (ja) * | 1987-05-25 | 1996-01-24 | 大日本印刷株式会社 | シ−トの瀬切り装置 |
-
1993
- 1993-04-03 EP EP93105576A patent/EP0567807B1/fr not_active Expired - Lifetime
- 1993-04-03 AT AT93105576T patent/ATE154569T1/de not_active IP Right Cessation
- 1993-04-03 DE DE59306763T patent/DE59306763D1/de not_active Expired - Fee Related
- 1993-04-27 US US08/053,918 patent/US5443254A/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| EP0567807A1 (fr) | 1993-11-03 |
| DE59306763D1 (de) | 1997-07-24 |
| US5443254A (en) | 1995-08-22 |
| ATE154569T1 (de) | 1997-07-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0567807B1 (fr) | Poste de traitement actif pour un courant de produits imprimés en formation imbriquée | |
| EP0075121B1 (fr) | Dispositif pour étirer des produits plats délivrés en formation imbriquée, en particulier des produits imprimés | |
| EP1251092B1 (fr) | Système à guider du matériau pour de machines de raccordement | |
| DE3038058A1 (de) | Einrichtung zum aufstapeln von flachen gegenstaenden,insbesondere von faltschachtel-zuschnitten | |
| EP0510525B1 (fr) | Procédé et dispositif pour traiter des produits imprimés | |
| CH662330A5 (de) | Einrichtung zur erzeugung von zwischenraeumen in einem bewegten strom von sich ueberlappenden papierboegen. | |
| EP1375399A2 (fr) | Dispositif pour séparer un courant de produits imprimés en formation imbriquée dans un courant de produits imprimés séparés les uns des autres | |
| EP0625122B1 (fr) | Installation pour le transport et la separation de produits d'impression plies | |
| EP0309745B1 (fr) | Dispositif pour empiler des articles imprimés arrivant de façon continue en formation imbriquée | |
| CH629160A5 (en) | Device for subdividing a continuous stream, in particular an overlapping stream, of flat products into individual groups | |
| DE19935186C1 (de) | Verfahren und Vorrichtung zum geschuppten Anordnen von zumindest zwei Blättern | |
| EP1464602B1 (fr) | Dispositif pour former un courant d'objects plats se chevauchant | |
| EP0908310A2 (fr) | Entraínement de bandes au-dessus d'un groupe de pliage | |
| EP1966070B1 (fr) | Procede et dispositif d'etablissement d'un ecoulement reuni de produits d'impression a partir de deux ecoulements de produits d'impression | |
| DE69302494T2 (de) | Vorrichtung und Verfahren zum Falten von Bogen mit verschiedenen Formaten | |
| EP2275373A1 (fr) | Procédé et dispositif d'assemblage continu d'au moins deux flux de tuiles de produits d'impression plats | |
| DE3244400C2 (fr) | ||
| DE3830754C2 (de) | Verfahren und Vorrichtung zum Halbfalten und Ineinanderstecken einer Vielzahl von Papierblättern | |
| DE4012943C2 (fr) | ||
| CH683095A5 (de) | Verfahren und Vorrichtung zum Puffern von Druckprodukten in Schuppenformation. | |
| DE4003024C2 (fr) | ||
| EP2316767B1 (fr) | Dispositif et procédé de fabrication de piles de produits d'impression | |
| EP0870710B1 (fr) | Méthode et dispositif pour séparer et empiler du courant de transport des articles imprimés | |
| DE19821918B4 (de) | Verfahren zum Fördern von Produkten und Handhabungseinheit zur Durchführung des Verfahrens | |
| EP0091065B1 (fr) | Dispositif de transport séparé dans un bain d'un appareil de développement par diffusion de deux feuilles pourvues de couches photosensibles |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB IT LI |
|
| 17P | Request for examination filed |
Effective date: 19930904 |
|
| 17Q | First examination report despatched |
Effective date: 19941220 |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI |
|
| REF | Corresponds to: |
Ref document number: 154569 Country of ref document: AT Date of ref document: 19970715 Kind code of ref document: T |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG Ref country code: CH Ref legal event code: EP |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970619 |
|
| REF | Corresponds to: |
Ref document number: 59306763 Country of ref document: DE Date of ref document: 19970724 |
|
| ET | Fr: translation filed | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980403 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990324 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001229 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010316 Year of fee payment: 9 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020403 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020403 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: FERAG AG Free format text: FERAG AG#ZUERICHSTRASSE 74#CH-8340 HINWIL (CH) -TRANSFER TO- FERAG AG#PATENTABTEILUNG Z. H. MARKUS FELIX ZUERICHSTRASSE 74#8340 HINWIL (CH) |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050403 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080418 Year of fee payment: 16 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091103 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20100421 Year of fee payment: 18 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |